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xi

A great discovery solves a great problem but there is a grain of discovery in the
solution of any problem.Your problem may be modest; but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

GEORGE POLYA

PREFACE

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to
write a book that assists students in discovering calculus—both for its practical power and
its surprising beauty. In this edition, as in the first five editions, I aim to convey to the stu-
dent a sense of the utility of calculus and develop technical competence, but I also strive
to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly
experienced a sense of triumph when he made his great discoveries. I want students to
share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that
this should be the primary goal of calculus instruction. In fact, the impetus for the current
calculus reform movement came from the Tulane Conference in 1986, which formulated
as their first recommendation:

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be pre-
sented geometrically, numerically, and algebraically.” Visualization, numerical and graph-
ical experimentation, and other approaches have changed how we teach conceptual 
reasoning in fundamental ways. More recently, the Rule of Three has been expanded to
become the Rule of Four by emphasizing the verbal, or descriptive, point of view as well.

In writing the sixth edition my premise has been that it is possible to achieve concep-
tual understanding and still retain the best traditions of traditional calculus. The book con-
tains elements of reform, but within the context of a traditional curriculum.

ALTERNATIVE VERSIONS

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

N Calculus, Sixth Edition, is similar to the present textbook except that the exponential,
logarithmic, and inverse trigonometric functions are covered in the second semester.

N Essential Calculus is a much briefer book (800 pages), though it contains almost all of
the topics in Calculus, Sixth Edition. The relative brevity is achieved through briefer
exposition of some topics and putting some features on the website.

N Essential Calculus: Early Transcendentals resembles Essential Calculus, but the expo-
nential, logarithmic, and inverse trigonometric functions are covered in Chapter 3.
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N Calculus: Concepts and Contexts, Third Edition, emphasizes conceptual understanding
even more strongly than this book. The coverage of topics is not encyclopedic and the
material on transcendental functions and on parametric equations is woven throughout
the book instead of being treated in separate chapters. 

N Calculus: Early Vectors introduces vectors and vector functions in the first semester and
integrates them throughout the book. It is suitable for students taking Engineering and
Physics courses concurrently with calculus.

WHAT’S NEW IN THE SIXTH EDITION?

Here are some of the changes for the sixth edition of Calculus: Early Transcendentals.

N At the beginning of the book there are four diagnostic tests, in Basic Algebra,
Analytic Geometry, Functions, and Trigonometry. Answers are given and students
who don’t do well are referred to where they should seek help (Appendixes, review
sections of Chapter 1, and the website).

N In response to requests of several users, the material motivating the derivative is
briefer: Sections 2.7 and 2.8 are combined into a single section called Derivatives and
Rates of Change.

N The section on Higher Derivatives in Chapter 3 has disappeared and that material is
integrated into various sections in Chapters 2 and 3.

N Instructors who do not cover the chapter on differential equations have commented
that the section on Exponential Growth and Decay was inconveniently located there.
Accordingly, it is moved earlier in the book, to Chapter 3. This move precipitates a
reorganization of Chapters 3 and 9.

N Sections 4.7 and 4.8 are merged into a single section, with a briefer treatment of opti-
mization problems in business and economics.

N Sections 11.10 and 11.11 are merged into a single section. I had previously featured
the binomial series in its own section to emphasize its importance. But I learned that
some instructors were omitting that section, so I have decided to incorporate binomial
series into 11.10.

N The material on cylindrical and spherical coordinates (formerly Section 12.7) is moved
to Chapter 15, where it is introduced in the context of evaluating triple integrals.

N New phrases and margin notes have been added to clarify the exposition.

N A number of pieces of art have been redrawn.

N The data in examples and exercises have been updated to be more timely.

N Many examples have been added or changed. For instance, Example 2 on page 185
was changed because students are often baffled when they see arbitrary constants in a
problem and I wanted to give an example in which they occur. 

N Extra steps have been provided in some of the existing examples.

N More than 25% of the exercises in each chapter are new. Here are a few of my
favorites: 3.1.79, 3.1.80, 4.3.62, 4.3.83, 11.6.38, 11.11.30, 14.5.44, and 14.8.20–21.

N There are also some good new problems in the Problems Plus sections. See, for
instance, Problems 2 and 13 on page 413, Problem 13 on page 450, and Problem 24
on page 763.

N The new project on page 550, Complementary Coffee Cups, comes from an article by
Thomas Banchoff in which he wondered which of two coffee cups, whose convex and
concave profiles fit together snugly, would hold more coffee.
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N Tools for Enriching Calculus (TEC) has been completely redesigned and is accessible
on the Internet at www.stewartcalculus.com. It now includes what we call Visuals, brief
animations of various figures in the text. In addition, there are now Visual, Modules,
and Homework Hints for the multivariable chapters. See the description on page xiv.

N The symbol has been placed beside examples (an average of three per section) for
which there are videos of instructors explaining the example in more detail. This
material is also available on DVD. See the description on page xxi.

FEATURES

CONCEPTUAL EXERCISES The most important way to foster conceptual understanding is through the problems that
we assign. To that end I have devised various types of problems. Some exercise sets begin
with requests to explain the meanings of the basic concepts of the section. (See, for
instance, the first few exercises in Sections 2.2, 2.5, 11.2, 14.2, and 14.3.) Similarly, all the
review sections begin with a Concept Check and a True-False Quiz. Other exercises test
conceptual understanding through graphs or tables (see Exercises 2.7.17, 2.8.33–38,
2.8.41–44, 9.1.11–12, 10.1.24–27, 11.10.2, 13.2.1–2, 13.3.33–37, 14.1.1–2, 14.1.30–38,
14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.5–10, 16.1.11–18, 16.2.17–18, and 16.3.1–2).

Another type of exercise uses verbal description to test conceptual understanding (see
Exercises 2.5.8, 2.8.56, 4.3.63–64, and 7.8.67). I particularly value problems that combine
and compare graphical, numerical, and algebraic approaches (see Exercises 2.6.37–38,
3.7.25, and 9.4.2).

GRADED EXERCISE SETS Each exercise set is carefully graded, progressing from basic conceptual exercises and skill-
development problems to more challenging problems involving applications and proofs.

REAL-WORLD DATA My assistants and I spent a great deal of time looking in libraries, contacting companies
and government agencies, and searching the Internet for interesting real-world data to intro-
duce, motivate, and illustrate the concepts of calculus. As a result, many of the examples
and exercises deal with functions defined by such numerical data or graphs. See, for
instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), Exercise
2.8.34 (percentage of the population under age 18), Exercise 5.1.14 (velocity of the space
shuttle Endeavour), and Figure 4 in Section 5.4 (San Francisco power consumption).
Functions of two variables are illustrated by a table of values of the wind-chill index as a
function of air temperature and wind speed (Example 2 in Section 14.1). Partial derivatives
are introduced in Section 14.3 by examining a column in a table of values of the heat index
(perceived air temperature) as a function of the actual temperature and the relative humid-
ity. This example is pursued further in connection with linear approximations (Example 3
in Section 14.4). Directional derivatives are introduced in Section 14.6 by using a temper-
ature contour map to estimate the rate of change of temperature at Reno in the direction of
Las Vegas. Double integrals are used to estimate the average snowfall in Colorado on
December 20–21, 2006 (Example 4 in Section 15.1). Vector fields are introduced in Section
16.1 by depictions of actual velocity vector fields showing San Francisco Bay wind patterns.

PROJECTS One way of involving students and making them active learners is to have them work (per-
haps in groups) on extended projects that give a feeling of substantial accomplishment
when completed. I have included four kinds of projects: Applied Projects involve applica-
tions that are designed to appeal to the imagination of students. The project after Section
9.3 asks whether a ball thrown upward takes longer to reach its maximum height or to fall
back to its original height. (The answer might surprise you.) The project after Section 14.8
uses Lagrange multipliers to determine the masses of the three stages of a rocket so as to 
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minimize the total mass while enabling the rocket to reach a desired velocity. Laboratory
Projects involve technology; the one following Section 10.2 shows how to use Bézier
curves to design shapes that represent letters for a laser printer. Writing Projects ask stu-
dents to compare present-day methods with those of the founders of calculus—Fermat’s
method for finding tangents, for instance. Suggested references are supplied. Discovery
Projects anticipate results to be discussed later or encourage discovery through pattern
recognition (see the one following Section 7.6). Others explore aspects of geometry: tetra-
hedra (after Section 12.4), hyperspheres (after Section 15.6), and intersections of three
cylinders (after Section 15.7). Additional projects can be found in the Instructor’s Guide
(see, for instance, Group Exercise 5.1: Position from Samples).

PROBLEM SOLVING Students usually have difficulties with problems for which there is no single well-defined
procedure for obtaining the answer. I think nobody has improved very much on George
Polya’s four-stage problem-solving strategy and, accordingly, I have included a version of
his problem-solving principles following Chapter 1. They are applied, both explicitly and
implicitly, throughout the book. After the other chapters I have placed sections called
Problems Plus, which feature examples of how to tackle challenging calculus problems. In
selecting the varied problems for these sections I kept in mind the following advice from
David Hilbert: “A mathematical problem should be difficult in order to entice us, yet not
inaccessible lest it mock our efforts.” When I put these challenging problems on assign-
ments and tests I grade them in a different way. Here I reward a student significantly for
ideas toward a solution and for recognizing which problem-solving principles are relevant.

TECHNOLOGY The availability of technology makes it not less important but more important to clearly
understand the concepts that underlie the images on the screen. But, when properly used,
graphing calculators and computers are powerful tools for discovering and understanding
those concepts. This textbook can be used either with or without technology and I use two
special symbols to indicate clearly when a particular type of machine is required. The icon

; indicates an exercise that definitely requires the use of such technology, but that is not
to say that it can’t be used on the other exercises as well. The symbol is reserved for
problems in which the full resources of a computer algebra system (like Derive, Maple,
Mathematica, or the TI-89/92) are required. But technology doesn’t make pencil and paper
obsolete. Hand calculation and sketches are often preferable to technology for illustrating
and reinforcing some concepts. Both instructors and students need to develop the ability
to decide where the hand or the machine is appropriate.

TEC is a companion to the text and is intended to enrich and complement its contents. 
(It is now accessible from the Internet at www.stewartcalculus.com.) Developed by Har-
vey Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory
approach. In sections of the book where technology is particularly appropriate, marginal
icons direct students to TEC modules that provide a laboratory environment in which they
can explore the topic in different ways and at different levels. Visuals are animations of fig-
ures in text; Modules are more elaborate activities and include exercises. Instructors can
choose to become involved at several different levels, ranging from simply encouraging
students to use the Visuals and Modules for independent exploration, to assigning spe-
cific exercises from those included with each Module, or to creating additional exercises,
labs, and projects that make use of the Visuals and Modules.

TEC also includes Homework Hints for representative exercises (usually odd-
numbered) in every section of the text, indicated by printing the exercise number in red.
These hints are usually presented in the form of questions and try to imitate an effective
teaching assistant by functioning as a silent tutor. They are constructed so as not to reveal
any more of the actual solution than is minimally necessary to make further progress.

TOOLS FOR 

ENRICHING™ CALCULUS

CAS
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ENHANCED WEBASSIGN Technology is having an impact on the way homework is assigned to students, particu-
larly in large classes. The use of online homework is growing and its appeal depends on
ease of use, grading precision, and reliability. With the sixth edition we have been work-
ing with the calculus community and WebAssign to develop an online homework system.
Up to 70% of the exercises in each section are assignable as online homework, including
free response, multiple choice, and multi-part formats. 

The system also includes Active Examples, in which students are guided in step-by-step
tutorials through text examples, with links to the textbook and to video solutions.

This site has been renovated and now includes the following.

N Algebra Review

N Lies My Calculator and Computer Told Me

N History of Mathematics, with links to the better historical websites

N Additional Topics (complete with exercise sets): Fourier Series, Formulas for the
Remainder Term in Taylor Series, Rotation of Axes

N Archived Problems (Drill exercises that appeared in previous editions, together 
with their solutions)

N Challenge Problems (some from the Problems Plus sections from prior editions)

N Links, for particular topics, to outside web resources

N The complete Tools for Enriching Calculus (TEC) Modules, Visuals, and 
Homework Hints

CONTENT

Diagnostic Tests The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-
tions, and Trigonometry.

A Preview of Calculus This is an overview of the subject and includes a list of questions to motivate the study of
calculus.

1 N Functions and Models From the beginning, multiple representations of functions are stressed: verbal, numerical,
visual, and algebraic. A discussion of mathematical models leads to a review of the standard
functions, including exponential and logarithmic functions, from these four points of view.

2 N Limits and Derivatives The material on limits is motivated by a prior discussion of the tangent and velocity prob-
lems. Limits are treated from descriptive, graphical, numerical, and algebraic points of
view. Section 2.4, on the precise ∑-∂ definition of a limit, is an optional section. Sec-
tions 2.7 and 2.8 deal with derivatives (especially with functions defined graphically and
numerically) before the differentiation rules are covered in Chapter 3. Here the examples
and exercises explore the meanings of derivatives in various contexts. Higher derivatives
are now introduced in Section 2.8.

3 N Differentiation Rules All the basic functions, including exponential, logarithmic, and inverse trigonometric func-
tions, are differentiated here. When derivatives are computed in applied situations, students
are asked to explain their meanings. Exponential growth and decay are now covered in this
chapter.

WEBSITE 

www.stewartcalculus.com
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4 N Applications of Differentiation The basic facts concerning extreme values and shapes of curves are deduced from the
Mean Value Theorem. Graphing with technology emphasizes the interaction between cal-
culus and calculators and the analysis of families of curves. Some substantial optimization
problems are provided, including an explanation of why you need to raise your head 42°
to see the top of a rainbow.

5 N Integrals The area problem and the distance problem serve to motivate the definite integral, with
sigma notation introduced as needed. (Full coverage of sigma notation is provided in Appen-
dix E.) Emphasis is placed on explaining the meanings of integrals in various contexts and
on estimating their values from graphs and tables.

6 N Applications of Integration Here I present the applications of integration—area, volume, work, average value—that
can reasonably be done without specialized techniques of integration. General methods are
emphasized. The goal is for students to be able to divide a quantity into small pieces, esti-
mate with Riemann sums, and recognize the limit as an integral. 

7 N Techniques of Integration All the standard methods are covered but, of course, the real challenge is to be able to recog-
nize which technique is best used in a given situation. Accordingly, in Section 7.5, I 
present a strategy for integration. The use of computer algebra systems is discussed in 
Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is use-
ful to have available all the techniques of integration, as well as applications to biology,
economics, and physics (hydrostatic force and centers of mass). I have also included a sec-
tion on probability. There are more applications here than can realistically be covered in 
a given course. Instructors should select applications suitable for their students and for
which they themselves have enthusiasm.

9 N Differential Equations Modeling is the theme that unifies this introductory treatment of differential equations.
Direction fields and Euler’s method are studied before separable and linear equations are
solved explicitly, so that qualitative, numerical, and analytic approaches are given equal
consideration. These methods are applied to the exponential, logistic, and other models 
for population growth. The first four or five sections of this chapter serve as a good intro-
duction to first-order differential equations. An optional final section uses predator-prey
models to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus
to them. Parametric curves are well suited to laboratory projects; the two presented here
involve families of curves and Bézier curves. A brief treatment of conic sections in polar
coordinates prepares the way for Kepler’s Laws in Chapter 13.

11 N Infinite Sequences and Series The convergence tests have intuitive justifications (see page 697) as well as formal proofs.
Numerical estimates of sums of series are based on which test was used to prove conver-
gence. The emphasis is on Taylor series and polynomials and their applications to physics.
Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two chap-
ters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and surfaces. 

12 N Vectors and 

The Geometry of Space

10 N Parametric Equations 

and Polar Coordinates

8 N Further Applications 

of Integration
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13 N Vector Functions This chapter covers vector-valued functions, their derivatives and integrals, the length and
curvature of space curves, and velocity and acceleration along space curves, culminating
in Kepler’s laws.

14 N Partial Derivatives Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific
column in a table of values of the heat index (perceived air temperature) as a function of
the actual temperature and the relative humidity. Directional derivatives are estimated from
contour maps of temperature, pressure, and snowfall.

15 N Multiple Integrals Contour maps and the Midpoint Rule are used to estimate the average snowfall and average
temperature in given regions. Double and triple integrals are used to compute probabilities,
surface areas, and (in projects) volumes of hyperspheres and volumes of intersections of
three cylinders. Cylindrical and spherical coordinates are introduced in the context of eval-
uating triple integrals.

16 N Vector Calculus Vector fields are introduced through pictures of velocity fields showing San Francisco Bay
wind patterns. The similarities among the Fundamental Theorem for line integrals, Green’s
Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals
with second-order linear differential equations, their application to vibrating springs and
electric circuits, and series solutions.
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Reading a calculus textbook is different from reading a news-
paper or a novel, or even a physics book. Don’t be discouraged
if you have to read a passage more than once in order to under-
stand it. You should have pencil and paper and calculator at
hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems and
read the text only if they get stuck on an exercise. I suggest that
a far better plan is to read and understand a section of the text
before attempting the exercises. In particular, you should look 
at the definitions to see the exact meanings of the terms. And
before you read each example, I suggest that you cover up the
solution and try solving the problem yourself. You’ll get a lot
more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically.
Learn to write the solutions of the exercises in a connected,
step-by-step fashion with explanatory sentences—not just a
string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the
back of the book, in Appendix I. Some exercises ask for a ver-
bal explanation or interpretation or description. In such cases
there is no single correct way of expressing the answer, so don’t
worry that you haven’t found the definitive answer. In addition,
there are often several different forms in which to express a
numerical or algebraic answer, so if your answer differs from
mine, don’t immediately assume you’re wrong. For example,
if the answer given in the back of the book is and you
obtain , then you’re right and rationalizing the
denominator will show that the answers are equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with
graphing software. (Section 1.4 discusses the use of these
graphing devices and some of the pitfalls that you may
encounter.) But that doesn’t mean that graphing devices can’t
be used to check your work on the other exercises as well. The
symbol is reserved for problems in which the full resourcesCAS

1�(1 � s2)
s 2 � 1

of a computer algebra system (like Derive, Maple, Mathe-
matica, or the TI-89/92) are required.

You will also encounter the symbol | , which warns you
against committing an error. I have placed this symbol in the
margin in situations where I have observed that a large propor-
tion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this
text, is referred to by means of the symbol and can be
accessed from www.stewartcalculus.com. It directs you to mod-
ules in which you can explore aspects of calculus for which the
computer is particularly useful. TEC also provides Homework
Hints for representative exercises that are indicated by printing
the exercise number in red: These homework hints ask you
questions that allow you to make progress toward a solution
without actually giving you the answer. You need to pursue
each hint in an active manner with pencil and paper to work 
out the details. If a particular hint doesn’t enable you to solve
the problem, you can click to reveal the next hint. 

An optional CD-ROM that your instructor may have asked
you to purchase is the Interactive Video Skillbuilder, which con-
tains videos of instructors explaining two or three of the exam-
ples in every section of the text. Also on the CD is a video in
which I offer advice on how to succeed in your calculus course.

I recommend that you keep this book for reference purposes
after you finish the course. Because you will likely forget some
of the specific details of calculus, the book will serve as a 
useful reminder when you need to use calculus in subsequent
courses. And, because this book contains more material than
can be covered in any one course, it can also serve as a valuable
resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one
of the greatest achievements of the human intellect. I hope you

will discover that it is not only useful but also intrinsically
beautiful.

JAMES STEWART

15.
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DIAGNOSTIC TESTS

Success in calculus depends to a large extent on knowledge of the mathematics that

precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol-

lowing tests are intended to diagnose weaknesses that you might have in these areas.

After taking each test you can check your answers against the given answers and, if

necessary, refresh your skills by referring to the review materials that are provided.

1. Evaluate each expression without using a calculator.

(a) (b) (c)

(d) (e) (f)

2. Simplify each expression. Write your answer without negative exponents.

(a)

(b)

(c)

3. Expand and simplfy.

(a) (b)

(c) (d)

(e)

4. Factor each expression.

(a) (b)

(c) (d)

(e) (f)

5. Simplify the rational expression.

(a) (b)

(c) (d)

y

x
�

x

y

1

y
�

1

x

x 2

x 2 � 4
�

x � 1

x � 2

2x 2 � x � 1

x 2 � 9
�

x � 3

2x � 1

x 2 � 3x � 2

x 2 � x � 2

x 3y � 4xy3x 3�2 � 9x 1�2 � 6x�1�2

x 4 � 27xx 3 � 3x 2 � 4x � 12

2x 2 � 5x � 124x 2 � 25

�x � 2�3

�2x � 3�2(sa � sb )(sa � sb )
�x � 3��4x � 5�3�x � 6� � 4�2x � 5�

�3x 3�2y 3

x 2y�1�2��2

�3a3b3��4ab2�2

s200 � s32 

16�3�4�2

3�
�2

523

521

3�4�34��3�4

DIAGNOSTIC TEST: ALGEBRAA
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6. Rationalize the expression and simplify.

(a) (b)

7. Rewrite by completing the square.

(a) (b)

8. Solve the equation. (Find only the real solutions.)

(a) (b)

(c) (d)

(e) (f)

(g)

9. Solve each inequality. Write your answer using interval notation.

(a) (b)

(c) (d)

(e)

10. State whether each equation is true or false.

(a) (b)

(c) (d)

(e) (f)
1�x

a�x � b�x
�

1

a � b

1

x � y
�

1

x
�

1

y

1 � TC

C
� 1 � Tsa2 � b2 � a � b

sab � sa 
sb �p � q�2 � p2 � q 2

2x � 3

x � 1
� 1

� x � 4 � � 3x�x � 1��x � 2� � 0

x 2 � 2x � 8�4 � 5 � 3x � 17

2x�4 � x��1�2 � 3s4 � x � 0

3� x � 4 � � 10x 4 � 3x 2 � 2 � 0

2x 2 � 4x � 1 � 0x2 � x � 12 � 0

2x

x � 1
�

2x � 1

x
x � 5 � 14 �

1
2 x

2x 2 � 12x � 11x 2 � x � 1

s4 � h � 2

h
s10 

s5 � 2

6. (a) (b)

7. (a) (b)

8. (a) (b) (c)
(d) (e) (f)

(g)

9. (a) (b)
(c) (d)
(e)

10. (a) False (b) True (c) False
(d) False (e) False (f) True

��1, 4�
�1, 7���2, 0� � �1, ��
��2, 4�	�4, 3�

12
5

2
3 , 22

3�1, �s2 �1 �
1
2s2 

�3, 416

2�x � 3�2 � 7(x �
1
2)2

�
3
4

1

s4 � h � 2
5s2 � 2s10 1. (a) (b) (c)

(d) (e) (f)

2. (a) (b) (c)

3. (a) (b)
(c) (d)
(e)

4. (a) (b)
(c) (d)
(e) (f)

5. (a) (b)

(c) (d) ��x � y�
1

x � 2

x � 1

x � 3

x � 2

x � 2

xy�x � 2��x � 2�3x�1�2�x � 1��x � 2�
x�x � 3��x 2 � 3x � 9��x � 3��x � 2��x � 2�
�2x � 3��x � 4��2x � 5��2x � 5�

x 3 � 6x 2 � 12x � 8
4x 2 � 12x � 9a � b
4x 2 � 7x � 1511x � 2

x

9y748a5b76s2

1
8

9
425

1
81�8181

If you have had difficulty with these problems, you may wish to consult  
the Review of Algebra on the website www.stewartcalculus.com.

ANSWERS TO DIAGNOSTIC TEST A: ALGEBRA
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1. Find an equation for the line that passes through the point and

(a) has slope 

(b) is parallel to the -axis

(c) is parallel to the -axis

(d) is parallel to the line 

2. Find an equation for the circle that has center and passes through the point .

3. Find the center and radius of the circle with equation .

4. Let and be points in the plane.

(a) Find the slope of the line that contains and .

(b) Find an equation of the line that passes through and . What are the intercepts?

(c) Find the midpoint of the segment .

(d) Find the length of the segment .

(e) Find an equation of the perpendicular bisector of .

(f) Find an equation of the circle for which is a diameter.

5. Sketch the region in the -plane defined by the equation or inequalities.

(a) (b)

(c) (d)

(e) (f) 9x 2 � 16y 2 � 144x 2 � y 2 � 4

y 	 x 2 � 1y � 1 �
1
2 x

� x � � 4 and � y � � 2�1 � y � 3

xy

AB 

AB

AB

AB

BA

BA

B�5, �12�A��7, 4�

x 2 � y2 � 6x � 10y � 9 � 0

�3, �2���1, 4�

2x � 4y � 3

y

x

�3

�2, �5�

DIAGNOSTIC TEST: ANALYTIC GEOMETRYB

5.

y

x1 2

0

y

x0

y

x0 4

3

_1

2

y

x

0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x
1
2

1. (a) (b)

(c) (d)

2.

3. Center , radius 5

4. (a)
(b) ; -intercept , -intercept 
(c)
(d)
(e)
(f) �x � 1�2 � �y � 4�2 � 100

3x � 4y � 13
20
��1, �4�

�
16
3y�4x4x � 3y � 16 � 0

�
4
3

�3, �5�

�x � 1�2 � �y � 4�2 � 52

y � 1
2 x � 6x � 2

y � �5y � �3x � 1

ANSWERS TO DIAGNOSTIC TEST B: ANALYTIC GEOMETRY

If you have had difficulty with these problems, you may wish to consult  
the Review of Analytic Geometry on the website www.stewartcalculus.com.
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1. The graph of a function is given at the left.
(a) State the value of .
(b) Estimate the value of .
(c) For what values of is ?
(d) Estimate the values of such that .
(e) State the domain and range of .

2. If , evaluate the difference quotient and simplify your answer.

3. Find the domain of the function.

(a) (b) (c)

4. How are graphs of the functions obtained from the graph of ?

(a) (b) (c)

5. Without using a calculator, make a rough sketch of the graph.

(a) (b) (c)

(d) (e) (f)

(g) (h)

6. Let 

(a) Evaluate and . (b) Sketch the graph of .

7. If and , find each of the following functions.
(a) (b) (c) t � t � tt � ff � t

t�x� � 2x � 3f �x� � x 2 � 2x � 1

ff �1�f ��2�

f �x� � 
1 � x 2

2x � 1

if x � 0

if x � 0

y � 1 � x�1y � �2x

y � 2sx y � sx y � 4 � x 2

y � �x � 2�3 � 3y � �x � 1�3y � x 3

y � f �x � 3� � 2y � 2 f �x� � 1y � �f �x�
f

h�x� � s4 � x � sx 2 � 1t�x� �
s
3 x 

x 2 � 1
f �x� �

2x � 1

x2 � x � 2

f �2 � h� � f �2�
h

f �x� � x 3

f
f �x� � 0x

f �x� � 2x
f �2�

f ��1�
f

DIAGNOSTIC TEST: FUNCTIONSC

6. (a) 7. (a)
(b) (b)

(c) �t � t � t��x� � 8x � 21
�t � f ��x� � 2x 2 � 4x � 5y

x0_1

1

� f � t��x� � 4x 2 � 8x � 2�3, 3

y(h)

x0

1

1

(g) y

x

0

1
_1

(f ) y

x0 1

(e) y

x0 1

y(d)

x0

4

2

1. (a) (b) 2.8

(c) (d)

(e)

2.

3. (a)

(b)

(c)

4. (a) Reflect about the -axis
(b) Stretch vertically by a factor of 2, then shift 1 unit downward
(c) Shift 3 units to the right and 2 units upward

5. (c) y

x0

(2, 3)

y

x0

y(a) (b)

1

1 x0

1

_1

x

���, �1� � 	1, 4�
���, ��
���, �2� � ��2, 1� � �1, ��

12 � 6h � h2

	�3, 3�, 	�2, 3�
�2.5, 0.3�3, 1

�2

y

0 x

1

1

FIGURE FOR PROBLEM 1

ANSWERS TO DIAGNOSTIC TEST C: FUNCTIONS

If you have had difficulty with these problems, you should look at Sections 1.1–1.3 of this book.



1. Convert from degrees to radians.

(a) (b)

2. Convert from radians to degrees.

(a) (b)

3. Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle of .

4. Find the exact values.

(a) (b) (c)

5. Express the lengths and in the figure in terms of .

6. If and , where and lie between and , evaluate .

7. Prove the identities.

(a)

(b)

8. Find all values of such that and .

9. Sketch the graph of the function without using a calculator.y � 1 � sin 2x

0 � x � 2
sin 2x � sin xx

2 tan x

1 � tan2x
� sin 2x

tan �  sin � � cos � � sec �

sin�x � y�
� 20yxsec y � 5
4sin x � 1

3

�ba

sec�5
�3�sin�7
�6�tan�
�3�

30


25
�6

�18
300


6.

8.

9.

_π π x0

2

y

0, 
�3, 
, 5
�3, 2


1
15 (4 � 6s2 )1. (a) (b)

2. (a) (b)

3.

4. (a) (b) (c)

5. (a) (b) 24 cos �24 sin �

2�
1
2s3 

2
 cm

360�
 � 114.6
150


�
�105
�3
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DIAGNOSTIC TEST: TRIGONOMETRYD

a

¨

b

24

F IGURE FOR PROBLEM 5

ANSWERS TO DIAGNOSTIC TEST D: TRIGONOMETRY

If you have had difficulty with these problems, you should look at Appendix D of this book.
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Calculus is fundamentally different from the mathematics that you have studied pre-

viously: calculus is less static and more dynamic. It is concerned with change and

motion; it deals with quantities that approach other quantities. For that reason it may 

be useful to have an overview of the subject before beginning its intensive study. Here

we give a glimpse of some of the main ideas of calculus by showing how the concept 

of a limit arises when we attempt to solve a variety of problems.

A PREVIEW 
OF CALCULUS
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THE AREA PROBLEM

The origins of calculus go back at least 2500 years to the ancient Greeks, who found areas
using the “method of exhaustion.” They knew how to find the area of any polygon by
dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more difficult problem to find the area of a curved figure. The Greek
method of exhaustion was to inscribe polygons in the figure and circumscribe polygons
about the figure and then let the number of sides of the polygons increase. Figure 2 illus-
trates this process for the special case of a circle with inscribed regular polygons.

Let be the area of the inscribed polygon with sides. As increases, it appears that
becomes closer and closer to the area of the circle. We say that the area of the circle is

the limit of the areas of the inscribed polygons, and we write

The Greeks themselves did not use limits explicitly. However, by indirect reasoning,
Eudoxus (fifth century BC) used exhaustion to prove the familiar formula for the area of a
circle:

We will use a similar idea in Chapter 5 to find areas of regions of the type shown in Fig-
ure 3. We will approximate the desired area by areas of rectangles (as in Figure 4), let
the width of the rectangles decrease, and then calculate as the limit of these sums of
areas of rectangles.

The area problem is the central problem in the branch of calculus called integral cal-
culus. The techniques that we will develop in Chapter 5 for finding areas will also enable
us to compute the volume of a solid, the length of a curve, the force of water against a dam,
the mass and center of gravity of a rod, and the work done in pumping water out of a tank.

FIGURE 3 
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10 x

y

(1, 1)
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y

(1, 1)

1
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FIGURE 4 
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A™

A£ A¢
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In the Preview Visual, you can see
how inscribed and circumscribed polygons
approximate the area of a circle.
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THE TANGENT PROBLEM

Consider the problem of trying to find an equation of the tangent line to a curve with
equation at a given point . (We will give a precise definition of a tangent line in
Chapter 2. For now you can think of it as a line that touches the curve at as in Figure 5.)
Since we know that the point lies on the tangent line, we can find the equation of if we
know its slope . The problem is that we need two points to compute the slope and we
know only one point, , on . To get around the problem we first find an approximation to

by taking a nearby point on the curve and computing the slope of the secant line
. From Figure 6 we see that

Now imagine that moves along the curve toward as in Figure 7. You can see that
the secant line rotates and approaches the tangent line as its limiting position. This means
that the slope of the secant line becomes closer and closer to the slope of the tan-
gent line. We write

and we say that is the limit of as approaches along the curve. Since approaches
as approaches , we could also use Equation 1 to write

Specific examples of this procedure will be given in Chapter 2.
The tangent problem has given rise to the branch of calculus called differential calcu-

lus, which was not invented until more than 2000 years after integral calculus. The main
ideas behind differential calculus are due to the French mathematician Pierre Fermat
(1601–1665) and were developed by the English mathematicians John Wallis
(1616–1703), Isaac Barrow (1630–1677), and Isaac Newton (1642–1727) and the German
mathematician Gottfried Leibniz (1646–1716).

The two branches of calculus and their chief problems, the area problem and the tan-
gent problem, appear to be very different, but it turns out that there is a very close connec-
tion between them. The tangent problem and the area problem are inverse problems in a
sense that will be described in Chapter 5.

VELOCITY

When we look at the speedometer of a car and read that the car is traveling at 48 mi�h,
what does that information indicate to us? We know that if the velocity remains constant,
then after an hour we will have traveled 48 mi. But if the velocity of the car varies, what
does it mean to say that the velocity at a given instant is 48 mi�h?

In order to analyze this question, let’s examine the motion of a car that travels along a
straight road and assume that we can measure the distance traveled by the car (in feet) at
l-second intervals as in the following chart:

m � lim 
x l a

 f �x� � f �a�
x � a

2

PQa
xPQmPQm

m � lim 
Q lP

mPQ

mmPQ

PQ

mPQ �
 f �x� � f �a�

x � a
1

PQ
mPQQm

tP
m

tP
P

Py � f �x�
t
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0

y

x

P

y=ƒ

t

P

Q

t

0 x

y

y

0 xa x

ƒ-f(a)P{a, f(a)}

x-a

t

Q{x, ƒ}

FIGURE 5 
The tangent line at P

FIGURE 6
The secant line PQ

FIGURE 7
Secant lines approaching the
tangent line

t � Time elapsed (s) 0 1 2 3 4 5

d � Distance (ft) 0 2 9 24 42 71



As a first step toward finding the velocity after 2 seconds have elapsed, we find the aver-
age velocity during the time interval :

Similarly, the average velocity in the time interval is

We have the feeling that the velocity at the instant � 2 can’t be much different from the
average velocity during a short time interval starting at . So let’s imagine that the dis-
tance traveled has been measured at 0.l-second time intervals as in the following chart:

Then we can compute, for instance, the average velocity over the time interval :

The results of such calculations are shown in the following chart:

The average velocities over successively smaller intervals appear to be getting closer to
a number near 10, and so we expect that the velocity at exactly is about 10 ft�s. In
Chapter 2 we will define the instantaneous velocity of a moving object as the limiting
value of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the
distance traveled as a function of time. If we write , then is the number of feet
traveled after seconds. The average velocity in the time interval is

which is the same as the slope of the secant line in Figure 8. The velocity when 
is the limiting value of this average velocity as approaches 2; that is,

and we recognize from Equation 2 that this is the same as the slope of the tangent line to
the curve at .P

v � lim 
t l 2

 f �t� � f �2�
t � 2

t
t � 2vPQ

average velocity �
change in position

time elapsed
�

 f �t� � f �2�
t � 2

�2, t�t
f �t�d � f �t�

t � 2

average velocity �
15.80 � 9.00

2.5 � 2
� 13.6 ft�s

�2, 2.5�

t � 2
t

average velocity �
24 � 9

3 � 2
� 15 ft�s

2 � t � 3

 � 16.5 ft�s

 �
42 � 9

4 � 2

 average velocity �
change in position

time elapsed

2 � t � 4
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t 2.0 2.1 2.2 2.3 2.4 2.5

d 9.00 10.02 11.16 12.45 13.96 15.80

Time interval

Average velocity (ft�s) 15.0 13.6 12.4 11.5 10.8 10.2

�2, 2.1��2, 2.2��2, 2.3��2, 2.4��2, 2.5��2, 3�

FIGURE 8  
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Thus, when we solve the tangent problem in differential calculus, we are also solving
problems concerning velocities. The same techniques also enable us to solve problems
involving rates of change in all of the natural and social sciences.

THE LIMIT OF A SEQUENCE

In the fifth century BC the Greek philosopher Zeno of Elea posed four problems, now
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning
space and time that were held in his day. Zeno’s second paradox concerns a race between
the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol-
lows, that Achilles could never pass the tortoise: Suppose that Achilles starts at position 

and the tortoise starts at position . (See Figure 9.) When Achilles reaches the point
, the tortoise is farther ahead at position . When Achilles reaches , the tor-

toise is at . This process continues indefinitely and so it appears that the tortoise will
always be ahead! But this defies common sense.

One way of explaining this paradox is with the idea of a sequence. The successive posi-
tions of Achilles or the successive positions of the tortoise 
form what is known as a sequence.

In general, a sequence is a set of numbers written in a definite order. For instance,
the sequence

can be described by giving the following formula for the th term:

We can visualize this sequence by plotting its terms on a number line as in Fig-
ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the
terms of the sequence are becoming closer and closer to 0 as increases. In fact,
we can find terms as small as we please by making large enough. We say that the limit
of the sequence is 0, and we indicate this by writing

In general, the notation

is used if the terms approach the number as becomes large. This means that the num-
bers can be made as close as we like to the number by taking sufficiently large.nLan

nLan

lim 
n l �

an � L

lim 
n l �

1

n
� 0

n
nan � 1�n

an �
1

n

n

{1, 12 , 13 , 14 , 15 , . . .}

�an�

�t1, t2, t3, . . .��a1, a2, a3, . . .�

FIGURE 9 
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tortoise

a¡ a™ a£ a¢ a∞

t¡ t™ t£ t¢
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. . .
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a3 � t2t2a2 � t1

t1a1
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The concept of the limit of a sequence occurs whenever we use the decimal represen-
tation of a real number. For instance, if

then

The terms in this sequence are rational approximations to .
Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise

form sequences and , where for all . It can be shown that both sequences
have the same limit:

It is precisely at this point that Achilles overtakes the tortoise.

THE SUM OF A SERIES

Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man
standing in a room cannot walk to the wall. In order to do so, he would first have to go half
the distance, then half the remaining distance, and then again half of what still remains.
This process can always be continued and can never be ended.” (See Figure 11.)

Of course, we know that the man can actually reach the wall, so this suggests that per-
haps the total distance can be expressed as the sum of infinitely many smaller distances as
follows:

1 �
1

2
�

1

4
�

1

8
�

1

16
� � � � �

1

2n � � � �3

FIGURE 11
1
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1

4

1

8

1

16

p

lim 
n l �

an � p � lim 
n l �

tn

nan � tn�tn��an�

�

lim
n l �

 an � �

�
�
�

 a7 � 3.1415926

 a6 � 3.141592

 a5 � 3.14159

 a4 � 3.1415

 a3 � 3.141

 a2 � 3.14

 a1 � 3.1
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Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. But
there are other situations in which we implicitly use infinite sums. For instance, in decimal
notation, the symbol means

and so, in some sense, it must be true that

More generally, if denotes the nth digit in the decimal representation of a number, then

Therefore some infinite sums, or infinite series as they are called, have a meaning. But we
must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by the sum of the first terms of the
series. Thus

Observe that as we add more and more terms, the partial sums become closer and closer
to 1. In fact, it can be shown that by taking large enough (that is, by adding sufficiently
many terms of the series), we can make the partial sum as close as we please to the num-
ber 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to
write

1

2
�

1

4
�

1

8
� � � � �

1

2n � � � � � 1

sn

n

 s16 �
1

2
�

1

4
� � � � �

1

216 	 0.99998474

 �
 �
 �

 s10 � 1
2 �

1
4 � � � � �

1
1024 	 0.99902344

 �
 �
 �

 s7 � 1
2 �

1
4 �

1
8 �

1
16 �

1
32 �

1
64 �

1
128 � 0.9921875

 s6 � 1
2 �

1
4 �

1
8 �

1
16 �

1
32 �

1
64 � 0.984375

 s5 � 1
2 �

1
4 �

1
8 �

1
16 �

1
32 � 0.96875

 s4 � 1
2 �

1
4 �

1
8 �

1
16 � 0.9375

 s3 � 1
2 �

1
4 �

1
8 � 0.875

 s2 � 1
2 �

1
4 � 0.75

 s1 � 1
2 � 0.5

nsn

0.d1d2d3d4 . . . �
d1

10
�

d2

102 �
d3

103 � � � � �
dn

10n � � � �

dn

3

10
�

3

100
�

3

1000
�

3

10,000
� � � � �

1

3

3

10
�

3

100
�

3

1000
�

3

10,000
� � � �

0.3 � 0.3333 . . .
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In other words, the reason the sum of the series is 1 is that

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of
combining infinite series with differential and integral calculus.

SUMMARY

We have seen that the concept of a limit arises in trying to find the area of a region, the
slope of a tangent to a curve, the velocity of a car, or the sum of an infinite series. In each
case the common theme is the calculation of a quantity as the limit of other, easily calcu-
lated quantities. It is this basic idea of a limit that sets calculus apart from other areas of
mathematics. In fact, we could define calculus as the part of mathematics that deals with
limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the motion
of the planets around the sun. Today calculus is used in calculating the orbits of satellites
and spacecraft, in predicting population sizes, in estimating how fast coffee prices rise, in
forecasting weather, in measuring the cardiac output of the heart, in calculating life insur-
ance premiums, and in a great variety of other areas. We will explore some of these uses
of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list
of some of the questions that you will be able to answer using calculus:

1. How can we explain the fact, illustrated in Figure 12, that the angle of elevation
from an observer up to the highest point in a rainbow is 42°? (See page 279.)

2. How can we explain the shapes of cans on supermarket shelves? (See page 333.)

3. Where is the best place to sit in a movie theater? (See page 446.)

4. How far away from an airport should a pilot start descent? (See page 206.)

5. How can we fit curves together to design shapes to represent letters on a laser
printer? (See page 639.)

6. Where should an infielder position himself to catch a baseball thrown by an out-
fielder and relay it to home plate? (See page 601.)

7. Does a ball thrown upward take longer to reach its maximum height or to fall
back to its original height? (See page 590.)

8. How can we explain the fact that planets and satellites move in elliptical orbits?
(See page 844.)

9. How can we distribute water flow among turbines at a hydroelectric station so as
to maximize the total energy production? (See page 943.)

10. If a marble, a squash ball, a steel bar, and a lead pipe roll down a slope, which of
them reaches the bottom first? (See page 1012.)

lim 
n l �

sn � 1
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The fundamental objects that we deal with in calculus are functions. This chapter
prepares the way for calculus by discussing the basic ideas concerning functions, their
graphs, and ways of transforming and combining them. We stress that a function can be
represented in different ways: by an equation, in a table, by a graph, or in words. We
look at the main types of functions that occur in calculus and describe the process of
using these functions as mathematical models of real-world phenomena. We also discuss
the use of graphing calculators and graphing software for computers.

A graphical representation of a 
function––here the number of 
hours of daylight as a function 
of the time of year at various 
latitudes––is often the most 

natural and convenient way to 
represent the function.
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FOUR WAYS TO REPRESENT A FUNCTION

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area of a circle depends on the radius of the circle. The rule that connects 
and is given by the equation . With each positive number there is associ-
ated one value of , and we say that is a function of .

B. The human population of the world depends on the time . The table gives estimates
of the world population at time for certain years. For instance,

But for each value of the time there is a corresponding value of and we say that 
is a function of .

C. The cost of mailing a first-class letter depends on the weight of the letter.
Although there is no simple formula that connects and , the post office has a rule
for determining when is known.

D. The vertical acceleration of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of the graph provides a corresponding value of .

Each of these examples describes a rule whereby, given a number ( , , , or ), another
number ( , , , or ) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function is a rule that assigns to each element in a set exactly one ele-
ment, called , in a set .

We usually consider functions for which the sets and are sets of real numbers. The
set is called the domain of the function. The number is the value of at and is
read “ of .” The range of is the set of all possible values of as varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function

is called an independent variable. A symbol that represents a number in the range of 
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.
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It’s helpful to think of a function as a machine (see Figure 2). If is in the domain of
the function then when enters the machine, it’s accepted as an input and the machine
produces an output according to the rule of the function. Thus we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled (or ) and enter the input x. If , then is not in the
domain of this function; that is, is not an acceptable input, and the calculator will indi-
cate an error. If , then an approximation to will appear in the display. Thus the

key on your calculator is not quite the same as the exact mathematical function defined
by .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of to an element of . The arrow indicates that is associated
with is associated with , and so on.

The most common method for visualizing a function is its graph. If is a function with
domain , then its graph is the set of ordered pairs

(Notice that these are input-output pairs.) In other words, the graph of consists of all
points in the coordinate plane such that and is in the domain of .

The graph of a function gives us a useful picture of the behavior or “life history” of
a function. Since the -coordinate of any point on the graph is , we can read
the value of from the graph as being the height of the graph above the point (see
Figure 4). The graph of also allows us to picture the domain of on the -axis and its
range on the -axis as in Figure 5.

EXAMPLE 1 The graph of a function is shown in Figure 6.
(a) Find the values of and .
(b) What are the domain and range of ?

SOLUTION
(a) We see from Figure 6 that the point lies on the graph of , so the value of
at 1 is . (In other words, the point on the graph that lies above x ! 1 is 3 units
above the x-axis.)

When x ! 5, the graph lies about 0.7 unit below the x-axis, so we estimate that
.

(b) We see that is defined when , so the domain of is the closed inter-
val . Notice that takes on all values from "2 to 4, so the range of is
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FIGURE 2
Machine diagram for a function ƒ
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EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(a) (b)

SOLUTION
(a) The equation of the graph is , and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept "1. (Recall the slope-intercept form of the
equation of a line: . See Appendix B.) This enables us to sketch a portion of
the graph of in Figure 7. The expression is defined for all real numbers, so the
domain of is the set of all real numbers, which we denote by !. The graph shows that
the range is also !.

(b) Since and , we could plot the points and
, together with a few other points on the graph, and join them to produce the

graph (Figure 8). The equation of the graph is , which represents a parabola (see
Appendix C). The domain of t is !. The range of t consists of all values of , that is,
all numbers of the form . But for all numbers x and any positive number y is a
square. So the range of t is . This can also be seen from Figure 8. M

EXAMPLE 3 If and , evaluate .

SOLUTION We first evaluate by replacing by in the expression for :

Then we substitute into the given expression and simplify:

M

REPRESENTATIONS OF FUNCTIONS

There are four possible ways to represent a function:

! verbally (by a description in words)

! numerically (by a table of values)

! visually (by a graph)

! algebraically (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain 
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functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.

A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula , though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is , and the range is also .

B. We are given a description of the function in words: is the human population of
the world at time t. The table of values of world population provides a convenient
representation of this function. If we plot these values, we get the graph (called a
scatter plot) in Figure 9. It too is a useful representation; the graph allows us to
absorb all the data at once. What about a formula? Of course, it’s impossible to devise
an explicit formula that gives the exact human population at any time t. But it is
possible to find an expression for a function that approximates . In fact, using
methods explained in Section 1.2, we obtain the approximation

and Figure 10 shows that it is a reasonably good “fit.” The function is called a
mathematical model for population growth. In other words, it is a function with an
explicit formula that approximates the behavior of our given function. We will see,
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.

The function is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
may be able to construct a table of values of the function, perhaps from instrument
readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: is the cost of mailing a first-class letter
with weight . The rule that the US Postal Service used as of 2007 is as follows: The
cost is 39 cents for up to one ounce, plus 24 cents for each successive ounce up to 13
ounces. The table of values shown in the margin is the most convenient representation
for this function, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function . It’s true that a table of values could be compiled, and it is even a!t"

w
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possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

EXAMPLE 4 When you turn on a hot-water faucet, the temperature of the water
depends on how long the water has been running. Draw a rough graph of as a function
of the time that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, increases quickly. In the next phase, is constant at the
temperature of the heated water in the tank. When the tank is drained, decreases to 
the temperature of the water supply. This enables us to make the rough sketch of as a
function of in Figure 11. M

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.

EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m .
The length of its base is twice its width. Material for the base costs $10 per square
meter; material for the sides costs $6 per square meter. Express the cost of materials as a
function of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting and
be the width and length of the base, respectively, and be the height.

The area of the base is , so the cost, in dollars, of the material for the
base is . Two of the sides have area and the other two have area , so the
cost of the material for the sides is . The total cost is therefore

To express as a function of alone, we need to eliminate and we do so by using the
fact that the volume is 10 m . Thus

which gives

Substituting this into the expression for , we have

Therefore, the equation

expresses as a function of . MwC
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EXAMPLE 6 Find the domain of each function.

(a) (b)

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number),
the domain of consists of all values of x such that . This is equivalent to

, so the domain is the interval .

(b) Since

and division by is not allowed, we see that is not defined when or .
Thus the domain of is

which could also be written in interval notation as

M

The graph of a function is a curve in the -plane. But the question arises: Which curves
in the -plane are graphs of functions? This is answered by the following test.

THE VERTICAL LINE TEST A curve in the -plane is the graph of a function of if
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each ver-
tical line intersects a curve only once, at , then exactly one functional value 
is defined by . But if a line intersects the curve twice, at and ,
then the curve can’t represent a function because a function can’t assign two different val-
ues to .

For example, the parabola shown in Figure 14(a) on the next page is not the
graph of a function of because, as you can see, there are vertical lines that intersect the
parabola twice. The parabola, however, does contain the graphs of two functions of .
Notice that the equation implies , so Thus the
upper and lower halves of the parabola are the graphs of the functions 
[from Example 6(a)] and . [See Figures 14(b) and (c).] We observe that
if we reverse the roles of and , then the equation does define as a
function of (with as the independent variable and as the dependent variable) and the
parabola now appears as the graph of the function .h
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that the domain is the set of all numbers for
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PIECEWISE DEFINED FUNCTIONS

The functions in the following four examples are defined by different formulas in differ-
ent parts of their domains.

EXAMPLE 7 A function is defined by

Evaluate , , and and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input . If it happens that , then the value
of is . On the other hand, if , then the value of is .

How do we draw the graph of ? We observe that if , then , so the
part of the graph of that lies to the left of the vertical line must coincide with
the line , which has slope and -intercept 1. If , then , so
the part of the graph of that lies to the right of the line must coincide with the
graph of , which is a parabola. This enables us to sketch the graph in Figure 15.
The solid dot indicates that the point is included on the graph; the open dot indi-
cates that the point is excluded from the graph. M

The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number , denoted by , is the distance from to on the
real number line. Distances are always positive or , so we have

for every number 

For example,

In general, we have

(Remember that if is negative, then is positive.)"aa
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EXAMPLE 8 Sketch the graph of the absolute value function .

SOLUTION From the preceding discussion we know that

Using the same method as in Example 7, we see that the graph of coincides with the
line to the right of the -axis and coincides with the line to the left of the
-axis (see Figure 16). M

EXAMPLE 9 Find a formula for the function graphed in Figure 17.

SOLUTION The line through and has slope and -intercept , so its
equation is . Thus, for the part of the graph of that joins to , we have

The line through and has slope , so its point-slope form is

So we have

We also see that the graph of coincides with the -axis for . Putting this informa-
tion together, we have the following three-piece formula for :

M

EXAMPLE 10 In Example C at the beginning of this section we considered the cost 
of mailing a first-class letter with weight . In effect, this is a piecewise defined function
because, from the table of values, we have

The graph is shown in Figure 18. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2. M
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SYMMETRY

If a function satisfies for every number in its domain, then is called an
even function. For instance, the function is even because

The geometric significance of an even function is that its graph is symmetric with respect
to the -axis (see Figure 19). This means that if we have plotted the graph of for ,
we obtain the entire graph simply by reflecting this portion about the -axis.

If satisfies for every number in its domain, then is called an odd
function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 20). If we  already
have the graph of for , we can obtain the entire graph by rotating this portion
through about the origin.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or
neither even nor odd.
(a) (b) (c)

SOLUTION

(a)

Therefore is an odd function.

(b)

So is even.

(c)

Since and , we conclude that is neither even nor odd. M

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the
graph of h is symmetric neither about the y-axis nor about the origin.
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INCREASING AND DECREASING FUNCTIONS

The graph shown in Figure 22 rises from to , falls from to , and rises again from 
to . The function is said to be increasing on the interval , decreasing on , and
increasing again on . Notice that if and are any two numbers between and 
with , then . We use this as the defining property of an increasing
function.

A function is called increasing on an interval if

It is called decreasing on if

In the definition of an increasing function it is important to realize that the inequality
must be satisfied for every pair of numbers and in with .

You can see from Figure 23 that the function is decreasing on the interval
and increasing on the interval .!0, !"#"!, 0$

f #x" ! x 2
x1 # x2Ix2x1f #x1 " # f #x2 "

whenever x1 # x2 in If #x1 " $ f #x2 "

I

whenever x1 # x2 in If #x1 " # f #x2 "

If

A

B

C

D
y=ƒ

f(x¡)
f(x™)

a

y

0 xx¡ x™ b c d
FIGURE 22

f #x1 " # f #x2 "x1 # x2

bax2x1!c, d $
!b, c$!a, b$fD

CCBBA

20 | | | | CHAPTER 1 FUNCTIONS AND MODELS

FIGURE 23
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1. The graph of a function is given.
(a) State the value of .

(b) Estimate the value of .

(c) For what values of x is ?

(d) Estimate the values of x such that .

(e) State the domain and range of .
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varies over time. What do you think happened when this person
was 30 years old?

10. The graph shown gives a salesman’s distance from his home as
a function of time on a certain day. Describe in words what the
graph indicates about his travels on this day.

You put some ice cubes in a glass, fill the glass with cold
water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then sketch a
rough graph of the temperature of the water as a function of the
elapsed time.

12. Sketch a rough graph of the number of hours of daylight as a
function of the time of year.

Sketch a rough graph of the outdoor temperature as a function
of time during a typical spring day.

14. Sketch a rough graph of the market value of a new car as a
function of time for a period of 20 years. Assume the car is
well maintained.

15. Sketch the graph of the amount of a particular brand of coffee
sold by a store as a function of the price of the coffee.

16. You place a frozen pie in an oven and bake it for an hour. Then
you take it out and let it cool before eating it. Describe how the
temperature of the pie changes as time passes. Then sketch a
rough graph of the temperature of the pie as a function of time.

17. A homeowner mows the lawn every Wednesday afternoon.
Sketch a rough graph of the height of the grass as a function of
time over the course of a four-week period.

18. An airplane takes off from an airport and lands an hour later at
another airport, 400 miles away. If t represents the time in min-
utes since the plane has left the terminal building, let be x#t"

13.

11.

8 AM 10 NOON 2 4 Time
(hours)

Distance
from home

(miles)

6 PM

Age
(years)

Weight
(pounds)

0

150
100
50

10

200

20 30 40 50 60 70

The graphs of and t are given.
(a) State the values of and .
(b) For what values of x is ?
(c) Estimate the solution of the equation .
(d) On what interval is decreasing?
(e) State the domain and range of 
(f) State the domain and range of t.

3. Figure 1 was recorded by an instrument operated by the Cali-
fornia Department of Mines and Geology at the University
Hospital of the University of Southern California in Los Ange-
les. Use it to estimate the range of the vertical ground accelera-
tion function at USC during the Northridge earthquake.

4. In this section we discussed examples of ordinary, everyday
functions: Population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life that
are described verbally. What can you say about the domain and
range of each of your functions? If possible, sketch a rough
graph of each function.

5–8 Determine whether the curve is the graph of a function of . 
If it is, state the domain and range of the function.

5. 6.

7. 8.

The graph shown gives the weight of a certain person as a
function of age. Describe in words how this person’s weight 

9.

y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

x

g

x

y

0

f
2

2

f.
f

f #x" ! "1
f #x" ! t#x"

t#3"f #"4"
f2.
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32. Find the domain and range and sketch the graph of the function
.

33–44 Find the domain and sketch the graph of the function.

33. 34.

35. 36.

37. 38.

40.

41.

42.

44.

45–50 Find an expression for the function whose graph is the
given curve.

45. The line segment joining the points and 

46. The line segment joining the points and 

The bottom half of the parabola 

48. The top half of the circle 

49. 50.

51–55 Find a formula for the described function and state its
domain.

51. A rectangle has perimeter 20 m. Express the area of the rect-
angle as a function of the length of one of its sides.

y

0 x

1

1

y

0 x

1

1

x 2 % #y " 2"2 ! 4

x % #y " 1"2 ! 047.

#7, "10"#"5, 10"

#5, 7"#1, "3"

f #x" ! %x % 9
"2x
"6

if x # "3
if & x & & 3
if x $ 3

f #x" ! %x % 2
x 2

if x & "1
if x $ "1

43.

f #x" ! %3 " 1
2 x

2x " 5
if x & 2
if x $ 2

f #x" ! %x % 2
1 " x

if x # 0
if x ' 0

t#x" ! & x &
x 2G#x" !

3x % & x &
x

39.

F#x" ! & 2x % 1 &t#x" ! sx " 5 

H#t" !
4 " t 2

2 " t
f #t" ! t 2 " 6t 

F #x" ! 1
2#x % 3"f #x" ! 5 

h#x" ! s4 " x 2 

h#x" !
1

s4 x 2 " 5x 31.
the horizontal distance traveled and be the altitude of the
plane.
(a) Sketch a possible graph of .
(b) Sketch a possible graph of .
(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

19. The number N (in millions) of cellular phone subscribers
worldwide is shown in the table. (Midyear estimates are given.)

(a) Use the data to sketch a rough graph of N as a function of 
(b) Use your graph to estimate the number of cell-phone sub-

scribers at midyear in 1995 and 1999.

20. Temperature readings (in °F) were recorded every two hours
from midnight to 2:00 PM in Dallas on June 2, 2001. The time 

was measured in hours from midnight.

(a) Use the readings to sketch a rough graph of as a function
of 

(b) Use your graph to estimate the temperature at 11:00 AM.

21. If , find , , , ,
, , , , and .

22. A spherical balloon with radius r inches has volume
. Find a function that represents the amount of air

required to inflate the balloon from a radius of r inches to a
radius of r % 1 inches.

23–26 Evaluate the difference quotient for the given function.
Simplify your answer.

,

24. ,

25. ,

26. ,

27–31 Find the domain of the function.

27. 28.

29. 30. t#u" ! su % s4 " u f #t" ! st % s3 t 

f #x" !
5x % 4

x 2 % 3x % 2
f #x" !

x
3x " 1

f #x" " f #1"
x " 1

f #x" !
x % 3
x % 1

f #x" " f #a"
x " a

f #x" !
1
x

f #a % h" " f #a"
h

f #x" ! x 3

f #3 % h" " f #3"
h

f #x" ! 4 % 3x " x 223.

V#r" ! 4
3 (r 3

  f #a % h"[ f #a"]2,  f #a2"  f #2a"2 f #a"f #a % 1"
  f #"a"  f #a"  f #"2"f #2"f #x" ! 3x 2 " x % 2

t.
T

t

T

t.

y#t"
x#t"

y#t"

t 1990 1992 1994 1996 1998 2000

N 11 26 60 160 340 650

t 0 2 4 6 8 10 12 14

T 73 73 70 69 72 81 88 91
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(b) How much tax is assessed on an income of $14,000? 
On $26,000?

(c) Sketch the graph of the total assessed tax T as a function of
the income I.

60. The functions in Example 10 and Exercises 58 and 59(a) are
called step functions because their graphs look like stairs. Give
two other examples of step functions that arise in everyday life.

61–62 Graphs of and are shown. Decide whether each function
is even, odd, or neither. Explain your reasoning.

61. 62.

63. (a) If the point is on the graph of an even function, what
other point must also be on the graph?

(b) If the point is on the graph of an odd function, what
other point must also be on the graph?

64. A function has domain and a portion of its graph is
shown.
(a) Complete the graph of if it is known that is even.
(b) Complete the graph of if it is known that is odd.

65–70 Determine whether is even, odd, or neither. If you have a
graphing calculator, use it to check your answer visually.

65. 66.

67. 68.

69. 70. f #x" ! 1 % 3x 3 " x 5f #x" ! 1 % 3x 2 " x 4

f #x" ! x & x &f #x" !
x

x % 1

f #x" !
x 2

x 4 % 1
f #x" !

x
x 2 % 1

f

x0

y

5_5

ff
ff

!"5, 5$f

#5, 3"

#5, 3"

y

x

f

g

y

x

f
g

tf

52. A rectangle has area 16 m . Express the perimeter of the rect-
angle as a function of the length of one of its sides.

53. Express the area of an equilateral triangle as a function of the
length of a side.

54. Express the surface area of a cube as a function of its volume.

An open rectangular box with volume 2 m has a square base.
Express the surface area of the box as a function of the length
of a side of the base.

56. A Norman window has the shape of a rectangle surmounted by
a semicircle. If the perimeter of the window is 30 ft, express
the area of the window as a function of the width of the
window.

57. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 12 in. by 20 in. by cutting
out equal squares of side at each corner and then folding up
the sides as in the figure. Express the volume of the box as a
function of .

58. A taxi company charges two dollars for the first mile (or part 
of a mile) and 20 cents for each succeeding tenth of a mile (or
part). Express the cost (in dollars) of a ride as a function of
the distance traveled (in miles) for , and sketch the
graph of this function.

In a certain country, income tax is assessed as follows. There is
no tax on income up to $10,000. Any income over $10,000 is
taxed at a rate of 10%, up to an income of $20,000. Any income
over $20,000 is taxed at 15%.
(a) Sketch the graph of the tax rate R as a function of the

income I.

59.
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MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS

A mathematical model is a mathematical description (often by means of a function or an
equation) of a real-world phenomenon such as the size of a population, the demand for a
product, the speed of a falling object, the concentration of a product in a chemical reac-
tion, the life expectancy of a person at birth, or the cost of emission reductions. The pur-
pose of the model is to understand the phenomenon and perhaps to make predictions about
future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world problem,
our first task is to formulate a mathematical model by identifying and naming the inde-
pendent and dependent variables and making assumptions that simplify the phenomenon
enough to make it mathematically tractable. We use our knowledge of the physical situa-
tion and our mathematical skills to obtain equations that relate the variables. In situations
where there is no physical law to guide us, we may need to collect data (either from a
library or the Internet or by conducting our own experiments) and examine the data in the
form of a table in order to discern patterns. From this numerical representation of a func-
tion we may wish to obtain a graphical representation by plotting the data. The graph
might even suggest a suitable algebraic formula in some cases.

The second stage is to apply the mathematics that we know (such as the calculus that
will be developed throughout this book) to the mathematical model that we have formu-
lated in order to derive mathematical conclusions. Then, in the third stage, we take those
mathematical conclusions and interpret them as information about the original real-world
phenomenon by way of offering explanations or making predictions. The final step is to
test our predictions by checking against new real data. If the predictions don’t compare
well with reality, we need to refine our model or to formulate a new model and start the
cycle again.

A mathematical model is never a completely accurate representation of a physical situ-
ation—it is an idealization. A good model simplifies reality enough to permit mathemati-
cal calculations but is accurate enough to provide valuable conclusions. It is important to
realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships
observed in the real world. In what follows, we discuss the behavior and graphs of these 
functions and give examples of situations appropriately modeled by such functions.

LINEAR MODELS

When we say that y is a linear function of x, we mean that the graph of the function is a
line, so we can use the slope-intercept form of the equation of a line to write a formula for
the function as

where m is the slope of the line and b is the y-intercept.

y ! f #x" ! mx % b

FIGURE 1 The modeling process

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

1.2
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N The coordinate geometry of lines is reviewed
in Appendix B.



A characteristic feature of linear functions is that they grow at a constant rate. For
instance, Figure 2 shows a graph of the linear function and a table of sam-
ple values. Notice that whenever x increases by 0.1, the value of increases by 0.3. So

increases three times as fast as x. Thus the slope of the graph , namely 3, can
be interpreted as the rate of change of y with respect to x.

EXAMPLE 1
(a) As dry air moves upward, it expands and cools. If the ground temperature is 
and the temperature at a height of 1 km is , express the temperature T (in °C) as a
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that T is a linear function of h, we can write

We are given that when , so

In other words, the y-intercept is .
We are also given that when , so

The slope of the line is therefore and the required linear function is

(b) The graph is sketched in Figure 3. The slope is , and this represents
the rate of change of temperature with respect to height.

(c) At a height of , the temperature is

M

If there is no physical law or principle to help us formulate a model, we construct an
empirical model, which is based entirely on collected data. We seek a curve that “fits” the
data in the sense that it captures the basic trend of the data points.

T ! "10#2.5" % 20 ! "5)C

h ! 2.5 km

m ! "10)C'km

T ! "10h % 20

m ! 10 " 20 ! "10

10 ! m ! 1 % 20

h ! 1T ! 10
b ! 20

20 ! m ! 0 % b ! b

h ! 0T ! 20

T ! mh % b

10)C
20)C

V

x

y

0

y=3x-2

_2

FIGURE 2  

y ! 3x " 2f #x"
f #x"

f #x" ! 3x " 2
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1.0 1.0
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1.3 1.9
1.4 2.2
1.5 2.5

f #x" ! 3x " 2

FIGURE 3  
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EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, measured
in parts per million at Mauna Loa Observatory from 1980 to 2002. Use the data in
Table 1 to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where t repre-
sents time (in years) and C represents the level (in parts per million, ppm).

Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approximate
these data points, so which one should we use? From the graph, it appears that one possi-
bility is the line that passes through the first and last data points. The slope of this line is

and its equation is

or

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed
in Figure 5.

Although our model fits the data reasonably well, it gives values higher than most of
the actual levels. A better linear model is obtained by a procedure from statistics CO2

Linear model through
first and last data points

FIGURE 5
340
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C
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C ! 1.5545t " 2739.211

C " 338.7 ! 1.5545#t " 1980"
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2002 " 1980

!
34.2
22
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FIGURE 4 Scatter plot for the average CO™ level

340

350

360

1980 1985 1990

C

t1995 2000

370

CO2

V

26 | | | | CHAPTER 1 FUNCTIONS AND MODELS

TABLE 1

level level
Year (in ppm) Year (in ppm)

1980 338.7 1992 356.4
1982 341.1 1994 358.9
1984 344.4 1996 362.6
1986 347.2 1998 366.6
1988 351.5 2000 369.4
1990 354.2 2002 372.9

CO2CO2



called linear regression. If we use a graphing calculator, we enter the data from Table 1
into the data editor and choose the linear regression command. (With Maple we use the
fit[leastsquare] command in the stats package; with Mathematica we use the Fit com-
mand.) The machine gives the slope and y-intercept of the regression line as

So our least squares model for the level is

In Figure 6 we graph the regression line as well as the data points. Comparing with
Figure 5, we see that it gives a better fit than our previous linear model.

M

EXAMPLE 3 Use the linear model given by Equation 2 to estimate the average 
level for 1987 and to predict the level for the year 2010. According to this model, when
will the level exceed 400 parts per million?

SOLUTION Using Equation 2 with t ! 1987, we estimate that the average level in 1987
was

This is an example of interpolation because we have estimated a value between observed
values. (In fact, the Mauna Loa Observatory reported that the average level in 1987
was 348.93 ppm, so our estimate is quite accurate.)

With , we get

So we predict that the average level in the year 2010 will be 384.8 ppm. This is 
an example of extrapolation because we have predicted a value outside the region of
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the level exceeds 400 ppm when

Solving this inequality, we get

t $
3134.55
1.55192

( 2019.79

1.55192t " 2734.55 $ 400

CO2

CO2

C#2010" ! #1.55192"#2010" " 2734.55 ( 384.81

t ! 2010

CO2

C#1987" ! #1.55192"#1987" " 2734.55 ( 349.12

CO2

CO2

CO2V

FIGURE 6
The regression line
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N A computer or graphing calculator finds the
regression line by the method of least squares,
which is to minimize the sum of the squares of the
vertical distances between the data points and the
line. The details are explained in Section 14.7.



We therefore predict that the level will exceed 400 ppm by the year 2019. This 
prediction is somewhat risky because it involves a time quite remote from our 
observations. M

POLYNOMIALS

A function is called a polynomial if

where is a nonnegative integer and the numbers are constants called the
coefficients of the polynomial. The domain of any polynomial is If the 
leading coefficient , then the degree of the polynomial is . For example, the 
function

is a polynomial of degree 6.
A polynomial of degree 1 is of the form and so it is a linear function.

A polynomial of degree 2 is of the form and is called a quadratic
function. Its graph is always a parabola obtained by shifting the parabola , as we
will see in the next section. The parabola opens upward if and downward if .
(See Figure 7.)

A polynomial of degree 3 is of the form

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) and
graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the
graphs have these shapes.

FIGURE 8 (a) y=˛-x+1
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(b) y=x$-3≈+x
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1

(c) y=3x%-25˛+60x
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1

#a " 0"P#x" ! ax 3 % bx 2 % cx % d

The graphs of quadratic
 functions are parabolas.

FIGURE 7 0
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y ! ax 2

P#x" ! ax 2 % bx % c
P#x" ! mx % b

P#x" ! 2x 6 " x 4 % 2
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Polynomials are commonly used to model various quantities that occur in the natural
and social sciences. For instance, in Section 3.7 we will explain why economists often use
a polynomial to represent the cost of producing units of a commodity. In the follow-
ing example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower, 450 m
above the ground, and its height h above the ground is recorded at 1-second intervals in
Table 2. Find a model to fit the data and use the model to predict the time at which the
ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model is
inappropriate. But it looks as if the data points might lie on a parabola, so we try a quad-
ratic model instead. Using a graphing calculator or computer algebra system (which uses
the least squares method), we obtain the following quadratic model:

In Figure 10 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.

The ball hits the ground when , so we solve the quadratic equation

The quadratic formula gives

The positive root is , so we predict that the ball will hit the ground after about
9.7 seconds. M

POWER FUNCTIONS

A function of the form , where is a constant, is called a power function. We
consider several cases.

af #x" ! xa

t ( 9.67

t !
"0.96 + s#0.96"2 " 4#"4.90"#449.36"

2#"4.90"

"4.90t 2 % 0.96t % 449.36 ! 0

h ! 0

FIGURE 10
Quadratic model for a falling ball
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FIGURE 9
Scatter plot for a falling ball

200

400

t
(seconds)

0 2 4 6 8

hh
(meters)

h ! 449.36 % 0.96t " 4.90t 23

xP#x"

SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS | | | | 29

TABLE 2

Time Height
(seconds) (meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61



(i) , where n is a positive integer
The graphs of for , and are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of (a line
through the origin with slope 1) and [a parabola, see Example 2(b) in Section 1.1].

The general shape of the graph of depends on whether is even or odd. If 
is even, then is an even function and its graph is similar to the parabola .
If is odd, then is an odd function and its graph is similar to that of .
Notice from Figure 12, however, that as increases, the graph of becomes flatter
near 0 and steeper when . (If is small, then is smaller, is even smaller, 
is smaller still, and so on.)

(ii) , where n is a positive integer
The function is a root function. For it is the square root func-
tion , whose domain is and whose graph is the upper half of the 
parabola . [See Figure 13(a).] For other even values of n, the graph of is
similar to that of . For we have the cube root function whose
domain is (recall that every real number has a cube root) and whose graph is shown in
Figure 13(b). The graph of for n odd is similar to that of .

(b) ƒ=Œ„x

x

y

0
(1, 1)

(a) ƒ=œ„x

x

y

0
(1, 1)

FIGURE 13
Graphs of root functions
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(iii)

The graph of the reciprocal function is shown in Figure 14. Its graph
has the equation , or , and is a hyperbola with the coordinate axes as its
asymptotes. This function arises in physics and chemistry in connection with Boyle’s
Law, which says that, when the temperature is constant, the volume of a gas is
inversely proportional to the pressure :

where C is a constant. Thus the graph of V as a function of P (see Figure 15) has the
same general shape as the right half of Figure 14.

Another instance in which a power function is used to model a physical phenomenon
is discussed in Exercise 26.

RATIONAL FUNCTIONS

A rational function is a ratio of two polynomials:

where and are polynomials. The domain consists of all values of such that .
A simple example of a rational function is the function , whose domain is

; this is the reciprocal function graphed in Figure 14. The function

is a rational function with domain . Its graph is shown in Figure 16.

ALGEBRAIC FUNCTIONS

A function is called an algebraic function if it can be constructed using algebraic oper-
ations (such as addition, subtraction, multiplication, division, and taking roots) starting
with polynomials. Any rational function is automatically an algebraic function. Here are
two more examples:

t!x" !
x 4 $ 16x 2

x % sx % !x $ 2"s3 x % 1f !x" ! sx 2 % 1

f

&x % x " &2'

f !x" !
2x 4 $ x 2 % 1

x 2 $ 4

&x % x " 0'
f !x" ! 1$x

Q!x" " 0xQP

f !x" !
P!x"
Q!x"

f

P

V

0
FIGURE 15

Volume as a function of pressure
at constant temperature

V !
C
P

P
V

xy ! 1y ! 1$x
f !x" ! x$1 ! 1$x

a ! $1

SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS | | | | 31

FIGURE 14
The reciprocal function
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When we sketch algebraic functions in Chapter 4, we will see that their graphs can assume
a variety of shapes. Figure 17 illustrates some of the possibilities.

An example of an algebraic function occurs in the theory of relativity. The mass of a
particle with velocity is

where is the rest mass of the particle and km$s is the speed of light in
a vacuum.

TRIGONOMETRIC FUNCTIONS

Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also
in Appendix D. In calculus the convention is that radian measure is always used (except
when otherwise indicated). For example, when we use the function , it is under-
stood that means the sine of the angle whose radian measure is . Thus the graphs of
the sine and cosine functions are as shown in Figure 18.

Notice that for both the sine and cosine functions the domain is and the range
is the closed interval . Thus, for all values of , we have

or, in terms of absolute values,

Also, the zeros of the sine function occur at the integer multiples of ; that is,

n an integerx ! n'whensin x ! 0

'

% cos x % ( 1% sin x % ( 1

$1 ( cos x ( 1$1 ( sin x ( 1

x#$1, 1(
!$", ""

(a) ƒ=sin x
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π
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(b) ©=cos x
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xsin x
f !x" ! sin x

c ! 3.0 ) 105m0

m ! f !v" !
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s1 $ v 2$c 2

v

FIGURE 17
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FIGURE 18

N The Reference Pages are located at the front
and back of the book.



An important property of the sine and cosine functions is that they are periodic func-
tions and have period . This means that, for all values of ,

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 4 in
Section 1.3 we will see that a reasonable model for the number of hours of daylight in
Philadelphia t days after January 1 is given by the function

The tangent function is related to the sine and cosine functions by the equation

and its graph is shown in Figure 19. It is undefined whenever , that is, when
, Its range is . Notice that the tangent function has period :

The remaining three trigonometric functions (cosecant, secant, and cotangent) are 
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in
Appendix D.

EXPONENTIAL FUNCTIONS

The exponential functions are the functions of the form , where the base is a
positive constant. The graphs of and are shown in Figure 20. In both
cases the domain is and the range is .

Exponential functions will be studied in detail in Section 1.5, and we will see that they
are useful for modeling many natural phenomena, such as population growth (if )
and radioactive decay (if a * 1".

a ! 1

FIGURE 20 (a) y=2® (b) y=(0.5)®
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y ! !0.5"xy ! 2x
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for all xtan!x % '" ! tan x

'!$", ""&3'$2, . . . .x ! &'$2
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tan x !
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cos!x % 2'" ! cos xsin!x % 2'" ! sin x

x2'
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LOGARITHMIC FUNCTIONS

The logarithmic functions , where the base is a positive constant, are the
inverse functions of the exponential functions. They will be studied in Section 1.6. Fig-
ure 21 shows the graphs of four logarithmic functions with various bases. In each case the
domain is , the range is , and the function increases slowly when .

TRANSCENDENTAL FUNCTIONS

These are functions that are not algebraic. The set of transcendental functions includes the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, but it also
includes a vast number of other functions that have never been named. In Chapter 11 we
will study transcendental functions that are defined as sums of infinite series.

EXAMPLE 5 Classify the following functions as one of the types of functions that we
have discussed.
(a) (b)

(c) (d)

SOLUTION
(a) is an exponential function. (The is the exponent.)

(b) is a power function. (The is the base.) We could also consider it to be a
polynomial of degree 5.

(c) is an algebraic function.

(d) is a polynomial of degree 4. Mu!t" ! 1 $ t % 5t 4

h!x" !
1 % x

1 $ sx 

xt!x" ! x 5

xf !x" ! 5x

u!t" ! 1 $ t % 5t 4h!x" !
1 % x

1 $ sx 

t!x" ! x 5f !x" ! 5x

x ! 1!$", ""!0, ""

af !x" ! loga x
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FIGURE 21
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1–2 Classify each function as a power function, root function,
polynomial (state its degree), rational function, algebraic function,
trigonometric function, exponential function, or logarithmic 
function.

1. (a) (b)

(c) (d)

(e) (f)

2. (a) (b)

(c) (d)

(e) (f) y ! cos + % sin +y ! 2t 6 % t 4 $ '

y ! x 10y ! 10 x

y ! x %
x 2

sx $ 1
y !

x $ 6
x % 6

t !x" ! log10 xs!x" ! tan 2x

r!x" !
x 2 % 1
x 3 % x

h!x" ! x 9 % x 4

t!x" ! s1 $ x 2 f !x" ! s5 x 
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12. The manager of a weekend flea market knows from past
experience that if he charges dollars for a rental space at the
market, then the number of spaces he can rent is given by
the equation .
(a) Sketch a graph of this linear function. (Remember that the

rental charge per space and the number of spaces rented
can’t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

13. The relationship between the Fahrenheit and Celsius 
temperature scales is given by the linear function

.
(a) Sketch a graph of this function.
(b) What is the slope of the graph and what does it represent?

What is the F-intercept and what does it represent?

14. Jason leaves Detroit at 2:00 PM and drives at a constant speed
west along I-96. He passes Ann Arbor, 40 mi from Detroit, at
2:50 PM.
(a) Express the distance traveled in terms of the time elapsed.
(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

Biologists have noticed that the chirping rate of crickets of a
certain species is related to temperature, and the relationship
appears to be very nearly linear. A cricket produces 113 chirps
per minute at and 173 chirps per minute at .
(a) Find a linear equation that models the temperature T as a

function of the number of chirps per minute N.
(b) What is the slope of the graph? What does it represent?
(c) If the crickets are chirping at 150 chirps per minute, esti-

mate the temperature.

16. The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce
300 chairs in one day.
(a) Express the cost as a function of the number of chairs

produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?
(c) What is the y-intercept of the graph and what does it 

represent?

At the surface of the ocean, the water pressure is the same as
the air pressure above the water, . Below the surface,
the water pressure increases by for every 10 ft of
descent.
(a) Express the water pressure as a function of the depth

below the ocean surface.
(b) At what depth is the pressure ?100 lb$in2

4.34 lb$in2
15 lb$in2

17.

80,F70,F

15.

F ! 9
5 C % 32

!C"!F"

y ! 200 $ 4x
y

x
4. (a) (b)

(c) (d)

(a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.

(b) Find an equation for the family of linear functions such
that and sketch several members of the family.

(c) Which function belongs to both families?

6. What do all members of the family of linear functions
have in common? Sketch several mem-

bers of the family.

7. What do all members of the family of linear functions
have in common? Sketch several members of 

the family.

8. Find expressions for the quadratic functions whose graphs are
shown.

9. Find an expression for a cubic function if and
.

10. Recent studies indicate that the average surface tempera-
ture of the earth has been rising steadily. Some scientists 
have modeled the temperature by the linear function

, where is temperature in and repre-
sents years since 1900.
(a) What do the slope and -intercept represent?
(b) Use the equation to predict the average global surface

temperature in 2100.

11. If the recommended adult dosage for a drug is (in mg),
then to determine the appropriate dosage for a child of 
age , pharmacists use the equation .
Suppose the dosage for an adult is 200 mg.
(a) Find the slope of the graph of . What does it represent?
(b) What is the dosage for a newborn?

c

c ! 0.0417D!a % 1"a
c

D

T

t,CTT ! 0.02t % 8.50

f !$1" ! f !0" ! f !2" ! 0
f !1" ! 6f

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

f !x" ! c $ x

f !x" ! 1 % m!x % 3"

f !2" ! 1

5.

G

f

g

F
y

x

y ! s3 x y ! x 3
y ! 3xy ! 3x
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(b) Find and graph a linear model using the first and last data
points.

(c) Find and graph the least squares regression line.
(d) Use the linear model in part (c) to estimate the ulcer rate

for an income of $25,000.
(e) According to the model, how likely is someone with an

income of $80,000 to suffer from peptic ulcers?
(f) Do you think it would be reasonable to apply the model

to someone with an income of $200,000?

; 22. Biologists have observed that the chirping rate of crickets of
a certain species appears to be related to temperature. The
table shows the chirping rates for various temperatures.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
(c) Use the linear model in part (b) to estimate the chirping

rate at .

; 23. The table gives the winning heights for the Olympic pole
vault competitions in the 20th century.

(a) Make a scatter plot and decide whether a linear model is
appropriate.

(b) Find and graph the regression line.
(c) Use the linear model to predict the height of the winning

pole vault at the 2000 Olympics and compare with the
actual winning height of 19.36 feet.

(d) Is it reasonable to use the model to predict the winning
height at the 2100 Olympics?

100,F

18. The monthly cost of driving a car depends on the number of
miles driven. Lynn found that in May it cost her $380 to drive
480 mi and in June it cost her $460 to drive 800 mi.
(a) Express the monthly cost as a function of the distance

driven assuming that a linear relationship gives a suit-
able model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the
slope represent?

(d) What does the y-intercept represent?
(e) Why does a linear function give a suitable model in this 

situation?

19–20 For each scatter plot, decide what type of function you
might choose as a model for the data. Explain your choices.

19. (a) (b)

20. (a) (b)

; 21. The table shows (lifetime) peptic ulcer rates (per 100 popula-
tion) for various family incomes as reported by the National
Health Interview Survey.

(a) Make a scatter plot of these data and decide whether a 
linear model is appropriate.

0 x

y

0 x

y

0 x

y

0 x

y

d,
C
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Ulcer rate
Income (per 100 population)

$4,000 14.1
$6,000 13.0
$8,000 13.4

$12,000 12.5
$16,000 12.0
$20,000 12.4
$30,000 10.5
$45,000 9.4
$60,000 8.2

Year Height (ft) Year Height (ft)

1900 10.83 1956 14.96
1904 11.48 1960 15.42
1908 12.17 1964 16.73
1912 12.96 1968 17.71
1920 13.42 1972 18.04
1924 12.96 1976 18.04
1928 13.77 1980 18.96
1932 14.15 1984 18.85
1936 14.27 1988 19.77
1948 14.10 1992 19.02
1952 14.92 1996 19.42

Temperature Chirping rate Temperature Chirping rate
(°F) (chirps$min) (°F)  (chirps$min)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113



; 26. The table shows the mean (average) distances d of the planets
from the sun (taking the unit of measurement to be the 
distance from the earth to the sun) and their periods T (time
of revolution in years).

(a) Fit a power model to the data.
(b) Kepler’s Third Law of Planetary Motion states that

“The square of the period of revolution of a planet is
proportional to the cube of its mean distance from the
sun.” 

Does your model corroborate Kepler’s Third Law?

; 24. A study by the US Office of Science and Technology in 
1972 estimated the cost (in 1972 dollars) to reduce auto-
mobile emissions by certain percentages:

Find a model that captures the “diminishing returns” trend of
these data.

; 25. Use the data in the table to model the population of the world
in the 20th century by a cubic function. Then use your model
to estimate the population in the year 1925.
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Planet d T

Mercury 0.387 0.241

Venus 0.723 0.615

Earth 1.000 1.000

Mars 1.523 1.881

Jupiter 5.203 11.861

Saturn 9.541 29.457

Uranus 19.190 84.008

Neptune 30.086 164.784

Reduction in Cost per Reduction in Cost per
emissions (%)  car (in $) emissions (%)  car (in $)

50 45 75 90
55 55 80 100
60 62 85 200
65 70 90 375
70 80 95 600

Population Population
Year (millions) Year (millions)

1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560

NEW FUNCTIONS FROM OLD FUNCTIONS

In this section we start with the basic functions we discussed in Section 1.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine
pairs of functions by the standard arithmetic operations and by composition.

TRANSFORMATIONS OF FUNCTIONS

By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of
many functions quickly by hand. It will also enable us to write equations for given graphs.
Let’s first consider translations. If c is a positive number, then the graph of is
just the graph of shifted upward a distance of c units (because each y-coordinate
is increased by the same number c). Likewise, if , where , then the
value of at x is the same as the value of at (c units to the left of x). Therefore,
the graph of is just the graph of shifted units to the right (see
Figure 1).

VERTICAL AND HORIZONTAL SHIFTS Suppose . To obtain the graph of

 y ! f !x % c", shift the graph of y ! f !x" a distance c units to the left

 y ! f !x $ c", shift the graph of y ! f !x" a distance c units to the right

 y ! f !x" $ c, shift the graph of y ! f !x" a distance c units downward

 y ! f !x" % c, shift the graph of y ! f !x" a distance c units upward

c ! 0

cy ! f !x"y ! f !x $ c"
x $ cft

c ! 0t!x" ! f !x $ c"
y ! f !x"

y ! f !x" % c

1.3



Now let’s consider the stretching and reflecting transformations. If , then the
graph of is the graph of stretched by a factor of c in the vertical 
direction (because each y-coordinate is multiplied by the same number c). The graph of

is the graph of reflected about the -axis because the point is
replaced by the point . (See Figure 2 and the following chart, where the results of
other stretching, compressing, and reflecting transformations are also given.)

VERTICAL AND HORIZONTAL STRETCHING AND REFLECTING Suppose . To
obtain the graph of

Figure 3 illustrates these stretching transformations when applied to the cosine function
with . For instance, in order to get the graph of we multiply the y-coor-
dinate of each point on the graph of by 2. This means that the graph of 
gets stretched vertically by a factor of 2.

FIGURE 3
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y ! cos xy ! cos x
y ! 2 cos xc ! 2

 y ! f !$x", reflect the graph of y ! f !x" about the y-axis

 y ! $f !x", reflect the graph of y ! f !x" about the x-axis

 y ! f !x$c", stretch the graph of y ! f !x" horizontally by a factor of c

 y ! f !cx", compress the graph of y ! f !x" horizontally by a factor of c

 y ! !1$c" f !x", compress the graph of y ! f !x" vertically by a factor of c

 y ! cf !x", stretch the graph of y ! f !x" vertically by a factor of c

c ! 1

!x, $y"
!x, y"xy ! f !x"y ! $f !x"

y ! f !x"y ! cf !x"
c ! 1

FIGURE 2
Stretching and reflecting the graph of ƒ
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FIGURE 1
Translating the graph of ƒ
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EXAMPLE 1 Given the graph of , use transformations to graph ,
, , , and .

SOLUTION The graph of the square root function , obtained from Figure 13(a) 
in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch

by shifting 2 units downward, by shifting 2 units to the right,
by reflecting about the -axis, by stretching vertically by a factor 

of 2, and by reflecting about the -axis.

M

EXAMPLE 2 Sketch the graph of the function .

SOLUTION Completing the square, we write the equation of the graph as

This means we obtain the desired graph by starting with the parabola and shifting
3 units to the left and then 1 unit upward (see Figure 5).

M

EXAMPLE 3 Sketch the graphs of the following functions.
(a) (b)

SOLUTION
(a) We obtain the graph of from that of by compressing horizon-
tally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of is ,
the period of is .

FIGURE 6
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FIGURE 7
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yy ! s$x 
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y ! sx $ 2 y ! sx $ 2
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y ! s$x y ! 2sx y ! $sx y ! sx $ 2 
y ! sx $ 2y ! sx V
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FIGURE 4



(b) To obtain the graph of , we again start with . We reflect 
about the -axis to get the graph of and then we shift 1 unit upward to get

(See Figure 8.)

M

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of the
time of the year at several latitudes. Given that Philadelphia is located at approximately

latitude, find a function that models the length of daylight at Philadelphia.

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By look-
ing at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is .

By what factor do we need to stretch the sine curve horizontally if we measure the
time t in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of is , so the horizontal stretching factor is

.
We also notice that the curve begins its cycle on March 21, the 80th day of the year,

so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore we model the length of daylight in Philadelphia on the t th day of the
year by the function

M

Another transformation of some interest is taking the absolute value of a function. If
, then according to the definition of absolute value, when and
when . This tells us how to get the graph of from the graph

of : The part of the graph that lies above the -axis remains the same; the part that
lies below the -axis is reflected about the -axis.xx

xy ! f !x"
y ! # f !x"#f !x" ! 0y ! "f !x"

f !x" # 0y ! f !x"y ! # f !x"#

L!t" ! 12 $ 2.8 sin$ 2%

365
!t " 80"%

c ! 2%&365
2%y ! sin t

1
2 !14.8 " 9.2" ! 2.8

FIGURE 9
Graph of the length of daylight

from March 21 through December 21
at various latitudes

Lucia C. Harrison, Daylight, Twilight, Darkness and Time  
(New York: Silver, Burdett, 1935) page 40.
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EXAMPLE 5 Sketch the graph of the function .

SOLUTION We first graph the parabola in Figure 10(a) by shifting the parabola
downward 1 unit. We see that the graph lies below the x-axis when ,

so we reflect that part of the graph about the x-axis to obtain the graph of 
in Figure 10(b). M

COMBINATIONS OF FUNCTIONS

Two functions and can be combined to form new functions , , , and in
a manner similar to the way we add, subtract, multiply, and divide real numbers. The sum
and difference functions are defined by

If the domain of is A and the domain of is B, then the domain of is the intersec-
tion because both and have to be defined. For example, the domain of

is and the domain of is , so the domain
of is .

Similarly, the product and quotient functions are defined by

The domain of is , but we can’t divide by 0 and so the domain of is
. For instance, if and , then the domain of

the rational function is , or .
There is another way of combining two functions to obtain a new function. For 

example, suppose that and . Since y is a function of u
and u is, in turn, a function of x, it follows that is ultimately a function of x. We compute
this by substitution:

The procedure is called composition because the new function is composed of the two
given functions and .

In general, given any two functions and , we start with a number x in the domain of
and find its image . If this number is in the domain of , then we can calculate

the value of . The result is a new function obtained by substituting
into . It is called the composition (or composite) of and and is denoted by 

(“ f circle t”).

DEFINITION Given two functions and , the composite function (also called
the composition of and ) is defined by

The domain of is the set of all in the domain of such that is in the domain
of . In other words, is defined whenever both and are defined. Fig-
ure 11 shows how to picture in terms of machines.f ! t

f !t!x""t!x"! f ! t"!x"f
t!x"txf ! t

! f ! t"!x" ! f !t!x""

tf
f ! ttf

f ! ttfft
h!x" ! f !t!x""f !t!x""

ft!x"t!x"t
tf

tf

y ! f !u" ! f !t!x"" ! f !x 2 $ 1" ! sx 2 $ 1

y
u ! t!x" ! x 2 $ 1y ! f !u" ! su 

!"', 1" ! !1, '"'x # x " 1(! f&t"!x" ! x 2&!x " 1"
t!x" ! x " 1f !x" ! x 2'x " A # B # t!x" " 0(

f&tA # Bft

)  f
t*!x" !

 f !x"
t!x"

! ft"!x" ! f !x"t!x"

A # B ! +0, 2,! f $ t"!x" ! sx $ s2 " x 
B ! !"', 2,t!x" ! s2 " x A ! +0, '"f !x" ! sx 

t!x"f !x"A # B
f $ ttf

 ! f " t"!x" ! f !x" " t!x"! f $ t"!x" ! f !x" $ t!x"

f&tftf " tf $ ttf

y ! # x 2 " 1#
"1 ! x ! 1y ! x 2

y ! x 2 " 1

y ! # x 2 " 1 #V

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS | | | | 41

FIGURE 10
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EXAMPLE 6 If and , find the composite functions 
and .

SOLUTION We have

M

| You can see from Example 6 that, in general, . Remember, the
notation means that the function is applied first and then is applied second. In
Example 6, is the function that first subtracts 3 and then squares; is the function
that first squares and then subtracts 3.

EXAMPLE 7 If and , find each function and its domain.
(a) (b) (c) (d)

SOLUTION

(a)

The domain of is .

(b)

For to be defined we must have . For to be defined we must have
If , then . , that is, , or . Thus we have , so the domain of

is the closed interval .

(c)

The domain of is .

(d)

This expression is defined when both and The first
inequality means , and the second is equivalent to , or , or

. Thus , so the domain of is the closed interval . M

It is possible to take the composition of three or more functions. For instance, the com-
posite function is found by first applying , then , and then as follows:

EXAMPLE 8 Find if , and .

SOLUTION

M

So far we have used composition to build complicated functions from simpler ones. But
in calculus it is often useful to be able to decompose a complicated function into simpler
ones, as in the following example.

 ! f !!x $ 3"10 " !
!x $ 3"10

!x $ 3"10 $ 1

 ! f ! t ! h"!x" ! f !t!h!x""" ! f !t!x $ 3""

h!x" ! x $ 3f !x" ! x&!x $ 1", t!x" ! x 10f ! t ! h

! f ! t ! h"!x" ! f !t!h!x"""

fthf ! t ! h

+"2, 2,t ! t"2 ( x ( 2x # "2
2 " x ( 4s2 " x ( 2x ( 2

2 " s2 " x # 0.2 " x # 0

!t ! t"!x" ! t!t!x"" ! t(s2 " x ) ! s2 " s2 " x 

+0, '"f ! f

! f ! f "!x" ! f ! f !x"" ! f (sx ) ! ssx ! s4 x 

+0, 4,t ! f
0 ( x ( 4x ( 4sx ( 22 " sx # 0a 2 ( b 20 ( a ( b

s2 " sx x # 0sx 

!t ! f "!x" ! t! f !x"" ! t(sx ) ! s2 " sx 

! 'x # x ( 2( ! !"', 2,'x # 2 " x # 0(f ! t

! f ! t"!x" ! f !t!x"" ! f (s2 " x ) ! ss2 " x ! s4 2 " x 

t ! tf ! ft ! ff ! t
t!x" ! s2 " x f !x" ! sx V

t ! ff ! t
ftf ! t

f ! t " t ! fNOTE

 !t ! f "!x" ! t! f !x"" ! t!x 2 " ! x 2 " 3

 ! f ! t"!x" ! f !t!x"" ! f !x " 3" ! !x " 3"2

t ! f
f ! tt!x" ! x " 3f !x" ! x 2
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EXAMPLE 9 Given , find functions , , and h such that .

SOLUTION Since , the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

Then

M ! +cos!x $ 9",2 ! F!x"

 ! f ! t ! h"!x" ! f !t!h!x""" ! f !t!x $ 9"" ! f !cos!x $ 9""

f !x" ! x 2t!x" ! cos xh!x" ! x $ 9

F!x" ! +cos!x $ 9",2

F ! f ! t ! htfF!x" ! cos2!x $ 9"

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS | | | | 43

(c) (d)

The graph of is given. Use it to graph the following 
functions.
(a) (b)
(c) (d)

6–7 The graph of is given. Use transformations to
create a function whose graph is as shown.

6.

_4 _1

_2.5

x

y

_1 0

7.

5 x

y

20

3

1.5 y=œ„„„„„„3x-≈

x

y

30

y ! s3x " x 2 

x

y

0 1

1

y ! "f !"x"y ! f !"x"
y ! f ( 1

2 x)y ! f !2x"

f5.

x

y

0 1

1

y ! "1
2 f !x" $ 3y ! 2 f !x"Suppose the graph of is given. Write equations for the graphs

that are obtained from the graph of as follows.
(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.
(d) Shift 3 units to the left.
(e) Reflect about the -axis.
(f) Reflect about the -axis.
(g) Stretch vertically by a factor of 3.
(h) Shrink vertically by a factor of 3.

2. Explain how each graph is obtained from the graph of .
(a) (b)
(c) (d)
(e) (f)

3. The graph of is given. Match each equation with its
graph and give reasons for your choices.
(a) (b)
(c) (d)
(e)

4. The graph of is given. Draw the graphs of the following
functions.
(a) (b) y ! f !x" $ 4y ! f !x $ 4"

f

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

y ! 2 f !x $ 6"
y ! "f !x $ 4"y ! 1

3 f !x"
y ! f !x" $ 3y ! f !x " 4"

y ! f !x"

y ! 5 f !x" " 3y ! f !5x"
y ! "5 f !x"y ! "f !x"
y ! f !x " 5"y ! 5 f !x"

y ! f !x"

y
x

f
f1.

EXERCISES1.3
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29–30 Find , , , and and state their domains.

,

30. ,

31–36 Find the functions (a) , (b) , (c) , and (d) 
and their domains.

31. ,

32. ,

33. ,

34. ,

,

36. ,

37–40 Find 

37. , ,

38. , ,

39. , ,

40. , ,

41–46 Express the function in the form 

41. 42.

43. 44.

45.

47–49 Express the function in the form 

47. 48.

49.

50. Use the table to evaluate each expression.
(a) (b) (c)
(d) (e) (f) ! f ! t"!6"!t ! f "!3"t!t!1""

f ! f !1""t! f !1""f !t!1""

H!x" ! sec4(sx )
H!x" ! s8 2 $ # x #H!x" ! 1 " 3x2

f ! t ! h.

u!t" !
tan t

1 $ tan t
46.u!t" ! scos t 

G!x" ! - x
1 $ x

 3F !x" !
s3 x 

1 $ s3 x 

F!x" ! sin(sx )F!x" ! !x 2 $ 1"10

f ! t.

h!x" ! s3 x t!x" !
x

x " 1
f !x" ! tan x

h!x" ! x 3 $ 2t!x" ! x 2f !x" ! sx " 3 

h!x" ! 1 " xt!x" ! x 2f !x" ! 2x " 1

h!x" ! x " 1t!x" ! 2xf !x" ! x $ 1

f ! t ! h.

t!x" ! sin 2xf !x" !
x

1 $ x

t!x" !
x $ 1
x $ 2

f !x" ! x $
1
x

35.

t!x" ! s3 1 " x f !x" ! sx 

t!x" ! cos xf !x" ! 1 " 3x

t!x" ! x 2 $ 3x $ 4f !x" ! x " 2

t!x" ! 2x $ 1f !x" ! x 2 " 1

t ! tf ! ft ! ff ! t

t!x" ! sx 2 " 1f !x" ! s3 " x

t!x" ! 3x 2 " 1f !x" ! x 3 $ 2x 229.

f&tftf " tf $ t8. (a) How is the graph of related to the graph of
? Use your answer and Figure 6 to sketch the

graph of .
(b) How is the graph of related to the graph of

? Use your answer and Figure 4(a) to sketch the
graph of .

9–24 Graph the function by hand, not by plotting points, but by
starting with the graph of one of the standard functions given in Sec-
tion 1.2, and then applying the appropriate transformations.

9. 10.

11. 12.

13. 14.

16.

17. 18.

19. 20.

21. 22.

23. 24.

25. The city of New Orleans is located at latitude . Use Fig-
ure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. To
check the accuracy of your model, use the fact that on March 31
the sun rises at 5:51 AM and sets at 6:18 PM in New Orleans. 

26. A variable star is one whose brightness alternately increases
and decreases. For the most visible variable star, Delta Cephei,
the time between periods of maximum brightness is 5.4 days,
the average brightness (or magnitude) of the star is 4.0, and its
brightness varies by magnitude. Find a function that
models the brightness of Delta Cephei as a function of time.

(a) How is the graph of related to the graph of ?
(b) Sketch the graph of .

(c) Sketch the graph of .

28. Use the given graph of to sketch the graph of .
Which features of are the most important in sketching

? Explain how they are used.

1

10 x

y

y ! 1&f !x"
f

y ! 1&f !x"f

y ! s# x #
y ! sin # x #

fy ! f (# x #)27.

)0.35

30&N

y ! # x 2 " 2x #y ! #sin x #

y !
1
4

 tan)x "
%

4 *y !
2

x $ 1

y ! 1 $ s3 x " 1y ! 1
2 !x 2 $ 8x"

y ! !x $ 2"4 $ 3y ! sx $ 3 

y !
1

x " 4
y ! sin!x&2"15.

y ! 4 sin 3xy ! 1 $ 2 cos x

y ! x 2 " 4x $ 3y ! !x $ 1"2

y ! 1 " x 2y ! "x 3

y ! 1 $ sx 
y ! sx 

y ! 1 $ sx 
y ! 2 sin x

y ! sin x
y ! 2 sin x

x 1 2 3 4 5 6

3 1 4 2 2 5

6 3 2 1 2 3t!x"

f !x"
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57. The Heaviside function H is defined by

It is used in the study of electric circuits to represent the sudden
surge of electric current, or voltage, when a switch is instantane-
ously turned on.
(a) Sketch the graph of the Heaviside function.
(b) Sketch the graph of the voltage in a circuit if the 

switch is turned on at time and 120 volts are applied
instantaneously to the circuit. Write a formula for in
terms of .

(c) Sketch the graph of the voltage in a circuit if the switch
is turned on at time seconds and 240 volts are applied
instantaneously to the circuit. Write a formula for in
terms of . (Note that starting at corresponds to a
translation.)

58. The Heaviside function defined in Exercise 57 can also be used
to define the ramp function , which represents a
gradual increase in voltage or current in a circuit.
(a) Sketch the graph of the ramp function .
(b) Sketch the graph of the voltage in a circuit if the switch

is turned on at time and the voltage is gradually
increased to 120 volts over a 60-second time interval. Write
a formula for in terms of for .

(c) Sketch the graph of the voltage in a circuit if the switch
is turned on at time seconds and the voltage is gradu-
ally increased to 100 volts over a period of 25 seconds.
Write a formula for in terms of for .

59. Let and be linear functions with equations 
and . Is also a linear function? If so, what
is the slope of its graph?

60. If you invest dollars at 4% interest compounded annually, then
the amount of the investment after one year is .
Find , , and . What do these compo-
sitions represent? Find a formula for the composition of 
copies of .

61. (a) If and , find a function
such that . (Think about what operations you

would have to perform on the formula for to end up with
the formula for .)

(b) If and , find a function
such that .

62. If and , find a function such that
.

63. (a) Suppose and are even functions. What can you say about
and ?

(b) What if and are both odd?

64. Suppose is even and is odd. What can you say about ?

Suppose t is an even function and let . Is h always an
even function?

66. Suppose t is an odd function and let . Is h always an
odd function? What if is odd? What if is even?ff

h ! f ! t

h ! f ! t65.

fttf

tf
ftf $ t
tf

t ! f ! h
th!x" ! 4x " 1f !x" ! x $ 4

f ! t ! ht
h!x" ! 3x 2 $ 3x $ 2f !x" ! 3x $ 5

h
t

f ! t ! hf
h!x" ! 4x 2 $ 4x $ 7t!x" ! 2x $ 1

A
n

A ! A ! A ! AA ! A ! AA ! A
A!x" ! 1.04xA!x"

x

f ! tt!x" ! m2 x $ b2

f !x" ! m1x $ b1tf

t ( 32H!t"V!t"

t ! 7
V!t"

t ( 60H!t"V!t"

t ! 0
V!t"

y ! tH!t"

y ! ctH!t"

t ! 5H!t"
V!t"

t ! 5
V!t"

H!t"
V!t"

t ! 0
V!t"

H!t" ! .0
1

if t ! 0
if t # 0

51. Use the given graphs of and to evaluate each expression, 
or explain why it is undefined.
(a) (b) (c)
(d) (e) (f)

52. Use the given graphs of and to estimate the value of
for . Use these estimates to

sketch a rough graph of .

A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of .
(a) Express the radius of this circle as a function of the 

time (in seconds).
(b) If is the area of this circle as a function of the radius, find

and interpret it.

54. A spherical balloon is being inflated and the radius of the bal-
loon is increasing at a rate of .
(a) Express the radius of the balloon as a function of the time

(in seconds).
(b) If is the volume of the balloon as a function of the radius,

find and interpret it.

55. A ship is moving at a speed of parallel to a straight
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.
(a) Express the distance between the lighthouse and the ship

as a function of , the distance the ship has traveled since
noon; that is, find so that .

(b) Express as a function of , the time elapsed since noon;
that is, find so that .

(c) Find . What does this function represent?

56. An airplane is flying at a speed of at an altitude of
one mile and passes directly over a radar station at time .
(a) Express the horizontal distance (in miles) that the plane

has flown as a function of .
(b) Express the distance between the plane and the radar 

station as a function of .
(c) Use composition to express as a function of .ts

d
s

t
d

t ! 0
350 mi&h

f ! t
d ! t!t"t

td
s ! f !d"f

d
s

30 km&h

V ! r
V

t
r

2 cm&s

A ! r
A

t
r

60 cm&s
53.

g

f

x

y

0 1

1

f ! t
x ! "5, "4, "3, . . . , 5f !t!x""

tf

x

y

0

fg

2

2

! f ! f "!4"!t ! t"!"2"!t ! f "!6"
! f ! t"!0"t! f !0""f !t!2""

tf
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GRAPHING CALCULATORS AND COMPUTERS

In this section we assume that you have access to a graphing calculator or a computer with
graphing software. We will see that the use of such a device enables us to graph more com-
plicated functions and to solve more complex problems than would otherwise be possible.
We also point out some of the pitfalls that can occur with these machines.

Graphing calculators and computers can give very accurate graphs of functions. But we
will see in Chapter 4 that only through the use of calculus can we be sure that we have
uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a func-
tion in a display window or viewing screen, which we refer to as a viewing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important to
choose the viewing rectangle with care. If we choose the -values to range from a mini-
mum value of to a maximum value of and the -values to range from
a minimum of to a maximum of , then the visible portion of the graph
lies in the rectangle

shown in Figure 1. We refer to this rectangle as the by viewing rectangle.
The machine draws the graph of a function much as you would. It plots points of the

form for a certain number of equally spaced values of between and . If an 
-value is not in the domain of , or if lies outside the viewing rectangle, it moves on

to the next -value. The machine connects each point to the preceding plotted point to form
a representation of the graph of .

EXAMPLE 1 Draw the graph of the function in each of the following
viewing rectangles.
(a) by (b) by 
(c) by (d) by 

SOLUTION For part (a) we select the range by setting min , max , min
and max . The resulting graph is shown in Figure 2(a). The display window is
blank! A moment’s thought provides the explanation: Notice that for all , so

for all . Thus the range of the function is . This 
means that the graph of lies entirely outside the viewing rectangle by .

The graphs for the viewing rectangles in parts (b), (c), and (d) are also shown in 
Figure 2. Observe that we get a more complete picture in parts (c) and (d), but in part (d)
it is not clear that the -intercept is 3.

M

y

+"2, 2,+"2, 2,f
+3, '"f !x" ! x2 $ 3xx 2 $ 3 # 3

xx 2 # 0
! 2Y

! "2,Y! 2X! "2X

+"100, 1000,+"50, 50,+"5, 30,+"10, 10,
+"4, 4,+"4, 4,+"2, 2,+"2, 2,

f !x" ! x 2 $ 3

f
x

f !x"fx
bax!x, f !x""

f
+c, d,+a, b,

+a, b, * +c, d , ! '!x, y" # a ( x ( b, c ( y ( d (

Ymax ! dYmin ! c
yXmax ! bXmin ! a

x

1.4

FIGURE 1
The viewing rectangle +a, b, by +c, d,

y=d

x=a x=b

y=c

(a, d ) (b, d )

(a, c )(b, c)

FIGURE 2 Graphs of ƒ=≈+3
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2

_2

_2 2

4

_4
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_5
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_100
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We see from Example 1 that the choice of a viewing rectangle can make a big differ-
ence in the appearance of a graph. Often it’s necessary to change to a larger viewing 
rectangle to obtain a more complete picture, a more global view, of the graph. In the next
example we see that knowledge of the domain and range of a function sometimes provides
us with enough information to select a good viewing rectangle.

EXAMPLE 2 Determine an appropriate viewing rectangle for the function
and use it to graph .

SOLUTION The expression for is defined when

Therefore the domain of is the interval . Also,

so the range of is the interval .
We choose the viewing rectangle so that the -interval is somewhat larger than the

domain and the -interval is larger than the range. Taking the viewing rectangle to be
by , we get the graph shown in Figure 3. M

EXAMPLE 3 Graph the function .

SOLUTION Here the domain is , the set of all real numbers. That doesn’t help us choose a
viewing rectangle. Let’s experiment. If we start with the viewing rectangle by

, we get the graph in Figure 4. It appears blank, but actually the graph is so
nearly vertical that it blends in with the -axis.

If we change the viewing rectangle to by , we get the picture
shown in Figure 5(a). The graph appears to consist of vertical lines, but we know that
can’t be correct. If we look carefully while the graph is being drawn, we see that the
graph leaves the screen and reappears during the graphing process. This indicates that 
we need to see more in the vertical direction, so we change the viewing rectangle to

by . The resulting graph is shown in Figure 5(b). It still doesn’t
quite reveal all the main features of the function, so we try by 
in Figure 5(c). Now we are more confident that we have arrived at an appropriate view-
ing rectangle. In Chapter 4 we will be able to see that the graph shown in Figure 5(c)
does indeed reveal all the main features of the function.

MFIGURE 5 y=˛-150x
(a) (c)(b)
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+"20, 20,+"20, 20,
y

+"5, 5,
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[0, 2s2 ]f
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FIGURE 3
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5

_5
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FIGURE 4



EXAMPLE 4 Graph the function in an appropriate viewing rectangle.

SOLUTION Figure 6(a) shows the graph of produced by a graphing calculator using the
viewing rectangle by . At first glance the graph appears to be rea-
sonable. But if we change the viewing rectangle to the ones shown in the following parts
of Figure 6, the graphs look very different. Something strange is happening.

In order to explain the big differences in appearance of these graphs and to find an
appropriate viewing rectangle, we need to find the period of the function 
We know that the function has period and the graph of is 
compressed horizontally by a factor of 50, so the period of is

This suggests that we should deal only with small values of in order to show just a few
oscillations of the graph. If we choose the viewing rectangle by ,
we get the graph shown in Figure 7.

Now we see what went wrong in Figure 6. The oscillations of are so rapid
that when the calculator plots points and joins them, it misses most of the maximum and
minimum points and therefore gives a very misleading impression of the graph. M

We have seen that the use of an inappropriate viewing rectangle can give a misleading
impression of the graph of a function. In Examples 1 and 3 we solved the problem by
changing to a larger viewing rectangle. In Example 4 we had to make the viewing rect-
angle smaller. In the next example we look at a function for which there is no single view-
ing rectangle that reveals the true shape of the graph.

EXAMPLE 5 Graph the function .

SOLUTION Figure 8 shows the graph of produced by a graphing calculator with viewing
rectangle by . It looks much like the graph of , but per-
haps with some bumps attached. If we zoom in to the viewing rectangle by

, we can see much more clearly the shape of these bumps in Figure 9. The+"0.1, 0.1,
+"0.1, 0.1,

y ! sin x+"1.5, 1.5,+"6.5, 6.5,
f

f !x" ! sin x $ 1
100 cos 100xV

y ! sin 50x

+"1.5, 1.5,+"0.25, 0.25,
x

2%

50
!

%

25
/ 0.126

y ! sin 50x
y ! sin 50x2%y ! sin x

y ! sin 50x.

FIGURE 6
Graphs of ƒ=sin 50x

in four viewing rectangles

(a) (b)

(c) (d)
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N The appearance of the graphs in Figure 6
depends on the machine used. The graphs you
get with your own graphing device might not
look like these figures, but they will also be quite
inaccurate.

FIGURE 7
ƒ=sin 50x

1.5

_1.5

_.25 .25



reason for this behavior is that the second term, , is very small in comparison
with the first term, . Thus we really need two graphs to see the true nature of this
function.

M

EXAMPLE 6 Draw the graph of the function .

SOLUTION Figure 10(a) shows the graph produced by a graphing calculator with view-
ing rectangle by . In connecting successive points on the graph, the 
calculator produced a steep line segment from the top to the bottom of the screen. That
line segment is not truly part of the graph. Notice that the domain of the function

is . We can eliminate the extraneous near-vertical line by exper-
imenting with a change of scale. When we change to the smaller viewing rectangle

by on this particular calculator, we obtain the much better graph
in Figure 10(b).

M

EXAMPLE 7 Graph the function .

SOLUTION Some graphing devices display the graph shown in Figure 11, whereas others
produce a graph like that in Figure 12. We know from Section 1.2 (Figure 13) that the
graph in Figure 12 is correct, so what happened in Figure 11? The explanation is that
some machines compute the cube root of using a logarithm, which is not defined if 
is negative, so only the right half of the graph is produced.

FIGURE 11
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FIGURE 12

2

_2

_3 3

xx

y ! s3 x 

(a) (b)

9

_9

_9 9

4.7

_4.7

_4.7 4.7

FIGURE 10

+"4.7, 4.7,+"4.7, 4.7,

'x # x " 1(y ! 1&!1 " x"

+"9, 9,+"9, 9,

y !
1

1 " x

FIGURE 9

0.1

_0.1

_0.1 0.1

FIGURE 8

1.5

_1.5

_6.5 6.5

sin x

1
100 cos 100x

SECTION 1.4 GRAPHING CALCULATORS AND COMPUTERS | | | | 49

N Another way to avoid the extraneous line is to
change the graphing mode on the calculator so
that the dots are not connected.



You should experiment with your own machine to see which of these two graphs is
produced. If you get the graph in Figure 11, you can obtain the correct picture by graph-
ing the function 

Notice that this function is equal to (except when ). M

To understand how the expression for a function relates to its graph, it’s helpful to graph
a family of functions, that is, a collection of functions whose equations are related. In the
next example we graph members of a family of cubic polynomials.

EXAMPLE 8 Graph the function for various values of the number . How
does the graph change when is changed?

SOLUTION Figure 13 shows the graphs of for , , , , and . We see
that, for positive values of , the graph increases from left to right with no maximum or
minimum points (peaks or valleys). When , the curve is flat at the origin. When 
is negative, the curve has a maximum point and a minimum point. As decreases, the
maximum point becomes higher and the minimum point lower.

M

EXAMPLE 9 Find the solution of the equation correct to two decimal places.

SOLUTION The solutions of the equation are the -coordinates of the points of
intersection of the curves and . From Figure 14(a) we see that there is
only one solution and it lies between 0 and 1. Zooming in to the viewing rectangle 
by , we see from Figure 14(b) that the root lies between 0.7 and 0.8. So we zoom in
further to the viewing rectangle by in Figure 14(c). By moving the
cursor to the intersection point of the two curves, or by inspection and the fact that the 
-scale is 0.01, we see that the solution of the equation is about 0.74. (Many calculators

have a built-in intersection feature.)

M
!0.7, 0.8" by !0.7, 0.8"
x-scale=0.01

(c)!0, 1" by !0, 1"
x-scale=0.1

(b)!_5, 5" by !_1.5, 1.5"
x-scale=1

(a)

0.8

0.7
0.8

y=x

1

0
1

y=x

1.5

_1.5

_5 5

y=x
y=cos x

FIGURE 14
Locating the roots
of cos x=x

y=cos x

y=cos x

x

!0.7, 0.8"!0.7, 0.8"
!0, 1"

!0, 1"
y ! xy ! cos x

xcos x ! x

cos x ! x

FIGURE 13
Several members of the family of
functions y=˛+cx, all graphed
in the viewing rectangle !_2, 2"
by !_2.5, 2.5"

(a) y=˛+2x (b) y=˛+x (c) y=˛ (d) y=˛-x (e) y=˛-2x

c
cc ! 0

c
!2!101c ! 2y ! x 3 " cx

c
cy ! x 3 " cxV

x ! 0s3 x 

f #x$ !
x

% x % ! % x %1&3
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In Visual 1.4 you can see an 
animation of Figure 13.
TEC
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24. Use graphs to determine which of the functions
and is eventually larger.

25. For what values of is it true that ?

26. Graph the polynomials and 
on the same screen, first using the viewing rectangle by
[ ] and then changing to by .
What do you observe from these graphs?

In this exercise we consider the family of root functions
, where is a positive integer.

(a) Graph the functions , , and on the
same screen using the viewing rectangle by .

(b) Graph the functions , , and on 
the same screen using the viewing rectangle 
by . (See Example 7.)

(c) Graph the functions , , , and
on the same screen using the viewing rectangle
by .

(d) What conclusions can you make from these graphs?

28. In this exercise we consider the family of functions
, where is a positive integer.

(a) Graph the functions and on the same
screen using the viewing rectangle by .

(b) Graph the functions and on the same
screen using the same viewing rectangle as in part (a).

(c) Graph all of the functions in parts (a) and (b) on the same
screen using the viewing rectangle by .

(d) What conclusions can you make from these graphs?

Graph the function for several values 
of . How does the graph change when changes?

30. Graph the function for various values 
of . Describe how changing the value of affects the graph.

31. Graph the function , , for ,
and 6. How does the graph change as increases?

32. The curves with equations

are called bullet-nose curves. Graph some of these curves to
see why. What happens as increases?

What happens to the graph of the equation as 
varies?

34. This exercise explores the effect of the inner function on a
composite function .
(a) Graph the function using the viewing rect-

angle by . How does this graph differ
from the graph of the sine function?

!!1.5, 1.5"!0, 400"
y ! sin(sx )

y ! f #t#x$$
t

c
y 2 ! cx 3 " x 233.

c

y ! % x %
sc ! x 2 

n
n ! 1, 2, 3, 4, 5x # 0y ! x n2!x

cc
s1 " cx 2 f #x$ !

cc
f #x$ ! x 4 " cx 2 " x29.

!!1, 3"!!1, 3"

y ! 1&x 4y ! 1&x 2
!!3, 3"!!3, 3"

y ! 1&x 3y ! 1&x
nf #x$ ! 1&x n

!!1, 2"!!1, 3"
y ! s5 x 

y ! s4 x y ! s3 x y ! sx 
!!2, 2"

!!3, 3"
y ! s5 x y ! s3 x y ! x

!!1, 3"!!1, 4"
y ! s6 x y ! s4 x y ! sx 

nf #x$ ! sn x 
27.

!!10,000, 10,000"!!10, 10"!2, 2
!!2, 2"

Q#x$ ! 3x 5P#x$ ! 3x 5 ! 5x 3 " 2x

% sin x ! x % $ 0.1x

t#x$ ! x 3f #x$ ! x 4 ! 100x 3
1. Use a graphing calculator or computer to determine which of

the given viewing rectangles produces the most appropriate
graph of the function .
(a) by (b) by 
(c) by 

2. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function .
(a) by (b) by 
(c) by (d) by 

3–14 Determine an appropriate viewing rectangle for the given 
function and use it to draw the graph.

3. 4.

5. 6.

7.

10.

11. 12.

13. 14.

15. Graph the ellipse by graphing the functions
whose graphs are the upper and lower halves of the ellipse.

16. Graph the hyperbola by graphing the functions
whose graphs are the upper and lower branches of the hyperbola.

17–18 Do the graphs intersect in the given viewing rectangle? 
If they do, how many points of intersection are there?

17. , ;

18. , ;

19–21 Find all solutions of the equation correct to two decimal
places.

19. 20.

21.

22. We saw in Example 9 that the equation has exactly
one solution.
(a) Use a graph to show that the equation has three

solutions and find their values correct to two decimal places.
(b) Find an approximate value of such that the equation

has exactly two solutions.

Use graphs to determine which of the functions 
and is eventually larger (that is, larger when is
very large).

xt#x$ ! x 3&10
f #x$ ! 10x 223.

cos x ! mx
m

cos x ! 0.3x

cos x ! x

x 2 ! sin x

x 3 ! 4x ! 1x 3 ! 9x 2 ! 4 ! 0

!!6, 2" by !!5, 20"y ! 3x " 18y ! 6 ! 4x ! x 2

!!1, 3" by !!2.5, 1.5"y ! 0.23x ! 2.25y ! 3x 2 ! 6x " 1

y 2 ! 9x 2 ! 1

4x 2 " 2y 2 ! 1

y ! x 2 " 0.02 sin 50xy ! 10 sin x " sin 100x

f #x$ ! sec#20%x$f #x$ ! sin sx 

f #x$ ! cos#0.001x$f #x$ ! sin2#1000x$9.

f #x$ !
x

x 2 " 100
8.f #x$ ! x 3 ! 225x

f #x$ ! s0.1x " 20
 

f #x$ ! s4 81 ! x 4 

f #x$ ! x 3 " 30x 2 " 200xf #x$ ! 5 " 20x ! x 2

!!50, 50"!!5, 5"!!50, 50"!!50, 50"
!!10, 10"!!10, 10"!!3, 3"!!3, 3"

f #x$ ! x 4 ! 16x 2 " 20

!0, 10"!0, 10"
!0, 2"!0, 10"!!5, 5"!!5, 5"

f #x$ ! sx 3 ! 5x 2 

; EXERCISES1.4



36. The first graph in the figure is that of as displayed
by a TI-83 graphing calculator. It is inaccurate and so, to help
explain its appearance, we replot the curve in dot mode in the
second graph.

What two sine curves does the calculator appear to be plotting?
Show that each point on the graph of that the TI-
83 chooses to plot is in fact on one of these two curves. (The
TI-83’s graphing window is 95 pixels wide.)

y ! sin 45x

0 2π 0 2π

y ! sin 45x(b) Graph the function using the viewing rectangle
by . How does this graph differ from the

graph of the sine function?

35. The figure shows the graphs of and as
displayed by a TI-83 graphing calculator.

The first graph is inaccurate. Explain why the two graphs
appear identical. [Hint: The TI-83’s graphing window is 95
pixels wide. What specific points does the calculator plot?]

y=sin 96x

0 2π

y=sin 2x

0 2π

y ! sin 2xy ! sin 96x

!!1.5, 1.5"!!5, 5"
y ! sin#x 2 $

EXPONENTIAL FUNCTIONS

The function is called an exponential function because the variable, x, is the
exponent. It should not be confused with the power function , in which the vari-
able is the base.

In general, an exponential function is a function of the form

where is a positive constant. Let’s recall what this means.
If , a positive integer, then

n factors

If , and if , where is a positive integer, then

If is a rational number, , where and are integers and , then

But what is the meaning of if x is an irrational number? For instance, what is meant by
or ?

To help us answer this question we first look at the graph of the function , where
x is rational. A representation of this graph is shown in Figure 1. We want to enlarge the
domain of to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We want
to fill in the holes by defining , where , so that is an increasing function.
In particular, since the irrational number satisfies

1.7 $ s3 $ 1.8

s3 
fx " !f #x$ ! 2x

y ! 2x

y ! 2x
5%2s3

ax

ax ! ap&q ! qsap ! ( qsa ) p

q & 0qpx ! p&qx

a!n !
1
an

nx ! !nx ! 0, then a 0 ! 1

an ! a ! a ! ' ' ' ! a

x ! n
a

f #x$ ! ax

t#x$ ! x 2
f #x$ ! 2x

1.5
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FIGURE 1 
Representation of y=2®, x rational

x0

y

1

1

N In Appendix G we present an alternative
approach to the exponential and logarithmic
functions using integral calculus.
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we must have

and we know what and mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for , we obtain better approximations for :

. . . .

. . . .

. . . .

It can be shown that there is exactly one number that is greater than all of the numbers

. . .

and less than all of the numbers

. . .

We define to be this number. Using the preceding approximation process we can com-
pute it correct to six decimal places:

Similarly, we can define (or , if ) where x is any irrational number. Figure 2
shows how all the holes in Figure 1 have been filled to complete the graph of the function

.
The graphs of members of the family of functions are shown in Figure 3 for var-

ious values of the base a. Notice that all of these graphs pass through the same point 
because for . Notice also that as the base a gets larger, the exponential func-
tion grows more rapidly (for ).

You can see from Figure 3 that there are basically three kinds of exponential functions
. If , the exponential function decreases; if , it is a constant; and if

, it increases. These three cases are illustrated in Figure 4. Observe that if ,a " 1a & 1
a ! 10 $ a $ 1y ! ax

FIGURE 3 
0

1®

1.5®2®4®10®”   ’®1
4”   ’®1

2

x

y

1

x & 0
a " 0a 0 ! 1

#0, 1$
y ! ax

f #x$ ! 2x, x " !

a & 0ax2x

2s3 ' 3.321997

2s3

21.73206, 21.7321, 21.733, 21.74, 21.8, 

21.73205, 21.7320, 21.732, 21.73, 21.7, 

 1.73205 $ s3 $ 1.73206 ? 21.73205 $ 2s3 $ 21.73206

 1.7320 $ s3 $ 1.7321  ?  21.7320 $ 2s3 $ 21.7321

 1.732 $ s3 $ 1.733  ?  21.732 $ 2s3 $ 21.733

 1.73 $ s3 $ 1.74  ?  21.73 $ 2s3 $ 21.74

2s3s3 
21.821.7

21.7 $ 2s3 $ 21.8

x10

y

1

FIGURE 2
y=2®, x real

N A proof of this fact is given in J. Marsden 
and A. Weinstein, Calculus Unlimited (Menlo
Park, CA: Benjamin/Cummings, 1981). For an
online version, see

www.cds.caltech.edu/~marsden/
volume/cu/CU.pdf

N If , then approaches as 
becomes large. If , then approaches 
as decreases through negative values. In both
cases the -axis is a horizontal asymptote. These
matters are discussed in Section 2.6.

x
x

0a xa & 1
x0a x0 $ a $ 1



then the exponential function has domain ! and range . Notice also that,
since , the graph of is just the reflection of the graph of

about the -axis.

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary 
algebra. It can be proved that they remain true for arbitrary real numbers x and y. (See
Appendix G.)

LAWS OF EXPONENTS If a and b are positive numbers and x and y are any real
numbers, then

1. 2. 3. 4.

EXAMPLE 1 Sketch the graph of the function and determine its domain and
range.

SOLUTION First we reflect the graph of [shown in Figures 2 and 5(a)] about the 
x-axis to get the graph of in Figure 5(b). Then we shift the graph of 
upward 3 units to obtain the graph of in Figure 5(c). The domain is ! and
the range is .

M

EXAMPLE 2 Use a graphing device to compare the exponential function 
and the power function . Which function grows more quickly when x is large?

SOLUTION Figure 6 shows both functions graphed in the viewing rectangle 
by . We see that the graphs intersect three times, but for the graph of x & 4!0, 40"

!!2, 6"

t#x$ ! x 2
f #x$ ! 2xV

FIGURE 5 

0

1

(a) y=2®

x

y

0

_1

(b) y=_2®

x

y

y=3

0

2

(c) y=3-2®

x

y
#!(, 3$

y ! 3 ! 2x
y ! !2xy ! !2x

y ! 2x

y ! 3 ! 2x

#ab$x ! axbx#ax $y ! axyax!y !
ax

ayax"y ! axay

1
(0, 1)

(a) y=a®,  0<a<1 (b) y=1® (c) y=a®,  a>1

(0, 1)

FIGURE 4

x0

y

x0

y

x0

y

yy ! ax
y ! #1&a$x#1&a$x ! 1&ax ! a!x

#0, ($y ! ax
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www.stewartcalculus.com
For review and practice using the Laws of
Exponents, click on Review of Algebra.

N For a review of reflecting and shifting graphs,
see Section 1.3.
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stays above the graph of . Figure 7 gives a more global view and
shows that for large values of x, the exponential function grows far more rapidly
than the power function .

M

APPLICATIONS OF EXPONENTIAL FUNCTIONS

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth. 
In Chapter 3 we will pursue these and other applications in greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose
that by sampling the population at certain intervals it is determined that the population
doubles every hour. If the number of bacteria at time t is , where t is measured in hours,
and the initial population is , then we have

It seems from this pattern that, in general,

This population function is a constant multiple of the exponential function , so it
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions
(unlimited space and nutrition and freedom from disease) this exponential growth is typi-
cal of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world
in the 20th century and Figure 8 shows the corresponding scatter plot.

FIGURE 8 Scatter plot for world population growth

1900

6x10'

P

t1920 1940 1960 1980 2000

y ! 2t

p#t$ ! 2t ) 1000 ! #1000$2t

 p#3$ ! 2p#2$ ! 23 ) 1000

 p#2$ ! 2p#1$ ! 22 ) 1000

 p#1$ ! 2p#0$ ! 2 ) 1000

p#0$ ! 1000
p#t$

250

0 8

y=2®

y=≈

FIGURE 7

40

0_2 6

y=2® y=≈

FIGURE 6

y ! x 2
y ! 2x

t#x$ ! x 2f #x$ ! 2x

N Example 2 shows that increases more
quickly than . To demonstrate just how
quickly increases, let’s perform the
following thought experiment. Suppose we start
with a piece of paper a thousandth of an inch
thick and we fold it in half 50 times. Each time
we fold the paper in half, the thickness of the
paper doubles, so the thickness of the resulting
paper would be inches. How thick do 
you think that is? It works out to be more than
17 million miles!

250&1000

f #x$ ! 2x
y ! x 2

y ! 2x

TABLE 1

Population
Year (millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080



The pattern of the data points in Figure 8 suggests exponential growth, so we use a
graphing calculator with exponential regression capability to apply the method of least
squares and obtain the exponential model

Figure 9 shows the graph of this exponential function together with the original data
points. We see that the exponential curve fits the data reasonably well. The period of rela-
tively slow population growth is explained by the two world wars and the Great Depres-
sion of the 1930s.

THE NUMBER e

Of all possible bases for an exponential function, there is one that is most convenient for
the purposes of calculus. The choice of a base a is influenced by the way the graph of

crosses the y-axis. Figures 10 and 11 show the tangent lines to the graphs of 
and at the point . (Tangent lines will be defined precisely in Section 2.7. For
present purposes, you can think of the tangent line to an exponential graph at a point as the
line that touches the graph only at that point.) If we measure the slopes of these tangent
lines at , we find that for and for .

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be
greatly simplified if we choose the base a so that the slope of the tangent line to at

is exactly 1. (See Figure 12.) In fact, there is such a number and it is denoted by the
letter e. (This notation was chosen by the Swiss mathematician Leonhard Euler in 1727,
probably because it is the first letter of the word exponential.) In view of Figures 10 and
11, it comes as no surprise that the number e lies between 2 and 3 and the graph of 
lies between the graphs of and . (See Figure 13.) In Chapter 3 we will see
that the value of e, correct to five decimal places, is

e ' 2.71828

y ! 3xy ! 2x
y ! ex

#0, 1$
y ! ax

FIGURE 11

0

1

mÅ1.1

FIGURE 10

0

y=2®

1
mÅ0.7

x

y y=3®

x

y
y ! 3xm ' 1.1y ! 2xm ' 0.7#0, 1$

#0, 1$y ! 3x
y ! 2xy ! ax

FIGURE 9  
Exponential model for

population growth
1900

6x10'

P

t1920 1940 1960 1980 2000

P ! #0.008079266$ ! #1.013731$t
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FIGURE 12
The natural exponential function
crosses the y-axis with a slope of 1.

0

y=´

1

m=1

x

y



SECTION 1.5 EXPONENTIAL FUNCTIONS | | | | 57

EXAMPLE 3 Graph the function and state the domain and range.

SOLUTION We start with the graph of from Figures 12 and 14(a) and reflect about
the y-axis to get the graph of in Figure 14(b). (Notice that the graph crosses the
y-axis with a slope of !1). Then we compress the graph vertically by a factor of 2 to
obtain the graph of in Figure 14(c). Finally, we shift the graph downward one
unit to get the desired graph in Figure 14(d). The domain is ! and the range is .

M

How far to the right do you think we would have to go for the height of the graph of
to exceed a million? The next example demonstrates the rapid growth of this func-

tion by providing an answer that might surprise you.

EXAMPLE 4 Use a graphing device to find the values of x for which .

SOLUTION In Figure 15 we graph both the function and the horizontal line
. We see that these curves intersect when . Thus when

. It is perhaps surprising that the values of the exponential function have already
surpassed a million when x is only 14.

MFIGURE 15

1.5x10^

0 15

y=´

y=10^

x & 13.8
ex & 106x ' 13.8y ! 1,000,000

y ! ex

ex & 1,000,000

y ! ex

FIGURE 14

1
2(d) y=   e–®-1

y=_1
0

1

1
2(c) y=   e–®

0

1

0

(b) y=e–®

1

x0

y

(a) y=´

1

y

x

y

x

y

x

#!1, ($
y ! 1

2 e!x

y ! e!x
y ! ex

y ! 1
2 e!x ! 1V

FIGURE 13
0

1

y=2®

y=e®

y=3®y

x

Module 1.5 enables you to graph 
exponential functions with various bases and
their tangent lines in order to estimate
more closely the value of for which the
tangent has slope .1

a

TEC



17–18 Find the exponential function whose graph is
given.

18.

19. If , show that

20. Suppose you are offered a job that lasts one month. Which of
the following methods of payment do you prefer?
I. One million dollars at the end of the month.

II. One cent on the first day of the month, two cents on the
second day, four cents on the third day, and, in general,

cents on the th day.

21. Suppose the graphs of and are drawn on
a coordinate grid where the unit of measurement is 1 inch.
Show that, at a distance 2 ft to the right of the origin, the
height of the graph of is 48 ft but the height of the graph 
of is about 265 mi.

; 22. Compare the functions and by graphing
both functions in several viewing rectangles. Find all points
of intersection of the graphs correct to one decimal place.
Which function grows more rapidly when is large?

; Compare the functions and by graphing
both and in several viewing rectangles. When does the
graph of finally surpass the graph of ?

; 24. Use a graph to estimate the values of such that
.e x & 1,000,000,000

x

ft
tf

t#x$ ! e xf #x$ ! x 1023.

x

t#x$ ! 5xf #x$ ! x 5

t
f

t#x$ ! 2xf #x$ ! x 2

n2n!1

 f (x " h) ! f (x)
h

! 5x(5h ! 1
h )

f #x$ ! 5x

”2,    ’2
9

0

2

y

x

0

(1, 6)

(3, 24)
y

x

17.

f #x$ ! Ca x1. (a) Write an equation that defines the exponential function
with base .

(b) What is the domain of this function?
(c) If , what is the range of this function?
(d) Sketch the general shape of the graph of the exponential

function for each of the following cases.
(i) (ii) (iii)

2. (a) How is the number defined?
(b) What is an approximate value for ?
(c) What is the natural exponential function?

; 3–6 Graph the given functions on a common screen. How are
these graphs related?

3. , , ,

4. , , ,

, , ,

6. , , ,

7–12 Make a rough sketch of the graph of the function. Do not
use a calculator. Just use the graphs given in Figures 3 and 12 and,
if necessary, the transformations of Section 1.3.

7. 8.

10.

12.

Starting with the graph of , write the equation of the
graph that results from
(a) shifting 2 units downward
(b) shifting 2 units to the right
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the x-axis and then about the y-axis

14. Starting with the graph of , find the equation of the
graph that results from
(a) reflecting about the line 
(b) reflecting about the line 

15–16 Find the domain of each function.

15. (a) (b)

16. (a) (b) t#t$ ! s1 ! 2 t t#t$ ! sin#e!t $

f #x$ !
1

1 ! e xf #x$ !
1

1 " e x

x ! 2
y ! 4

y ! e x

y ! e x13.

y ! 2#1 ! e x $y ! 1 ! 1
2 e!x11.

y ! 1 " 2e xy ! !2!x9.

y ! 4x!3y ! 4x ! 3

y ! 0.1xy ! 0.3xy ! 0.6xy ! 0.9 x

y ! ( 1
10 )xy ! ( 1

3 )xy ! 10 xy ! 3x5.

y ! 8!xy ! 8xy ! e !xy ! e x

y ! 20 xy ! 5xy ! e xy ! 2x

e
e

0 $ a $ 1a ! 1a & 1

a " 1

a & 0

EXERCISES1.5
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population since 1900. Use the model to estimate the popula-
tion in 1925 and to predict the population in the years 2010
and 2020.

; 29. If you graph the function

you’ll see that appears to be an odd function. Prove it.

; 30. Graph several members of the family of functions

where . How does the graph change when changes?
How does it change when changes?a

ba & 0

f #x$ !
1

1 " ae bx

f

f #x$ !
1 ! e 1&x

1 " e 1&x

25. Under ideal conditions a certain bacteria population is known
to double every three hours. Suppose that there are initially
100 bacteria.
(a) What is the size of the population after 15 hours?
(b) What is the size of the population after hours?
(c) Estimate the size of the population after 20 hours.

; (d) Graph the population function and estimate the time for
the population to reach 50,000.

26. A bacterial culture starts with 500 bacteria and doubles in
size every half hour.
(a) How many bacteria are there after 3 hours?
(b) How many bacteria are there after hours?
(c) How many bacteria are there after 40 minutes?

; (d) Graph the population function and estimate the time for
the population to reach 100,000.

; 27. Use a graphing calculator with exponential regression capa-
bility to model the population of the world with the data from
1950 to 2000 in Table 1 on page 55. Use the model to esti-
mate the population in 1993 and to predict the population in
the year 2010.

; 28. The table gives the population of the United States, in mil-
lions, for the years 1900–2000. Use a graphing calculator
with exponential regression capability to model the US 

t

t

INVERSE FUNCTIONS AND LOGARITHMS

Table 1 gives data from an experiment in which a bacteria culture started with 100 bacte-
ria in a limited nutrient medium; the size of the bacteria population was recorded at hourly
intervals. The number of bacteria N is a function of the time t : .

Suppose, however, that the biologist changes her point of view and becomes interested
in the time required for the population to reach various levels. In other words, she is think-
ing of t as a function of N. This function is called the inverse function of f, denoted by ,
and read “ f inverse.” Thus is the time required for the population level to reach
N. The values of can be found by reading Table 1 from right to left or by consulting
Table 2. For instance, because f #6$ ! 550.f !1#550$ ! 6

f !1
t ! f !1#N$

f !1

N ! f #t$

1.6

Year Population Year Population

1900 76 1960 179
1910 92 1970 203
1920 106 1980 227
1930 123 1990 250
1940 131 2000 281
1950 150

TABLE 2 t as a function of N

N ! time to reach N bacteria

100 0
168 1
259 2
358 3
445 4
509 5
550 6
573 7
586 8

t ! f !1#N$

TABLE 1 N as a function of t

t
(hours) ! population at time t

0 100
1 168
2 259
3 358
4 445
5 509
6 550
7 573
8 586

N ! f #t$
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Not all functions possess inverses. Let’s compare the functions and whose arrow
diagrams are shown in Figure 1. Note that never takes on the same value twice (any two
inputs in have different outputs), whereas does take on the same value twice (both 2
and 3 have the same output, 4). In symbols,

but

Functions that share this property with are called one-to-one functions.

DEFINITION A function is called a one-to-one function if it never takes on
the same value twice; that is,

If a horizontal line intersects the graph of in more than one point, then we see from
Figure 2 that there are numbers and such that . This means that is not
one-to-one. Therefore we have the following geometric method for determining whether a
function is one-to-one.

HORIZONTAL LINE TEST A function is one-to-one if and only if no horizontal line
intersects its graph more than once.

EXAMPLE 1 Is the function one-to-one?

SOLUTION 1 If , then (two different numbers can’t have the same cube).
Therefore, by Definition 1, is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of 
more than once. Therefore, by the Horizontal Line Test, is one-to-one. Mf

f !x" ! x 3

f !x" ! x 3
x 3

1 " x 3
2x1 " x 2

f !x" ! x 3V

FIGURE 2
This function is not one-to-one

because f(⁄)=f(¤). 0

y

x⁄ ¤

‡fl
y=ƒ

ff !x1 " ! f !x2 "x2x1

f

whenever x1 " x2f !x1 " " f !x2 "

f1

FIGURE 1 

4
3
2
1

10

4

2

A B
g

4
3
2
1

10
7
4
2

A B
f

f is one-to-one; g is not

f

whenever x1 " x 2f !x1 " " f !x 2 "

t!2" ! t!3"

tA
f

tf

N In the language of inputs and outputs, this
definition says that is one-to-one if each out-
put corresponds to only one input.

f

FIGURE 3  
ƒ=˛ is one-to-one.

0

y=˛
y

x



EXAMPLE 2 Is the function one-to-one?

SOLUTION 1 This function is not one-to-one because, for instance,

and so 1 and have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the graph of
more than once. Therefore, by the Horizontal Line Test, is not one-to-one. M

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

DEFINITION Let be a one-to-one function with domain and range . Then
its inverse function has domain and range and is defined by

for any in .

This definition says that if maps into , then maps back into . (If were not
one-to-one, then would not be uniquely defined.) The arrow diagram in Figure 5 indi-
cates that reverses the effect of . Note that

For example, the inverse function of is because if , then

| CAUTION Do not mistake the in for an exponent. Thus

The reciprocal could, however, be written as .

EXAMPLE 3 If , , and , find 
and .

SOLUTION From the definition of we have

f !8" ! !10becausef !1!!10" ! 8

f !1" ! 5becausef !1!5" ! 1

f !3" ! 7becausef !1!7" ! 3

f !1

f !1!!10"
f !1!5",f !1!7",f !8" ! !10f !3" ! 7f !1" ! 5V

# f !x"$!11%f !x"

1
f !x"

does not meanf !1!x"

f !1!1

f !1!y" ! f !1!x 3 " ! !x 3 "1%3 ! x

y ! x 3f !1!x" ! x 1%3f !x" ! x 3

 range of f !1 ! domain of f

 domain of f !1 ! range of f

ff !1
f !1

fxyf !1yxf

By

f !x" ! y&?f !1!y" ! x

ABf !1
BAf2

tt

!1

t!1" ! 1 ! t!!1"

t!x" ! x 2V

SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS | | | | 61

x

y

A

B
f – !f

FIGURE 5  

FIGURE 4  
©=≈ is not one-to-one.

0

y=≈

x

y



The diagram in Figure 6 makes it clear how reverses the effect of in this case.

M

The letter is traditionally used as the independent variable, so when we concentrate
on rather than on , we usually reverse the roles of and in Definition 2 and write

By substituting for in Definition 2 and substituting for in (3), we get the following
cancellation equations:

The first cancellation equation says that if we start with , apply , and then apply we
arrive back at , where we started (see the machine diagram in Figure 7). Thus undoes
what does. The second equation says that undoes what does.

For example, if , then and so the cancellation equations become

These equations simply say that the cube function and the cube root function cancel each
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function and are
able to solve this equation for in terms of , then according to Definition 2 we must have

. If we want to call the independent variable x, we then interchange and and
arrive at the equation .

HOW TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f

STEP 1 Write .

STEP 2 Solve this equation for in terms of (if possible).

STEP 3 To express as a function of x, interchange and . 
The resulting equation is .y ! f !1!x"

yxf !1

yx

y ! f !x"

5

y ! f !1!x"
yxx ! f !1!y"

yx
y ! f !x"

 f ! f !1!x"" ! !x 1%3 "3 ! x

 f !1! f !x"" ! !x 3 "1%3 ! x

f !1!x" ! x 1%3f !x" ! x 3

FIGURE 7 
x xf ƒ f –!

f !1ff
f !1x

f !1,fx

 f ! f !1!x"" ! x for every x in B

 f !1! f !x"" ! x for every x in A4

xy

f !y" ! x&?f !1!x" ! y3

yxff !1
x

FIGURE 6 
The inverse function reverses

inputs and outputs.

B

5
7
_10

f

A

1
3
8

A

1
3
8

f –!

B

5
7
_10

ff !1
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EXAMPLE 4 Find the inverse function of .

SOLUTION According to (5) we first write

Then we solve this equation for :

Finally, we interchange and :

Therefore the inverse function is . M

The principle of interchanging and to find the inverse function also gives us the
method for obtaining the graph of from the graph of . Since if and only if

, the point is on the graph of if and only if the point is on the
graph of . But we get the point from by reflecting about the line . (See
Figure 8.)

Therefore, as illustrated by Figure 9:

The graph of is obtained by reflecting the graph of about the line .

EXAMPLE 5 Sketch the graphs of and its inverse function using the
same coordinate axes.

SOLUTION First we sketch the curve (the top half of the parabola
, or ) and then we reflect about the line to get the 

graph of . (See Figure 10.) As a check on our graph, notice that the expression for
is . So the graph of is the right half of the parabola

and this seems reasonable from Figure 10. M

LOGARITHMIC FUNCTIONS

If and , the exponential function is either increasing or decreasing
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function ,
which is called the logarithmic function with base a and is denoted by . If we use
the formulation of an inverse function given by (3),

f !y" ! x&?f !1!x" ! y

loga

f !1
f !x" ! axa " 1a " 0

y ! !x 2 ! 1
f !1f !1!x" ! !x 2 ! 1, x # 0f !1

f !1
y ! xx ! !y 2 ! 1y 2 ! !1 ! x

y ! s!1 ! x 

f !x" ! s!1 ! x 

y ! xff !1

FIGURE 8 FIGURE 9

0

y

x

(b, a)

(a, b)

y=x

0

y

x

f –!

y=x f

y ! x!a, b"!b, a"f !1
!b, a"f!a, b"f !1!b" ! a

f !a" ! bff !1
yx

f !1!x" ! s3 x ! 2 

y ! s3 x ! 2 

yx

 x ! s3 y ! 2 

 x 3 ! y ! 2

x

y ! x 3 $ 2

f !x" ! x 3 $ 2V
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N In Example 4, notice how reverses the
effect of . The function is the rule “Cube,
then add 2”; is the rule “Subtract 2, then
take the cube root.”

f !1
ff

f !1

0

y=x
y=ƒ

(0, _1)

y=f –!(x)

(_1, 0)

FIGURE 10

y

x



then we have 

Thus, if , then is the exponent to which the base must be raised to give . For
example, because .

The cancellation equations (4), when applied to the functions and
, become

The logarithmic function has domain and range . Its graph is the reflection
of the graph of about the line .

Figure 11 shows the case where . (The most important logarithmic functions have
base .) The fact that is a very rapidly increasing function for is 
reflected in the fact that is a very slowly increasing function for .

Figure 12 shows the graphs of with various values of the base . Since
, the graphs of all logarithmic functions pass through the point .

The following properties of logarithmic functions follow from the corresponding prop-
erties of exponential functions given in Section 1.5.

LAWS OF LOGARITHMS If x and y are positive numbers, then

1.

2.

3. (where r is any real number)

EXAMPLE 6 Use the laws of logarithms to evaluate .

SOLUTION Using Law 2, we have

because . M

NATURAL LOGARITHMS

Of all possible bases for logarithms, we will see in Chapter 3 that the most convenient
choice of a base is the number , which was defined in Section 1.5. The logarithm with
base is called the natural logarithm and has a special notation:

loge x ! ln x

e
e

a

24 ! 16

log2 80 ! log2 5 ! log2&80
5 ' ! log2 16 ! 4

log2 80 ! log2 5

loga!xr " ! r loga x

loga& x
y' ! loga x ! loga y

loga!xy" ! loga x $ loga y

!1, 0"loga 1 ! 0
a " 1y ! loga x

x " 1y ! loga x
x " 0y ! axa " 1

a " 1
y ! xy ! ax

!!0, %"loga

 aloga x ! x for every x " 0

 loga!ax" ! x for every x ! !7

f !1!x" ! loga x
f !x" ! ax

10!3 ! 0.001log10 0.001 ! !3
xaloga xx " 0

ay ! x&?loga x ! y6
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0

y=x

y=a®,  a>1

y=loga x,  a>1

FIGURE 11

y

x

FIGURE 12

0

y

1

x1

y=log£ x
y=log™ x

y=log∞ x
y=log¡¸ x

N NOTATION FOR LOGARITHMS
Most textbooks in calculus and the sciences, as
well as calculators, use the notation for the
natural logarithm and for the “common
logarithm,” . In the more advanced mathe-
matical and scientific literature and in computer
languages, however, the notation usually
denotes the natural logarithm.

log x

log10 x
log x

ln x



If we put and replace with “ln” in (6) and (7), then the defining properties
of the natural logarithm function become

In particular, if we set , we get

EXAMPLE 7 Find if .

SOLUTION 1 From (8) we see that

Therefore .
(If you have trouble working with the “ln” notation, just replace it by . Then the

equation becomes ; so, by the definition of logarithm, .)

SOLUTION 2 Start with the equation

and apply the exponential function to both sides of the equation:

But the second cancellation equation in (9) says that . Therefore, . M

EXAMPLE 8 Solve the equation .

SOLUTION We take natural logarithms of both sides of the equation and use (9):

Since the natural logarithm is found on scientific calculators, we can approximate the
solution: to four decimal places, . Mx ( 0.8991

 x ! 1
3 !5 ! ln 10"

 3x ! 5 ! ln 10

 5 ! 3x ! ln 10

 ln!e 5!3x " ! ln 10

e 5!3x ! 10

x ! e 5e ln x ! x

e ln x ! e 5

ln x ! 5

e 5 ! xloge x ! 5
loge

x ! e 5

e 5 ! xmeansln x ! 5

ln x ! 5x

ln e ! 1

x ! 1

 e ln x ! x x " 0

 ln!ex " ! x x ! !9

ey ! x&?ln x ! y8

logea ! e
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EXAMPLE 9 Express as a single logarithm.

SOLUTION Using Laws 3 and 1 of logarithms, we have

M

The following formula shows that logarithms with any base can be expressed in terms
of the natural logarithm.

CHANGE OF BASE FORMULA For any positive number , we have

PROOF Let . Then, from (6), we have . Taking natural logarithms of both
sides of this equation, we get . Therefore

M

Scientific calculators have a key for natural logarithms, so Formula 10 enables us to use
a calculator to compute a logarithm with any base (as shown in the following example).
Similarly, Formula 10 allows us to graph any logarithmic function on a graphing calcula-
tor or computer (see Exercises 41 and 42).

EXAMPLE 10 Evaluate correct to six decimal places.

SOLUTION Formula 10 gives

M

The graphs of the exponential function and its inverse function, the natural log-
arithm function, are shown in Figure 13. Because the curve crosses the y-axis with
a slope of 1, it follows that the reflected curve crosses the x-axis with a slope of 1.

In common with all other logarithmic functions with base greater than 1, the natural
logarithm is an increasing function defined on and the y-axis is a vertical asymptote.
(This means that the values of become very large negative as approaches 0.)

EXAMPLE 11 Sketch the graph of the function .

SOLUTION We start with the graph of as given in Figure 13. Using the transforma-
tions of Section 1.3, we shift it 2 units to the right to get the graph of and
then we shift it 1 unit downward to get the graph of . (See Figure 14.)y ! ln!x ! 2" ! 1

y ! ln!x ! 2"
y ! ln x

y ! ln!x ! 2" ! 1

xln x
!0, %"

y ! ln x
y ! ex

y ! ex

log8 5 !
ln 5
ln 8

( 0.773976

log8 5

y !
ln x
ln a

y ln a ! ln x
ay ! xy ! loga x

loga x !
ln x
ln a

!a " 1"a10

 ! ln(asb )

 ! ln a $ lnsb 

 ln a $ 1
2 ln b ! ln a $ ln b 1%2

ln a $ 1
2 ln bV
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y

1
0

x1

y=x
y=´

y=ln x

FIGURE 13



M

Although is an increasing function, it grows very slowly when . In fact,
grows more slowly than any positive power of . To illustrate this fact, we compare
approximate values of the functions and in the following table
and we graph them in Figures 15 and 16. You can see that initially the graphs of 
and grow at comparable rates, but eventually the root function far surpasses the
logarithm.

INVERSE TRIGONOMETRIC FUNCTIONS

When we try to find the inverse trigonometric functions, we have a slight difficulty:
Because the trigonometric functions are not one-to-one, they don’t have inverse functions.
The difficulty is overcome by restricting the domains of these functions so that they
become one-to-one.

You can see from Figure 17 that the sine function is not one-to-one (use the
Horizontal Line Test). But the function , is one-to-one
(see Figure 18). The inverse function of this restricted sine function exists and is denot-
ed by or . It is called the inverse sine function or the arcsine function.

Since the definition of an inverse function says that

f !y" ! x&?f !1!x" ! y

y

0_π π xπ
2

y=sin x

FIGURE 17

0

y

x

_π2
π
2

FIGURE 18 y=sin x, _   ¯x¯π
2

π
2

arcsinsin!1
f

f !x" ! sin x, !&%2 ' x ' &%2
y ! sin x

y ! ln x
y ! sx 

y ! x 1%2 ! sx y ! ln x
x

ln xx " 1ln x

FIGURE 14

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1
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x 1 2 5 10 50 100 500 1000 10,000 100,000

0 0.69 1.61 2.30 3.91 4.6 6.2 6.9 9.2 11.5

1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316

0 0.49 0.72 0.73 0.55 0.46 0.28 0.22 0.09 0.04
ln x
sx 

sx 

ln x

x0

y

1

1

y=œ„x

y=ln x

FIGURE 15

x0

y

1000

20

y=œ„x

y=ln x

FIGURE 16



we have

| Thus, if , is the number between and whose sine is .

EXAMPLE 12 Evaluate (a) and (b) .

SOLUTION
(a) We have

because and lies between and .

(b) Let , so . Then we can draw a right triangle with angle as in
Figure 19 and deduce from the Pythagorean Theorem that the third side has length

. This enables us to read from the triangle that

M

The cancellation equations for inverse functions become, in this case,

The inverse sine function, , has domain and range , and its
graph, shown in Figure 20, is obtained from that of the restricted sine function (Figure 18)
by reflection about the line .

The inverse cosine function is handled similarly. The restricted cosine function
, , is one-to-one (see Figure 21) and so it has an inverse function

denoted by or .

0 ' y ' &andcos y ! x&?cos!1x ! y

arccoscos!1
0 ' x ' &f !x" ! cos x

0

y

x

1

ππ
2

FIGURE 21
y=cos x, 0¯x¯π

0

y

x1_1

π
2

_π2

FIGURE 20
y=sin–! x=arcsin x

y ! x

#!&%2, &%2$#!1, 1$sin!1

for !1 ' x ' 1 sin!sin!1x" ! x

for !
&

2
' x '

&

2
 sin!1!sin x" ! x

tan(arcsin 13 ) ! tan ( !
1

2s2 

s9 ! 1 ! 2s2 

(sin ( ! 1
3( ! arcsin 13

&%2!&%2&%6sin!&%6" ! 1
2

sin!1(1
2) !

&

6

tan(arcsin 13 )sin!1(1
2)

x&%2!&%2sin!1x!1 ' x ' 1sin!1x "
1

sin x

!
&

2
' y '

&

2
andsin y ! x&?sin!1x ! y
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The cancellation equations are

The inverse cosine function, , has domain and range . Its graph is
shown in Figure 22.

The tangent function can be made one-to-one by restricting it to the interval
. Thus the inverse tangent function is defined as the inverse of the function

. (See Figure 23.) It is denoted by or .

EXAMPLE 13 Simplify the expression .

SOLUTION 1 Let . Then and . We want to find 
but, since is known, it is easier to find first:

Thus

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to
use a diagram. If , then , and we can read from Figure 24 (which
illustrates the case ) that

M

The inverse tangent function, , has domain and range .
Its graph is shown in Figure 25.

We know that the lines are vertical asymptotes of the graph of . Since the
graph of is obtained by reflecting the graph of the restricted tangent function about
the line , it follows that the lines and are horizontal asymptotes
of the graph of .tan!1

y ! !&%2y ! &%2y ! x
tan!1

tanx ! )&%2

FIGURE 25
y=tan–! x=arctan x

π
2

_π2

y

0
x

!!&%2, &%2"!tan!1 ! arctan

cos!tan!1x" ! cos y !
1

s1 $ x 2 

y " 0
tan y ! xy ! tan!1x

cos!tan!1x" ! cos y !
1

sec y
!

1
s1 $ x 2 

!since sec y " 0 for !&%2 * y * &%2" sec y ! s1 $ x 2 

 sec2y ! 1 $ tan2y ! 1 $ x 2

sec ytan y
cos y!&%2 * y * &%2tan y ! xy ! tan!1x

cos!tan!1x"

!
&

2
* y *

&

2
andtan y ! x&?tan!1x ! y

arctantan!1f !x" ! tan x, !&%2 * x * &%2
!!&%2, &%2"

#0, &$#!1, 1$cos!1

for !1 ' x ' 1 cos!cos!1x" ! x

for 0 ' x ' & cos!1!cos x" ! x
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x1

π
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FIGURE 22
y=cos–! x=arccos x

π
2

π
2_

y

0 x
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y=tan x, _   <x<π
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The remaining inverse trigonometric functions are not used as frequently and are sum-
marized here.

The choice of intervals for in the definitions of and is not universally
agreed upon. For instance, some authors use in the definition of

. [You can see from the graph of the secant function in Figure 26 that both this choice
and the one in (11) will work.]
sec!1

y ! !0, ""2# " $""2, "%
sec!1csc!1y

y ! $0, "#andcot y ! x&? y ! cot!1x $x ! !#

y ! !0, ""2# " !", 3""2#andsec y ! x&? y ! sec!1x $& x & # 1#

y ! $0, ""2% " $", 3""2%andcsc y ! x&? y ! csc!1x $& x & # 1#11

70 | | | | CHAPTER 1 FUNCTIONS AND MODELS

FIGURE 26
y=sec x

0

y

x
_1 2ππ

is the height of a football t seconds after kickoff.

14. is your height at age t.

15. If is a one-to-one function such that , what 
is ?

16. Let , where .
(a) Find .
(b) Find .

If , find .

18. The graph of is given.
(a) Why is one-to-one?
(b) What are the domain and range of ?
(c) What is the value of ?
(d) Estimate the value of .

The formula , where , expresses
the Celsius temperature C as a function of the Fahrenheit tem-
perature F. Find a formula for the inverse function and interpret
it. What is the domain of the inverse function?

20. In the theory of relativity, the mass of a particle with speed is

where is the rest mass of the particle and is the speed of
light in a vacuum. Find the inverse function of and explain
its meaning.

f
cm 0

m ! f $v# !
m 0

s1 ! v 2"c 2 

v

F # !459.67C ! 5
9 $F ! 32#19.

y

x0 1

1

f !1$0#
f !1$2#

f !1
f

f

t!1$4#t$x# ! 3 $ x $ e x17.

f $ f !1$5##
f !1$3#

!1 % x % 1f $x# ! 3 $ x 2 $ tan$"x"2#

f !1$9#
f $2# ! 9f

f $t#

f $t#13.1. (a) What is a one-to-one function?
(b) How can you tell from the graph of a function whether it is

one-to-one?

2. (a) Suppose is a one-to-one function with domain and
range . How is the inverse function defined? What is
the domain of ? What is the range of ?

(b) If you are given a formula for , how do you find a 
formula for ?

(c) If you are given the graph of , how do you find the graph
of ?

3–14 A function is given by a table of values, a graph, a formula,
or a verbal description. Determine whether it is one-to-one.

4.

5. 6.

7.

9. 10.

11. 12. t$x# ! cos xt$x# ! 1"x

f $x# ! 10 ! 3xf $x# ! x 2 ! 2x

y

x

8.

x

y

y

xx

y

3.

f !1
f

f !1
f

f !1f !1
f !1B

Af

EXERCISES1.6

x 1 2 3 4 5 6

1.5 2.0 3.6 5.3 2.8 2.0f $x#

x 1 2 3 4 5 6

1 2 4 8 16 32f $x#
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; 41–42 Use Formula 10 to graph the given functions on a
common screen. How are these graphs related?

41. , , ,

42. , , ,

Suppose that the graph of is drawn on a coordinate
grid where the unit of measurement is an inch. How many
miles to the right of the origin do we have to move before the
height of the curve reaches ft?

; 44. Compare the functions and by graph-
ing both and in several viewing rectangles. When does the
graph of finally surpass the graph of ?

45–46 Make a rough sketch of the graph of each function. Do
not use a calculator. Just use the graphs given in Figures 12 and
13 and, if necessary, the transformations of Section 1.3.

(a) (b)

46. (a) (b)

47–50 Solve each equation for .

47. (a) (b)

48. (a) (b)

(a) (b)

50. (a) (b) , where 

51–52 Solve each inequality for .

51. (a) (b)

52. (a) (b)

53–54 Find (a) the domain of and (b) and its domain.

53. 54.

55. Graph the function and explain
why it is one-to-one. Then use a computer algebra system 
to find an explicit expression for . (Your CAS will 
produce three possible expressions. Explain why two of them
are irrelevant in this context.)

56. (a) If , use a computer algebra system
to find an expression for .

(b) Use the expression in part (a) to graph ,
and on the same screen.

57. If a bacteria population starts with 100 bacteria and doubles
every three hours, then the number of bacteria after hours 
is . (See Exercise 25 in Section 1.5.)
(a) Find the inverse of this function and explain its meaning.
(b) When will the population reach 50,000?

n � f �t� � 100 � 2t�3
t

y � t
�1�x�

y � t�x�, y � x
t

�1�x�
t�x� � x 6 � x 4, x � 0CAS

f �1�x�

f �x� � sx 3 � x 2 � x � 1CAS

f �x� � ln�2 � ln x�f �x� � s3 � e 2x 

f �1f

e2�3x � 42 � ln x � 9

ln x � �1ex � 10

x

a � be ax � Ce bxln�ln x� � 1

ln x � ln�x � 1� � 12x�5 � 349.

ln�5 � 2x� � �3e2x�3 � 7 � 0

e�x � 52 ln x � 1

x

y � ln � x �y � ln��x�

y � �ln xy � log10�x � 5�45.

tf
tf

t�x� � ln xf �x� � x 0.1

3

y � log2 x43.

y � 10 xy � e xy � log10 xy � ln x

y � log50 xy � log10 xy � ln xy � log1.5 x

21–26 Find a formula for the inverse of the function.

21.

24.

26.

; 27–28 Find an explicit formula for and use it to graph 
, and the line on the same screen. To check your work, see

whether the graphs of and are reflections about the line.

27. , 28.

29–30 Use the given graph of to sketch the graph of .

29. 30.

31. (a) How is the logarithmic function defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the function 

if .

32. (a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function and

the natural exponential function with a common set of
axes.

33–36 Find the exact value of each expression.

33. (a) (b)

34. (a) (b)

35. (a)
(b)

36. (a) (b)

37–39 Express the given quantity as a single logarithm.

37.

38.

39.

40. Use Formula 10 to evaluate each logarithm correct to six dec-
imal places.
(a) (b) log2 8.4log12 10

ln�1 � x 2� �
1
2 ln x � ln sin x

ln�a � b� � ln�a � b� � 2 ln c

ln 5 � 5 ln 3

ln(ln ee10)e�2 ln 5

log3 100 � log3 18 � log3 50
log2 6 � log2 15 � log2 20

log10 s10 ln�1�e�

log3
1

27log5 125

a � 1y � loga x

y � loga x

y

x0 2

1

y

x0 1

1

f �1f

f �x� � 2 � e xx � 0f �x� � x 4 � 1

f �1f
y � xf

f �1,f �1

y �
e x

1 � 2e xy � ln�x � 3�25.

y � 2x3 � 3f �x� � e x3

23.

f �x� �
4x � 1

2x � 3
22.f �x� � s10 � 3x 
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66–68 Simplify the expression.

66.

68.

; 69–70 Graph the given functions on the same screen. How are
these graphs related?

69. , ; ;

70. , ; ;

71. Find the domain and range of the function

; 72. (a) Graph the function and explain the
appearance of the graph.

(b) Graph the function . How do you
explain the appearance of this graph?

73. (a) If we shift a curve to the left, what happens to its reflec-
tion about the line ? In view of this geometric 
principle, find an expression for the inverse of

, where is a one-to-one function.
(b) Find an expression for the inverse of , where

.c � 0
h�x� � f �cx�

ft�x� � f �x � c�

y � x

t�x� � sin�1�sin x�

f �x� � sin�sin�1x�

t�x� � sin�1�3x � 1�

y � xy � tan�1x���2 � x � ��2y � tan x

y � xy � sin�1x���2 � x � ��2y � sin x

cos�2 tan�1x�

sin�tan�1x�67.tan�sin�1x�

58. When a camera flash goes off, the batteries immediately
begin to recharge the flash’s capacitor, which stores electric
charge given by

(The maximum charge capacity is and is measured in 
seconds.)
(a) Find the inverse of this function and explain its meaning.
(b) How long does it take to recharge the capacitor to 90%

of capacity if ?

59–64 Find the exact value of each expression.

59. (a) (b)

60. (a) (b)

61. (a) (b)

62. (a) (b)

63. (a) (b)

64. (a) (b)

65. Prove that .cos�sin�1 x� � s1 � x 2 

sin(2 sin�1 (3
5))tan�sec�1 4�

sin�1�sin�7��3��tan�arctan 10�

arccos(�1
2)cot�1(�s3 )

sin�1(1�s2 )arctan 1

sec�1 2tan�1(1�s3 )

cos�1��1�sin�1(s3 �2)

a � 2

tQ0

Q�t� � Q0�1 � e �t�a �
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REVIEW

C O N C E P T  C H E C K

1

(b) What is the domain of ?
(c) What is the domain of ?

10. How is the composite function defined? What is its
domain?

11. Suppose the graph of is given. Write an equation for each of
the graphs that are obtained from the graph of as follows.
(a) Shift 2 units upward.
(b) Shift 2 units downward.
(c) Shift 2 units to the right.
(d) Shift 2 units to the left.
(e) Reflect about the x-axis.
(f) Reflect about the y-axis.
(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.
(i) Stretch horizontally by a factor of 2.
( j) Shrink horizontally by a factor of 2.

12. (a) What is a one-to-one function? How can you tell if a func-
tion is one-to-one by looking at its graph?

(b) If is a one-to-one function, how is its inverse function 
defined? How do you obtain the graph of from the

graph of ?

13. (a) How is the inverse sine function defined?
What are its domain and range?

(b) How is the inverse cosine function defined?
What are its domain and range?

(c) How is the inverse tangent function defined?
What are its domain and range?

f $x# ! tan!1x

f $x# ! cos!1x

f $x# ! sin!1x

f
f !1f !1

f

f
f

f " t

f"t
f t1. (a) What is a function? What are its domain and range?

(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of

a function?

2. Discuss four ways of representing a function. Illustrate your
discussion with examples.

3. (a) What is an even function? How can you tell if a function is
even by looking at its graph?

(b) What is an odd function? How can you tell if a function is
odd by looking at its graph?

4. What is an increasing function?

5. What is a mathematical model?

6. Give an example of each type of function.
(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

7. Sketch by hand, on the same axes, the graphs of the following
functions.
(a) (b)
(c) (d)

8. Draw, by hand, a rough sketch of the graph of each function.
(a) (b)
(c) (d)
(e) (f)
(g) (h)

9. Suppose that has domain and has domain .
(a) What is the domain of ?f $ t

BtAf

y ! tan!1xy ! sx 
y ! & x &y ! 1"x
y ! ln xy ! e x
y ! tan xy ! sin x

j$x# ! x 4h$x# ! x 3
t$x# ! x 2f $x# ! x

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If is a function, then .

2. If , then .

3. If is a function, then .

4. If and is a decreasing function, then .

5. A vertical line intersects the graph of a function at most once.

6. If and are functions, then .

7. If is one-to-one, then .f !1$x# !
1

 f $x#
f

f " t ! t " ftf

f $x1 # ' f $x2 #fx1 % x2

f $3x# ! 3 f $x#f

s ! tf $s# ! f $t#

f $s $ t# ! f $s# $ f $t#f

8. You can always divide by .

9. If , then .

10. If , then .

11. If and , then .

12.

13. tan!1x !
sin!1x
cos!1x

tan!1$!1# ! 3""4

ln x
ln a

! ln 
x
a

 a ' 1x ' 0

$ln x#6 ! 6 ln xx ' 0

ln a % ln b0 % a % b

e x

T R U E - F A L S E  Q U I Z



74 | | | | CHAPTER 1 FUNCTIONS AND MODELS

1. Let be the function whose graph is given.
(a) Estimate the value of .
(b) Estimate the values of such that .
(c) State the domain of 
(d) State the range of 
(e) On what interval is increasing?
(f) Is one-to-one? Explain.
(g) Is even, odd, or neither even nor odd? Explain.

2. The graph of is given.
(a) State the value of .
(b) Why is one-to-one?
(c) Estimate the value of .
(d) Estimate the domain of .
(e) Sketch the graph of .

3. If , evaluate the difference quotient

4. Sketch a rough graph of the yield of a crop as a function of the
amount of fertilizer used.

5–8 Find the domain and range of the function.

5. 6.

7. 8.

9. Suppose that the graph of is given. Describe how the graphs
of the following functions can be obtained from the graph of 
(a) (b) y ! f $x $ 8#y ! f $x# $ 8

f.
f

F $t# ! 3 $ cos 2th$x# ! ln$x $ 6#

t$x# ! s16 ! x 4 f $x# ! 2"$3x ! 1#

f $a $ h# ! f $a#
h

f $x# ! x 2 ! 2x $ 3

gy

x0 1

1

t!1
t!1
t!1$2#

t
t$2#

t

y

x1
1

f

f
f

f
f.

f.
f $x# ! 3x

f $2#
f (c) (d)

(e) (f)

10. The graph of is given. Draw the graphs of the following 
functions.
(a) (b)
(c) (d)
(e) (f)

11–16 Use transformations to sketch the graph of the function.

11. 12.

13. 14.

15. 16.

17. Determine whether is even, odd, or neither even nor odd.
(a)
(b)
(c)
(d)

18. Find an expression for the function whose graph consists of 
the line segment from the point to the point 
together with the top half of the circle with center the origin
and radius 1.

19. If and , find the functions (a) ,
(b) , (c) , (d) , and their domains.

20. Express the function as a composition of
three functions.

21. Life expectancy improved dramatically in the 20th century. The
table gives the life expectancy at birth (in years) of males born
in the United States.

F$x# ! 1"sx $sx  

t " tf " ft " f
f " tt$x# ! x 2 ! 9f $x# ! ln x

$!1, 0#$!2, 2#

f $x# ! 1 $ sin x
f $x# ! e!x 2
f $x# ! x 3 ! x 7
f $x# ! 2x 5 ! 3x 2 $ 2

f

f $x# ! '!x
e x ! 1

if x % 0
if x # 0

f $x# !
1

x $ 2

y ! 2 ! sx y ! 1
2$1 $ e x #

y ! 3 ln $x ! 2#y ! !sin 2x

y

x0 1

1

y ! f !1$x $ 3#y ! f !1$x#
y ! 1

2 f $x# ! 1y ! 2 ! f $x#
y ! !f $x#y ! f $x ! 8#

f

y ! f !1$x#y ! !f $x#
y ! f $x ! 2# ! 2y ! 1 $ 2 f $x#

E X E R C I S E S

Birth year Life expectancy Birth year Life expectancy

1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 73.0
1950 65.6
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26. Solve each equation for x.
(a) (b)
(c) (d)

27. The population of a certain species in a limited environment
with initial population 100 and carrying capacity 1000 is

where is measured in years.
; (a) Graph this function and estimate how long it takes for the

population to reach 900.
(b) Find the inverse of this function and explain its meaning.
(c) Use the inverse function to find the time required for the

population to reach 900. Compare with the result of
part (a).

; 28. Graph the three functions , , and on
the same screen for two or three values of . For large 
values of x, which of these functions has the largest values 
and which has the smallest values?

a ' 1
y ! loga xy ! a xy ! x a

t

P$t# !
100,000

100 $ 900e!t

tan!1x ! 1e e x
! 2

ln x ! 2e x ! 5
Use a scatter plot to choose an appropriate type of model. Use
your model to predict the life span of a male born in the year
2010.

22. A small-appliance manufacturer finds that it costs $9000 to
produce 1000 toaster ovens a week and $12,000 to produce
1500 toaster ovens a week.
(a) Express the cost as a function of the number of toaster

ovens produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?
(c) What is the y-intercept of the graph and what does it 

represent?

23. If , find .

24. Find the inverse function of .

25. Find the exact value of each expression.
(a) (b)

(c) (d) sin(cos!1 (4
5))tan(arcsin 12 )

log10 25 $ log10 4e 2 ln 3

f $x# !
x $ 1

2x $ 1

f !1$2#f $x# ! 2x $ ln x
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There are no hard and fast rules that will ensure success in solving problems. However, it is
possible to outline some general steps in the problem-solving process and to give some prin-
ciples that may be useful in the solution of certain problems. These steps and principles are
just common sense made explicit. They have been adapted from George Polya’s book How
To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask your-
self the following questions:

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c, m, n, x,
and y, but in some cases it helps to use initials as suggestive symbols; for instance, for
volume or for time.

Think of a Plan Find a connection between the given information and the unknown that will enable you to
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the given
to the unknown?” If you don’t see a connection immediately, the following ideas may be
helpful in devising a plan.

Try to Recognize Something Familiar Relate the given situation to previous knowledge. Look
at the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns Some problems are solved by recognizing that some kind of pat-
tern is occurring. The pattern could be geometric, or numerical, or algebraic. If you can see
regularity or repetition in a problem, you might be able to guess what the continuing pattern
is and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a related
problem, but one that is easier than the original problem. If you can solve the similar, sim-
pler problem, then it might give you the clues you need to solve the original, more difficult
problem. For instance, if a problem involves very large numbers, you could first try a simi-
lar problem with smaller numbers. Or if the problem involves three-dimensional geometry,
you could look for a similar problem in two-dimensional geometry. Or if the problem you
start with is a general one, you could first try a special case.

Introduce Something Extra It may sometimes be necessary to introduce something new, an
auxiliary aid, to help make the connection between the given and the unknown. For instance,
in a problem where a diagram is useful the auxiliary aid could be a new line drawn in a dia-
gram. In a more algebraic problem it could be a new unknown that is related to the original
unknown.

2

t
V

What is the unknown?

What are the given quantities?

What are the given conditions?

Understand the Problem1

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G
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Take Cases We may sometimes have to split a problem into several cases and give a dif-
ferent argument for each of the cases. For instance, we often have to use this strategy in deal-
ing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is solved and work
backward, step by step, until you arrive at the given data. Then you may be able to reverse
your steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation , we sup-
pose that is a number that satisfies and work backward. We add 5 to each side
of the equation and then divide each side by 3 to get . Since each of these steps can
be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals (in which the
desired situation is only partially fulfilled). If we can first reach these subgoals, then we may
be able to build on them to reach our final goal.

Indirect Reasoning Sometimes it is appropriate to attack a problem indirectly. In using
proof by contradiction to prove that implies , we assume that is true and is false and
try to see why this can’t happen. Somehow we have to use this information and arrive at a
contradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer , it is fre-
quently helpful to use the following principle.

PRINCIPLE OF MATHEMATICAL INDUCTION Let be a statement about the positive 
integer . Suppose that

1. is true.

2. is true whenever is true.

Then is true for all positive integers .

This is reasonable because, since is true, it follows from condition 2 (with 
) that is true. Then, using condition 2 with , we see that is true. Again using

condition 2, this time with , we have that is true. This procedure can be followed
indefinitely.

Carry Out the Plan In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the
plan and write the details that prove that each stage is correct.

Look Back Having completed our solution, it is wise to look back over it, partly to see if we have made
errors in the solution and partly to see if we can think of an easier way to solve the problem.
Another reason for looking back is that it will familiarize us with the method of solution and
this may be useful for solving a future problem. Descartes said, “Every problem that I solved
became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before you
look at the solutions, try to solve these problems yourself, referring to these Principles of
Problem Solving if you get stuck. You may find it useful to refer to this section from time
to time as you solve the exercises in the remaining chapters of this book.

4

3

S4k ! 3
S3k ! 2S2k ! 1

S1

nSn

SkSk$1

S1

n
Sn

n

QPQP

x ! 4
3x ! 5 ! 7x

3x ! 5 ! 7

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G
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EXAMPLE 1 Express the hypotenuse of a right triangle with area as a function of
its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and the data:

It helps to draw a diagram and we do so in Figure 1.

In order to connect the given quantities to the unknown, we introduce two extra vari-
ables and , which are the lengths of the other two sides of the triangle. This enables us
to express the given condition, which is that the triangle is right-angled, by the Pythago-
rean Theorem:

The other connections among the variables come by writing expressions for the area and
perimeter:

Since is given, notice that we now have three equations in the three unknowns , , 
and :

Although we have the correct number of equations, they are not easy to solve in a straight-
forward fashion. But if we use the problem-solving strategy of trying to recognize some-
thing familiar, then we can solve these equations by an easier method. Look at the right
sides of Equations 1, 2, and 3. Do these expressions remind you of anything familiar?
Notice that they contain the ingredients of a familiar formula:

Using this idea, we express in two ways. From Equations 1 and 2 we have

From Equation 3 we have

Thus

This is the required expression for h as a function of P. M

 h !
P2 ! 100

2P

 2Ph ! P2 ! 100

 h 2 $ 100 ! P2 ! 2Ph $ h 2

$a $ b#2 ! $P ! h#2 ! P2 ! 2Ph $ h 2

$a $ b#2 ! $a 2 $ b 2 # $ 2ab ! h 2 $ 4$25#

$a $ b#2

$a $ b#2 ! a 2 $ 2ab $ b 2

 P ! a $ b $ h3

 25 ! 1
2 ab2

 h 2 ! a 2 $ b 21

h
baP

P ! a $ b $ h25 ! 1
2 ab

h 2 ! a 2 $ b 2

ba

a

h
b

FIGURE 1

 Given quantities: perimeter P, area 25 m2

Unknown: hypotenuse h

25 m2h

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G

N Understand the problem

N Relate to the familiar

N Draw a diagram

N Connect the given with the unknown
N Introduce something extra
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As the next example illustrates, it is often necessary to use the problem-solving prin-
ciple of taking cases when dealing with absolute values.

EXAMPLE 2 Solve the inequality .

SOLUTION Recall the definition of absolute value:

It follows that

Similarly

These expressions show that we must consider three cases:

CASE I If , we have

CASE II If the given inequality becomes

(always true)

CASE III If , the inequality becomes

Combining cases I, II, and III, we see that the inequality is satisfied when .
So the solution is the interval . M$!5, 6#

!5 % x % 6

 x % 6

 2x % 12

 x ! 3 $ x $ 2 % 11

x # 3

 5 % 11

 !x $ 3 $ x $ 2 % 11

!2 ( x % 3, 

 x ' !5

 !2x % 10

 !x $ 3 ! x ! 2 % 11

 & x ! 3 & $ & x $ 2 & % 11

x % !2

x # 3!2 ( x % 3x % !2

 ! 'x $ 2
!x ! 2

if x # !2
if x % !2

 & x $ 2 & ! 'x $ 2
!$x $ 2#

if x $ 2 # 0
if x $ 2 % 0

 ! 'x ! 3
!x $ 3

if x # 3
if x % 3

 & x ! 3 & ! 'x ! 3
!$x ! 3#

if x ! 3 # 0
if x ! 3 % 0

& x & ! 'x
!x

if x # 0
if x % 0

& x ! 3 & $ & x $ 2 & % 11

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G

N Take cases
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In the following example we first guess the answer by looking at special cases and rec-
ognizing a pattern. Then we prove it by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

STEP 1 Prove that is true when .

STEP 2 Assume that is true when and deduce that is true when 

STEP 3 Conclude that is true for all n by the Principle of Mathematical Induction.

EXAMPLE 3 If and for n ! 0, 1, 2, . . . , find a formula 
for .

SOLUTION We start by finding formulas for for the special cases n ! 1, 2, and 3.

We notice a pattern: The coefficient of x in the denominator of is n $ 1 in the
three cases we have computed. So we make the guess that, in general,

To prove this, we use the Principle of Mathematical Induction. We have already verified
that (4) is true for n ! 1. Assume that it is true for , that is,

fk$x# !
x

$k $ 1#x $ 1

n ! k

fn$x# !
x

$n $ 1#x $ 1
4

fn$x#

 !

x
3x $ 1
x

3x $ 1
$ 1

!

x
3x $ 1
4x $ 1
3x $ 1

!
x

4x $ 1

 f3$x# ! $ f0 " f2 #$x# ! f0$ f2$x## ! f0( x
3x $ 1)

 !

x
2x $ 1
x

2x $ 1
$ 1

!

x
2x $ 1
3x $ 1
2x $ 1

!
x

3x $ 1

 f2$x# ! $ f0 " f1 #$x# ! f0$ f1$x## ! f0( x
2x $ 1)

 !

x
x $ 1
x

x $ 1
$ 1

!

x
x $ 1

2x $ 1
x $ 1

!
x

2x $ 1

 f1$x# ! $ f0 " f0#$x# ! f0$ f0$x## ! f0( x
x $ 1)

fn$x#

fn$x#
fn$1 ! f0 " fnf0$x# ! x"$x $ 1#

Sn

n ! k $ 1.Snn ! kSn

n ! 1Sn

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G

N Analogy: Try a similar, simpler problem

N Look for a pattern
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Then

This expression shows that (4) is true for . Therefore, by mathematical induc-
tion, it is true for all positive integers n. M

1. One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpendi-
cular to the hypotenuse as a function of the length of the hypotenuse.

2. The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length of
the hypotenuse as a function of the perimeter.

3. Solve the equation .

4. Solve the inequality .

5. Sketch the graph of the function .

6. Sketch the graph of the function .

7. Draw the graph of the equation 

8. Draw the graph of the equation .

9. Sketch the region in the plane consisting of all points such that .

10. Sketch the region in the plane consisting of all points such that 

11. Evaluate .

12. (a) Show that the function is an odd function.
(b) Find the inverse function of 

13. Solve the inequality .

14. Use indirect reasoning to prove that is an irrational number.

15. A driver sets out on a journey. For the first half of the distance she drives at the leisurely pace
of 30 mi"h; she drives the second half at 60 mi"h. What is her average speed on this trip?

16. Is it true that ?

17. Prove that if n is a positive integer, then is divisible by 6.

18. Prove that .

19. If and for find a formula for .

20. (a) If and for find an expression for and use

mathematical induction to prove it.

; (b) Graph on the same screen and describe the effects of repeated composition.f0, f1, f2, f3

fn$x#n ! 0, 1, 2, . . . , fn$1 ! f0 "  fnf0$x# !
1

2 ! x

fn$x#n ! 0, 1, 2, . . . , fn$1$x# ! f0$ fn$x##f0$x# ! x 2

1 $ 3 $ 5 $ &&& $ $2n ! 1# ! n2

7n ! 1

f " $t $ h# ! f " t $ f " h

log2 5

ln$x 2 ! 2x ! 2# ( 0

f.
f $x# ! ln(x $ sx 2 $ 1)

$log2 3#$log3 4#$log4 5# & & & $log31 32#
& x ! y & $ & x & ! & y & ( 2

$x, y#
& x & $ & y & ( 1$x, y#

x 4 ! 4x 2 ! x 2y 2 $ 4y 2 ! 0

x $ & x & ! y $ & y &.
t$x# ! & x 2 ! 1 & ! & x 2 ! 4 &

& x 2 ! 4& x & $ 3 &f $x# !

& x ! 1 & ! & x ! 3 & # 5

& x $ 5 & ! 3& 2x ! 1 & !

PROBLEMS

n ! k $ 1

 !

x
$k $ 1#x $ 1

x
$k $ 1#x $ 1

$ 1
!

x
$k $ 1#x $ 1
$k $ 2#x $ 1
$k $ 1#x $ 1

!
x

$k $ 2#x $ 1

 fk$1$x# ! $ f0 " fk#$x# ! f0$ fk$x## ! f0( x
$k $ 1#x $ 1)

P R I N C I P L E S  O F
P R O B L E M  S O L V I N G
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In A Preview of Calculus (page 2) we saw how the idea of a limit underlies the various
branches of calculus. It is therefore appropriate to begin our study of calculus by
investigating limits and their properties. The special type of limit that is used to find
tangents and velocities gives rise to the central idea in differential calculus, the
derivative.

The idea of a limit is 
illustrated by secant lines 

approaching a tangent line.

LIMITS AND 
DERIVATIVES

2



THE TANGENT AND VELOCITY PROBLEMS

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

THE TANGENT PROBLEM

The word tangent is derived from the Latin word tangens, which means “touching.” Thus
a tangent to a curve is a line that touches the curve. In other words, a tangent line should
have the same direction as the curve at the point of contact. How can this idea be made
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that intersects
the circle once and only once as in Figure 1(a). For more complicated curves this defini-
tion is inadequate. Figure l(b) shows two lines and passing through a point on a curve

. The line intersects only once, but it certainly does not look like what we think of as
a tangent. The line , on the other hand, looks like a tangent but it intersects twice.

To be specific, let’s look at the problem of trying to find a tangent line to the parabola
in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola at the 
point .

SOLUTION We will be able to find an equation of the tangent line as soon as we know its
slope . The difficulty is that we know only one point, , on , whereas we need two
points to compute the slope. But observe that we can compute an approximation to by
choosing a nearby point on the parabola (as in Figure 2) and computing the
slope of the secant line .

We choose so that . Then

For instance, for the point we have

The tables in the margin show the values of for several values of close to 1. The
closer is to , the closer is to 1 and, it appears from the tables, the closer is to 2.
This suggests that the slope of the tangent line should be .

We say that the slope of the tangent line is the limit of the slopes of the secant lines,
and we express this symbolically by writing

and

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line (see Appendix B) to write the equation of the tangent line
through as

y ! 2x ! 1ory ! 1 ! 2!x ! 1"

!1, 1"

lim
x l 1

 
x 2 ! 1
x ! 1

! 2lim 
QlP

 mPQ ! m

m ! 2t
mPQxPQ

xmPQ

mPQ !
2.25 ! 1
1.5 ! 1

!
1.25
0.5

! 2.5

Q!1.5, 2.25"

mPQ !
x 2 ! 1
x ! 1

Q " Px " 1
PQmPQ

Q!x, x 2 "
m

tPm
t

P!1, 1"
y ! x 2V

y ! x 2
t

Ct
ClC

Ptl

2.1
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x

2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001

mPQ

x

0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999

mPQ



Figure 3 illustrates the limiting process that occurs in this example. As approaches
along the parabola, the corresponding secant lines rotate about and approach the

tangent line t.

M

Many functions that occur in science are not described by explicit equations; they are
defined by experimental data. The next example shows how to estimate the slope of the
tangent line to the graph of such a function.

EXAMPLE 2 The flash unit on a camera operates by storing charge on a capacitor 
and releasing it suddenly when the flash is set off. The data in the table describe the
charge Q remaining on the capacitor (measured in microcoulombs) at time t (measured
in seconds after the flash goes off ). Use the data to draw the graph of this function and
estimate the slope of the tangent line at the point where t ! 0.04. [Note: The slope of
the tangent line represents the electric current flowing from the capacitor to the flash
bulb (measured in microamperes).]

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that approxi-
mates the graph of the function.

FIGURE 4 t

Q
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P
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In Visual 2.1 you can see how the
process in Figure 3 works for additional
functions.

TEC

t Q

0.00 100.00
0.02 81.87
0.04 67.03
0.06 54.88
0.08 44.93
0.10 36.76



Given the points and on the graph, we find that the
slope of the secant line PR is

The table at the left shows the results of similar calculations for the slopes of other
secant lines. From this table we would expect the slope of the tangent line at to
lie somewhere between !742 and !607.5. In fact, the average of the slopes of the two
closest secant lines is

So, by this method, we estimate the slope of the tangent line to be !675.
Another method is to draw an approximation to the tangent line at P and measure the

sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of the tan-
gent line as

M

THE VELOCITY PROBLEM

If you watch the speedometer of a car as you travel in city traffic, you see that the needle
doesn’t stay still for very long; that is, the velocity of the car is not constant. We assume
from watching the speedometer that the car has a definite velocity at each moment, but how
is the “instantaneous” velocity defined? Let’s investigate the example of a falling ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that the
distance fallen by any freely falling body is proportional to the square of the time it has
been falling. (This model for free fall neglects air resistance.) If the distance fallen after 

seconds is denoted by and measured in meters, then Galileo’s law is expressed by
the equation

The difficulty in finding the velocity after 5 s is that we are dealing with a single
instant of time , so no time interval is involved. However, we can approximate the
desired quantity by computing the average velocity over the brief time interval of a tenth
of a second from to :

 !
4.9!5.1"2 ! 4.9!5"2

0.1
! 49.49 m#s

 !
s!5.1" ! s!5"

0.1

 average velocity !
change in position

time elapsed

t ! 5.1t ! 5

!t ! 5"

s!t" ! 4.9t 2

s!t"t

V

! $ AB $
$ BC $ % !

80.4 ! 53.6
0.06 ! 0.02

! !670

1
2 !!742 ! 607.5" ! !674.75

t ! 0.04

mPR !
100.00 ! 67.03

0.00 ! 0.04
! !824.25

R!0.00, 100.00"P!0.04, 67.03"
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R

(0.00, 100.00) !824.25
(0.02, 81.87) !742.00
(0.06, 54.88) !607.50
(0.08, 44.93) !552.50
(0.10, 36.76) !504.50

mPR

N The physical meaning of the answer in 
Example 2 is that the electric current flowing
from the capacitor to the flash bulb after
0.04 second is about –670 microamperes.

The CN Tower in Toronto is currently the
tallest freestanding building in the world.
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The following table shows the results of similar calculations of the average velocity over
successively smaller time periods.

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m#s. The instantaneous velocity when is defined to be the limiting value of
these average velocities over shorter and shorter time periods that start at . Thus 
the (instantaneous) velocity after 5 s is

M

You may have the feeling that the calculations used in solving this problem are very sim-
ilar to those used earlier in this section to find tangents. In fact, there is a close connec-
tion between the tangent problem and the problem of finding velocities. If we draw the
graph of the distance function of the ball (as in Figure 5) and we consider the points

and on the graph, then the slope of the secant line 
is

which is the same as the average velocity over the time interval . Therefore, the
velocity at time (the limit of these average velocities as approaches 0) must be
equal to the slope of the tangent line at (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we must
be able to find limits. After studying methods for computing limits in the next five sections,
we will return to the problems of finding tangents and velocities in Section 2.7.

FIGURE 5
t

s

Q

a a+h0

slope of secant line
! average velocity

P

s=4.9t @

t

s

0 a

slope of tangent
! instantaneous velocityP

s=4.9t @

P
ht ! a
&a, a " h'

mPQ !
4.9!a " h"2 ! 4.9a 2

!a " h" ! a

PQ
Q!a " h, 4.9!a " h"2 "P!a, 4.9a 2 "

v ! 49 m#s

t ! 5
t ! 5
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Time interval Average velocity (m#s)

53.9
49.49
49.245
49.049
49.00495 # t # 5.001

5 # t # 5.01
5 # t # 5.05
5 # t # 5.1
5 # t # 6
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(c) Using the slope from part (b), find an equation of the
tangent line to the curve at .

(d) Sketch the curve, two of the secant lines, and the tangent
line.

If a ball is thrown into the air with a velocity of 40 ft#s, its
height in feet seconds later is given by .
(a) Find the average velocity for the time period beginning

when and lasting
(i) 0.5 second (ii) 0.1 second

(iii) 0.05 second (iv) 0.01 second
(b) Estimate the instantaneous velocity when 

6. If a rock is thrown upward on the planet Mars with a velocity
of 10 m#s, its height in meters seconds later is given by

(a) Find the average velocity over the given time intervals:
(i) [1, 2] (ii) [1, 1.5] (iii) [1, 1.1]

(iv) [1, 1.01] (v) [1, 1.001]
(b) Estimate the instantaneous velocity when .

7. The table shows the position of a cyclist.

(a) Find the average velocity for each time period:
(i) (ii) (iii) (iv)

(b) Use the graph of as a function of to estimate the instan-
taneous velocity when .

8. The displacement (in centimeters) of a particle moving back 
and forth along a straight line is given by the equation of
motion , where is measured in 
seconds.
(a) Find the average velocity during each time period:

(i) [1, 2] (ii) [1, 1.1]
(iii) [1, 1.01] (iv) [1, 1.001]

(b) Estimate the instantaneous velocity of the particle 
when .

The point lies on the curve .
(a) If is the point , find the slope of the secant

line (correct to four decimal places) for , 1.5, 1.4,
1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes
appear to be approaching a limit?

; (b) Use a graph of the curve to explain why the slopes of the
secant lines in part (a) are not close to the slope of the tan-
gent line at .

(c) By choosing appropriate secant lines, estimate the slope of
the tangent line at .P

P

x ! 2PQ
!x, sin!10$#x""Q

y ! sin!10$#x"P!1, 0"9.

t ! 1

ts ! 2 sin $ t " 3 cos $ t

t ! 3
ts

&3, 4'&3, 5'&2, 3'&1, 3'

t ! 1

y ! 10t ! 1.86t 2.
t

t ! 2.

t ! 2

y ! 40t ! 16t 2t
5.

P!3, 1"
1. A tank holds 1000 gallons of water, which drains from the 

bottom of the tank in half an hour. The values in the table show
the volume V of water remaining in the tank (in gallons) after
t minutes.

(a) If P is the point on the graph of V, find the slopes
of the secant lines PQ when Q is the point on the graph
with , 10, 20, 25, and 30.

(b) Estimate the slope of the tangent line at P by averaging the
slopes of two secant lines.

(c) Use a graph of the function to estimate the slope of the 
tangent line at P. (This slope represents the rate at which the
water is flowing from the tank after 15 minutes.)

2. A cardiac monitor is used to measure the heart rate of a patient
after surgery. It compiles the number of heartbeats after t min-
utes. When the data in the table are graphed, the slope of the
tangent line represents the heart rate in beats per minute.

The monitor estimates this value by calculating the slope 
of a secant line. Use the data to estimate the patient’s heart rate
after 42 minutes using the secant line between the points with
the given values of t.
(a) t ! 36 and t ! 42 (b) t ! 38 and t ! 42
(c) t ! 40 and t ! 42 (d) t ! 42 and t ! 44
What are your conclusions?

The point lies on the curve .
(a) If is the point , use your calculator to find

the slope of the secant line (correct to six decimal
places) for the following values of :

(i) 0.5 (ii) 0.9 (iii) 0.99 (iv) 0.999
(v) 1.5 (vi) 1.1 (vii) 1.01 (viii) 1.001

(b) Using the results of part (a), guess the value of the slope of
the tangent line to the curve at .

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at .

4. The point lies on the curve .
(a) If is the point , use your calculator to find

the slope of the secant line (correct to six decimal
places) for the following values of :

(i) 2.5 (ii) 2.9 (iii) 2.99 (iv) 2.999
(v) 3.5 (vi) 3.1 (vii) 3.01 (viii) 3.001

(b) Using the results of part (a), guess the value of the slope of
the tangent line to the curve at .P!3, 1"

x
PQ

(x, sx ! 2 )Q
y ! sx ! 2 P!3, 1"

P(1, 12)

P(1, 12)

x
PQ

!x, x#!1 " x""Q
y ! x#!1 " x"P(1, 12)3.

t ! 5

!15, 250"

EXERCISES2.1

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

t (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080 t (seconds) 0 1 2 3 4 5

s (meters) 0 1.4 5.1 10.7 17.7 25.8
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THE LIMIT OF A FUNCTION

Having seen in the preceding section how limits arise when we want to find the tangent to
a curve or the velocity of an object, we now turn our attention to limits in general and
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function defined by for val-
ues of near 2. The following table gives values of for values of close to 2, but not
equal to 2.

From the table and the graph of (a parabola) shown in Figure 1 we see that when is
close to 2 (on either side of 2), is close to 4. In fact, it appears that we can make the
values of as close as we like to 4 by taking sufficiently close to 2. We express this
by saying “the limit of the function as approaches 2 is equal to 4.”
The notation for this is

In general, we use the following notation.

DEFINITION We write

and say “the limit of , as approaches , equals ”

if we can make the values of arbitrarily close to (as close to L as we like)
by taking x to be sufficiently close to (on either side of ) but not equal to .

Roughly speaking, this says that the values of tend to get closer and closer to the
number as gets closer and closer to the number (from either side of ) but . 
(A more precise definition will be given in Section 2.4.)

An alternative notation for

is as

which is usually read “ approaches as approaches .”axLf !x"

xl af !x"l L

lim
x l a

 f !x" ! L

x " aaaxL
f !x"

aaa
Lf !x"

Laxf !x"

lim
x l a

 f !x" ! L

1

lim
x l

 

2
 !x 2 ! x " 2" ! 4

xf !x" ! x 2 ! x " 2
xf !x"

f !x"
xf

xf !x"x
f !x" ! x 2 ! x " 2f

2.2

4
ƒ

approaches
4.

x

y

2
As x approaches 2,

y=≈-x+2

0

FIGURE 1

x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f !x"x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f !x"



Notice the phrase “but ” in the definition of limit. This means that in finding the
limit of as approaches , we never consider . In fact, need not even be
defined when . The only thing that matters is how is defined near .

Figure 2 shows the graphs of three functions. Note that in part (c), is not defined
and in part (b), . But in each case, regardless of what happens at , it is true that

.

EXAMPLE 1 Guess the value of .

SOLUTION Notice that the function is not defined when , but
that doesn’t matter because the definition of says that we consider values of

that are close to but not equal to .
The tables at the left give values of (correct to six decimal places) for values of 

that approach 1 (but are not equal to 1). On the basis of the values in the tables, we make
the guess that

M

Example 1 is illustrated by the graph of in Figure 3. Now let’s change slightly by
giving it the value 2 when and calling the resulting function :

This new function still has the same limit as approaches 1 (see Figure 4).

0 1
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x-1
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aax
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SECTION 2.2 THE LIMIT OF A FUNCTION | | | | 89

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

f !x"x % 1

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

f !x"x & 1



EXAMPLE 2 Estimate the value of .

SOLUTION The table lists values of the function for several values of near 0.

As approaches 0, the values of the function seem to approach and so we
guess that

M

In Example 2 what would have happened if we had taken even smaller values of The
table in the margin shows the results from one calculator; you can see that something
strange seems to be happening.

If you try these calculations on your own calculator you might get different values, but
eventually you will get the value 0 if you make sufficiently small. Does this mean that
the answer is really 0 instead of ? No, the value of the limit is , as we will show in the 

| next section. The problem is that the calculator gave false values because is very
close to 3 when is small. (In fact, when t is sufficiently small, a calculator’s value for

is to as many digits as the calculator is capable of carrying.)
Something similar happens when we try to graph the function

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show quite
accurate graphs of , and when we use the trace mode (if available) we can estimate eas-
ily that the limit is about . But if we zoom in too much, as in parts (c) and (d), then we get
inaccurate graphs, again because of problems with subtraction.

FIGURE 5
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t l 0

 
st 2 " 9 ! 3

t 2 !
1
6

0.1666666 . . .t
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lim
t l 0

 
st 2 " 9 ! 3
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t

'1.0 0.16228
'0.5 0.16553
'0.1 0.16662
'0.05 0.16666
'0.01 0.16667

st 2 " 9 ! 3
t 2

t

'0.0005 0.16800
'0.0001 0.20000
'0.00005 0.00000
'0.00001 0.00000

st 2 " 9 ! 3
t 2

www.stewartcalculus.com
For a further explanation of why calculators
sometimes give false values, click on Lies
My Calculator and Computer Told Me. In
particular, see the section called The Perils 
of Subtraction.



EXAMPLE 3 Guess the value of .

SOLUTION The function is not defined when . Using a calculator
(and remembering that, if , means the sine of the angle whose radian mea-
sure is ), we construct a table of values correct to eight decimal places. From the table
at the left and the graph in Figure 6 we guess that

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument.

M

EXAMPLE 4 Investigate .

SOLUTION Again the function is undefined at 0. Evaluating the function
for some small values of , we get

Similarly, On the basis of this information we might be
tempted to guess that

| but this time our guess is wrong. Note that although for any integer
, it is also true that for infinitely many values of that approach 0. The graph

of is given in Figure 7.
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x

'1.0 0.84147098
'0.5 0.95885108
'0.4 0.97354586
'0.3 0.98506736
'0.2 0.99334665
'0.1 0.99833417
'0.05 0.99958339
'0.01 0.99998333
'0.005 0.99999583
'0.001 0.99999983

sin x
x

N COMPUTER ALGEBRA SYSTEMS
Computer algebra systems (CAS) have
commands that compute limits. In order to
avoid the types of pitfalls demonstrated in
Examples 2, 4, and 5, they don’t find limits by
numerical experimentation. Instead, they use
more sophisticated techniques such as com-
puting infinite series. If you have access to a
CAS, use the limit command to compute the
limits in the examples of this section and to
check your answers in the exercises of this
chapter.



The dashed lines near the -axis indicate that the values of oscillate between
1 and infinitely often as approaches 0. (See Exercise 39.) 

Since the values of do not approach a fixed number as approaches 0,

M

EXAMPLE 5 Find .

SOLUTION As before, we construct a table of values. From the first table in the margin it
appears that

But if we persevere with smaller values of , the second table suggests that

Later we will see that ; then it follows that the limit is 0.0001. M

| Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is
easy to guess the wrong value if we use inappropriate values of , but it is difficult to know
when to stop calculating values. And, as the discussion after Example 2 shows, sometimes
calculators and computers give the wrong values. In the next section, however, we will
develop foolproof methods for calculating limits.

EXAMPLE 6 The Heaviside function is defined by

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and
can be used to describe an electric current that is switched on at time .] Its graph is
shown in Figure 8.

As approaches 0 from the left, approaches 0. As approaches 0 from the right,
approaches 1. There is no single number that approaches as approaches 0.

Therefore, does not exist. M

ONE-SIDED LIMITS

We noticed in Example 6 that approaches 0 as approaches 0 from the left and 
approaches 1 as approaches 0 from the right. We indicate this situation symbolically by
writing

and

The symbol “ ” indicates that we consider only values of that are less than 0. Like-
wise, “ ” indicates that we consider only values of that are greater than 0.ttl 0!

ttl 0"

lim
t l

 

0!
  H!t" ! 1lim

t l
 

0"
 H!t" ! 0

t
H!t"tH!t"

lim tl 0 H!t"
tH!t"H!t"

tH!t"t

t ! 0

H!t" ! #0
1

if t # 0
if t $ 0

HV

x

lim xl 0 cos 5x ! 1

lim 
xl 0

 $x 3 !
cos 5x
10,000% ! 0.000100 !

1
10,000

x

lim
x l 0

 $x 3 !
cos 5x
10,000% ! 0

lim 
xl 0

 $x 3 !
cos 5x
10,000%

lim 
xl 0

 sin 
%

x
 does not exist

xf !x"
x"1

sin!%&x"y
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x

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x 3 !
cos 5x
10,000

x

0.005 0.00010009
0.001 0.00010000

x 3 !
cos 5x
10,000

t

y

1

0

FIGURE 8  



DEFINITION We write

and say the left-hand limit of as approaches [or the limit of as 
approaches from the left] is equal to if we can make the values of arbi-
trarily close to L by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require to be less
than . Similarly, if we require that be greater than , we get “the right-hand limit of

as approaches is equal to ” and we write

Thus the symbol “ ” means that we consider only . These definitions are illus-
trated in Figure 9.

By comparing Definition l with the definitions of one-sided limits, we see that the fol-
lowing is true.

if and only if and

EXAMPLE 7 The graph of a function is shown in Figure 10. Use it to state the values
(if they exist) of the following:

(a) (b) (c)

(d) (e) (f)

SOLUTION From the graph we see that the values of approach 3 as x approaches 2 from
the left, but they approach 1 as x approaches 2 from the right. Therefore

(a) and (b)

(c) Since the left and right limits are different, we conclude from (3) that 
does not exist.

The graph also shows that

(d) and (e) lim
x l 5!

 t!x" ! 2lim
x l 5"

 t!x" ! 2

limx l 2 t!x"

lim
x l 2!

 t!x" ! 1lim
x l 2"

 t!x" ! 3

t!x"

lim
x l 5

 t!x"lim
x l 5!

 t!x"lim
x l 5"

 t!x"

lim
x l 2

 t!x"lim
x l 2!

 t!x"lim
x l 2"

 t!x"

tV

lim
x l

 

a!
 f !x" ! Llim

x l
 

a"
 f !x" ! Llim

x l a
 f !x" ! L3

0 x

y

L

xa0 x

y

ƒ L

x a

ƒ

x    a+x    a_
(a) lim  ƒ=L (b) lim  ƒ=LFIGURE 9  

x & axl a!

lim
x l

 

a!
 f !x" ! L

Laxf !x"
axa

x

f !x"La
xf !x"axf !x"

lim
x l

 

a"
 f !x" ! L

2
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(f) This time the left and right limits are the same and so, by (3), we have

Despite this fact, notice that M

INFINITE LIMITS

EXAMPLE 8 Find if it exists.

SOLUTION As becomes close to 0, also becomes close to 0, and becomes very
large. (See the table in the margin.) In fact, it appears from the graph of the function

shown in Figure 11 that the values of can be made arbitrarily large by
taking close enough to 0. Thus the values of do not approach a number, so

does not exist. M

To indicate the kind of behavior exhibited in Example 8, we use the notation

| This does not mean that we are regarding as a number. Nor does it mean that the limit
exists. It simply expresses the particular way in which the limit does not exist: can be
made as large as we like by taking close enough to 0.

In general, we write symbolically

to indicate that the values of tend to become larger and larger (or “increase without
bound”) as becomes closer and closer to .

DEFINITION Let be a function defined on both sides of , except possibly at
itself. Then

means that the values of can be made arbitrarily large (as large as we please)
by taking sufficiently close to , but not equal to a.

Another notation for is

as

Again the symbol is not a number, but the expression is often read as

“the limit of , as approaches , is infinity”

or “ becomes infinite as approaches ”

or “ increases without bound as approaches ”

This definition is illustrated graphically in Figure 12.

axf !x"

axf !x"

axf !x"
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lim xl a f !x" ! '

ax
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a
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f !x"
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x
1&x 2
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1
x 2 ! '

lim x l 0 !1&x 2 "
f !x"x

f !x"f !x" ! 1&x 2

1&x 2x 2x
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1
x 2
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x

(1 1
(0.5 4
(0.2 25
(0.1 100
(0.05 400
(0.01 10,000
(0.001 1,000,000

1
x2

FIGURE 11  
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A similar sort of limit, for functions that become large negative as gets close to , is
defined in Definition 5 and is illustrated in Figure 13.

DEFINITION Let be defined on both sides of , except possibly at itself. Then

means that the values of can be made arbitrarily large negative by taking 
sufficiently close to , but not equal to a.

The symbol can be read as “the limit of , as approaches , 
is negative infinity” or “ decreases without bound as approaches .” As an example
we have

Similar definitions can be given for the one-sided infinite limits

remembering that “ ” means that we consider only values of that are less than ,
and similarly “ ” means that we consider only . Illustrations of these four
cases are given in Figure 14.

DEFINITION The line is called a vertical asymptote of the curve 
if at least one of the following statements is true:

For instance, the -axis is a vertical asymptote of the curve because
. In Figure 14 the line is a vertical asymptote in each of the four

cases shown. In general, knowledge of vertical asymptotes is very useful in sketching
graphs.

x ! alim xl 0 !1&x 2 " ! '
y ! 1&x 2y
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0 x

y

x=a

y=ƒ

a

FIGURE 13
lim ƒ=_`
x    a

N When we say a number is “large negative,”
we mean that it is negative but its magnitude
(absolute value) is large.



EXAMPLE 9 Find and .

SOLUTION If is close to 3 but larger than 3, then the denominator is a small posi-
tive number and is close to 6. So the quotient is a large positive number.
Thus, intuitively, we see that

Likewise, if is close to 3 but smaller than 3, then is a small negative number but
is still a positive number (close to 6). So is a numerically large negative

number. Thus

The graph of the curve is given in Figure 15. The line is a verti-
cal asymptote. M

EXAMPLE 10 Find the vertical asymptotes of .

SOLUTION Because

there are potential vertical asymptotes where . In fact, since as
and as , whereas is positive when x is near

, we have
and

This shows that the line is a vertical asymptote. Similar reasoning shows 
that the lines , where n is an integer, are all vertical asymptotes of

. The graph in Figure 16 confirms this. M

Another example of a function whose graph has a vertical asymptote is the natural log-
arithmic function . From Figure 17 we see that

and so the line (the y-axis) is a vertical asymptote. In fact, the same is true for
provided that . (See Figures 11 and 12 in Section 1.6.)a & 1y ! loga x

x ! 0

lim
x l

 

0!
 ln x ! "'

y ! ln x
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x ! !2n ! 1"%&2
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FIGURE 15
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FIGURE 16
y=tan x

2. Explain what it means to say that

and

In this situation is it possible that exists? 
Explain.

limx l 1 f !x"

lim
x l 1!

 f !x" ! 7lim
x l 1"

 f !x" ! 3

1. Explain in your own words what is meant by the equation

Is it possible for this statement to be true and yet ?
Explain.

f !2" ! 3

lim
x l 2

 f !x" ! 5

EXERCISES2.2

FIGURE 17
The y-axis is a vertical asymptote of
the natural logarithmic function.

x0

y
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7. For the function whose graph is given, state the value of
each quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f)

(g) (h)

8. For the function whose graph is shown, state the following.

(a) (b)

(c) (d)

(e) The equations of the vertical asymptotes.

9. For the function whose graph is shown, state the following.

(a) (b) (c)

(d) (e)

(f) The equations of the vertical asymptotes.

10. A patient receives a 150-mg injection of a drug every 4 hours.
The graph shows the amount of the drug in the blood-f !t"

x

y

0 6_3_7
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 t!t"
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t l 0

 t!t"lim
t l 0!

 t!t"lim
t l 0"

 t!t"

t3. Explain the meaning of each of the following.
(a) (b)

For the function whose graph is given, state the value of
each quantity, if it exists. If it does not exist, explain why.
(a) (b) (c)

(d) (e)

5. Use the given graph of to state the value of each quantity, 
if it exists. If it does not exist, explain why.
(a) (b) (c)

(d) (e)

6. For the function whose graph is given, state the value of
each quantity, if it exists. If it does not exist, explain why.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

( j) (k) (l)
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18. ,

19. , , , , ,

20. , x ! 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001

21–24 Use a table of values to estimate the value of the limit. 
If you have a graphing device, use it to confirm your result 
graphically.

21. 22.

23. 24.

25–32 Determine the infinite limit.

25. 26.

28.

29. 30.

31. 32.

33. Determine and 

(a) by evaluating for values of that
approach 1 from the left and from the right,

(b) by reasoning as in Example 9, and
; (c) from a graph of .

34. (a) Find the vertical asymptotes of the function

; (b) Confirm your answer to part (a) by graphing the function.

(a) Estimate the value of the limit to five
decimal places. Does this number look familiar?

; (b) Illustrate part (a) by graphing the function .

; 36. (a) By graphing the function and zooming
in toward the point where the graph crosses the y-axis,
estimate the value of .

(b) Check your answer in part (a) by evaluating for val-
ues of x that approach 0.
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ex " 1 " x

x 2

"2, "1.5, "1.1, "1.01, "1.001
x ! 0, "0.5, "0.9, "0.95, "0.99, "0.999,

lim
x l

 

" 1
 

x 2 " 2x
x 2 " x " 2

stream after hours. Find

and

and explain the significance of these one-sided limits.

; Use the graph of the function to state the
value of each limit, if it exists. If it does not exist, explain
why.

(a) (b) (c)

12. Sketch the graph of the following function and use it to deter-
mine the values of for which exists:

13–16 Sketch the graph of an example of a function that 
satisfies all of the given conditions.

13. , ,

14. , , ,

, , is undefined

, , ,

,

16. , , ,

,

17–20 Guess the value of the limit (if it exists) by evaluating the
function at the given numbers (correct to six decimal places).

17. ,

1.9, 1.95, 1.99, 1.995, 1.999

x ! 2.5, 2.1, 2.05, 2.01, 2.005, 2.001,lim
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CALCULATING LIMITS USING THE LIMIT LAWS

In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw that
such methods don’t always lead to the correct answer. In this section we use the following
properties of limits, called the Limit Laws, to calculate limits.

LIMIT LAWS Suppose that is a constant and the limits

exist. Then

1.

2.

3.

4.

5. lim
x l a

 
 f !x"
t!x"

!
lim
x l a 

f !x"

lim
x l a

 t!x"
  if lim

x l a
 t!x" " 0

lim
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 ' f !x"t!x"( ! lim
x l a

 f !x" ! lim
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 t!x"
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 'cf !x"( ! c lim
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 f !x"

lim
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 ' f !x" " t!x"( ! lim
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 t!x"

lim
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 ' f !x" ! t!x"( ! lim
x l a

 f !x" ! lim
x l a

 t!x"

lim
x l a

 t!x"andlim
x l a

 f !x"

c

2.3

the origin several times. Comment on the behavior of this
function.

40. In the theory of relativity, the mass of a particle with 
velocity is

where is the mass of the particle at rest and is the speed
of light. What happens as ?

; 41. Use a graph to estimate the equations of all the vertical
asymptotes of the curve

Then find the exact equations of these asymptotes.

; (a) Use numerical and graphical evidence to guess the value
of the limit

(b) How close to 1 does have to be to ensure that the func-
tion in part (a) is within a distance 0.5 of its limit?

x

lim
xl 1

 x3 " 1
sx " 1

42.

y ! tan!2 sin x" "% ) x ) %

v l c"

cm0

m !
m0

s1 " v2&c2

v

37. (a) Evaluate the function for 1,
0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the value of

(b) Evaluate for ! 0.04, 0.02, 0.01, 0.005, 0.003, and
0.001. Guess again.

38. (a) Evaluate for , 0.5, 0.1, 0.05,
0.01, and 0.005.

(b) Guess the value of .

(c) Evaluate for successively smaller values of until
you finally reach a value of for . Are you still con-
fident that your guess in part (b) is correct? Explain 
why you eventually obtained a value of . (In Section 4.4 
a method for evaluating the limit will be explained.)

; (d) Graph the function h in the viewing rectangle 
by . Then zoom in toward the point where the graph
crosses the y-axis to estimate the limit of as x
approaches 0. Continue to zoom in until you observe 
distortions in the graph of h. Compare with the results of
part (c).

; 39. Graph the function of Example 4 in the
viewing rectangle by . Then zoom in toward '"1, 1('"1, 1(

f !x" ! sin!%&x"

h!x"
'0, 1(

'"1, 1(

0

h!x"0
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These five laws can be stated verbally as follows:

SUM LAW 1. The limit of a sum is the sum of the limits.

DIFFERENCE LAW 2. The limit of a difference is the difference of the limits.

CONSTANT MULTIPLE LAW 3. The limit of a constant times a function is the constant times the limit of the 
function.

PRODUCT LAW 4. The limit of a product is the product of the limits.

QUOTIENT LAW 5. The limit of a quotient is the quotient of the limits (provided that the limit of the
denominator is not 0).

It is easy to believe that these properties are true. For instance, if is close to and
is close to , it is reasonable to conclude that is close to . This gives

us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a precise def-
inition of a limit and use it to prove this law. The proofs of the remaining laws are given
in Appendix F.

EXAMPLE 1 Use the Limit Laws and the graphs of and t in Figure 1 to evaluate the
following limits, if they exist.

(a) (b) (c)

SOLUTION
(a) From the graphs of and t we see that

Therefore, we have

(by Law 1)

(by Law 3)

(b) We see that . But does not exist because the left and
right limits are different:

So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided
limits:

The left and right limits aren’t equal, so does not exist.

(c) The graphs show that

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not
exist because the denominator approaches 0 while the numerator approaches a nonzero
number. M

lim
x l 2

 t!x" ! 0andlim
x l 2

 f !x" ) 1.4

lim x l 1 ' f !x"t!x"(

lim
x l 1!

 ' f !x"t!x"( ! 2 ! !"1" ! "2lim
x l 1"

 ' f !x"t!x"( ! 2 ! !"2" ! "4

lim
x l 1!

 t!x" ! "1lim
x l 1"

 t!x" ! "2

lim x l 1 t!x"lim x l 1 f !x" ! 2

! 1 ! 5!"1" ! "4

! lim
x l "2

 f !x" ! 5 lim
x l "2

 t!x"

lim
x l "2

  ' f !x" ! 5t!x"( ! lim
x l "2

 f !x" ! lim
x l "2

 '5t!x"(

lim
x l "2

 t!x" ! "1andlim
x l "2

 f !x" ! 1

f

lim
x l 2

 
 f !x"
t!x"

lim
x l 1

 ' f !x"t!x"(lim
x l "2

 ' f !x" ! 5t!x"(

f

L ! Mf !x" ! t!x"Mt!x"
Lf !x"
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If we use the Product Law repeatedly with , we obtain the following law.

POWER LAW 6. where is a positive integer

In applying these six limit laws, we need to use two special limits: 

7. 8.

These limits are obvious from an intuitive point of view (state them in words or draw
graphs of and ), but proofs based on the precise definition are requested in the
exercises for Section 2.4.

If we now put in Law 6 and use Law 8, we get another useful special limit.

9. where is a positive integer

A similar limit holds for roots as follows. (For square roots the proof is outlined in Exer-
cise 37 in Section 2.4.)

10. where is a positive integer

(If is even, we assume that .)

More generally, we have the following law, which is proved as a consequence of Law 10
in Section 2.5.

ROOT LAW 11. where is a positive integer

[If is even, we assume that ]

EXAMPLE 2 Evaluate the following limits and justify each step.

(a) (b)

SOLUTION

(a) (by Laws 2 and 1)

(by 3)

(by 9, 8, and 7)

 ! 39

 ! 2!52 " " 3!5" ! 4

 ! 2 lim
x l

 

5
 x 2 " 3 lim

x l
 

5
 x ! lim

x l
 

5
 4

 lim
x l

 

5
 !2x 2 " 3x ! 4" ! lim

x l
 

5
 !2x 2 " " lim

x l
 

5
 !3x" ! lim

x l
 

5
 4

lim
x l

 

"2
 
x 3 ! 2x 2 " 1

5 " 3x
lim
x l

 

5
 !2x 2 " 3x ! 4"

lim
x l

 

a
 f !x" & 0.n

nlim 
x l

 

a
sn f !x) ! sn lim

x l
 

a
 f !x)

a & 0n

nlim 
xl a

 sn x ! sn a 

nlim
xl a

 xn ! an

f !x" ! x

y ! xy ! c

lim
x l a

 x ! alim
x l a

 c ! c

nlim
x l

 

a
 ' f !x"(n ! [ lim

x l
 

a
 f !x"]n

t!x" ! f !x"



(b) We start by using Law 5, but its use is fully justified only at the final stage when we
see that the limits of the numerator and denominator exist and the limit of the denomina-
tor is not 0.

(by Law 5)

(by 1, 2, and 3)

(by 9, 8, and 7)

M

If we let , then . In other words, we would have
gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct substi-
tution provides the correct answer in part (b). The functions in Example 2 are a polynomial
and a rational function, respectively, and similar use of the Limit Laws proves that direct
substitution always works for such functions (see Exercises 53 and 54). We state this fact
as follows.

DIRECT SUBSTITUTION PROPERTY If is a polynomial or a rational function and 
is in the domain of , then

Functions with the Direct Substitution Property are called continuous at a and will be
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as
the following examples show.

EXAMPLE 3 Find .

SOLUTION Let . We can’t find the limit by substituting 
because isn’t defined. Nor can we apply the Quotient Law, because the limit of the
denominator is 0. Instead, we need to do some preliminary algebra. We factor the numer-
ator as a difference of squares:

The numerator and denominator have a common factor of . When we take the limit
as approaches 1, we have and so . Therefore we can cancel the com-
mon factor and compute the limit as follows:

The limit in this example arose in Section 2.1 when we were trying to find the tangent to
the parabola at the point . M

In Example 3 we were able to compute the limit by replacing the given function
by a simpler function, , with the same limit. This is t!x" ! x ! 1f !x" ! !x 2 " 1"#!x " 1"

NOTE

!1, 1"y ! x 2

! 1 ! 1 ! 2! lim
x l 1

 !x ! 1" lim
x l 1

 
x 2 " 1
x " 1

! lim
x l 1

 
!x " 1"!x ! 1"

x " 1

x " 1 " 0x " 1x
x " 1

x 2 " 1
x " 1

!
!x " 1"!x ! 1"

x " 1

f !1"
x ! 1f !x" ! !x 2 " 1"#!x " 1"

lim
x l 1

 
x 2 " 1
x " 1

lim
x l a

 f !x" ! f !a"
f

af

f !5" ! 39f !x" ! 2x 2 " 3x ! 4NOTE

 ! "
1
11

 !
!"2"3 ! 2!"2"2 " 1

5 " 3!"2"

 !
lim

x l
 

"2 x
3 ! 2 lim

x l
 

"2 x
2 " lim

x l
 

"2
 1

lim
x l

 

"2
 5 " 3 lim

x l
 

"2
 x

 lim
x l

 

"2
 
x 3 ! 2x 2 " 1

5 " 3x
!

lim
x l

 

"2
 !x 3 ! 2x 2 " 1"

lim
x l

 

"2
 !5 " 3x"
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Isaac Newton was born on Christmas Day in
1642, the year of Galileo’s death. When he
entered Cambridge University in 1661 Newton
didn’t know much mathematics, but he learned
quickly by reading Euclid and Descartes and 
by attending the lectures of Isaac Barrow. 
Cambridge was closed because of the plague in
1665 and 1666, and Newton returned home to
reflect on what he had learned. Those two years
were amazingly productive for at that time he
made four of his major discoveries: (1) his
representation of functions as sums of infinite
series, including the binomial theorem; (2) his
work on differential and integral calculus; (3) his
laws of motion and law of universal gravitation;
and (4) his prism experiments on the nature of
light and color. Because of a fear of controversy
and criticism, he was reluctant to publish his dis-
coveries and it wasn’t until 1687, at the urging of
the astronomer Halley, that Newton published
Principia Mathematica. In this work, the greatest
scientific treatise ever written, Newton set forth
his version of calculus and used it to investigate
mechanics, fluid dynamics, and wave motion,
and to explain the motion of planets and comets.

The beginnings of calculus are found in the
calculations of areas and volumes by ancient
Greek scholars such as Eudoxus and Archimedes.
Although aspects of the idea of a limit are
implicit in their “method of exhaustion,” Eudoxus
and Archimedes never explicitly formulated the
concept of a limit. Likewise, mathematicians
such as Cavalieri, Fermat, and Barrow, the imme-
diate precursors of Newton in the development
of calculus, did not actually use limits. It was
Isaac Newton who was the first to talk explicitly
about limits. He explained that the main idea
behind limits is that quantities “approach nearer
than by any given difference.” Newton stated
that the limit was the basic concept in calculus,
but it was left to later mathematicians like
Cauchy to clarify his ideas about limits.

NEWTON AND LIMITS
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valid because except when , and in computing a limit as approaches 1
we don’t consider what happens when is actually equal to 1. In general, we have the fol-
lowing useful fact.

If when , then , provided the limits exist.

EXAMPLE 4 Find where 

SOLUTION Here is defined at and , but the value of a limit as approaches
1 does not depend on the value of the function at 1. Since for , we
have

M

Note that the values of the functions in Examples 3 and 4 are identical except when
(see Figure 2) and so they have the same limit as approaches 1.

EXAMPLE 5 Evaluate .

SOLUTION If we define 

then, as in Example 3, we can’t compute by letting since is
undefined. But if we simplify algebraically, we find that

(Recall that we consider only when letting approach 0.) Thus

M

EXAMPLE 6 Find .

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomi-
nator is 0. Here the preliminary algebra consists of rationalizing the numerator:

This calculation confirms the guess that we made in Example 2 in Section 2.2. M

! lim
t l 0

 
1

st 2 ! 9 ! 3
!

1

slim
t l 0

 !t 2 ! 9" ! 3
!

1
3 ! 3

!
1
6

 ! lim
t l 0

 
!t 2 ! 9" " 9

t 2(st 2 ! 9 ! 3) ! lim
t l 0

 
t 2

t 2(st 2 ! 9 ! 3)

 lim
t l 0

 
st 2 ! 9 " 3

t 2 ! lim
t l 0

 
st 2 ! 9 " 3

t 2 !
st 2 ! 9 ! 3
st 2 ! 9 ! 3

lim
t l 0

 
st 2 ! 9 " 3

t 2

lim
hl 0

 
!3 ! h"2 " 9

h
! lim

hl 0
 !6 ! h" ! 6

hh " 0

F!h" !
!9 ! 6h ! h 2 " " 9

h
!

6h ! h 2

h
! 6 ! h

F!h"
F!0"h ! 0lim hl 0 F!h"

F!h" !
!3 ! h"2 " 9

h

lim
hl 0

 
!3 ! h"2 " 9

h
V

xx ! 1

lim
x l 1

 t!x" ! lim
x l 1

 !x ! 1" ! 2

x " 1t!x" ! x ! 1
xt!1" ! #x ! 1t

t!x" ! $x ! 1
#

if x " 1
if x ! 1

lim
xl1

 t!x"

lim
x l a

 f !x" ! lim
x l a

 t!x"x " af !x" ! t!x"

x
xx ! 1f !x" ! t!x"

y=©

1 2 3

1

x

y

0

2

3

y=ƒ

1 2 3

1

x

y

0

2

3

FIGURE 2  
The graphs of the functions f (from
Example 3) and g (from Example 4)



Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

THEOREM if and only if

When computing one-sided limits, we use the fact that the Limit Laws also hold for
one-sided limits.

EXAMPLE 7 Show that .

SOLUTION Recall that

Since for , we have

For we have and so 

Therefore, by Theorem 1, 

M

EXAMPLE 8 Prove that does not exist.

SOLUTION

Since the right- and left-hand limits are different, it follows from Theorem 1 that
does not exist. The graph of the function is shown in

Figure 4 and supports the one-sided limits that we found. M

EXAMPLE 9 If

determine whether exists.

SOLUTION Since for , we have

lim
x l

 

4!
 f !x" ! lim

x l
 

4!
 sx " 4 ! s4 " 4 ! 0

x $ 4f !x" ! sx " 4 

lim xl 4 f !x"

f !x" ! $sx " 4 

8 " 2x
if x $ 4
if x % 4

f !x" ! % x %#xlim xl 0 % x %#x

 lim
x l

 

0"
 % x %

x
! lim

x l
 

0"
 
"x
x

! lim
x l

 

0"
 !"1" ! "1

 lim
x l

 

0!
 % x %

x
! lim

x l
 

0!
 
x
x

! lim
x l

 

0!
 1 ! 1

lim
x l 0

 % x %
x

V

lim
xl 0

 % x % ! 0

lim
xl

 

0"
 % x % ! lim

xl
 

0"
 !"x" ! 0

% x % ! "xx % 0

lim
x l

 

0!
 % x % ! lim

x l
 

0!
 x ! 0

x $ 0% x % ! x

% x % ! $x
"x

if x & 0
if x % 0

lim
xl 0

 % x % ! 0

lim
x l

 

a"
 f !x" ! L ! lim

x l
 

a!
 f !x"lim

x l a
 f !x" ! L1
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N The result of Example 7 looks plausible 
from Figure 3.

FIGURE 3 

y

x0

y=|x|

1

_1
x

y

0

y= |x|
x

FIGURE 4  

N It is shown in Example 3 in 
Section 2.4 that .lim xl 0! sx ! 0
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Since for , we have

The right- and left-hand limits are equal. Thus the limit exists and

The graph of is shown in Figure 5. M

EXAMPLE 10 The greatest integer function is defined by the largest integer 
that is less than or equal to . (For instance, , , , , 

) Show that does not exist.

SOLUTION The graph of the greatest integer function is shown in Figure 6. Since 
for , we have

Since for , we have

Because these one-sided limits are not equal, does not exist by Theorem 1. M

The next two theorems give two additional properties of limits. Their proofs can be
found in Appendix F.

THEOREM If when is near (except possibly at ) and the limits
of and both exist as approaches , then

THE SQUEEZE THEOREM If when is near (except 
possibly at ) and

then

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the Pinch-
ing Theorem, is illustrated by Figure 7. It says that if is squeezed between and

near , and if and have the same limit at , then is forced to have the same
limit at .aL

taLhfah!x"
f !x"t!x"

lim
xl a

 t!x" ! L

lim
xl a

 f !x" ! lim
xl a

 h!x" ! L

a
axf !x" ' t!x" ' h!x"3

lim
xl a

 f !x" ' lim
xl a

 t!x"

axtf
aaxf !x" ' t!x"2

lim xl3 &x'

lim
x l

 

3"
 &x' ! lim

x l
 

3"
 2 ! 2

2 ' x % 3&x' ! 2

lim
x l

 

3!
 &x' ! lim

x l
 

3!
 3 ! 3

3 ' x % 4
&x' ! 3

lim xl3 &x'&"1
2 ' ! "1.

&s2 ' ! 1&# ' ! 3&4.8' ! 4&4' ! 4x
&x' !

f

lim
xl 4

 f !x" ! 0

lim
x l

 

4"
 f !x" ! lim

x l
 

4"
 !8 " 2x" ! 8 " 2 ! 4 ! 0

x % 4f !x" ! 8 " 2x

FIGURE 5  

4 x

y
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N Other notations for are and . The
greatest integer function is sometimes called the
floor function.

x(x)&x '

y=[ x]

1 2 3
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4

4 5 x

y

0

FIGURE 6  
Greatest integer function
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L

f

g
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FIGURE 7  



EXAMPLE 11 Show that .

SOLUTION First note that we cannot use

|

because does not exist (see Example 4 in Section 2.2). However, since 

we have, as illustrated by Figure 8,

We know that 

Taking , , and in the Squeeze Theorem, we
obtain

Mlim
x l 0

 x 2 sin 
1
x

! 0

h!x" ! x 2t!x" ! x 2 sin!1#x"f !x" ! "x 2

lim
xl 0

 !"x 2 " ! 0andlim
xl 0

 x 2 ! 0

"x 2 ' x 2 sin 
1
x

' x 2

"1 ' sin 
1
x

' 1

lim xl 0 sin!1#x"

lim
x l 0

 x 2 sin 
1
x

! lim
x l 0

 x 2 ! lim
x l 0

sin 
1
x

lim
x l 0

 x 2 sin 
1
x

! 0V

y=≈

y=_≈

0 x

y

FIGURE 8
y=≈ sin(1/x)

(c) (d)

(e) (f)

3–9 Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

3. 4.

5. 6.

7.

9.

10. (a) What is wrong with the following equation?

x 2 ! x " 6
x " 2

! x ! 3

lim
x l

 

4"
 s16 " x 2 

lim 
ul"2

 su 4 ! 3u ! 68.lim
x l

 

1
 * 1 ! 3x

1 ! 4x2 ! 3x4+3

lim
t l "1

 !t2 ! 1"3!t ! 3"5lim
x l 8

 (1 ! s3 x )!2 " 6x 2 ! x 3"

lim
x l

 

2
 

2x 2 ! 1
x 2 ! 6x " 4

lim
x l "2

 !3x4 ! 2x 2 " x ! 1"

lim
x l

 

1
 s3 ! f !x"lim

x l
 

2
 (x 3f !x")

lim
x l

 

"1
 
 f !x"
t!x"

lim
x l

 

0
 ( f !x"t!x")

1. Given that

find the limits that exist. If the limit does not exist, explain why.

(a) (b)

(c) (d)

(e) (f)

2. The graphs of and t are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why.

(a) (b) lim
x l

 

1
 ( f !x" ! t!x")lim

x l
 

2
 ( f !x" ! t!x")

x1

y

y=ƒ
1

0 x

y

1

y=©
1

f

lim
x l

 

2
 
t!x"h!x"

f !x"
lim
x l

 

2
 
t!x"
h!x"

lim
x l

 

2
 
3f !x"
t!x"

lim
x l 2

 sf !x"

lim
x l

 

2
 (t!x")3lim

x l
 

2
 ( f !x" ! 5t!x")

lim
x l

 

2
 h!x" ! 0lim

x l
 

2
 t!x" ! "2lim

x l
 

2
 f !x" ! 4

EXERCISES2.3
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functions , and on
the same screen.

; 34. Use the Squeeze Theorem to show that

Illustrate by graphing the functions and (in the notation
of the Squeeze Theorem) on the same screen.

If for , find .

36. If for all , evaluate .

37. Prove that 

38. Prove that .

39–44 Find the limit, if it exists. If the limit does not exist,
explain why.

40.

41. 42.

43. 44.

45. The signum (or sign) function, denoted by sgn, is defined by 

(a) Sketch the graph of this function.
(b) Find each of the following limits or explain why it does

not exist.
(i) (ii)

(iii) (iv)

46. Let

(a) Find and 
(b) Does exist?
(c) Sketch the graph of .

47. Let .

(a) Find

(i) (ii) lim
x l

 

1"
 F!x"lim

x l
 

1!
 F!x"

F!x" !
x 2 " 1

% x " 1 %

f
lim xl2 f !x"

lim xl2! f !x".lim xl2" f !x"

f !x" ! $4 " x 2

x " 1
if x ' 2
if x $ 2

lim
x l 0

 % sgn x %lim
x l 0

 sgn x

lim
x l

 

0"
 sgn xlim

x l
 

0!
 sgn x

sgn x ! $"1
"0
"1

if x % 0
if x ! 0
if x $ 0

lim
x l

 

0!
 *1

x
"

1

% x % +lim
x l

 

0"*1
x

"
1

% x % +
lim

x l
 

"2
 
2 " % x %
2 ! x

lim
x l

 

0.5"
 

2x " 1

% 2x 3 " x 2 %

lim
x l

 

"6
 
2x ! 12

% x ! 6 %lim
x l 3

 (2x !  % x " 3 %)39.

lim
x l

 

0!
 sx  esin!##x" ! 0

lim
x l

 

0
 x 4 cos 

2
x

! 0.

limx l 1 t!x"x2x ' t!x" ' x 4 " x 2 ! 2

limx l 4 f !x"x & 04x " 9 ' f !x" ' x 2 " 4x ! 735.

hf, t,

lim
x l

 

0
 sx 3 ! x 2  sin 

#

x
! 0

h!x" ! x 2f !x" ! "x 2, t!x" ! x 2 cos 20#x(b) In view of part (a), explain why the equation

is correct.

11–30 Evaluate the limit, if it exists.

11. 12.

13. 14.

16.

17. 18.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

; 31. (a) Estimate the value of

by graphing the function .
(b) Make a table of values of for x close to 0 and guess

the value of the limit.
(c) Use the Limit Laws to prove that your guess is correct.

; 32. (a) Use a graph of

to estimate the value of to two decimal
places.

(b) Use a table of values of to estimate the limit to four
decimal places.

(c) Use the Limit Laws to find the exact value of the limit.

; 33. Use the Squeeze Theorem to show that
. Illustrate by graphing the limx l 0 !x 2 cos 20#x" ! 0

f !x"

limx l 0 f !x"

f !x" !
s3 ! x " s3

x

f !x"
f !x" ! x#(s1 ! 3x " 1)

lim
x l

 

0
 

x
s1 ! 3x " 1

lim
x l

 

"4
 
sx 2 ! 9 " 5

x ! 4
lim
t l 0

 * 1
ts1 ! t "

1
t +

lim
h l

 

0
 
!3 ! h""1 " 3"1

h
lim

x l 16
 

4 " sx 

16x " x 2

lim
t l

 

0
 *1

t
"

1
t 2 ! t+lim

x l
 

"4
 

1
4

!
1
x

4 ! x

lim
x l

 

"1
 
x 2 ! 2x ! 1

x 4 " 1
lim
x l

 

7
 
sx ! 2 " 3

x " 7

lim
h l

 

0
 
s1 ! h " 1

h
lim
t l 9

 
9 " t

3 " st 

lim
h l

 

0
 
!2 ! h"3 " 8

h
20.lim

x l
 

"2
 

x ! 2
x 3 ! 8

19.

lim
x l

 

1
 
x 3 " 1
x 2 " 1

lim
h l 0

 
!4 ! h"2 " 16

h

lim
x l

 

"1
 

x 2 " 4x
x 2 " 3x " 4

lim
t l

 

"3
 

t 2 " 9
2t 2 ! 7t ! 3

15.

lim
x l

 

4
 

x 2 " 4x
x 2 " 3x " 4

lim
x l

 

2
 
x 2 " x ! 6

x " 2

lim
x l

 

"4
 
x 2 ! 5x ! 4
x 2 ! 3x " 4

lim
x l

 

2
 
x 2 ! x " 6

x " 2

lim
x l

 

2
 
x 2 ! x " 6

x " 2
! lim

x l
 

2
 !x ! 3"



55. If , find .

56. If , find the following limits.

(a) (b)

57. If

prove that .

Show by means of an example that may
exist even though neither nor exists.

59. Show by means of an example that may
exist even though neither nor exists.

60. Evaluate .

Is there a number a such that

exists? If so, find the value of a and the value of the limit.

62. The figure shows a fixed circle with equation
and a shrinking circle with radius 

and center the origin. P is the point , Q is the upper
point of intersection of the two circles, and R is the point of
intersection of the line PQ and the -axis. What happens to R
as shrinks, that is, as ?

x

y

0

P Q
C™

C¡
R

r l 0!C2

x

!0, r"
rC2!x " 1"2 ! y 2 ! 1

C1

lim
xl"2

 
3x 2 ! ax ! a ! 3

x 2 ! x " 2

61.

lim
x l 2

 
s6 " x " 2
s3 " x " 1

limx l a t!x"limx l a f !x"
limx l a ( f !x"t!x")

limx l a t!x"limx l a f !x"
limx l a ( f !x" ! t!x")58.

lim xl 0 f !x" ! 0

f !x" ! $x 2

0
if x is rational
if x is irrational

lim
x l 0

 
f !x"

x
lim
x l 0

 f !x"

lim
x l 0

 
f !x"
x 2 ! 5

lim
x l 1

 f !x"lim
x l 1

 
f !x" " 8

x " 1
! 10(b) Does exist?

(c) Sketch the graph of .

48. Let

(a) Evaluate each of the following limits, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Sketch the graph of .

(a) If the symbol denotes the greatest integer function
defined in Example 10, evaluate
(i) (ii) (iii)

(b) If n is an integer, evaluate
(i) (ii)

(c) For what values of does exist?

50. Let , .
(a) Sketch the graph of 
(b) Evaluate each limit, if it exists.

(i) (ii)

(iii) (iv)

(c) For what values of does exist?

51. If , show that exists but is not
equal to .

52. In the theory of relativity, the Lorentz contraction formula

expresses the length L of an object as a function of its veloc-
ity with respect to an observer, where is the length of the
object at rest and c is the speed of light. Find and
interpret the result. Why is a left-hand limit necessary?

53. If is a polynomial, show that .

54. If r is a rational function, use Exercise 53 to show that
for every number a in the domain of r.limx l a r!x" ! r!a"

lim xl a p!x" ! p!a"p

lim vlc" L
L0v
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THE PRECISE DEFINITION OF A LIMIT

The intuitive definition of a limit given in Section 2.2 is inadequate for some purposes
because such phrases as “ is close to 2” and “ gets closer and closer to L” are vague.
In order to be able to prove conclusively that

we must make the definition of a limit precise.
To motivate the precise definition of a limit, let’s consider the function

Intuitively, it is clear that when is close to 3 but , then is close to 5, and so
.

To obtain more detailed information about how varies when is close to 3, we ask
the following question:

How close to 3 does have to be so that differs from 5 by less than 0.l?

The distance from to 3 is and the distance from to 5 is , so our
problem is to find a number such that

If , then , so an equivalent formulation of our problem is to find a num-
ber such that

Notice that if , then

that is,

Thus an answer to the problem is given by ; that is, if is within a distance of
0.05 from 3, then will be within a distance of 0.1 from 5.

If we change the number 0.l in our problem to the smaller number 0.01, then by using
the same method we find that will differ from 5 by less than 0.01 provided that dif-
fers from 3 by less than (0.01)#2 ! 0.005:

Similarly,

The numbers and that we have considered are error tolerances that we
might allow. For 5 to be the precise limit of as approaches 3, we must not only be
able to bring the difference between and 5 below each of these three numbers; wef !x"

xf !x"
0.0010.1, 0.01,

0 % % x " 3 % % 0.0005if% f !x" " 5 % % 0.001

0 % % x " 3 % % 0.005if% f !x" " 5 % % 0.01

xf !x"

f !x"
x( ! 0.05

0 % % x " 3 % % 0.05if% f !x" " 5 % % 0.1

% f !x" " 5 % ! % !2x " 1" " 5 % ! % 2x " 6 % ! 2% x " 3 % % 0.1

0 % % x " 3 % % !0.1"#2 ! 0.05

0 % % x " 3 % % (if% f !x" " 5 % % 0.1

(
x " 3% x " 3 % $ 0

but x " 3% x " 3 % % (if% f !x" " 5 % % 0.1

(
% f !x" " 5 %f !x"% x " 3 %x

f !x"x

xf !x"
lim xl3 f !x" ! 5

f !x"" 3xx

f !x" ! $2x " 1
6

if x " 3
if x ! 3

lim
xl 0

 
sin x

x
! 1orlim

xl 0
 *x 3 !

cos 5x
10,000+ ! 0.0001

f !x"x

2.4

N It is traditional to use the Greek letter 
(delta) in this situation.

(



must be able to bring it below any positive number. And, by the same reasoning, we can!
If we write (the Greek letter epsilon) for an arbitrary positive number, then we find as 
before that

This is a precise way of saying that is close to 5 when is close to 3 because (1) says
that we can make the values of within an arbitrary distance from 5 by taking the val-
ues of within a distance from 3 (but ).

Note that (1) can be rewritten as follows:

then

and this is illustrated in Figure 1. By taking the values of ( ) to lie in the interval
we can make the values of lie in the interval .

Using (1) as a model, we give a precise definition of a limit.

DEFINITION Let be a function defined on some open interval that contains
the number , except possibly at itself. Then we say that the limit of as 
approaches is L, and we write

if for every number there is a number such that

then

Since is the distance from to and is the distance from to ,
and since can be arbitrarily small, the definition of a limit can be expressed in words 
as follows:

means that the distance between and can be made arbitrarily small 
by taking the distance from to sufficiently small (but not 0).

Alternatively,

means that the values of can be made as close as we please to 
by taking close enough to (but not equal to ).

We can also reformulate Definition 2 in terms of intervals by observing that the in-
equality is equivalent to , which in turn can be written 
as . Also is true if and only if , that is, 

. Similarly, the inequality is equivalent to the pair of inequalities
. Therefore, in terms of intervals, Definition 2 can be stated 

as follows:

means that for every (no matter how small is) we can find
such that if lies in the open interval and , then lies in 

the open interval 

We interpret this statement geometrically by representing a function by an arrow diagram
as in Figure 2, where maps a subset of onto another subset of .!!f

!L " ), L ! )".
f !x"x " a!a " (, a ! ("x( $ 0

)) $ 0lim xl a f !x" ! L

L ! )%f !x"L " ) %
% f !x" " L % % )x " a

x " a " 00 % % x " a %a " ( % x % a ! (
"( % x " a % (% x " a % % (

aax
Lf !x"lim xl a f !x" ! L

ax
Lf !x"lim xl a f !x" ! L

)
Lf !x"% f !x" " L %ax% x " a %

% f !x" " L % % )0 % % x " a % % (if

( $ 0) $ 0

lim
xl a

 f !x" ! L

a
xf !x"aa

f2

!5 " ), 5 ! )"f !x"!3 " (, 3 ! ("
" 3x

5 " ) % f !x" % 5 ! )!x " 3"3 " ( % x % 3 ! (if

x " 3)#2x
)f !x"

xf !x"

0 % % x " 3 % % ( !
)

2
if% f !x" " 5 % % )1

)
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The definition of limit says that if any small interval is given around ,
then we can find an interval around such that maps all the points in

(except possibly ) into the interval . (See Figure 3.)

Another geometric interpretation of limits can be given in terms of the graph of a func-
tion. If is given, then we draw the horizontal lines and and
the graph of . (See Figure 4.) If , then we can find a number such
that if we restrict to lie in the interval and take , then the curve

lies between the lines and . (See Figure 5.) You can see that
if such a has been found, then any smaller will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work for
every positive number , no matter how small it is chosen. Figure 6 shows that if a smaller

is chosen, then a smaller may be required.

EXAMPLE 1 Use a graph to find a number such that

if then

In other words, find a number that corresponds to in the definition of a limit
for the function with and .

SOLUTION A graph of is shown in Figure 7; we are interested in the region near the point
. Notice that we can rewrite the inequality

as 1.8 % x 3 " 5x ! 6 % 2.2

 % !x 3 " 5x ! 6" " 2 % % 0.2

!1, 2"
f

L ! 2a ! 1f !x" ! x 3 " 5x ! 6
) ! 0.2(

% !x 3 " 5x ! 6" " 2 % % 0.2% x " 1 % % (

(
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So we need to determine the values of for which the curve lies
between the horizontal lines and . Therefore we graph the curves

, , and near the point in Figure 8. Then we use
the cursor to estimate that the -coordinate of the point of intersection of the line

and the curve is about . Similarly,
intersects the line when . So, rounding to be safe, we can say that

if

This interval is not symmetric about . The distance from to the
left endpoint is and the distance to the right endpoint is 0.12. We can
choose to be the smaller of these numbers, that is, . Then we can rewrite our
inequalities in terms of distances as follows:

if

This just says that by keeping within 0.08 of 1, we are able to keep within 0.2 
of 2.

Although we chose , any smaller positive value of would also have
worked. M

The graphical procedure in Example 1 gives an illustration of the definition for ,
but it does not prove that the limit is equal to 2. A proof has to provide a for every .

In proving limit statements it may be helpful to think of the definition of limit as a chal-
lenge. First it challenges you with a number . Then you must be able to produce a suit-
able . You have to be able to do this for every , not just a particular .

Imagine a contest between two people, A and B, and imagine yourself to be B. Person
A stipulates that the fixed number should be approximated by the values of to with-
in a degree of accuracy (say, 0.01). Person B then responds by finding a number such
that if , then . Then A may become more exacting and
challenge B with a smaller value of (say, 0.0001). Again B has to respond by finding a
corresponding . Usually the smaller the value of , the smaller the corresponding value
of must be. If B always wins, no matter how small A makes , then 

EXAMPLE 2 Prove that .

SOLUTION
1. Preliminary analysis of the problem (guessing a value for ). Let be a given

positive number. We want to find a number such that

if

But . Therefore, we want

if

that is, if then

This suggests that we should choose .

2. Proof (showing that this works). Given , choose . If
, then
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4
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4! x ! 3 ! " $then0 " ! x ! 3 ! " #

! "4x ! 5# ! 7 ! ! ! 4x ! 12 ! ! ! 4"x ! 3# ! ! 4! x ! 3 !
! "4x ! 5# ! 7 ! " $then0 " ! x ! 3 ! " #

#
$#

lim
xl3

 "4x ! 5# ! 7V

lim xl a f "x# ! L.$#
$#

$
! f "x# ! L ! " $0 " ! x ! a ! " #

#$
f "x#L

$$ % 0#
$

$#
$ ! 0.2

## ! 0.08

f "x#x

! "x 3 ! 5x & 6# ! 2 ! " 0.2then! x ! 1 ! " 0.08

# ! 0.08#
1 ! 0.92 ! 0.08

x ! 1x ! 1"0.92, 1.12#

1.8 " x 3 ! 5x & 6 " 2.2then0.92 " x " 1.12
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y ! x 3 ! 5x & 60.911y ! x 3 ! 5x & 6y ! 2.2

x
"1, 2#y ! 2.2y ! 1.8y ! x 3 ! 5x & 6

y ! 2.2y ! 1.8
y ! x 3 ! 5x & 6x
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Thus

if

Therefore, by the definition of a limit,

This example is illustrated by Figure 9. M

Note that in the solution of Example 2 there were two stages—guessing and proving.
We made a preliminary analysis that enabled us to guess a value for . But then in the sec-
ond stage we had to go back and prove in a careful, logical fashion that we had made a
correct guess. This procedure is typical of much of mathematics. Sometimes it is neces-
sary to first make an intelligent guess about the answer to a problem and then prove that
the guess is correct.

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre-
cisely reformulated as follows.

DEFINITION OF LEFT-HAND LIMIT

if for every number there is a number such that

if

DEFINITION OF RIGHT-HAND LIMIT

if for every number there is a number such that

if

Notice that Definition 3 is the same as Definition 2 except that is restricted to lie in
the left half of the interval . In Definition 4, is restricted to lie
in the right half of the interval 

EXAMPLE 3 Use Definition 4 to prove that 

SOLUTION
1. Guessing a value for . Let be a given positive number. Here and ,

so we want to find a number such that

if

that is, if sx " $then0 " x " #

 !sx ! 0 ! " $then0 " x " #

#
L ! 0a ! 0$#

lim
xl 0&

 sx ! 0.V

"a ! #, a & ##."a, a & ##
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FIGURE 9
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After the invention of calculus in the 17th cen-
tury, there followed a period of free development
of the subject in the 18th century. Mathemati-
cians like the Bernoulli brothers and Euler were
eager to exploit the power of calculus and boldly
explored the consequences of this new and 
wonderful mathematical theory without worrying
too much about whether their proofs were com-
pletely correct.

The 19th century, by contrast, was the Age of
Rigor in mathematics. There was a movement to
go back to the foundations of the subject—to
provide careful definitions and rigorous proofs.
At the forefront of this movement was the 
French mathematician Augustin-Louis Cauchy
(1789–1857), who started out as a military engi-
neer before becoming a mathematics professor
in Paris. Cauchy took Newton’s idea of a limit,
which was kept alive in the 18th century by the
French mathematician Jean d’Alembert, and
made it more precise. His definition of a limit
reads as follows: “When the successive values
attributed to a variable approach indefinitely a
fixed value so as to end by differing from it by 
as little as one wishes, this last is called the
limit of all the others.” But when Cauchy used
this definition in examples and proofs, he often
employed delta-epsilon inequalities similar to 
the ones in this section. A typical Cauchy proof
starts with: “Designate by and two very
small numbers; . . .” He used because of the
correspondence between epsilon and the French
word erreur and because delta corresponds to
différence. Later, the German mathematician
Karl Weierstrass (1815–1897) stated the defini-
tion of a limit exactly as in our Definition 2.
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or, squaring both sides of the inequality , we get

if

This suggests that we should choose 

2. Showing that this works. Given , let . If , then

so

According to Definition 4, this shows that . M

EXAMPLE 4 Prove that .

SOLUTION
1. Guessing a value for . Let be given. We have to find a number 

such that
if

To connect with we write . Then we
want

if

Notice that if we can find a positive constant such that , then

and we can make by taking .
We can find such a number if we restrict to lie in some interval centered at 3. 

In fact, since we are interested only in values of that are close to 3, it is reasonable 
to assume that is within a distance l from 3, that is, . Then ,
so . Thus we have , and so is a suitable choice for 
the constant.

But now there are two restrictions on , namely

To make sure that both of these inequalities are satisfied, we take to be the smaller of
the two numbers 1 and . The notation for this is .

2. Showing that this works. Given , let . If ,
then (as in part l). We also have

, so

This shows that . M

As Example 4 shows, it is not always easy to prove that limit statements are true 
using the definition. In fact, if we had been given a more complicated function such
as , a proof would require a great deal of ingenuity. f "x# ! "6x 2 ! 8x & 9#&"2x 2 ! 1#

$, #

lim xl3 x 2 ! 9
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Fortunately this is unnecessary because the Limit Laws stated in Section 2.3 can be proved
using Definition 2, and then the limits of complicated functions can be found rigorously
from the Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If and both
exist, then

The remaining laws are proved in the exercises and in Appendix F.

PROOF OF THE SUM LAW Let be given. We must find such that

then

Using the Triangle Inequality we can write

We make less than by making each of the terms 
and less than .

Since and , there exists a number such that

if

Similarly, since , there exists a number such that

if

Let . Notice that

and so

Therefore, by (5),

To summarize,

then

Thus, by the definition of a limit,
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(See Appendix A.)
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INFINITE LIMITS

Infinite limits can also be defined in a precise way. The following is a precise version of
Definition 4 in Section 2.2.

DEFINITION Let be a function defined on some open interval that contains
the number , except possibly at itself. Then

means that for every positive number there is a positive number such that

if

This says that the values of can be made arbitrarily large (larger than any given
number ) by taking close enough to (within a distance , where depends on , but
with ). A geometric illustration is shown in Figure 10.

Given any horizontal line , we can find a number such that if we restrict
to lie in the interval but , then the curve lies above the line

. You can see that if a larger is chosen, then a smaller may be required.

EXAMPLE 5 Use Definition 6 to prove that .

SOLUTION Let be a given positive number. We want to find a number such that

if

But

So if we choose and , then . This shows that 
as . M

Similarly, the following is a precise version of Definition 5 in Section 2.2. It is illus-
trated by Figure 11.

DEFINITION Let be a function defined on some open interval that contains
the number , except possibly at itself. Then

means that for every negative number there is a positive number such that
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; 5. Use a graph to find a number such that

if then

; 6. Use a graph to find a number such that

if then

; 7. For the limit

illustrate Definition 2 by finding values of that correspond
to and .

; 8. For the limit

illustrate Definition 2 by finding values of that correspond
to and 

; 9. Given that , illustrate Definition 6 by 
finding values of that correspond to (a) and 
(b) .

; 10. Use a graph to find a number such that

if then

11. A machinist is required to manufacture a circular metal disk
with area . 
(a) What radius produces such a disk?
(b) If the machinist is allowed an error tolerance of

in the area of the disk, how close to the ideal radius in
part (a) must the machinist control the radius?

(c) In terms of the definition of , what 
is ? What is ? What is ? What is ? What value of

is given? What is the corresponding value of ?#$
Laf "x#x

limx l a f "x# ! L$, #

)5 cm2

1000 cm2

x 2

sx ! 5 % 1005 " x " 5 & #

#

M ! 10,000
M ! 1000#

limx l*&2  tan2x ! (

$ ! 0.1.$ ! 0.5
#

lim
x l 0

 
e x ! 1

x
! 1

$ ! 0.1$ ! 1
#

lim
x l 1

 "4 & x ! 3x3# ! 2

, 2x
x 2 & 4

! 0.4 , " 0.1! x ! 1! " #

#

! tan x ! 1! " 0.2, x !
*

4 , " #

#

x

y

? 1 ?0

1.5

1

0.5

y=≈
1. Use the given graph of to find a number such

that

if then

2. Use the given graph of to find a number such that

if then

Use the given graph of to find a number such
that

if then

4. Use the given graph of to find a number such that
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33. Verify that another possible choice of for showing that
in Example 4 is 

34. Verify, by a geometric argument, that the largest possible
choice of for showing that is

.

35. (a) For the limit , use a graph to find
a value of that corresponds to 

(b) By using a computer algebra system to solve the cubic
equation , find the largest possible
value of that works for any given .

(c) Put in your answer to part (b) and compare with
your answer to part (a).

36. Prove that .

Prove that if 

Hint:

38. If is the Heaviside function defined in Example 6 in Sec-
tion 2.2, prove, using Definition 2, that does not
exist. [Hint: Use an indirect proof as follows. Suppose that
the limit is . Take in the definition of a limit and try to
arrive at a contradiction.]

39. If the function is defined by

prove that does not exist.

40. By comparing Definitions 2, 3, and 4, prove Theorem 1 in 
Section 2.3.

41. How close to do we have to take so that

42. Prove, using Definition 6, that .

Prove that .

44. Suppose that and , where 
is a real number. Prove each statement.
(a)

(b) if 

(c) if  c " 0lim
xla

 * f "x#t"x#+ ! !(

 c % 0lim
xla

 * f "x#t"x#+ ! (

lim
xla

 * f "x# & t"x#+ ! (

climxla t"x# ! clim xl a f "x# ! (

lim
x l 0&

 ln x ! !(43.

lim
xl!3

 
1

"x & 3#4 ! (

1
"x & 3#4 % 10,000

x!3

f "x#lim xl 0

f "x# ! -0
1

if x is rational
if x is irrational

f

$ ! 1
2L

lim tl 0 H"t#
H

Use |sx ! sa | ! ! x ! a !
sx & sa ../
a % 0.lim

xl a
 sx ! sa 37.

lim
xl2

 
1
x

!
1
2

$ ! 0.4
$ % 0#

x3 & x & 1 ! 3 & $

$ ! 0.4.#
limx l 1 "x3 & x & 1# ! 3CAS

# ! s9 & $ ! 3
limxl3 x2 ! 9#

# ! min (2, $&8).limxl3 x2 ! 9
#; 12. A crystal growth furnace is used in research to determine how

best to manufacture crystals used in electronic components for
the space shuttle. For proper growth of the crystal, the temper-
ature must be controlled accurately by adjusting the input
power. Suppose the relationship is given by 

where is the temperature in degrees Celsius and is the
power input in watts.
(a) How much power is needed to maintain the temperature 

at ?
(b) If the temperature is allowed to vary from by up 

to , what range of wattage is allowed for the input
power?

(c) In terms of the definition of , what 
is ? What is ? What is ? What is ? What value of 

is given? What is the corresponding value of ?

13. (a) Find a number such that if , then
, where .

(b) Repeat part (a) with .

14. Given that , illustrate Definition 2 by
finding values of that correspond to , ,
and .

15–18 Prove the statement using the definition of limit and
illustrate with a diagram like Figure 9.

15. 16.

18.

19–32 Prove the statement using the definition of limit.

19. 20.

21. 22.

23. 24.

26.

27. 28.

30.

32. lim
xl2

 x 3 ! 8lim
xl!2

 "x 2 ! 1# ! 331.

lim
xl3

 "x 2 & x ! 4# ! 8lim
xl2

 "x 2 ! 4x & 5# ! 129.

lim
x l 9!

 s4 9 ! x ! 0lim
xl 0

 ! x ! ! 0

lim
xl 0

 x 3 ! 0lim
xl 0

 x 2 ! 025.

lim
xl a

 c ! clim
xl a

 x ! a

lim
xl!1.5

 
9 ! 4x 2

3 & 2x
! 6lim

xl2
 
x 2 & x ! 6

x ! 2
! 5

lim
x l 6

 $ x
4

& 3% !
9
2

lim
x l 3

 
x
5

!
3
5

$, #

lim
x l 4

 "7 ! 3x# ! !5lim
x l

 

!3
 "1 ! 4x# ! 1317.

lim
x l

 

!2
 ( 1

2 x & 3) ! 2lim
x l 1

 "2x & 3# ! 5

$, #

$ ! 0.01
$ ! 0.05$ ! 0.1#

limx l 2 "5x ! 7# ! 3

$ ! 0.01
$ ! 0.1! 4x ! 8! " $

! x ! 2! " ##

#$
Laf "x#x

limx l a f "x# ! L$, #

)1+C
200+C

200+C

wT

T"w# ! 0.1w 2 & 2.155w & 20
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CONTINUITY

We noticed in Section 2.3 that the limit of a function as approaches can often be found
simply by calculating the value of the function at . Functions with this property are called
continuous at a. We will see that the mathematical definition of continuity corresponds
closely with the meaning of the word continuity in everyday language. (A continuous
process is one that takes place gradually, without interruption or abrupt change.)

DEFINITION A function is continuous at a number a if

Notice that Definition l implicitly requires three things if is continuous at a:

1. is defined (that is, a is in the domain of )

2. exists

3.

The definition says that is continuous at if approaches as x approaches a.
Thus a continuous function has the property that a small change in x produces only a
small change in . In fact, the change in can be kept as small as we please by keep-
ing the change in sufficiently small.

If is defined near (in other words, is defined on an open interval containing ,
except perhaps at ), we say that is discontinuous at a (or has a discontinuity at ) if

is not continuous at .
Physical phenomena are usually continuous. For instance, the displacement or velocity

of a vehicle varies continuously with time, as does a person’s height. But discontinuities
do occur in such situations as electric currents. [See Example 6 in Section 2.2, where the
Heaviside function is discontinuous at because does not exist.]

Geometrically, you can think of a function that is continuous at every number in an
interval as a function whose graph has no break in it. The graph can be drawn without
removing your pen from the paper.

EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f discontinu-
ous? Why?

SOLUTION It looks as if there is a discontinuity when a ! 1 because the graph has a break
there. The official reason that f is discontinuous at 1 is that is not defined.

The graph also has a break when , but the reason for the discontinuity is differ-
ent. Here, is defined, but does not exist (because the left and right limits
are different). So f is discontinuous at 3.

What about ? Here, is defined and exists (because the left and
right limits are the same). But

So is discontinuous at 5. M

Now let’s see how to detect discontinuities when a function is defined by a formula.

f

lim
x l 5

 f "x# " f "5#

lim xl5 f "x#f "5#a ! 5

lim xl3 f "x#f "3#
a ! 3

f "1#

lim tl 0 H"t#0

af
affa

afaf
x

f "x#f "x#
f

f "a#f "x#af

lim
x l

 

a
 f "x# ! f "a#

lim
x l

 

a
 f "x#

ff "a#

f

lim
x l

 

a
 f "x# ! f "a#

f1

a
ax

2.5

N As illustrated in Figure 1, if is continuous,
then the points on the graph of 
approach the point on the graph. So
there is no gap in the curve.

"a, f "a##
f"x, f "x##

f

f(a)

x0

y

a

y=ƒ
ƒ

approaches
f(a).

As x approaches a,

FIGURE 1  

FIGURE 2

y
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EXAMPLE 2 Where are each of the following functions discontinuous?

(a) (b)

(c) (d)

SOLUTION
(a) Notice that is not defined, so f is discontinuous at 2. Later we’ll see why is
continuous at all other numbers.

(b) Here is defined but

does not exist. (See Example 8 in Section 2.2.) So f is discontinuous at 0.

(c) Here is defined and

exists. But 

so is not continuous at 2.

(d) The greatest integer function has discontinuities at all of the integers
because does not exist if is an integer. (See Example 10 and Exercise 49 in
Section 2.3.) M

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t
be drawn without lifting the pen from the paper because a hole or break or jump occurs in
the graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable
because we could remove the discontinuity by redefining at just the single number 2.
[The function is continuous.] The discontinuity in part (b) is called an infi-
nite discontinuity. The discontinuities in part (d) are called jump discontinuities because
the function “jumps” from one value to another.

1 2 3

1

x

y

0

(d) ƒ=[x]

1 2

1

x

y

0

(c) ƒ= if  x≠2
1 if x=2

≈-x-2
x-2(b) ƒ= if  x≠0

1 if 

1

x=0

1

x

y

01 2 x

y

0

1

(a) ƒ=≈-x-2
x-2

FIGURE 3 Graphs of the functions in Example 2

≈

t"x# ! x & 1
f

nlim xln 0x1
f "x# ! 0x1

f

lim
xl2

 f "x# " f "2#

lim
xl2

 f "x# ! lim
xl2

 
x 2 ! x ! 2

x ! 2
! lim

xl2
 
"x ! 2#"x & 1#

x ! 2
! lim

xl2
 "x & 1# ! 3

f "2# ! 1

lim
xl 0

 f "x# ! lim
xl 0

 
1
x 2

f "0# ! 1

ff "2#

f "x# ! 0x1f "x# ! - x 2 ! x ! 2
x ! 2

if x " 2

1 if x ! 2

f "x# ! - 1
x 2 if x " 0

1 if x ! 0
f "x# !

x 2 ! x ! 2
x ! 2

V
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DEFINITION A function is continuous from the right at a number a if

and is continuous from the left at a if

EXAMPLE 3 At each integer , the function [see Figure 3(d)] is continuous
from the right but discontinuous from the left because

but M

DEFINITION A function is continuous on an interval if it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the
right or continuous from the left.)

EXAMPLE 4 Show that the function is continuous on the 
interval 

SOLUTION If , then using the Limit Laws, we have

(by Laws 2 and 7)

(by 11)

(by 2, 7, and 9)

Thus, by Definition l, is continuous at if . Similar calculations show that

and

so is continuous from the right at !1 and continuous from the left at 1. Therefore,
according to Definition 3, is continuous on .

The graph of is sketched in Figure 4. It is the lower half of the circle

M

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as
we did in Example 4, it is often convenient to use the next theorem, which shows how to
build up complicated continuous functions from simple ones.

x 2 & "y ! 1#2 ! 1

f
*!1, 1+f

f

lim
xl1!

 f "x# ! 1 ! f "1#lim
x l

 

!1&
 f "x# ! 1 ! f "!1#

!1 " a " 1af

 ! f "a#

 ! 1 ! s1 ! a 2 

 ! 1 ! slim 
xl a

 "1 ! x 2 #

 ! 1 ! lim
xl a

 s1 ! x 2 

 lim
xl a

 f "x# ! lim
xl a

 (1 ! s1 ! x 2 )

!1 " a " 1

*!1, 1+.
f "x# ! 1 ! s1 ! x 2 

f3

lim
x l

 

n!
 f "x# ! lim

x l
 

n!
0x1 ! n ! 1 " f "n#

lim
x l

 

n&
 f "x# ! lim

x l
 

n&
 0x1 ! n ! f "n#

f "x# ! 0x1n

lim
x l

 

a!
 f "x# ! f "a#

f

lim
x l

 

a&
 f "x# ! f "a#

f2

1-1

1

x

y

0

ƒ=1-œ„„„„„1-≈

FIGURE 4  



THEOREM If and are continuous at and is a constant, then the follow-
ing functions are also continuous at :

1. 2. 3.

4. 5. if 

PROOF Each of the five parts of this theorem follows from the corresponding Limit Law
in Section 2.3. For instance, we give the proof of part 1. Since and are continuous at
, we have

Therefore

(by Law 1)

This shows that is continuous at . M

It follows from Theorem 4 and Definition 3 that if and are continuous on an inter-
val, then so are the functions , and (if is never 0) . The following
theorem was stated in Section 2.3 as the Direct Substitution Property.

THEOREM
(a) Any polynomial is continuous everywhere; that is, it is continuous on

.
(b) Any rational function is continuous wherever it is defined; that is, it is contin-

uous on its domain.

PROOF
(a) A polynomial is a function of the form

where are constants. We know that

(by Law 7)

and (by 9)

This equation is precisely the statement that the function is a continuous 
function. Thus, by part 3 of Theorem 4, the function is continuous. Since 
is a sum of functions of this form and a constant function, it follows from part 1 of 
Theorem 4 that is continuous.P

Pt!x" ! cxm
f !x" ! xm

m ! 1, 2, . . . , nlim
x l a

 xm ! am

lim
x l a

 c0 ! c0

c0, c1, . . . , cn

P!x" ! cnxn ! cn"1xn"1 ! # # # ! c1x ! c0 

! ! !"$, $"

5

f#ttf ! t, f " t, cf, ft
tf

af ! t

 ! ! f ! t"!a"

 ! f !a" ! t!a"

 ! lim
x l a

 f !x" ! lim
x l a

 t!x"

 lim
x l a

 ! f ! t"!x" ! lim
x l a

 $ f !x" ! t!x"%

lim
x l a

 t!x" ! t!a"andlim
x l a

 f !x" ! f !a"

a
tf

t!a" " 0
f
tft

cff " tf ! t
a

catf4
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(b) A rational function is a function of the form

where and are polynomials. The domain of is . We know
from part (a) that and are continuous everywhere. Thus, by part 5 of Theorem 4,

is continuous at every number in . M

As an illustration of Theorem 5, observe that the volume of a sphere varies continuously
with its radius because the formula shows that is a polynomial function 
of . Likewise, if a ball is thrown vertically into the air with a velocity of 50 ft#s, then the 
height of the ball in feet seconds later is given by the formula . Again this
is a polynomial function, so the height is a continuous function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits very
quickly, as the following example shows. Compare it with Example 2(b) in Section 2.3.

EXAMPLE 5 Find .

SOLUTION The function

is rational, so by Theorem 5 it is continuous on its domain, which is . 
Therefore

M

It turns out that most of the familiar functions are continuous at every number in their
domains. For instance, Limit Law 10 (page 101) is exactly the statement that root functions
are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 18 in
Section 1.2), we would certainly guess that they are continuous. We know from the defini-
tions of and that the coordinates of the point P in Figure 5 are . As

, we see that P approaches the point and so and . Thus

Since and , the equations in (6) assert that the cosine and sine func-
tions are continuous at 0. The addition formulas for cosine and sine can then be used to 
deduce that these functions are continuous everywhere (see Exercises 56 and 57).

It follows from part 5 of Theorem 4 that

tan x !
sin x
cos x

sin 0 ! 0cos 0 ! 1

lim 
%l 0

 cos % ! 1 lim 
%l 0

 sin % ! 06

sin % l 0cos % l 1!1, 0"% l 0
!cos %, sin %"cos %sin %

 !
!"2"3 ! 2!"2"2 " 1

5 " 3!"2"
! "

1
11

 lim
xl"2

 
x 3 ! 2x 2 " 1

5 " 3x
! lim

xl"2
 f !x" ! f !"2"

{x & x " 5
3}

f !x" !
x 3 ! 2x 2 " 1

5 " 3x

lim
x l

 

"2
 
x 3 ! 2x 2 " 1

5 " 3x

h ! 50t " 16t 2t
r

VV!r" ! 4
3 &r 3

Df
QP

D ! 'x ! ! & Q!x" " 0(fQP

f !x" !
P!x"
Q!x"

¨

1

x0

y

(1, 0)

P(cos ¨, sin ¨)

FIGURE 5  

N Another way to establish the limits in (6) is 
to use the Squeeze Theorem with the inequality

(for ), which is proved in 
Section 3.3.

% ' 0sin % ( %



is continuous except where . This happens when is an odd integer multiple of
, so has infinite discontinuities when and so on

(see Figure 6).
The inverse function of any continuous one-to-one function is also continuous. (This

fact is proved in Appendix F, but our geometric intuition makes it seem plausible: The
graph of is obtained by reflecting the graph of f about the line . So if the graph
of f has no break in it, neither does the graph of .) Thus the inverse trigonometric func-
tions are continuous.

In Section 1.5 we defined the exponential function so as to fill in the holes in the
graph of where x is rational. In other words, the very definition of makes 
it a continuous function on !. Therefore its inverse function is continuous 
on .

THEOREM The following types of functions are continuous at every number in
their domains:

polynomials rational functions root functions

trigonometric functions inverse trigonometric functions

exponential functions logarithmic functions

EXAMPLE 6 Where is the function continuous?

SOLUTION We know from Theorem 7 that the function is continuous for 
and is continuous on !. Thus, by part 1 of Theorem 4, is
continuous on . The denominator, , is a polynomial, so it is continuous
everywhere. Therefore, by part 5 of Theorem 4, f is continuous at all positive numbers x
except where . So f is continuous on the intervals and . M

EXAMPLE 7 Evaluate .

SOLUTION Theorem 7 tells us that is continuous. The function in the denomi-
nator, , is the sum of two continuous functions and is therefore continu-
ous. Notice that this function is never 0 because for all and so

everywhere. Thus the ratio

is continuous everywhere. Hence, by definition of a continuous function,

M

Another way of combining continuous functions and to get a new continuous func-
tion is to form the composite function . This fact is a consequence of the following
theorem.

f " t
tf

lim
x l

 

&

sin x
2 ! cos x

! lim
x l

 

&  
f !x" ! f !&" !

sin &
2 ! cos &

!
0

2 " 1
! 0

f !x" !
sin x

2 ! cos x

2 ! cos x ' 0
xcos x ) "1

y ! 2 ! cos x
y ! sin x

lim
x l

 

&
 

sin x
2 ! cos x

!1, $"!0, 1"x 2 " 1 ! 0

y ! x 2 " 1!0, $"
y ! ln x ! tan"1xy ! tan"1x

x ' 0y ! ln x

f !x" !
ln x ! tan"1x

x 2 " 1

7

!0, $"
y ! loga x

y ! axy ! ax
y ! ax

f "1
y ! xf "1

x ! *&#2, *3&#2, *5&#2,y ! tan x&#2
xcos x ! 0
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N The inverse trigonometric functions are
reviewed in Section 1.6.
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THEOREM If is continuous at and then 
In other words,

Intuitively, Theorem 8 is reasonable because if is close to , then is close to ,
and since is continuous at , if is close to , then is close to . A proof
of Theorem 8 is given in Appendix F.

EXAMPLE 8 Evaluate . 

SOLUTION Because is a continuous function, we can apply Theorem 8:

M

Let’s now apply Theorem 8 in the special case where , with being a posi-
tive integer. Then

and

If we put these expressions into Theorem 8, we get

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

THEOREM If is continuous at and is continuous at , then the compos-
ite function given by is continuous at .

This theorem is often expressed informally by saying “a continuous function of a con-
tinuous function is a continuous function.”

PROOF Since is continuous at , we have

Since is continuous at , we can apply Theorem 8 to obtain

lim
xl a

 f !t!x"" ! f !t!a""

b ! t!a"f

lim
xl a
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t!a"fat9
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 t!x") ! sn lim 
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 t!x"
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 ! arcsin 
1
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!
&

6

 ! arcsin)lim
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1
 

1
1 ! sx *

 ! arcsin)lim
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1
 

1 " sx 

(1 " sx ) (1 ! sx )*
 lim
x l

 

1
 arcsin)1 " sx 

1 " x * ! arcsin) lim
xl1

 
1 " sx 

1 " x *
arcsin

lim
x l

 

1
 arcsin)1 " sx 

1 " x *
f !b"f !t!x""bt!x"bf

bt!x"ax

lim
xl a

 f !t!x"" ! f (lim
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 t!x")

lim
x l

 

a
 f !t!x"" ! f !b".lim

x l
 

a
 t!x" ! b, bf8N This theorem says that a limit symbol can be

moved through a function symbol if the function
is continuous and the limit exists. In other words,
the order of these two symbols can be reversed.



which is precisely the statement that the function is continuous at ; that
is, is continuous at . M

EXAMPLE 9 Where are the following functions continuous?
(a) (b)

SOLUTION
(a) We have , where

Now is continuous on since it is a polynomial, and is also continuous everywhere.
Thus is continuous on by Theorem 9.

(b) We know from Theorem 7 that is continuous and 
is continuous (because both and are continuous). Therefore, by
Theorem 9, is continuous wherever it is defined. Now is
defined when . So it is undefined when , and this happens
when . Thus F has discontinuities when x is an odd multiple of and
is continuous on the intervals between these values (see Figure 7). M

An important property of continuous functions is expressed by the following theorem,
whose proof is found in more advanced books on calculus.

THE INTERMEDIATE VALUE THEOREM Suppose that is continuous on the
closed interval and let be any number between and , where

. Then there exists a number in such that .

The Intermediate Value Theorem states that a continuous function takes on every inter-
mediate value between the function values and . It is illustrated by Figure 8. Note
that the value can be taken on once [as in part (a)] or more than once [as in part (b)].

If we think of a continuous function as a function whose graph has no hole or break,
then it is easy to believe that the Intermediate Value Theorem is true. In geometric terms it
says that if any horizontal line is given between and as in Fig-
ure 9, then the graph of can’t jump over the line. It must intersect somewhere.

It is important that the function in Theorem 10 be continuous. The Intermediate Value
Theorem is not true in general for discontinuous functions (see Exercise 44).

One use of the Intermediate Value Theorem is in locating roots of equations as in the
following example.

f
y ! Nf
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FIGURE 8 

N
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f !c" ! N!a, b"cf !a" " f !b"
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f10

&x ! *&, *3&, . . .
cos x ! "11 ! cos x ' 0

ln!1 ! cos x"F!x" ! f !t!x""
y ! cos xy ! 1

t!x" ! 1 ! cos xf !x" ! ln x

!h ! f " t
f!t

f !x" ! sin xandt!x" ! x 2

h!x" ! f !t!x""

F!x" ! ln!1 ! cos x"h!x" ! sin!x 2 "
V

af " t
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EXAMPLE 10 Show that there is a root of the equation

between 1 and 2.

SOLUTION Let . We are looking for a solution of the given
equation, that is, a number between 1 and 2 such that . Therefore, we take

, , and in Theorem 10. We have

and

Thus ; that is, is a number between and . Now is
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number between 1 and 2 such that . In other words, the equation

has at least one root in the interval .
In fact, we can locate a root more precisely by using the Intermediate Value Theorem

again. Since

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

so a root lies in the interval . M

We can use a graphing calculator or computer to illustrate the use of the Intermediate
Value Theorem in Example 10. Figure 10 shows the graph of in the viewing rectangle

by and you can see that the graph crosses the -axis between 1 and 2. Fig-
ure 11 shows the result of zooming in to the viewing rectangle by .

In fact, the Intermediate Value Theorem plays a role in the very way these graphing
devices work. A computer calculates a finite number of points on the graph and turns on
the pixels that contain these calculated points. It assumes that the function is continuous
and takes on all the intermediate values between two consecutive points. The computer
therefore connects the pixels by turning on the intermediate pixels.
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(d) The cost of a taxi ride as a function of the distance
traveled

(e) The current in the circuit for the lights in a room as a
function of time

9. If and are continuous functions with and
, find .

10–12 Use the definition of continuity and the properties of limits
to show that the function is continuous at the given number .

10. ,

,

12. ,

13–14 Use the definition of continuity and the properties of limits
to show that the function is continuous on the given interval.

13. ,

14. ,

15–20 Explain why the function is discontinuous at the given
number . Sketch the graph of the function.

15.

16.

17.

19.

20.

21–28 Explain, using Theorems 4, 5, 7, and 9, why the function
is continuous at every number in its domain. State the domain.

21. 22. G!x" ! s3 x !1 ! x3"F!x" !
x

x 2 ! 5x ! 6

a ! 3f !x" ! +2x 2 " 5x " 3
x " 3

6

  if x " 3

  if x ! 3

a ! 0f !x" ! +cos x
0
1 " x 2

if x ( 0
if x ! 0
if x ' 0

a ! 1f !x" ! + x 2 " x
x 2 " 1
1

  if x " 1

  if x ! 1
18.

a ! 0f !x" ! +e x

x2

if x ( 0
if x ) 0

a ! 1f !x" ! + 1
x " 1
2

if x " 1

if x ! 1

a ! 2f !x" ! ln & x " 2 &
a

!"$, 3%t!x" ! 2s3 " x 

!2, $"f !x" !
2x ! 3
x " 2

 

a ! 1h!t" !
2t " 3t 2

1 ! t 3

a ! "1f !x" ! !x ! 2x 3 "411.

a ! 4f !x" ! x 2 ! s7 " x 

a

t!3"lim xl 3 $2 f !x" " t!x"% ! 4
f !3" ! 5tf

1. Write an equation that expresses the fact that a function 
is continuous at the number 4.

2. If is continuous on , what can you say about its
graph?

(a) From the graph of , state the numbers at which is dis-
continuous and explain why.

(b) For each of the numbers stated in part (a), determine
whether is continuous from the right, or from the left,
or neither.

4. From the graph of , state the intervals on which is 
continuous.

5. Sketch the graph of a function that is continuous everywhere
except at x ! 3 and is continuous from the left at 3.

6. Sketch the graph of a function that has a jump discontinuity
at and a removable discontinuity at , but is con-
tinuous elsewhere.

A parking lot charges $3 for the first hour (or part of an hour)
and $2 for each succeeding hour (or part), up to a daily maxi-
mum of $10.
(a) Sketch a graph of the cost of parking at this lot as a func-

tion of the time parked there.
(b) Discuss the discontinuities of this function and their 

significance to someone who parks in the lot.

8. Explain why each function is continuous or discontinuous.
(a) The temperature at a specific location as a function of

time
(b) The temperature at a specific time as a function of the dis-

tance due west from New York City
(c) The altitude above sea level as a function of the distance

due west from New York City

7.
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For what value of the constant is the function continuous
on ?

42. Find the values of and that make continuous everywhere.

43. Which of the following functions has a removable disconti-
nuity at ? If the discontinuity is removable, find a function 
that agrees with for and is continuous at .

(a) ,

(b) ,

(c) ,

44. Suppose that a function is continuous on [0, 1] except at
0.25 and that and . Let N ! 2. Sketch two
possible graphs of , one showing that might not satisfy 
the conclusion of the Intermediate Value Theorem and one
showing that might still satisfy the conclusion of the Inter-
mediate Value Theorem (even though it doesn’t satisfy the
hypothesis).

45. If , show that there is a number such
that .

46. Suppose is continuous on and the only solutions of
the equation are and . If ,
explain why .

47–50 Use the Intermediate Value Theorem to show that there is
a root of the given equation in the specified interval.

, 48. ,

49. , 50. ,

51–52 (a) Prove that the equation has at least one real root.
(b) Use your calculator to find an interval of length 0.01 that con-
tains a root.

51. 52.

; 53–54 (a) Prove that the equation has at least one real root.
(b) Use your graphing device to find the root correct to three deci-
mal places.

54. arctan x ! 1 " x100e"x#100 ! 0.01x253.

ln x ! 3 " 2xcos x ! x 3

!1, 2"ln x ! e"x!0, 1"cos x ! x

!0, 1"s3 x ! 1 " x!1, 2"x 4 ! x " 3 ! 047.

f !3" ' 6
f !2" ! 8x ! 4x ! 1f !x" ! 6

$1, 5%f

f !c" ! 1000
cf !x" ! x 2 ! 10 sin x

f

ff
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f

a ! &f !x" ! ,sin x -

a ! 2f !x" !
x 3 " x 2 " 2x

x " 2

a ! 1f !x" !
x 4 " 1
x " 1
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ta

f
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x 2 " 4
x " 2
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if x ( 2

if 2 ( x ( 3
if x ) 3

fba

f !x" ! +cx 2 ! 2x
x 3 " cx

if x ( 2
if x ) 2

!"$, $"
fc41.

23. 24.

25. 26.

28.

; 29–30 Locate the discontinuities of the function and illustrate by
graphing.

30.

31–34 Use continuity to evaluate the limit.

31.

33. 34.

35–36 Show that is continuous on .

35.

36.

37–39 Find the numbers at which is discontinuous. At which
of these numbers is continuous from the right, from the left, or
neither? Sketch the graph of .

37.

38.

40. The gravitational force exerted by the earth on a unit mass at
a distance r from the center of the planet is

where M is the mass of the earth, R is its radius, and G is the
gravitational constant. Is F a continuous function of r?

if r ) R
GM
r 2

F!r" !

GMr
R 3 if r ( R
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ex
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if x ' 1

39.
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2 " x
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if 0 ( x + 2
if x ' 2

f
f
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f !x" ! +sin x  if x ( &#4
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f !x" ! + x 2  if x ( 1
sx   if x ) 1
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62. If and are positive numbers, prove that the equation

has at least one solution in the interval .

63. Show that the function

is continuous on .

64. (a) Show that the absolute value function is contin-
uous everywhere.

(b) Prove that if is a continuous function on an interval, then
so is .

(c) Is the converse of the statement in part (b) also true? In
other words, if is continuous, does it follow that is
continuous? If so, prove it. If not, find a counterexample.

65. A Tibetan monk leaves the monastery at 7:00 AM and takes his
usual path to the top of the mountain, arriving at 7:00 P M. The
following morning, he starts at 7:00 AM at the top and takes the
same path back, arriving at the monastery at 7:00 P M. Use the
Intermediate Value Theorem to show that there is a point on the
path that the monk will cross at exactly the same time of day
on both days.

f& f &
& f &

f

F!x" ! & x &
!"$, $"

f !x" ! +x 4 sin!1#x"
0

if x " 0
if x ! 0

!"1, 1"

a
x 3 ! 2x 2 " 1

!
b

x 3 ! x " 2
! 0

ba55. Prove that is continuous at if and only if

56. To prove that sine is continuous, we need to show that
for every real number . By Exercise 55 

an equivalent statement is that

Use (6) to show that this is true.

57. Prove that cosine is a continuous function.

58. (a) Prove Theorem 4, part 3.
(b) Prove Theorem 4, part 5.

59. For what values of is continuous?

60. For what values of is continuous?

Is there a number that is exactly 1 more than its cube?61.

t!x" ! +0
x
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tx
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1
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if x is irrational

fx
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alimxla sin x ! sin a
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hl 0

 f !a ! h" ! f !a"

af

LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES

In Sections 2.2 and 2.4 we investigated infinite limits and vertical asymptotes. There we
let approach a number and the result was that the values of became arbitrarily large
(positive or negative). In this section we let become arbitrarily large (positive or nega-
tive) and see what happens to .

Let’s begin by investigating the behavior of the function defined by 

as becomes large. The table at the left gives values of this function correct to six decimal
places, and the graph of has been drawn by a computer in Figure 1.

As grows larger and larger you can see that the values of get closer and closer 
to 1. In fact, it seems that we can make the values of as close as we like to 1 by taking

sufficiently large. This situation is expressed symbolically by writing

lim
xl$

 
x 2 " 1
x 2 ! 1

! 1

x
f !x"

f !x"x

x10

y
y=1

y=≈-1
≈+1

FIGURE 1  

f
x

f !x" !
x 2 " 1
x 2 ! 1

f
y

x
yx

2.6

130 | | | | CHAPTER 2 LIMITS AND DERIVATIVES

x

0 "1
0
0.600000
0.800000
0.882353
0.923077
0.980198
0.999200
0.999800
0.999998*1000

*100
*50
*10
*5
*4
*3
*2
*1

f !x"



SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES | | | | 131

In general, we use the notation

to indicate that the values of become closer and closer to as becomes larger and
larger.

DEFINITION Let be a function defined on some interval . Then

means that the values of can be made arbitrarily close to by taking suf-
ficiently large.

Another notation for is

as

The symbol does not represent a number. Nonetheless, the expression is
often read as 

“the limit of , as approaches infinity, is ”

or “the limit of , as becomes infinite, is ”

or “the limit of , as increases without bound, is ”

The meaning of such phrases is given by Definition 1. A more precise definition, similar
to the definition of Section 2.4, is given at the end of this section.

Geometric illustrations of Definition 1 are shown in Figure 2. Notice that there are
many ways for the graph of to approach the line (which is called a horizontal
asymptote) as we look to the far right of each graph.

Referring back to Figure 1, we see that for numerically large negative values of , the
values of are close to 1. By letting decrease through negative values without bound,
we can make as close as we like to 1. This is expressed by writing

The general definition is as follows.

DEFINITION Let be a function defined on some interval . Then 

means that the values of can be made arbitrarily close to by taking suf-
ficiently large negative.
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Again, the symbol does not represent a number, but the expression
is often read as

“the limit of , as x approaches negative infinity, is L”

Definition 2 is illustrated in Figure 3. Notice that the graph approaches the line as
we look to the far left of each graph.

DEFINITION The line is called a horizontal asymptote of the curve
if either 

For instance, the curve illustrated in Figure 1 has the line as a horizontal asymp-
tote because 

An example of a curve with two horizontal asymptotes is . (See Figure 4.) 
In fact,

so both of the lines and are horizontal asymptotes. (This follows from
the fact that the lines are vertical asymptotes of the graph of tan.)

EXAMPLE 1 Find the infinite limits, limits at infinity, and asymptotes for the function f
whose graph is shown in Figure 5.

SOLUTION We see that the values of become large as from both sides, so

Notice that becomes large negative as x approaches 2 from the left, but large posi-
tive as x approaches 2 from the right. So

Thus both of the lines and are vertical asymptotes.
As x becomes large, it appears that approaches 4. But as x decreases through

negative values, approaches 2. So

This means that both y ! 4 and y ! 2 are horizontal asymptotes. M
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EXAMPLE 2 Find and .

SOLUTION Observe that when is large, is small. For instance,

In fact, by taking large enough, we can make as close to 0 as we please. Therefore,
according to Definition 1, we have 

Similar reasoning shows that when is large negative, is small negative, so we also
have

It follows that the line (the -axis) is a horizontal asymptote of the curve .
(This is an equilateral hyperbola; see Figure 6.) M

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 9 and
10) are also valid if “ ” is replaced by “ ” or “ .” In particular, if we
combine Laws 6 and 11 with the results of Example 2, we obtain the following important
rule for calculating limits.

THEOREM If is a rational number, then

If is a rational number such that is defined for all x, then

EXAMPLE 3 Evaluate

and indicate which properties of limits are used at each stage.

SOLUTION As becomes large, both numerator and denominator become large, so it isn’t
obvious what happens to their ratio. We need to do some preliminary algebra. 

To evaluate the limit at infinity of any rational function, we first divide both the
numerator and denominator by the highest power of that occurs in the denominator. x

x
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(We may assume that , since we are interested only in large values of .) In this
case the highest power of in the denominator is , so we have

(by Limit Law 5)

(by 1, 2, and 3)

(by 7 and Theorem 5)

A similar calculation shows that the limit as is also . Figure 7 illustrates the
results of these calculations by showing how the graph of the given rational function
approaches the horizontal asymptote . M

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

SOLUTION Dividing both numerator and denominator by and using the properties of lim-
its, we have 

(since for )

Therefore the line is a horizontal asymptote of the graph of .
In computing the limit as , we must remember that for , we have

. So when we divide the numerator by , for we get
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Therefore

Thus the line is also a horizontal asymptote.
A vertical asymptote is likely to occur when the denominator, , is 0, that is,

when . If is close to and , then the denominator is close to 0 and 
is positive. The numerator is always positive, so is positive. Therefore

If is close to but , then and so is large negative. Thus

The vertical asymptote is . All three asymptotes are shown in Figure 8. M

EXAMPLE 5 Compute .

SOLUTION Because both and x are large when x is large, it’s difficult to see what
happens to their difference, so we use algebra to rewrite the function. We first multiply
numerator and denominator by the conjugate radical:

The Squeeze Theorem could be used to show that this limit is 0. But an easier method is
to divide numerator and denominator by . Doing this and using the Limit Laws, we obtain

Figure 9 illustrates this result. M

The graph of the natural exponential function has the line (the x-axis) as
a horizontal asymptote. (The same is true of any exponential function with base .) In a & 1
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fact, from the graph in Figure 10 and the corresponding table of values, we see that

Notice that the values of approach 0 very rapidly.

EXAMPLE 6 Evaluate .

SOLUTION If we let , we know that as . Therefore, by (6),

(See Exercise 71.) M

EXAMPLE 7 Evaluate .

SOLUTION As x increases, the values of sin x oscillate between 1 and !1 infinitely often
and so they don’t approach any definite number. Thus does not exist. M

INFINITE LIMITS AT INFINITY

The notation

is used to indicate that the values of become large as becomes large. Similar mean-
ings are attached to the following symbols:

EXAMPLE 8 Find and .

SOLUTION When becomes large, also becomes large. For instance,

In fact, we can make as big as we like by taking large enough. Therefore we can
write

Similarly, when is large negative, so is . Thus

These limit statements can also be seen from the graph of in Figure 11. My ! x 3
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Looking at Figure 10 we see that

but, as Figure 12 demonstrates, becomes large as at a much faster rate than
.

EXAMPLE 9 Find .

| SOLUTION It would be wrong to write

The Limit Laws can’t be applied to infinite limits because is not a number (
can’t be defined). However, we can write

because both and become arbitrarily large and so their product does too. M

EXAMPLE 10 Find .

SOLUTION As in Example 3, we divide the numerator and denominator by the highest
power of in the denominator, which is just x :

because and as . M

The next example shows that by using infinite limits at infinity, together with intercepts,
we can get a rough idea of the graph of a polynomial without having to plot a large num-
ber of points.

EXAMPLE 11 Sketch the graph of by finding its inter-
cepts and its limits as and as .

SOLUTION The -intercept is and the -intercepts are 
found by setting : . Notice that since is positive, the function
doesn’t change sign at ; thus the graph doesn’t cross the -axis at . The graph crosses
the axis at and .

When is large positive, all three factors are large, so

When is large negative, the first factor is large positive and the second and third factors
are both large negative, so 

Combining this information, we give a rough sketch of the graph in Figure 13. M
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PRECISE DEFINITIONS

Definition 1 can be stated precisely as follows.

DEFINITION Let be a function defined on some interval . Then

means that for every there is a corresponding number such that

then

In words, this says that the values of can be made arbitrarily close to (within a
distance , where is any positive number) by taking sufficiently large (larger than ,
where depends on ). Graphically it says that by choosing large enough (larger than
some number ) we can make the graph of lie between the given horizontal lines

and as in Figure 14. This must be true no matter how small we
choose . Figure 15 shows that if a smaller value of is chosen, then a larger value of 
may be required.

Similarly, a precise version of Definition 2 is given by Definition 8, which is illustrated
in Figure 16.

DEFINITION Let be a function defined on some interval . Then 

means that for every there is a corresponding number such that

then % f !x" ! L % ' (x ' N if

N( & 0

lim
xl!"

 f !x" ! L

!!", a"f8

FIGURE 14
lim ƒ=L
x    `

FIGURE 15
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In Example 3 we calculated that 

In the next example we use a graphing device to relate this statement to Definition 7 with
and .

EXAMPLE 12 Use a graph to find a number such that 

then

SOLUTION We rewrite the given inequality as

We need to determine the values of for which the given curve lies between the horizon-
tal lines and . So we graph the curve and these lines in Figure 17. Then
we use the cursor to estimate that the curve crosses the line when . To
the right of this number the curve stays between the lines and . Round-
ing to be safe, we can say that

then

In other words, for we can choose (or any larger number) in Definition 7.
M

EXAMPLE 13 Use Definition 7 to prove that .

SOLUTION Given , we want to find such that

if then

In computing the limit we may assume that . Then . Let’s
choose . So

if then ( 1
x

! 0 ( !
1
x

' (x & N !
1
(

N ! 1#(
1#x ' (  &?  x & 1#(x & 0

( 1
x

! 0 ( ' (x & N

N( & 0
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x ) 6.7y ! 0.5
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Therefore, by Definition 7,

Figure 18 illustrates the proof by showing some values of and the corresponding values
of .

M

Finally we note that an infinite limit at infinity can be defined as follows. The geomet-
ric illustration is given in Figure 19.

DEFINITION Let be a function defined on some interval . Then

means that for every positive number there is a corresponding positive number
N such that

then

Similar definitions apply when the symbol is replaced by . (See Exercise 70.)!""

f !x" & Mx & Nif

M

lim
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! 0
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(e) (f) The equations of the asymptotes

x

y

1

1
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!"
 f !x"

lim
x l

 

"
 f !x"lim

x l
 

!1#
 f !x"1. Explain in your own words the meaning of each of the 

following.
(a) (b)

(a) Can the graph of intersect a vertical asymptote?
Can it intersect a horizontal asymptote? Illustrate by
sketching graphs.

(b) How many horizontal asymptotes can the graph of
have? Sketch graphs to illustrate the possibilities.

3. For the function whose graph is given, state the following.

(a) (b) lim
x l

 

!1!
 f !x"lim

x l
 

2
 f !x"

f

y ! f !x"

y ! f !x"2.

lim 
xl!"

 f !x" ! 3lim 
xl"

 f !x" ! 5

EXERCISES2.6
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13–14 Evaluate the limit and justify each step by indicating the
appropriate properties of limits.

13. 14.

15–36 Find the limit.

15. 16.

17. 18.

20.

21. 22.

23. 24.

26.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

; 37. (a) Estimate the value of

by graphing the function .
(b) Use a table of values of to guess the value of the

limit.
(c) Prove that your guess is correct.

; 38. (a) Use a graph of

to estimate the value of to one decimal place.
(b) Use a table of values of to estimate the limit to four

decimal places.
(c) Find the exact value of the limit.

f !x"
lim xl" f !x"

f !x" ! s3x 2 # 8x # 6 ! s3x 2 # 3x # 1

f !x"
f !x" ! sx 2 # x # 1 # x

lim
x l

 

!"
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 !e!2x cos x"
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1 ! e x

1 # 2e x
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x 3 ! 2x # 3
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19.
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3x2 ! x # 4

2x2 # 5x ! 8

4. For the function whose graph is given, state the following.

(a) (b)

(c) (d)

(e) (f) The equations of the asymptotes

5–10 Sketch the graph of an example of a function that 
satisfies all of the given conditions.

5. is odd

6.

8.

9.

10. is even

; 11. Guess the value of the limit

by evaluating the function for 
and . Then use a graph of 

to support your guess.

; 12. (a) Use a graph of

to estimate the value of correct to two 
decimal places.

(b) Use a table of values of to estimate the limit to 
four decimal places.
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53. (a) Use the Squeeze Theorem to evaluate .

; (b) Graph . How many times does the graph
cross the asymptote?

; 54. By the end behavior of a function we mean the behavior of
its values as and as .
(a) Describe and compare the end behavior of the functions

by graphing both functions in the viewing rectangles
by and by .

(b) Two functions are said to have the same end behavior if
their ratio approaches 1 as . Show that P and Q
have the same end behavior.

Let and be polynomials. Find

if the degree of is (a) less than the degree of and 
(b) greater than the degree of .

56. Make a rough sketch of the curve ( an integer) 
for the following five cases:

(i) (ii) , odd
(iii) , even (iv) , odd
(v) , even

Then use these sketches to find the following limits.
(a) (b)

(c) (d)

Find if, for all ,

58. (a) A tank contains 5000 L of pure water. Brine that contains
30 g of salt per liter of water is pumped into the tank at a
rate of 25 L!min. Show that the concentration of salt after

minutes (in grams per liter) is

(b) What happens to the concentration as ?

59. In Chapter 9 we will be able to show, under certain assump-
tions, that the velocity of a falling raindrop at time t is

where t is the acceleration due to gravity and is the 
terminal velocity of the raindrop.
(a) Find .lim t l ! v"t#

v*

v"t# ! v*"1 " e "t t!v*#
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30t
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QP55.
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Q"x# ! 3x 5P"x# ! 3x 5 " 5x 3 # 2x

x l "!x l !

f "x# ! "sin x#!x

lim
x l !

 
sin x

x
39–44 Find the horizontal and vertical asymptotes of each curve.
If you have a graphing device, check your work by graphing the
curve and estimating the asymptotes.

39. 40.

42.

43. 44.

; 45. Estimate the horizontal asymptote of the function

by graphing for . Then calculate the
equation of the asymptote by evaluating the limit. How do
you explain the discrepancy?

; 46. (a) Graph the function

How many horizontal and vertical asymptotes do you
observe? Use the graph to estimate the values of the limits

and

(b) By calculating values of , give numerical estimates of
the limits in part (a).

(c) Calculate the exact values of the limits in part (a). Did
you get the same value or different values for these two
limits? [In view of your answer to part (a), you might
have to check your calculation for the second limit.]

47. Find a formula for a function that satisfies the following 
conditions:

, , ,

,

48. Find a formula for a function that has vertical asymptotes
and and horizontal asymptote .

49–52 Find the limits as and as . Use this infor-
mation, together with intercepts, to give a rough sketch of the
graph as in Example 11.

49. 50.

51.

52. y ! x 2"x 2 " 1#2"x # 2#

y ! "3 " x#"1 # x#2"1 " x#4

y ! x 3"x # 2#2"x " 1#y ! x 4 " x6
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"10 ' x ' 10f
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x 3 # 500x 2 # 100x # 2000
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2e x

e x " 5
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x 2 " 6x # 5
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x 2 " x 4y !
2x 2 # x " 1
x 2 # x " 2

41.

y !
x 2 # 1

2x 2 " 3x " 2
y !

2x # 1
x " 2
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DERIVATIVES AND RATES OF CHANGE

The problem of finding the tangent line to a curve and the problem of finding the velocity
of an object both involve finding the same type of limit, as we saw in Section 2.1. This spe-
cial type of limit is called a derivative and we will see that it can be interpreted as a rate
of change in any of the sciences or engineering.

TANGENTS

If a curve has equation and we want to find the tangent line to at the point
, then we consider a nearby point , where , and compute the slope

of the secant line :

Then we let approach along the curve by letting approach . If approaches a
number , then we define the tangent t to be the line through with slope . (This mPm

mPQaxCPQ

mPQ !
 f "x# " f "a#

x " a

PQ
x " aQ"x, f "x##P"a, f "a##

Cy ! f "x#C

2.7

(a) How large do we have to take so that ?
(b) Taking in Theorem 5, we have the statement

Prove this directly using Definition 7.

66. (a) How large do we have to take so that ?
(b) Taking in Theorem 5, we have the statement

Prove this directly using Definition 7.

67. Use Definition 8 to prove that .

68. Prove, using Definition 9, that .

69. Use Definition 9 to prove that .

70. Formulate a precise definition of 

Then use your definition to prove that

71. Prove that 

and

if these limits exist.

 lim
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0" f "1!t#

 lim
x l !
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1!sx $ 0.0001x
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1
x 2 ! 0

r ! 2
1!x 2 $ 0.0001x65.; (b) Graph if and . How long

does it take for the velocity of the raindrop to reach 99%
of its terminal velocity?

; 60. (a) By graphing and y ! 0.1 on a common screen,
discover how large you need to make x so that .

(b) Can you solve part (a) without using a graphing device?

; 61. Use a graph to find a number such that

if

; 62. For the limit 

illustrate Definition 7 by finding values of that correspond
to and .

; 63. For the limit 

illustrate Definition 8 by finding values of that correspond
to and .

; 64. For the limit 

illustrate Definition 9 by finding a value of that corres-
ponds to .M ! 100

N

lim
xl!
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amounts to saying that the tangent line is the limiting position of the secant line as 
approaches . See Figure 1.)

DEFINITION The tangent line to the curve at the point is
the line through with slope

provided that this limit exists.

In our first example we confirm the guess we made in Example 1 in Section 2.1.

EXAMPLE 1 Find an equation of the tangent line to the parabola at the 
point .

SOLUTION Here we have and , so the slope is

Using the point-slope form of the equation of a line, we find that an equation of the
tangent line at is

M

We sometimes refer to the slope of the tangent line to a curve at a point as the slope of
the curve at the point. The idea is that if we zoom in far enough toward the point, the curve
looks almost like a straight line. Figure 2 illustrates this procedure for the curve in
Example 1. The more we zoom in, the more the parabola looks like a line. In other words,
the curve becomes almost indistinguishable from its tangent line.

There is another expression for the slope of a tangent line that is sometimes easier to
use. If , then and so the slope of the secant line is

mPQ !
 f "a # h# " f "a#

h

PQx ! a # hh ! x " a

FIGURE 2 Zooming in toward the point (1, 1) on the parabola y=≈
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y ! 2x " 1ory " 1 ! 2"x " 1#
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x " 1
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x " 1
! lim

xl1
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x " 1

f "x# ! x 2a ! 1
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y ! x 2V
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 f "x# " f "a#

x " a
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P
QPQ
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N Point-slope form for a line through the 
point with slope :

y " y1 ! m"x " x1#
m"x1, y1#

FIGURE 1  
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Visual 2.7 shows an animation of 
Figure 2.
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(See Figure 3 where the case is illustrated and is to the right of . If it happened
that , however, would be to the left of .)

Notice that as approaches , approaches (because ) and so the expres-
sion for the slope of the tangent line in Definition 1 becomes

EXAMPLE 2 Find an equation of the tangent line to the hyperbola at the 
point .

SOLUTION Let . Then the slope of the tangent at is

Therefore an equation of the tangent at the point is 

which simplifies to

The hyperbola and its tangent are shown in Figure 4. M

VELOCITIES

In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and defined
its velocity to be the limiting value of average velocities over shorter and shorter time 
periods.

In general, suppose an object moves along a straight line according to an equation of
motion , where is the displacement (directed distance) of the object from the ori-
gin at time . The function that describes the motion is called the position function
of the object. In the time interval from to the change in position is

. (See Figure 5.) The average velocity over this time interval is

which is the same as the slope of the secant line in Figure 6.
Now suppose we compute the average velocities over shorter and shorter time intervals

. In other words, we let approach . As in the example of the falling ball, we
define the velocity (or instantaneous velocity) at time to be the limit of these
average velocities:

v"a# ! lim
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m ! lim
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PQh $ 0
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FIGURE 3  
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This means that the velocity at time is equal to the slope of the tangent line at 
(compare Equations 2 and 3).

Now that we know how to compute limits, let’s reconsider the problem of the fall-
ing ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the 
CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION We will need to find the velocity both when and when the ball hits the
ground, so it’s efficient to start by finding the velocity at a general time . Using the
equation of motion , we have

(a) The velocity after 5 s is m!s.

(b) Since the observation deck is 450 m above the ground, the ball will hit the ground at
the time when , that is,

This gives

The velocity of the ball as it hits the ground is therefore

M

DERIVATIVES

We have seen that the same type of limit arises in finding the slope of a tangent line
(Equation 2) or the velocity of an object (Equation 3). In fact, limits of the form

arise whenever we calculate a rate of change in any of the sciences or engineering, such as
a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit
occurs so widely, it is given a special name and notation.

DEFINITION The derivative of a function at a number , denoted by
, is

if this limit exists.

f )"a# ! lim
h l

 

0
 
 f "a # h# " f "a#

h

f )"a#
af4

lim
h l

 

0
 
 f "a # h# " f "a#

h

v"t1# ! 9.8t1 ! 9.8'450
4.9

( 94 m!s

t1 ! '450
4.9

( 9.6 sandt1
2 !

450
4.9

4.9t1
2 ! 450

s"t1# ! 450t1

v"5# ! "9.8#"5# ! 49

 ! lim
h l 0

 4.9"2a # h# ! 9.8a

 ! lim
h l 0

 
4.9"a 2 # 2ah # h 2 " a 2 #

h
! lim

h l 0
 
4.9"2ah # h 2 #

h

 v"a# ! lim
h l 0

 
 f "a # h# " f "a#

h
! lim

h l 0
 
4.9"a # h#2 " 4.9a 2

h

s ! f "t# ! 4.9t 2
t ! a

t ! 5

V

Pt ! a
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N Recall from Section 2.1: The distance 
(in meters) fallen after seconds is .4.9t 2t

N is read “ prime of .”aff )"a#
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If we write , then we have and approaches if and only if 
approaches . Therefore an equivalent way of stating the definition of the derivative, as we
saw in finding tangent lines, is

EXAMPLE 4 Find the derivative of the function at the number .

SOLUTION From Definition 4 we have

M

We defined the tangent line to the curve at the point to be the line
that passes through and has slope given by Equation 1 or 2. Since, by Definition 4,
this is the same as the derivative , we can now say the following.

The tangent line to at is the line through whose slope is
equal to , the derivative of at .

If we use the point-slope form of the equation of a line, we can write an equation of the
tangent line to the curve at the point :

EXAMPLE 5 Find an equation of the tangent line to the parabola at
the point .

SOLUTION From Example 4 we know that the derivative of at the
number is . Therefore the slope of the tangent line at is

. Thus an equation of the tangent line, shown in Figure 7, is

or M

RATES OF CHANGE

Suppose is a quantity that depends on another quantity . Thus is a function of and
we write . If changes from to , then the change in (also called the incre-
ment of ) is

*x ! x2 " x1

x
xx2x1xy ! f "x#

xyxy

y ! "2xy " ""6# ! ""2#"x " 3#

f )"3# ! 2"3# " 8 ! "2
"3, "6#f )"a# ! 2a " 8a

f "x# ! x 2 " 8x # 9

"3, "6#
y ! x 2 " 8x # 9V

y " f "a# ! f )"a#"x " a#

"a, f "a##y ! f "x#

aff )"a#
"a, f "a##"a, f "a##y ! f "x#

f )"a#
mP

P"a, f "a##y ! f "x#

 ! 2a " 8

 ! lim
h l

 

0
 
2ah # h 2 " 8h

h
! lim

h l
 

0
 "2a # h " 8#

 ! lim
h l

 

0
 
a 2 # 2ah # h 2 " 8a " 8h # 9 " a 2 # 8a " 9

h

 ! lim
h l

 

0
 
$"a # h#2 " 8"a # h# # 9% " $a 2 " 8a # 9%

h

 f )"a# ! lim
h l

 

0
 
 f "a # h# " f "a#

h

af "x# ! x 2 " 8x # 9V

f )"a# ! lim
xl a

 
 f "x# " f "a#

x " a
5

a
x0hh ! x " ax ! a # h

y=≈-8x+9

(3, _6)

y=_2x

FIGURE 7  

0 x
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and the corresponding change in is

The difference quotient

is called the average rate of change of y with respect to x over the interval and
can be interpreted as the slope of the secant line in Figure 8.

By analogy with velocity, we consider the average rate of change over smaller and
smaller intervals by letting approach and therefore letting approach . The limit
of these average rates of change is called the (instantaneous) rate of change of y with
respect to x at , which is interpreted as the slope of the tangent to the curve 
at :

We recognize this limit as being the derivative .
We know that one interpretation of the derivative is as the slope of the tangent line

to the curve when . We now have a second interpretation:

The derivative is the instantaneous rate of change of with respect 
to when .

The connection with the first interpretation is that if we sketch the curve , then
the instantaneous rate of change is the slope of the tangent to this curve at the point where

. This means that when the derivative is large (and therefore the curve is steep, as 
at the point in Figure 9), the -values change rapidly. When the derivative is small, the
curve is relatively flat and the -values change slowly.

In particular, if is the position function of a particle that moves along a straight
line, then is the rate of change of the displacement with respect to the time . In
other words, is the velocity of the particle at time . The speed of the particle is
the absolute value of the velocity, that is, 

In the next example we discuss the meaning of the derivative of a function that is
defined verbally.

EXAMPLE 6 A manufacturer produces bolts of a fabric with a fixed width. The cost of
producing x yards of this fabric is dollars.
(a) What is the meaning of the derivative ? What are its units?
(b) In practical terms, what does it mean to say that ?
(c) Which do you think is greater, or ? What about ?

SOLUTION
(a) The derivative is the instantaneous rate of change of C with respect to x; that
is, means the rate of change of the production cost with respect to the number of
yards produced. (Economists call this rate of change the marginal cost. This idea is dis-
cussed in more detail in Sections 3.7 and 4.7.)

f )"x#
f )"x#

f )"5000#f )"500#f )"50#
f )"1000# ! 9

f )"x#
C ! f "x#

V

) f )"a# ).
t ! af )"a#

tsf )"a#
s ! f "t#

y
yP

x ! a

y ! f "x#

x ! ax
y ! f "x#f )"a#

x ! ay ! f "x#
f )"a#

f )"x1#

! lim 
x2l x1

 
 f "x2# " f "x1#

x2 " x1
 instantaneous rate of change ! lim 

*xl 0
 
*y
*x

6

P"x1, f "x1##
y ! f "x#x ! x1

0*xx1x2

PQ
$x1, x2%

*y
*x

!
 f "x2# " f "x1#

x2 " x1

*y ! f "x2# " f "x1#

y
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average rate of change ! mPQ 
instantaneous rate of change !

slope of tangent at P  

FIGURE 8  
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The y-values are changing rapidly
at P and slowly at Q.
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Because

the units for are the same as the units for the difference quotient . Since 
is measured in dollars and in yards, it follows that the units for are dollars

per yard.

(b) The statement that means that, after 1000 yards of fabric have been
manufactured, the rate at which the production cost is increasing is $9!yard. (When

, C is increasing 9 times as fast as x.)
Since is small compared with , we could use the approximation

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably lower
when x ! 500 than when x ! 50 (the cost of making the 500th yard is less than the cost
of the 50th yard) because of economies of scale. (The manufacturer makes more efficient
use of the fixed costs of production.) So

But, as production expands, the resulting large-scale operation might become inefficient
and there might be overtime costs. Thus it is possible that the rate of increase of costs
will eventually start to rise. So it may happen that

M

In the following example we estimate the rate of change of the national debt with respect
to time. Here the function is defined not by a formula but by a table of values.

EXAMPLE 7 Let be the US national debt at time t. The table in the margin gives
approximate values of this function by providing end of year estimates, in billions of
dollars, from 1980 to 2000. Interpret and estimate the value of .

SOLUTION The derivative means the rate of change of D with respect to t when
, that is, the rate of increase of the national debt in 1990.

According to Equation 5,

So we compute and tabulate values of the difference quotient (the average rates of
change) as follows.

D)"1990# ! lim
tl1990

 
D"t# " D"1990#

t " 1990

t ! 1990
D)"1990#

D)"1990#

D"t#V

f )"5000# % f )"500#

f )"50# % f )"500#

f )"1000# (
*C
*x

!
*C
1

! *C

x ! 1000*x ! 1
x ! 1000

f )"1000# ! 9

f )"x#*x*C
*C!*xf )"x#

f )"x# ! lim
*xl 0

 
*C
*x

N Here we are assuming that the cost function 
is well behaved; in other words, doesn’t
oscillate rapidly near .x ! 1000

C"x#

t

1980 930.2
1985 1945.9
1990 3233.3
1995 4974.0
2000 5674.2

D"t#

t

1980 230.31
1985 257.48
1995 348.14
2000 244.09

D"t# " D"1990#
t " 1990



From this table we see that lies somewhere between 257.48 and 348.14 billion
dollars per year. [Here we are making the reasonable assumption that the debt didn’t
fluctuate wildly between 1980 and 2000.] We estimate that the rate of increase of the
national debt of the United States in 1990 was the average of these two numbers, namely

Another method would be to plot the debt function and estimate the slope of the tan-
gent line when . M

In Examples 3, 6, and 7 we saw three specific examples of rates of change: the veloci-
ty of an object is the rate of change of displacement with respect to time; marginal cost is
the rate of change of production cost with respect to the number of items produced; the
rate of change of the debt with respect to time is of interest in economics. Here is a small
sample of other rates of change: In physics, the rate of change of work with respect to time
is called power. Chemists who study a chemical reaction are interested in the rate of
change in the concentration of a reactant with respect to time (called the rate of reaction).
A biologist is interested in the rate of change of the population of a colony of bacteria with
respect to time. In fact, the computation of rates of change is important in all of the natu-
ral sciences, in engineering, and even in the social sciences. Further examples will be given
in Section 3.7.

All these rates of change are derivatives and can therefore be interpreted as slopes of
tangents. This gives added significance to the solution of the tangent problem. Whenever
we solve a problem involving tangent lines, we are not just solving a problem in geome-
try. We are also implicitly solving a great variety of problems involving rates of change in
science and engineering.

t ! 1990

D)"1990# ( 303 billion dollars per year

D)"1990#
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5–8 Find an equation of the tangent line to the curve at the 
given point.

6.

8.

(a) Find the slope of the tangent to the curve
at the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

10. (a) Find the slope of the tangent to the curve at
the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

11. (a) A particle starts by moving to the right along a horizontal
line; the graph of its position function is shown. When is
the particle moving to the right? Moving to the left?
Standing still?

(4, 12 )
"1, 1#

x ! a
y ! 1!sx 

"2, 3#
"1, 5#

x ! ay ! 3 # 4x 2 " 2x 3
9.

"0, 0#y !
2x

"x # 1#2 ,(1, 1#y ! sx ,7.

""1, 3#y ! 2x 3 " 5x,"3, 2#y !
x " 1
x " 2

,5.

1. A curve has equation .
(a) Write an expression for the slope of the secant line

through the points and .
(b) Write an expression for the slope of the tangent line at P.

; 2. Graph the curve in the viewing rectangles by
, by , and by .

What do you notice about the curve as you zoom in toward
the point ?

3. (a) Find the slope of the tangent line to the parabola
at the point 

(i) using Definition 1 (ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the parabola and the tangent line. As a check on
your work, zoom in toward the point until the
parabola and the tangent line are indistinguishable.

4. (a) Find the slope of the tangent line to the curve 
at the point 
(i) using Definition 1 (ii) using Equation 2

(b) Find an equation of the tangent line in part (a).
; (c) Graph the curve and the tangent line in successively

smaller viewing rectangles centered at until the
curve and the line appear to coincide.

"1, 0#

"1, 0#
y ! x " x 3

"1, 3#

"1, 3#y ! 4x " x 2

"0, 1#

$0.9, 1.1%$"0.1, 0.1%$0.5, 1.5%$"0.5, 0.5%$0, 2%
$"1, 1%y ! e x

Q"x, f "x##P"3, f "3##

y ! f "x#

EXERCISES2.7

N A NOTE ON UNITS
The units for the average rate of change 
are the units for divided by the units for ,
namely, billions of dollars per year. The instan-
taneous rate of change is the limit of the aver-
age rates of change, so it is measured in the
same units: billions of dollars per year.

*t*D
*D!*t
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(a) Find an equation of the tangent line to the graph of
at if and .

(b) If the tangent line to at (4, 3) passes through the
point (0, 2), find and .

Sketch the graph of a function for which ,
, and .

20. Sketch the graph of a function for which 
, , and .

21. If , find and use it to find an equation
of the tangent line to the parabola at the 
point .

22. If , find and use it to find an equation of
the tangent line to the curve at the point .

(a) If , find and use it to find an
equation of the tangent line to the curve 
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

24. (a) If , find and use it to find equa-
tions of the tangent lines to the curve at 
the points and .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines on the same screen.

25–30 Find .

25. 26.

28.

29. 30.

31–36 Each limit represents the derivative of some function at
some number . State such an and in each case.

31. 32.

33. 34.

36. lim
t l

 

1
 
t 4 # t " 2

t " 1
lim
h l

 

0
 
cos"+ # h# # 1

h
35.

lim
x l

 

+!4
 
tan x " 1
x " +!4

lim
x l

 

5
 
2x " 32
x " 5

lim
h l

 

0
 
s4 16 # h " 2

h
lim
h l

 

0
 
"1 # h#10 " 1

h

afa
f

f "x# ! s3x # 1f "x# !
1

sx # 2

f "x# !
x 2 # 1
x " 2

f "t# !
2t # 1
t # 3

27.

f "t# ! t 4 " 5tf "x# ! 3 " 2x # 4x 2

f )"a#

"3, 9#"2, 8#
y ! 4x 2 " x 3

G)"a#G"x# ! 4x 2 " x 3

"2, 2#
y ! 5x!"1 # x 2#

F)"2#F"x# ! 5x!"1 # x 2#23.

"0, 1#y ! 1 " x 3
t)"0#t"x# ! 1 " x 3

"2, 2#
y ! 3x 2 " 5x

f )"2#f "x# ! 3x 2 " 5x

t)"2# ! 1t)"1# ! 3t)""1# ! "1
t"0# ! t)"0# ! 0,t

f )"2# ! "1f )"1# ! 0f )"0# ! 3,
f "0# ! 0f19.

f )"4#f "4#
y ! f "x#

t)"5# ! 4t"5# ! "3x ! 5y ! t"x#
18.

y=©

1 3 4_1 0 x2

y(b) Draw a graph of the velocity function.

12. Shown are graphs of the position functions of two runners, 
and , who run a 100-m race and finish in a tie.

(a) Describe and compare how the runners run the race.
(b) At what time is the distance between the runners the

greatest?
(c) At what time do they have the same velocity?

If a ball is thrown into the air with a velocity of 40 ft!s, its
height (in feet) after seconds is given by .
Find the velocity when .

14. If a rock is thrown upward on the planet Mars with a velocity
of , its height (in meters) after seconds is given by

.
(a) Find the velocity of the rock after one second.
(b) Find the velocity of the rock when .
(c) When will the rock hit the surface?
(d) With what velocity will the rock hit the surface?

15. The displacement (in meters) of a particle moving in a
straight line is given by the equation of motion ,
where is measured in seconds. Find the velocity of the 
particle at times , and .

16. The displacement (in meters) of a particle moving in a
straight line is given by , where is mea-
sured in seconds.
(a) Find the average velocity over each time interval:

(i) (ii)
(iii) (iv)

(b) Find the instantaneous velocity when .
(c) Draw the graph of as a function of and draw the secant

lines whose slopes are the average velocities in part (a)
and the tangent line whose slope is the instantaneous
velocity in part (b).

For the function t whose graph is given, arrange the follow-
ing numbers in increasing order and explain your reasoning:

0 t)""2# t)"0# t)"2# t)"4#

17.

ts
t ! 4

$4, 4.5%$4, 5%
$3.5, 4%$3, 4%

ts ! t 2 " 8t # 18

t ! 3t ! a, t ! 1, t ! 2
t

s ! 1!t 2

t ! a

H ! 10t " 1.86t 2
t10 m!s

t ! 2
y ! 40t " 16t 2t

13.

s (meters)

0 4 8 12

80

40

t (seconds)

A

B

B
A

s (meters)

0 2 4 6

4

2

t (seconds)



(b) Estimate the instantaneous rate of growth in 2000 by 
taking the average of two average rates of change. What 
are its units?

(c) Estimate the instantaneous rate of growth in 2000 by mea-
suring the slope of a tangent.

The cost (in dollars) of producing units of a certain com-
modity is .
(a) Find the average rate of change of with respect to when

the production level is changed
(i) from to 

(ii) from to 
(b) Find the instantaneous rate of change of with respect to 

when . (This is called the marginal cost.
Its significance will be explained in Section 3.7.)

44. If a cylindrical tank holds 100,000 gallons of water, which can
be drained from the bottom of the tank in an hour, then Torri-
celli’s Law gives the volume of water remaining in the tank
after minutes as

Find the rate at which the water is flowing out of the tank (the
instantaneous rate of change of with respect to ) as a func-
tion of t. What are its units? For times t ! 0, 10, 20, 30, 40, 50,
and 60 min, find the flow rate and the amount of water remain-
ing in the tank. Summarize your findings in a sentence or two.
At what time is the flow rate the greatest? The least?

The cost of producing x ounces of gold from a new gold mine
is dollars.
(a) What is the meaning of the derivative ? What are its

units?
(b) What does the statement mean?
(c) Do you think the values of will increase or decrease

in the short term? What about the long term? Explain.

46. The number of bacteria after t hours in a controlled laboratory
experiment is .
(a) What is the meaning of the derivative ? What are its

units?
(b) Suppose there is an unlimited amount of space and

nutrients for the bacteria. Which do you think is larger,
or ? If the supply of nutrients is limited, would

that affect your conclusion? Explain.

Let be the temperature (in ) in Dallas hours after mid-
night on June 2, 2001. The table shows values of this function
recorded every two hours. What is the meaning of ? 
Estimate its value.

T !!10"

t"FT!t"47.

f !!10"f !!5"

f !!5"
n ! f !t"

f !!x"
f !!800" ! 17

f !!x"
C ! f !x"

45.

tV

0 # t # 60V!t" ! 100,000#1 $
t

60$2

t
V

x ! 100
xC

x ! 101x ! 100
x ! 105x ! 100

xC
C!x" ! 5000 % 10x % 0.05x 2

x43.

37–38 A particle moves along a straight line with equation of
motion , where is measured in meters and in seconds.
Find the velocity and the speed when .

37. 38.

A warm can of soda is placed in a cold refrigerator. Sketch the
graph of the temperature of the soda as a function of time. Is
the initial rate of change of temperature greater or less than the
rate of change after an hour?

40. A roast turkey is taken from an oven when its temperature has
reached 185°F and is placed on a table in a room where the
temperature is 75°F. The graph shows how the temperature of
the turkey decreases and eventually approaches room tempera-
ture. By measuring the slope of the tangent, estimate the rate of
change of the temperature after an hour.

41. The table shows the estimated percentage of the population
of Europe that use cell phones. (Midyear estimates are given.)

(a) Find the average rate of cell phone growth
(i) from 2000 to 2002 (ii) from 2000 to 2001

(iii) from 1999 to 2000
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2000 by 
taking the average of two average rates of change. What 
are its units?

(c) Estimate the instantaneous rate of growth in 2000 by mea-
suring the slope of a tangent.

42. The number of locations of a popular coffeehouse chain is
given in the table. (The numbers of locations as of June 30 
are given.)

(a) Find the average rate of growth
(i) from 2000 to 2002 (ii) from 2000 to 2001

(iii) from 1999 to 2000
In each case, include the units.

N

P

P

T (°F)

0 30 60 90 120 150

100

200

t  (min)

39.

f !t" ! t $1 $ tf !t" ! 100 % 50t $ 4.9t 2

t ! 5
tss ! f !t"
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Year 1998 1999 2000 2001 2002 2003

P 28 39 55 68 77 83

Year 1998 1999 2000 2001 2002

N 1886 2135 3501 4709 5886

t 0 2 4 6 8 10 12 14

T 73 73 70 69 72 81 88 91



WRITING PROJECT EARLY METHODS FOR FINDING TANGENTS | | | | 153

50. The graph shows the influence of the temperature on the
maximum sustainable swimming speed of Coho salmon.
(a) What is the meaning of the derivative ? What are its

units?
(b) Estimate the values of and and interpret them.

51–52 Determine whether exists.

52. f !x" ! %x 2 sin 
1
x

   if x " 0

0 if x ! 0

f !x" ! %x sin 
1
x

   if x " 0

0 if x ! 0

51.

f !!0"

200 T (°C)10

S
(cm/s)

20

S!!25"S!!15"

S!!T "
S

T48. The quantity (in pounds) of a gourmet ground coffee that is
sold by a coffee company at a price of p dollars per pound 
is .
(a) What is the meaning of the derivative ? What are its

units?
(b) Is positive or negative? Explain.

49. The quantity of oxygen that can dissolve in water depends on
the temperature of the water. (So thermal pollution influences
the oxygen content of water.) The graph shows how oxygen
solubility varies as a function of the water temperature .
(a) What is the meaning of the derivative ? What are its

units?
(b) Estimate the value of and interpret it.

(mg/L)

4

8

12

16
S

0 T (°C)

Adapted from Environmental Science: Science: Living Within the  
System of Nature, 2d ed.; by Charles E. Kupchella, © 1989.  
Reprinted by permission of Prentice-Hall, Inc., Upper Saddle River, NJ.

8 16 24 32 40
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f !!8"

f !!8"
Q ! f ! p"

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac Newton in
the 1660s. But Newton acknowledged that “If I have seen further than other men, it is because I
have stood on the shoulders of giants.” Two of those giants were Pierre Fermat (1601–1665) and
Newton’s teacher at Cambridge, Isaac Barrow (1630–1677). Newton was familiar with the meth-
ods that these men used to find tangent lines, and their methods played a role in Newton’s eventual
formulation of calculus.

The following references contain explanations of these methods. Read one or more of the
references and write a report comparing the methods of either Fermat or Barrow to modern 
methods. In particular, use the method of Section 2.7 to find an equation of the tangent line to the
curve at the point (1, 3) and show how either Fermat or Barrow would have solved
the same problem. Although you used derivatives and they did not, point out similarities between
the methods.

1. Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1989),
pp. 389, 432.

2. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 124, 132.

3. Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders,
1990), pp. 391, 395.

4. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York:
Oxford University Press, 1972), pp. 344, 346.

y ! x 3 % 2x
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THE DERIVATIVE AS A FUNCTION

In the preceding section we considered the derivative of a function f at a fixed number a:

.

Here we change our point of view and let the number a vary. If we replace a in Equation 1
by a variable x, we obtain

Given any number x for which this limit exists, we assign to x the number . So we can
regard as a new function, called the derivative of and defined by Equation 2. We
know that the value of at , , can be interpreted geometrically as the slope of the
tangent line to the graph of at the point .

The function is called the derivative of because it has been “derived” from by
the limiting operation in Equation 2. The domain of is the set exists and may
be smaller than the domain of .

EXAMPLE 1 The graph of a function is given in Figure 1. Use it to sketch the graph
of the derivative .

SOLUTION We can estimate the value of the derivative at any value of by drawing the
tangent at the point and estimating its slope. For instance, for x ! 5 we draw 
the tangent at in Figure 2(a) and estimate its slope to be about , so . This
allows us to plot the point on the graph of directly beneath P. Repeating
this procedure at several points, we get the graph shown in Figure 2(b). Notice that the
tangents at , , and are horizontal, so the derivative is 0 there and the graph of 
crosses the -axis at the points , , and , directly beneath A, B, and C. Between 
and the tangents have positive slope, so is positive there. But between and 
the tangents have negative slope, so is negative there.f !!x"

CBf !!x"B
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M

EXAMPLE 2
(a) If , find a formula for .
(b) Illustrate by comparing the graphs of and .

SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the variable
is and that is temporarily regarded as a constant during the calculation of the limit.

! lim
h l 0

 !3x 2 % 3xh % h 2 $ 1" ! 3x 2 $ 1 ! lim
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h
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Visual 2.8 shows an animation of
Figure 2 for several functions.
TEC



(b) We use a graphing device to graph and in Figure 3. Notice that when
has horizontal tangents and is positive when the tangents have positive slope. So

these graphs serve as a check on our work in part (a).

M

EXAMPLE 3 If , find the derivative of . State the domain of .

SOLUTION

We see that exists if , so the domain of is . This is smaller than the
domain of , which is . M

Let’s check to see that the result of Example 3 is reasonable by looking at the graphs of
and in Figure 4. When is close to 0, is also close to , so is

very large and this corresponds to the steep tangent lines near in Figure 4(a) and the
large values of just to the right of 0 in Figure 4(b). When is large, is very small
and this corresponds to the flatter tangent lines at the far right of the graph of and the
horizontal asymptote of the graph of .

EXAMPLE 4 Find if .

SOLUTION

M! lim 
hl 0

 
$3

!2 % x % h"!2 % x"
! $

3
!2 % x"2! lim 
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Here we rationalize the numerator.
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OTHER NOTATIONS

If we use the traditional notation to indicate that the independent variable is and
the dependent variable is , then some common alternative notations for the derivative are
as follows:

The symbols and are called differentiation operators because they indicate the
operation of differentiation, which is the process of calculating a derivative.

The symbol , which was introduced by Leibniz, should not be regarded as a ratio
(for the time being); it is simply a synonym for . Nonetheless, it is a very useful and
suggestive notation, especially when used in conjunction with increment notation. Refer-
ring to Equation 2.7.6, we can rewrite the definition of derivative in Leibniz notation in the
form

If we want to indicate the value of a derivative in Leibniz notation at a specific num-
ber , we use the notation

or

which is a synonym for .

DEFINITION A function is differentiable at a if exists. It is differen-
tiable on an open interval [or or or ] if it is differ-
entiable at every number in the interval.

EXAMPLE 5 Where is the function differentiable?

SOLUTION If , then and we can choose small enough that and
hence . Therefore, for , we have

and so is differentiable for any .
Similarly, for we have and can be chosen small enough that

. Therefore, for ,

and so is differentiable for any .x ( 0f
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Gottfried Wilhelm Leibniz was born in Leipzig 
in 1646 and studied law, theology, philosophy, 
and mathematics at the university there, gradu-
ating with a bachelor’s degree at age 17. After
earning his doctorate in law at age 20, Leibniz
entered the diplomatic service and spent most of
his life traveling to the capitals of Europe on 
political missions. In particular, he worked to
avert a French military threat against Germany
and attempted to reconcile the Catholic and
Protestant churches.

His serious study of mathematics did not begin
until 1672 while he was on a diplomatic mission
in Paris. There he built a calculating machine and
met scientists, like Huygens, who directed his
attention to the latest developments in mathe-
matics and science. Leibniz sought to develop a
symbolic logic and system of notation that would
simplify logical reasoning. In particular, the ver-
sion of calculus that he published in 1684 estab-
lished the notation and the rules for finding
derivatives that we use today.

Unfortunately, a dreadful priority dispute arose
in the 1690s between the followers of Newton
and those of Leibniz as to who had invented 
calculus first. Leibniz was even accused of pla-
giarism by members of the Royal Society in 
England. The truth is that each man invented 
calculus independently. Newton arrived at his 
version of calculus first but, because of his fear 
of controversy, did not publish it immediately. So
Leibniz’s 1684 account of calculus was the first 
to be published.

LEIBNIZ



For we have to investigate

Let’s compute the left and right limits separately:

and

Since these limits are different, does not exist. Thus is differentiable at all 
except 0.

A formula for is given by  

and its graph is shown in Figure 5(b). The fact that does not exist is reflected geo-
metrically in the fact that the curve does not have a tangent line at . [See
Figure 5(a).] M

Both continuity and differentiability are desirable properties for a function to have. The
following theorem shows how these properties are related.

THEOREM If is differentiable at , then is continuous at .

PROOF To prove that is continuous at , we have to show that . We
do this by showing that the difference approaches 0.

The given information is that f is differentiable at a, that is,

exists (see Equation 2.7.5). To connect the given and the unknown, we divide and multi-
ply by (which we can do when ):

Thus, using the Product Law and (2.7.5), we can write
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To use what we have just proved, we start with and add and subtract :

Therefore is continuous at . M

| The converse of Theorem 4 is false; that is, there are functions that are continuous
but not differentiable. For instance, the function is continuous at 0 because

(See Example 7 in Section 2.3.) But in Example 5 we showed that is not differentiable
at 0.

HOW CAN A FUNCTION FAIL TO BE DIFFERENTIABLE?

We saw that the function in Example 5 is not differentiable at 0 and Figure 5(a)
shows that its graph changes direction abruptly when . In general, if the graph of a
function has a “corner” or “kink” in it, then the graph of has no tangent at this point
and is not differentiable there. [In trying to compute , we find that the left and right
limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if is
not continuous at , then is not differentiable at . So at any discontinuity (for instance,
a jump discontinuity) fails to be differentiable.

A third possibility is that the curve has a vertical tangent line when ; that is,
is continuous at and

This means that the tangent lines become steeper and steeper as . Figure 6 shows one
way that this can happen; Figure 7(c) shows another. Figure 7 illustrates the three possi-
bilities that we have discussed.

A graphing calculator or computer provides another way of looking at differentiabil-
ity. If is differentiable at , then when we zoom in toward the point the graph !a, f !a""af

FIGURE 7
Three ways for ƒ not to be

differentiable at a (a) A corner (c) A vertical tangent(b) A discontinuity
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straightens out and appears more and more like a line. (See Figure 8. We saw a specific
example of this in Figure 2 in Section 2.7.) But no matter how much we zoom in toward a
point like the ones in Figures 6 and 7(a), we can’t eliminate the sharp point or corner (see
Figure 9).

HIGHER DERIVATIVES

If is a differentiable function, then its derivative is also a function, so may have a
derivative of its own, denoted by . This new function is called the second
derivative of because it is the derivative of the derivative of . Using Leibniz notation,
we write the second derivative of as

EXAMPLE 6 If , find and interpret .

SOLUTION In Example 2 we found that the first derivative is . So the sec-
ond derivative is

The graphs of , , are shown in Figure 10.
We can interpret as the slope of the curve at the point . In

other words, it is the rate of change of the slope of the original curve .
Notice from Figure 10 that is negative when has negative slope 

and positive when has positive slope. So the graphs serve as a check on our 
calculations. M

In general, we can interpret a second derivative as a rate of change of a rate of change.
The most familiar example of this is acceleration, which we define as follows.

If is the position function of an object that moves in a straight line, we know
that its first derivative represents the velocity of the object as a function of time:
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ƒ is differentiable at a.

FIGURE 9
ƒ is not differentiable at a.
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The instantaneous rate of change of velocity with respect to time is called the acceleration
of the object. Thus the acceleration function is the derivative of the velocity function

and is therefore the second derivative of the position function:

or, in Leibniz notation,

The third derivative is the derivative of the second derivative: . So
can be interpreted as the slope of the curve or as the rate of change of

. If , then alternative notations for the third derivative are

The process can be continued. The fourth derivative is usually denoted by . In gen-
eral, the th derivative of is denoted by and is obtained from by differentiating 
times. If , we write

EXAMPLE 7 If , find and .

SOLUTION In Example 6 we found that . The graph of the second derivative has
equation and so it is a straight line with slope 6. Since the derivative is the
slope of , we have

for all values of . So is a constant function and its graph is a horizontal line. There-
fore, for all values of ,

M

We can interpret the third derivative physically in the case where the function is the
position function of an object that moves along a straight line. Because

, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk:

Thus the jerk j is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

We have seen that one application of second and third derivatives occurs in analyzing
the motion of objects using acceleration and jerk. We will investigate another applica-
tion of second derivatives in Section 4.3, where we show how knowledge of gives us
information about the shape of the graph of . In Chapter 11 we will see how second and
higher derivatives enable us to represent functions as sums of infinite series.
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4–11 Trace or copy the graph of the given function . (Assume
that the axes have equal scales.) Then use the method of Example
1 to sketch the graph of below it.

4.

6.

7. 8.

9. 10.

12. Shown is the graph of the population function for yeast
cells in a laboratory culture. Use the method of Example 1 to

(yeast cells)
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5.

0 x

y
f !

f1–2 Use the given graph to estimate the value of each derivative.
Then sketch the graph of .

1. (a)
(b)
(c)
(d)
(e)
(f)
(g)

2. (a)
(b)
(c)
(d)
(e)
(f)

Match the graph of each function in (a)–(d) with the graph of
its derivative in I–IV. Give reasons for your choices.
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26.

28.

29.

30. (a) Sketch the graph of by starting with the
graph of and using the transformations of Sec-
tion 1.3.

(b) Use the graph from part (a) to sketch the graph of .
(c) Use the definition of a derivative to find . What are

the domains of f and ?
; (d) Use a graphing device to graph and compare with your

sketch in part (b).

31. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .

32. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .

The unemployment rate varies with time. The table
(from the Bureau of Labor Statistics) gives the percentage of
unemployed in the US labor force from 1993 to 2002.

(a) What is the meaning of ? What are its units?
(b) Construct a table of values for .

34. Let be the percentage of Americans under the age of 18
at time . The table gives values of this function in census
years from 1950 to 2000.

(a) What is the meaning of ? What are its units?
(b) Construct a table of estimated values for .
(c) Graph and .
(d) How would it be possible to get more accurate values 

for ?P!!t"

P!P
P!!t"

P!!t"

t
P!t"

U!!t"
U!!t"

U!t"33.

f !f

f !!t"f !t" ! t 2 $ st 

f !f

f !!x"f !x" ! x 4 # 2x

f !
f !

f !!x"
f !

y ! sx 
f !x" ! s6 $ x 

f !x" ! x 4

t!t" !
1
st G!t" !

4t
t # 1

27.

f !x" !
3 # x
1 $ 3x

t!x" ! s1 # 2x 25.graph the derivative . What does the graph of tell us
about the yeast population?

13. The graph shows how the average age of first marriage of
Japanese men has varied in the last half of the 20th century.
Sketch the graph of the derivative function . During
which years was the derivative negative?

14–16 Make a careful sketch of the graph of and below it
sketch the graph of in the same manner as in Exercises 4–11. 
Can you guess a formula for from its graph?

14. 15.

16.

; Let .
(a) Estimate the values of , , , and by

using a graphing device to zoom in on the graph of f.
(b) Use symmetry to deduce the values of , ,

and .
(c) Use the results from parts (a) and (b) to guess a formula

for .
(d) Use the definition of a derivative to prove that your guess

in part (c) is correct.

; 18. Let .
(a) Estimate the values of , , , , and 

by using a graphing device to zoom in on the graph of f.
(b) Use symmetry to deduce the values of , ,

, and .
(c) Use the values from parts (a) and (b) to graph .
(d) Guess a formula for .
(e) Use the definition of a derivative to prove that your guess

in part (d) is correct.

19–29 Find the derivative of the function using the definition of
derivative. State the domain of the function and the domain of its
derivative.

19. 20.

21. 22.

23. 24. f !x" ! x # sx f !x" ! x 3 $ 3x # 5

f !x" ! 1.5x 2 $ x # 3.7f !t" ! 5t $ 9t 2
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t t

1993 6.9 1998 4.5
1994 6.1 1999 4.2
1995 5.6 2000 4.0
1996 5.4 2001 4.7
1997 4.9 2002 5.8

U!t"U!t"

t t

1950 31.1 1980 28.0
1960 35.7 1990 25.7
1970 34.0 2000 25.7

P!t"P!t"



43. The figure shows the graphs of three functions. One is the
position function of a car, one is the velocity of the car, and
one is its acceleration. Identify each curve, and explain your
choices.

44. The figure shows the graphs of four functions. One is the 
position function of a car, one is the velocity of the car, one is
its acceleration, and one is its jerk. Identify each curve, and
explain your choices.

; 45–46 Use the definition of a derivative to find and .
Then graph , , and on a common screen and check to see if
your answers are reasonable.

45. 46.

; If , find , , , and .
Graph , , , and on a common screen. Are the 
graphs consistent with the geometric interpretations of these
derivatives?

48. (a) The graph of a position function of a car is shown, where
s is measured in feet and t in seconds. Use it to graph the
velocity and acceleration of the car. What is the accelera-
tion at t ! 10 seconds?

(b) Use the acceleration curve from part (a) to estimate the
jerk at seconds. What are the units for jerk?t ! 10

100 t

s

100

20

f %f "f !f
f !4"!x"f %!x"f "!x"f !!x"f !x" ! 2x 2 $ x347.

f !x" ! 1'xf !x" ! 1 # 4x $ x 2

f "f !f
f "!x"f !!x"

0 t

y

a
b c

d

t

y a

b c

0

35–38 The graph of is given. State, with reasons, the numbers
at which is not differentiable.

36.

37. 38.

; 39. Graph the function . Zoom in repeatedly, 
first toward the point ($1, 0) and then toward the origin. What
is different about the behavior of in the vicinity of these two
points? What do you conclude about the differentiability of f ?

; 40. Zoom in toward the points (1, 0), (0, 1), and ($1, 0) on the
graph of the function . What do you notice?
Account for what you see in terms of the differentiability of t.

The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

42. The figure shows graphs of , , and . Identify each
curve, and explain your choices.

x

y a b c d

f %f "f !f, 

x

y a

b

c

f "f !f41.

t!x" ! !x 2 $ 1"2'3

f

f !x" ! x # s( x ( 

_2 2 x

y

0_2 4 x

y

0

2 4 x

y

0
_2 2 x

y

0

35.

f
f
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(a) Find and for the function

(b) Sketch the graph of .
(c) Where is discontinuous?
(d) Where is not differentiable?

55. Recall that a function is called even if for all
in its domain and odd if for all such .

Prove each of the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

56. When you turn on a hot-water faucet, the temperature of
the water depends on how long the water has been running.
(a) Sketch a possible graph of as a function of the time 

that has elapsed since the faucet was turned on.
(b) Describe how the rate of change of with respect to 

varies as increases.
(c) Sketch a graph of the derivative of .

57. Let be the tangent line to the parabola at the point
. The angle of inclination of is the angle that 

makes with the positive direction of the -axis. Calculate 
correct to the nearest degree.

&x
!&!!1, 1"

y ! x 2!

T
t

tT

tT

T

xf !$x" ! $f !x"x
f !$x" ! f !x"f

f
f

f

1
5 $ x

if x ' 4

f !x" !

0
5 $ x

if x ( 0
if 0 ) x ) 4

f !#!4"f !$!4"49. Let .
(a) If , use Equation 2.7.5 to find .
(b) Show that does not exist.
(c) Show that has a vertical tangent line at .

(Recall the shape of the graph of . See Figure 13 in Sec-
tion 1.2.)

50. (a) If , show that does not exist.
(b) If , find .
(c) Show that has a vertical tangent line at .

; (d) Illustrate part (c) by graphing .

Show that the function is not differentiable 
at 6. Find a formula for and sketch its graph.

52. Where is the greatest integer function not differ-
entiable? Find a formula for and sketch its graph.

(a) Sketch the graph of the function .
(b) For what values of is differentiable?
(c) Find a formula for .

54. The left-hand and right-hand derivatives of at are
defined by

and

if these limits exist. Then exists if and only if these one-
sided derivatives exist and are equal.

f !!a"

f !#!a" ! lim
h l

 

0#
 
 f !a # h" $ f !a"

h

f !$!a" ! lim
h l

 

0$
 
 f !a # h" $ f !a"

h

af

f !
fx

f !x" ! x ( x (53

f !
f !x" ! ) x *

f !
f !x" ! ( x $ 6 (51.

y ! x 2'3
!0, 0"y ! x 2'3

t!!a"a # 0
t!!0"t!x" ! x 2'3

f
!0, 0"y ! s3 x  

f !!0"
f !!a"a # 0

f !x" ! s3 x 
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(b) What does it mean to say that the line is a horizontal
asymptote of the curve ? Draw curves to illustrate
the various possibilities.

6. Which of the following curves have vertical asymptotes?
Which have horizontal asymptotes?
(a) (b)
(c) (d)
(e) (f)
(g) (h)

7. (a) What does it mean for f to be continuous at a?
(b) What does it mean for f to be continuous on the interval

? What can you say about the graph of such a 
function?

8. What does the Intermediate Value Theorem say?

9. Write an expression for the slope of the tangent line to the
curve at the point .!a, f !a""y ! f !x"

!$*, *"

y ! sx y ! 1'x
y ! ln xy ! e x
y ! tan$1xy ! tan x
y ! sin xy ! x 4

y ! f !x"
y ! L1. Explain what each of the following means and illustrate with a

sketch.
(a) (b)

(c) (d)

(e)

2. Describe several ways in which a limit can fail to exist.
Illustrate with sketches.

3. State the following Limit Laws.
(a) Sum Law (b) Difference Law
(c) Constant Multiple Law (d) Product Law
(e) Quotient Law (f) Power Law
(g) Root Law

4. What does the Squeeze Theorem say?

5. (a) What does it mean to say that the line is a vertical
asymptote of the curve ? Draw curves to illustrate
the various possibilities.

y ! f !x"
x ! a

lim
x l

 

*
 f !x" ! L

lim
x l

 

a
 f !x" ! *lim

x l
 

a$
 f !x" ! L

lim
x l

 

a#
 f !x" ! Llim

x l
 

a
 f !x" ! L



13. Define the second derivative of . If is the position
function of a particle, how can you interpret the second 
derivative?

14. (a) What does it mean for to be differentiable at a?
(b) What is the relation between the differentiability and conti-

nuity of a function?
(c) Sketch the graph of a function that is continuous but not 

differentiable at .

15. Describe several ways in which a function can fail to be 
differentiable. Illustrate with sketches.

a ! 2

f

f !t"f10. Suppose an object moves along a straight line with position
at time t. Write an expression for the instantaneous veloc-

ity of the object at time . How can you interpret this
velocity in terms of the graph of f ?

11. If and x changes from to , write expressions for
the following.
(a) The average rate of change of y with respect to x over the

interval .
(b) The instantaneous rate of change of y with respect to x

at .

12. Define the derivative . Discuss two ways of interpreting
this number.

f !!a"

x ! x1

#x1, x2 $

x2x1y ! f !x"

t ! a
f !t"

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1.

2.

3.

4. If and  , then
does not exist.

5. If and  , then
does not exist.

6. If exists, then the limit must be 

7. If p is a polynomial, then 

8. If and , then
.

9. A function can have two different horizontal asymptotes.

10. If has domain and has no horizontal asymptote, then
or .limx l * f !x" ! $*limx l * f !x" ! *

#0, *"f

limx l 0 # f !x" $ t!x"$ ! 0
limx l 0 t!x" ! *limx l 0 f !x" ! *

limx l b p!x" ! p!b".

f !6"t!6".limx l 6 # f !x"t!x"$

limx l 5 # f !x"'t!x"$
limx l 5 t!x" ! 0lim xl5 f !x" ! 0

limx l 5 # f !x"'t!x"$
limx l 5 t!x" ! 0limx l 5 f !x" ! 2

lim
x l 1

 
x $ 3

x 2 # 2x $ 4
!

lim
x l 1 !x $ 3"

lim
x l 1

 !x 2 # 2x $ 4"

lim
x l

 

1
 
x 2 # 6x $ 7
x 2 # 5x $ 6

!
lim
x l

 

1 !x 2 # 6x $ 7"

lim
x l

 

1
 !x 2 # 5x $ 6"

lim
x l

 

4
 % 2x

x $ 4
$

8
x $ 4& ! lim

x l
 

4
 

2x
x $ 4

$ lim
x l

 

4
 

8
x $ 4

11. If the line is a vertical asymptote of , then is
not defined at 1.

12. If and , then there exists a number c
between 1 and 3 such that .

13. If f is continuous at 5 and and , then

14. If f is continuous on and and 
then there exists a number r such that and .

15. Let be a function such that . Then there
exists a number such that if , then

.

16. If for all and exists, then
.

17. If is continuous at a, then is differentiable at a.

18. If exists, then 

19.

20. The equation has a root in the 
interval .!0, 2"

x 10 $ 10x 2 # 5 ! 0

d 2y
dx 2 ! %dy

dx&2

limx l r f !x" ! f !r".f !!r"

ff

lim xl 0 f !x" + 1
lim xl 0 f !x"xf !x" + 1

( f !x" $ 6 ( ) 1
0 ) ( x ( ) ,,
lim xl 0 f !x" ! 6f

f !r" ! -( r ( ) 1
f !1" ! 3,f !$1" ! 4#$1, 1$

limx l 2 f !4x 2 $ 11" ! 2.
f !4" ! 3f !5" ! 2

f !c" ! 0
f !3" ) 0f !1" + 0

fy ! f !x"x ! 1

T R U E - F A L S E  Q U I Z
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1. The graph of is given.
(a) Find each limit, or explain why it does not exist.

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(b) State the equations of the horizontal asymptotes.
(c) State the equations of the vertical asymptotes.
(d) At what numbers is discontinuous? Explain.

2. Sketch the graph of an example of a function that satisfies all
of the following conditions:

, , ,

, ,

is continuous from the right at 3

3–20 Find the limit.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. lim
x l *

 e x$x2

lim
x l *

 (sx 2 # 4x # 1 $ x)

lim
x l $*

 
1 $ 2x 2 $ x 4

5 # x $ 3x 4lim
x l-$ ln!sin x"

lim
x l $*

 
sx 2 $ 9 

2x $ 6
lim
xl*

 
sx 2 $ 9 

2x $ 6

lim
x l 3

 
sx # 6 $ x

x 3 $ 3x 2lim
u l 1

 
u 4 $ 1

u3 # 5u 2 $ 6u

lim
v l

 

4# 
4 $ v

( 4 $ v (
lim
r l

 

9
 
sr 

!r $ 9"4

lim
t l

 

2
 
t 2 $ 4
t 3 $ 8

lim
h l

 

0
 
!h $ 1"3 # 1

h

lim
x l

 

1#
 

x 2 $ 9
x 2 # 2x $ 3

lim
x l

 

$3
 

x 2 $ 9
x 2 # 2x $ 3

lim
x l

 

3
 

x 2 $ 9
x 2 # 2x $ 3

lim
x l

 

1
 e x3 $x

f

lim
x l

 

3#
 f !x" ! 2lim

x l
 

3$
 f !x" ! $*

lim
x l

 

$3
 f !x" ! *lim

x l *
 f !x" ! 0lim

x l
 

$*
 f !x" ! $2

f

0 x

y

1
1

f

lim
x l $*

 f !x"lim
x l

 

*
 f !x"

lim
x l

 

2$
 f !x"lim

x l
 

0
 f !x"

lim
x l

 

4
 f !x"lim

x l
 

$3
 f !x"

lim
x l

 

$3#
 f !x"lim

x l
 

2#
 f !x"

f 19.

20.

; 21–22 Use graphs to discover the asymptotes of the curve. Then
prove what you have discovered.

21.

22.

23. If for , find .

24. Prove that .

25–28 Prove the statement using the precise definition of a limit.

25. 26.

27. 28.

29. Let

(a) Evaluate each limit, if it exists.

(i) (ii) (iii)

(iv) (v) (vi)

(b) Where is discontinuous?
(c) Sketch the graph of .

30. Let

(a) For each of the numbers 2, 3, and 4, discover whether is
continuous from the left, continuous from the right, or con-
tinuous at the number.

(b) Sketch the graph of .

31–32 Show that each function is continuous on its domain. State
the domain.

31. 32. t!x" !
sx 2 $ 9 

x 2 $ 2
h!x" ! xesin x

t

t

t!x" !

2x $ x 2

2 $ x
x $ 4
-

if 0 ( x ( 2
if 2 ) x ( 3
if 3 ) x ) 4
if x ' 4

f
f

lim
x l

 

3
 f !x"lim

x l
 

3#
 f !x"lim

x l
 

3$
 f !x"

lim
x l

 

0
 f !x"lim

x l
 

0$
 f !x"lim

x l
 

0#
 f !x"

f !x" ! +s$x 

3 $ x
!x $ 3"2

if x ) 0
if 0 ( x ) 3
if x + 3

lim
x l

 

4#
 

2
sx $ 4 ! *lim

x l 2
 !x 2 $ 3x" ! $2

lim
xl 0

 s3 x ! 0lim
x l 2

 !14 $ 5x" ! 4

limx l 0 x 2 cos!1'x 2 " ! 0

limx l1 f !x"0 ) x ) 32x $ 1 ( f !x" ( x 2

y ! sx 2 # x # 1 $ sx 2 $ x 

y !
cos2x

x 2

lim
x l 1

 % 1
x $ 1

#
1

x 2 $ 3x # 2&
lim

x l
 

0# tan$1!1'x"
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42–44 Trace or copy the graph of the function. Then sketch a
graph of its derivative directly beneath.

42. 43.

44.

45. (a) If , use the definition of a derivative to 
find .

(b) Find the domains of and .
; (c) Graph and on a common screen. Compare the graphs

to see whether your answer to part (a) is reasonable.

46. (a) Find the asymptotes of the graph of and
use them to sketch the graph.

(b) Use your graph from part (a) to sketch the graph of .
(c) Use the definition of a derivative to find .

; (d) Use a graphing device to graph and compare with your
sketch in part (b).

47. The graph of is shown. State, with reasons, the numbers at
which is not differentiable.

; 48. The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

x

y
a

b

c
0

f "f !f

x

y

20 4 6_1

f
f

f !
f !!x"

f !

f !x" !
4 $ x
3 # x

f !f
f !f

f !!x"
f !x" ! s3 $ 5x 

x

y

0 x

y

0 x

y

33–34 Use the Intermediate Value Theorem to show that there is
a root of the equation in the given interval.

33.

34. ,

35. (a) Find the slope of the tangent line to the curve
at the point .

(b) Find an equation of this tangent line.

36. Find equations of the tangent lines to the curve

at the points with -coordinates and 

37. The displacement (in meters) of an object moving in a
straight line is given by , where is mea-
sured in seconds.
(a) Find the average velocity over each time period.

(i) (ii)
(iii) (iv)

(b) Find the instantaneous velocity when .

38. According to Boyle’s Law, if the temperature of a confined
gas is held fixed, then the product of the pressure and the
volume is a constant. Suppose that, for a certain gas,

, where is measured in pounds per square inch
and is measured in cubic inches.
(a) Find the average rate of change of as increases from

200 in to 250 in .
(b) Express as a function of and show that the instantan-

eous rate of change of with respect to is inversely
proportional to the square of .

39. (a) Use the definition of a derivative to find , where
.

(b) Find an equation of the tangent line to the curve
at the point (2, 4).

; (c) Illustrate part (b) by graphing the curve and the tangent
line on the same screen.

40. Find a function and a number a such that

41. The total cost of repaying a student loan at an interest rate of
r% per year is .
(a) What is the meaning of the derivative ? What are its

units?
(b) What does the statement mean?
(c) Is always positive or does it change sign?f !!r"

f !!10" ! 1200

f !!r"
C ! f !r"

lim
h l

 

0
 
!2 # h"6 $ 64

h
! f !!a"

f

y ! x 3 $ 2x

f !x" ! x 3 $ 2x
f !!2"

P
PV

PV

33
VP

V
PPV ! 800

V
P

t ! 1
#1, 1.1$#1, 1.5$
#1, 2$#1, 3$

ts ! 1 # 2t # 1
4t 2

$1.0x

y !
2

1 $ 3x

!2, 1"y ! 9 $ 2x 2

!0, 1"e$x2

! x

!$2, $1"2x 3 # x 2 # 2 ! 0, 
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51. Suppose that for all , where .
Find .

52. Let .
(a) For what values of does exist?
(b) At what numbers is discontinuous?f

lim xl a f !x"a
f !x" ! )x * # )$x *

lim xl a f !x"
lim xl a t!x" ! 0x( f !x" ( ( t!x"

t

y

1940 1960 1970 1980 19901950

1.5

2.0

2.5

3.0

3.5

y=F(t)

baby
boom

baby
bust

baby
boomlet

49. Let be the total value of US currency (coins and bank-
notes) in circulation at time . The table gives values of this
function from 1980 to 2000, as of September 30, in billions
of dollars. Interpret and estimate the value of .

50. The total fertility rate at time t, denoted by , is an esti-
mate of the average number of children born to each woman
(assuming that current birth rates remain constant). The graph
of the total fertility rate in the United States shows the fluc-
tuations from 1940 to 1990.
(a) Estimate the values of , , and .
(b) What are the meanings of these derivatives?
(c) Can you suggest reasons for the values of these 

derivatives?

F!!1987"F!!1965"F!!1950"

F!t"

C!!1990"

t
C!t"
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In our discussion of the principles of problem solving we considered the problem-solving
strategy of introducing something extra (see page 76). In the following example we show
how this principle is sometimes useful when we evaluate limits. The idea is to change the
variable—to introduce a new variable that is related to the original variable—in such a way
as to make the problem simpler. Later, in Section 5.5, we will make more extensive use of
this general idea.

EXAMPLE 1 Evaluate , where c is a nonzero constant.

SOLUTION As it stands, this limit looks challenging. In Section 2.3 we evaluated several lim-
its in which both numerator and denominator approached 0. There our strategy was to per-
form some sort of algebraic manipulation that led to a simplifying cancellation, but here
it’s not clear what kind of algebra is necessary.

So we introduce a new variable t by the equation

We also need to express x in terms of t, so we solve this equation:

Notice that is equivalent to . This allows us to convert the given limit into one
involving the variable t :

The change of variable allowed us to replace a relatively complicated limit by a simpler
one of a type that we have seen before. Factoring the denominator as a difference of
cubes, we get

M

The following problems are meant to test and challenge your problem-solving skills.
Some of them require a considerable amount of time to think through, so don’t be discour-
aged if you can’t solve them right away. If you get stuck, you might find it helpful to refer
to the discussion of the principles of problem solving on page 76.

1. Evaluate .

2. Find numbers a and b such that .lim
x l

 

0
 
sax ! b " 2

x
! 1

lim
x l

 

1
 
s3 x " 1
sx " 1

PROBLEMS

 ! lim
tl1

 
c

t 2 ! t ! 1
!

c
3

 lim
tl1

 
c!t " 1"
t 3 " 1

! lim
tl1

 
c!t " 1"

!t " 1"!t 2 ! t ! 1"

 ! lim
tl1

 
c!t " 1"
t 3 " 1

 lim
xl 0

 
s3 1 ! cx " 1

x
! lim 

tl1
 

t " 1
!t 3 " 1"#c

tl 1xl 0

 x !
t 3 " 1

c
 t 3 ! 1 ! cx

t ! s3 1 ! cx 

lim 
xl 0

 
s3 1 ! cx " 1

x

P R O B L E M S  P L U S



171

3. Evaluate .

4. The figure shows a point P on the parabola and the point Q where the perpendicular
bisector of OP intersects the y-axis. As P approaches the origin along the parabola, what
happens to Q? Does it have a limiting position? If so, find it.

5. If denotes the greatest integer function, find .

6. Sketch the region in the plane defined by each of the following equations.
(a) (b) (c) (d)

7. Find all values of a such that is continuous on !:

8. A fixed point of a function is a number in its domain such that . (The function
doesn’t move ; it stays fixed.)
(a) Sketch the graph of a continuous function with domain whose range also lies 

in . Locate a fixed point of .
(b) Try to draw the graph of a continuous function with domain and range in that

does not have a fixed point. What is the obstacle?
(c) Use the Intermediate Value Theorem to prove that any continuous function with domain

and range a subset of must have a fixed point.

9. If and , find .

10. (a) The figure shows an isosceles triangle with . The bisector of angle 
intersects the side at the point . Suppose that the base remains fixed but the 
altitude of the triangle approaches 0, so approaches the midpoint of . What
happens to during this process? Does it have a limiting position? If so, find it.

(b) Try to sketch the path traced out by during this process. Then find an equation of this
curve and use this equation to sketch the curve.

11. (a) If we start from latitude and proceed in a westerly direction, we can let denote the
temperature at the point at any given time. Assuming that is a continuous function of 
, show that at any fixed time there are at least two diametrically opposite points on the

equator that have exactly the same temperature.
(b) Does the result in part (a) hold for points lying on any circle on the earth’s surface?
(c) Does the result in part (a) hold for barometric pressure and for altitude above sea level?

12. If is a differentiable function and , use the definition of a derivative to show 
that .

13. Suppose is a function that satisfies the equation

for all real numbers x and y. Suppose also that

(a) Find . (b) Find . (c) Find .

14. Suppose is a function with the property that for all x. Show that . 
Then show that .f #!0" ! 0

f !0" ! 0$ f !x" $ $ x 2f

f #!x"f #!0"f !0"

lim
x l

 

0
 
 f !x"

x
! 1

f !x ! y" ! f !x" ! f !y" ! x 2 y ! xy 2

f

t#!x" ! x f #!x" ! f !x"
t!x" ! x f !x"f

x
Tx 

T!x"0%

P
P

BCMA$ AM $
BCPAC

B"B ! "CABC

limx l a % f !x"t!x"&limx l a % f !x" " t!x"& ! 1limx l a % f !x" ! t!x"& ! 2

%0, 1&%0, 1&

%0, 1&%0, 1&
f%0, 1&

%0, 1&
c

f !c" ! ccf

f !x" ! 'x ! 1
x 2

if x $ a
if x & a

f

(x) ! ( y) ! 1(x ! y) 2 ! 1(x) 2 " ( y) 2 ! 3(x) 2 ! ( y) 2 ! 1

lim
x l '

 
x

(x )
(x)

y ! x 2

lim
x l

 

0
 $ 2x " 1 $ " $ 2x ! 1 $

x
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We have seen how to interpret derivatives as slopes and rates of change. We have seen
how to estimate derivatives of functions given by tables of values. We have learned 
how to graph derivatives of functions that are defined graphically. We have used the
definition of a derivative to calculate the derivatives of functions defined by formulas.
But it would be tedious if we always had to use the definition, so in this chapter we
develop rules for finding derivatives without having to use the definition directly. These
differentiation rules enable us to calculate with relative ease the derivatives of poly-
nomials, rational functions, algebraic functions, exponential and logarithmic functions,
and trigonometric and inverse trigonometric functions. We then use these rules to solve
problems involving rates of change and the approximation of functions.

By measuring slopes at points on the sine curve,
we get strong visual evidence that the derivative 
of the sine function is the cosine function.

DIFFERENTIATION
RULES

3

x

ƒ=y= sin x

0

x

y

y

fª(xy= )

0 π
2

m=1 m=_1

m=0

π
2

π

π



DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS

In this section we learn how to differentiate constant functions, power functions, polyno-
mials, and exponential functions.

Let’s start with the simplest of all functions, the constant function . The graph
of this function is the horizontal line y ! c, which has slope 0, so we must have .
(See Figure 1.) A formal proof, from the definition of a derivative, is also easy:

In Leibniz notation, we write this rule as follows.

DERIVATIVE OF A CONSTANT FUNCTION

POWER FUNCTIONS

We next look at the functions , where n is a positive integer. If , the graph
of is the line y ! x, which has slope 1. (See Figure 2.) So

(You can also verify Equation 1 from the definition of a derivative.) We have already 
investigated the cases and . In fact, in Section 2.8 (Exercises 17 and 18) we
found that

For we find the derivative of as follows:

Thus

d
dx

 !x 4 " ! 4x 33

 ! lim
hl 0

 !4x 3 ! 6x 2h ! 4xh 2 ! h 3 " ! 4x 3

 ! lim
hl 0

 
4x 3h ! 6x 2h 2 ! 4xh 3 ! h 4

h

 ! lim
hl 0

 
x 4 ! 4x 3h ! 6x 2h 2 ! 4xh 3 ! h 4 " x 4

h

 f #!x" ! lim
hl 0

 
 f !x ! h" " f !x"

h
! lim

hl 0
 
!x ! h"4 " x 4

h

f !x" ! x 4n ! 4

d
dx

 !x 3 " ! 3x 2d
dx

 !x 2 " ! 2x2

n ! 3n ! 2

d
dx

 !x" ! 11

f !x" ! x
n ! 1f !x" ! xn

d
dx

 !c" ! 0

! lim
h l 0

 0 ! 0 f #!x" ! lim
hl 0

 
 f !x ! h" " f !x"

h
! lim

hl 0
 
c " c

h

f #!x" ! 0
f !x" ! c

3.1
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FIGURE 1
The graph of ƒ=c is the
line y=c, so fª(x)=0.
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FIGURE 2 
The graph of ƒ=x is the
line y=x, so fª(x)=1.



Comparing the equations in (1), (2), and (3), we see a pattern emerging. It seems to be a
reasonable guess that, when n is a positive integer, . This turns out to
be true.

THE POWER RULE If n is a positive integer, then

FIRST PROOF The formula

can be verified simply by multiplying out the right-hand side (or by summing the second
factor as a geometric series). If , we can use Equation 2.7.5 for and the
equation above to write

SECOND PROOF

In finding the derivative of we had to expand . Here we need to expand
and we use the Binomial Theorem to do so:

because every term except the first has as a factor and therefore approaches 0. M

We illustrate the Power Rule using various notations in Example 1.

EXAMPLE 1
(a) If , then . (b) If , then ! .

(c) If , then . (d) M
d
dr

 !r 3 " ! 3r 2dy
dt

! 4t 3y ! t 4

1000x 999y#y ! x 1000f #!x" ! 6x 5f !x" ! x 6

h

 ! nxn"1

 ! lim
hl 0

 #nxn"1 !
n!n " 1"

2
xn"2h ! $ $ $ ! nxhn"2 ! hn"1$

 ! lim
hl 0

 
nxn"1h !

n!n " 1"
2

xn"2h 2 ! $ $ $ ! nxh n"1 ! hn

h

 f #!x" ! lim
hl 0

 
#xn ! nxn"1h !

n!n " 1"
2

xn"2h 2 ! $ $ $ ! nxh n"1 ! hn$ " xn

h

!x ! h"n
!x ! h"4x 4

f #!x" ! lim
hl 0

 
 f !x ! h" " f !x"

h
! lim

hl 0
 
!x ! h"n " xn

h

 ! na n"1

 ! a n"1 ! an"2a ! $ $ $ ! aa n"2 ! an"1

 ! lim
xl a

 !xn"1 ! xn"2a ! $ $ $ ! xan"2 ! an"1 "

 f #!a" ! lim
xl a

 
 f !x" " f !a"

x " a
! lim

xl a
 
xn " an

x " a

f #!a"f !x" ! xn

xn " an ! !x " a"!xn"1 ! xn"2a ! $ $ $ ! xan"2 ! an"1 "

d
dx

 !xn " ! nxn"1

!d%dx"!xn " ! nxn"1
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N The Binomial Theorem is given on 
Reference Page 1.



What about power functions with negative integer exponents? In Exercise 61 we ask
you to verify from the definition of a derivative that

We can rewrite this equation as

and so the Power Rule is true when . In fact, we will show in the next section
[Exercise 58(c)] that it holds for all negative integers.

What if the exponent is a fraction? In Example 3 in Section 2.8 we found that

which can be written as

This shows that the Power Rule is true even when . In fact, we will show in Sec-
tion 3.6 that it is true for all real numbers n.

THE POWER RULE (GENERAL VERSION) If n is any real number, then

EXAMPLE 2 Differentiate:

(a) (b)

SOLUTION In each case we rewrite the function as a power of x.

(a) Since , we use the Power Rule with :

(b) M

The Power Rule enables us to find tangent lines without having to resort to the defi-
nition of a derivative. It also enables us to find normal lines. The normal line to a curve 
at a point is the line through that is perpendicular to the tangent line at . (In the study
of optics, one needs to consider the angle between a light ray and the normal line to a lens.)

PPP
C

dy
dx

!
d
dx

 (s3 x 2 ) !
d
dx

 !x 2%3 " ! 2
3 x !2%3""1 ! 2

3 x"1%3

f #!x" !
d
dx

 !x"2 " ! "2x"2"1 ! "2x"3 ! "
2
x 3

n ! "2f !x" ! x"2

y ! s3 x 2 f !x" !
1
x 2

d
dx

 !xn " ! nxn"1

n ! 1
2

d
dx

 !x1%2 " ! 1
2 x"1%2

d
dx

 sx !
1

2sx 

n ! "1

d
dx

 !x"1 " ! !"1"x"2

d
dx

 &1
x' ! "

1
x 2
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and its derivative . Notice that is not differ-
entiable at ( is not defined there). Observe
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EXAMPLE 3 Find equations of the tangent line and normal line to the curve 
at the point . Illustrate by graphing the curve and these lines.

SOLUTION The derivative of is

So the slope of the tangent line at (1, 1) is . Therefore an equation of the tan-
gent line is

The normal line is perpendicular to the tangent line, so its slope is the negative recipro-
cal of , that is, . Thus an equation of the normal line is

We graph the curve and its tangent line and normal line in Figure 4. M

NEW DERIVATIVES FROM OLD

When new functions are formed from old functions by addition, subtraction, or multipli-
cation by a constant, their derivatives can be calculated in terms of derivatives of the old
functions. In particular, the following formula says that the derivative of a constant times
a function is the constant times the derivative of the function.

THE CONSTANT MULTIPLE RULE If c is a constant and is a differentiable func-
tion, then

PROOF Let . Then

(by Law 3 of limits)

M

EXAMPLE 4

(a)

(b) M

The next rule tells us that the derivative of a sum of functions is the sum of the 
derivatives.

d
dx

 !"x" !
d
dx

 (!"1"x) ! !"1" 
d
dx

 !x" ! "1!1" ! "1

d
dx

 !3x 4 " ! 3 
d
dx

 !x 4 " ! 3!4x 3 " ! 12x 3

 ! cf #!x"

 ! c lim
hl 0

 
 f !x ! h" " f !x"

h

 ! lim
hl 0

 c#  f !x ! h" " f !x"
h $

 t#!x" ! lim
hl 0

 
t!x ! h" " t!x"

h
! lim

hl 0
 
cf !x ! h" " cf !x"

h

t!x" ! cf !x"

d
dx

 (cf !x") ! c 
d
dx

 f !x"

f

y ! "2
3 x ! 5

3ory " 1 ! "2
3!x " 1"

"2
3

3
2

y ! 3
2 x " 1

2ory " 1 ! 3
2 !x " 1"

f #!1" ! 3
2

f #!x" ! 3
2 x !3%2""1 ! 3

2 x 1%2 ! 3
2sx 

f !x" ! xsx ! xx 1%2 ! x 3%2

!1, 1"
y ! xsx V
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N GEOMETRIC INTERPRETATION OF 
THE CONSTANT MULTIPLE RULE

x

y
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Multiplying by stretches the graph verti-
cally by a factor of 2. All the rises have been
doubled but the runs stay the same. So the
slopes are doubled, too.

c ! 2



THE SUM RULE If f and t are both differentiable, then

PROOF Let . Then

(by Law 1)

M

The Sum Rule can be extended to the sum of any number of functions. For instance,
using this theorem twice, we get

By writing as and applying the Sum Rule and the Constant Multiple
Rule, we get the following formula.

THE DIFFERENCE RULE If f and t are both differentiable, then

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be combined
with the Power Rule to differentiate any polynomial, as the following examples demonstrate.

EXAMPLE 5

M  ! 8x 7 ! 60x 4 " 16x 3 ! 30x 2 " 6

 ! 8x 7 ! 12!5x 4 " " 4!4x 3 " ! 10!3x 2 " " 6!1" ! 0

 ! 
d
dx

 !x 8 " ! 12 
d
dx

 !x 5 " " 4 
d
dx

 !x 4 " ! 10 
d
dx

 !x 3 " " 6 
d
dx

 !x" !
d
dx

 !5"

d
dx

 !x 8 ! 12x 5 " 4x 4 ! 10x 3 " 6x ! 5"

d
dx

 ( f !x" " t!x") !
d
dx

 f !x" "
d
dx

 t!x"

f ! !"1"tf " t

! f ! t ! h"# ! (! f ! t" ! h)# ! ! f ! t"# ! h# ! f # ! t# ! h#

 ! f #!x" ! t#!x"

 ! lim
hl 0

 
 f !x ! h" " f !x"

h
! lim

hl 0
 
t!x ! h" " t!x"

h

 ! lim
hl 0

 #  f !x ! h" " f !x"
h

!
t!x ! h" " t!x"

h $
 ! lim

hl 0
 
( f !x ! h" ! t!x ! h") " ( f !x" ! t!x")

h

 F#!x" ! lim
hl 0

 
F!x ! h" " F!x"

h

F!x" ! f !x" ! t!x"

d
dx

 ( f !x" ! t!x") !
d
dx

 f !x" !
d
dx

 t!x"
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Sum Rule as
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EXAMPLE 6 Find the points on the curve where the tangent line is
horizontal.

SOLUTION Horizontal tangents occur where the derivative is zero. We have

Thus if x ! 0 or , that is, . So the given curve has 
horizontal tangents when x ! 0, , and . The corresponding points are ,

, and . (See Figure 5.) M

EXAMPLE 7 The equation of motion of a particle is , where is
measured in centimeters and in seconds. Find the acceleration as a function of time.
What is the acceleration after 2 seconds?

SOLUTION The velocity and acceleration are

The acceleration after 2 s is . M

EXPONENTIAL FUNCTIONS

Let’s try to compute the derivative of the exponential function using the defini-
tion of a derivative:

The factor doesn’t depend on h, so we can take it in front of the limit:

Notice that the limit is the value of the derivative of at , that is,

Therefore we have shown that if the exponential function is differentiable at 0,
then it is differentiable everywhere and

This equation says that the rate of change of any exponential function is proportional to
the function itself. (The slope is proportional to the height.)

f #!x" ! f #!0"a x4

f !x" ! ax

lim
hl 0

 
ah " 1

h
! f #!0"

0f

f #!x" ! ax lim
hl 0

 
ah " 1

h

ax

 ! lim
h l 0

 
axah " ax

h
! lim

h l 0
 
ax!ah " 1"

h

 f #!x" ! lim
h l 0

 
 f !x ! h" " f !x"

h
! lim

h l 0
 
ax!h " ax

h

f !x" ! ax

a!2" ! 14 cm%s2

a!t" !
dv
dt

! 12 t " 10

 v!t" !
ds
dt

! 6t 2 " 10t ! 3

t
ss ! 2t 3 " 5t 2 ! 3t ! 4

("s3, "5)(s3, "5)
!0, 4""s3s3

x ! %s3x 2 " 3 ! 0dy%dx ! 0

 ! 4x 3 " 12x ! 0 ! 4x!x 2 " 3"

 
dy
dx

!
d
dx

 !x 4 " " 6 
d
dx

 !x 2 " !
d
dx

 !4"

y ! x 4 " 6x 2 ! 4V
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FIGURE 5
The curve y=x$-6x@+4 and
its horizontal tangents

0 x
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Numerical evidence for the existence of is given in the table at the left for the
cases and . (Values are stated correct to four decimal places.) It appears that
the limits exist and 

In fact, it can be proved that these limits exist and, correct to six decimal places, the val-
ues are

Thus, from Equation 4, we have

Of all possible choices for the base in Equation 4, the simplest differentiation formula
occurs when . In view of the estimates of for and , it seems rea-
sonable that there is a number between 2 and 3 for which . It is traditional to
denote this value by the letter . (In fact, that is how we introduced e in Section 1.5.) Thus
we have the following definition.

DEFINITION OF THE NUMBER e

Geometrically, this means that of all the possible exponential functions , the
function is the one whose tangent line at ( has a slope that is exactly 1.
(See Figures 6 and 7.)

If we put and, therefore, in Equation 4, it becomes the following impor-
tant differentiation formula.

f #!0" ! 1a ! e

FIGURE 7

0

y

1

x

slope=1

slope=e®

y=e®

{x, e ® }

0

y

1

x

y=2®

y=e®

y=3®

FIGURE 6

f #!0"0, 1"f !x" ! ex
y ! ax

lim
hl 0

 
eh " 1

h
! 1e is the number such that

e
f #!0" ! 1a

a ! 3a ! 2f #!0"f #!0" ! 1
a

d
dx

 !3x" * !1.10"3xd
dx

 !2x" * !0.69"2x5

d
dx

 !3x" +
x!0

* 1.098612
d
dx

 !2x" +
x!0

* 0.693147

f #!0" ! lim
hl 0

 
3h " 1

h
* 1.10for a ! 3, 

f #!0" ! lim
hl 0

 
2h " 1

h
* 0.69for a ! 2, 

a ! 3a ! 2
f #!0"
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h

0.1 0.7177 1.1612
0.01 0.6956 1.1047
0.001 0.6934 1.0992
0.0001 0.6932 1.0987

3h " 1
h

2h " 1
h

N In Exercise 1 we will see that lies between
and . Later we will be able to show that,

correct to five decimal places,
e * 2.71828

2.82.7
e



DERIVATIVE OF THE NATURAL EXPONENTIAL FUNCTION

Thus the exponential function has the property that it is its own derivative.
The geometrical significance of this fact is that the slope of a tangent line to the curve

is equal to the -coordinate of the point (see Figure 7).

EXAMPLE 8 If , find and . Compare the graphs of and .

SOLUTION Using the Difference Rule, we have

In Section 2.8 we defined the second derivative as the derivative of , so

The function f and its derivative are graphed in Figure 8. Notice that has a horizon-
tal tangent when ; this corresponds to the fact that . Notice also that, 
for , is positive and is increasing. When , is negative and is
decreasing. M

EXAMPLE 9 At what point on the curve is the tangent line parallel to the 
line ?

SOLUTION Since , we have . Let the x-coordinate of the point in question be
a. Then the slope of the tangent line at that point is . This tangent line will be parallel
to the line if it has the same slope, that is, 2. Equating slopes, we get

Therefore the required point is . (See Figure 9.) M!a, ea " ! !ln 2, 2"

a ! ln 2ea ! 2

y ! 2x
ea

y# ! exy ! ex

y ! 2x
y ! ex

ff #!x"x & 0ff #!x"x ' 0
f #!0" ! 0x ! 0

ff #

f (!x" !
d
dx

 !ex " 1" !
d
dx

 !ex " "
d
dx

 !1" ! ex

f #

f #!x" !
d
dx

 !ex " x" !
d
dx

 !ex" "
d
dx

 !x" ! ex " 1

f #ff (f #f !x" ! ex " xV

yy ! ex

f !x" ! ex

d
dx

 !ex " ! ex

FIGURE 8  

3

_1

1.5_1.5

f

fª

Visual 3.1 uses the slope-a-scope to
illustrate this formula.
TEC

(b) What types of functions are and ?
Compare the differentiation formulas for and t.

(c) Which of the two functions in part (b) grows more rapidly
when x is large?

3–32 Differentiate the function.

3. 4.

5. 6.

7. 8. f !t" ! 1
2 t 6 " 3t 4 ! tf !x" ! x 3 " 4x ! 6

F !x" ! 3
4 x 8f !t" ! 2 " 2

3 t

f !x" ! s30 f !x" ! 186.5

f
t!x" ! x ef !x" ! e x1. (a) How is the number e defined?

(b) Use a calculator to estimate the values of the limits

and

correct to two decimal places. What can you conclude
about the value of e?

2. (a) Sketch, by hand, the graph of the function , pay-
ing particular attention to how the graph crosses the y-axis.
What fact allows you to do this?

f !x" ! e x

lim
h l 0

 
2.8h " 1

h
lim
h l 0

 
2.7h " 1

h

EXERCISES3.1

FIGURE 9

1

1

0 x

2

3
y

y=´

y=2x

(ln 2, 2)
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(b) Using the graph in part (a) to estimate slopes, make 
a rough sketch, by hand, of the graph of . (See
Example 1 in Section 2.8.)

(c) Calculate and use this expression, with a graphing
device, to graph . Compare with your sketch in part (b).

; 44. (a) Use a graphing calculator or computer to graph the func-
tion in the viewing rectangle 
by .

(b) Using the graph in part (a) to estimate slopes, make 
a rough sketch, by hand, of the graph of . (See
Example 1 in Section 2.8.)

(c) Calculate and use this expression, with a graphing
device, to graph . Compare with your sketch in part (b).

45–46 Find the first and second derivatives of the function.

45.

; 47–48 Find the first and second derivatives of the function.
Check to see that your answers are reasonable by comparing the
graphs of , , and .

47. 48.

The equation of motion of a particle is , where 
is in meters and is in seconds. Find
(a) the velocity and acceleration as functions of ,
(b) the acceleration after 2 s, and
(c) the acceleration when the velocity is 0.

50. The equation of motion of a particle is
, where is in meters and is in 

seconds.
(a) Find the velocity and acceleration as functions of .
(b) Find the acceleration after 1 s.

; (c) Graph the position, velocity, and acceleration functions 
on the same screen.

Find the points on the curve 
where the tangent is horizontal.

52. For what values of does the graph of
have a horizontal tangent?

53. Show that the curve has no tangent line
with slope 4.

54. Find an equation of the tangent line to the curve 
that is parallel to the line .

55. Find equations of both lines that are tangent to the curve
and are parallel to the line .

; 56. At what point on the curve is the tangent
line parallel to the line ? Illustrate by graphing the
curve and both lines.

57. Find an equation of the normal line to the parabola
that is parallel to the line .x " 3y ! 5y ! x 2 " 5x ! 4

3x " y ! 5
y ! 1 ! 2e x " 3x

12x " y ! 1y ! 1 ! x 3

y ! 1 ! 3x
y ! xsx 

y ! 6x 3 ! 5x " 3

f !x" ! x 3 ! 3x 2 ! x ! 3
x

y ! 2x 3 ! 3x 2 " 12x ! 151.

t

tss ! 2t 3 " 7t 2 ! 4t ! 1

t
t

ss ! t 3 " 3t49.

f !x" ! e x " x 3f !x" ! 2x " 5x 3%4

f (f #f

G !r" ! sr  ! s3 r  46.f !x" ! x 4 " 3x 3 ! 16x

t#
t#!x"

t#

("8, 8)
("1, 4)t!x" ! e x " 3x 2

f #
f #!x"

f #
9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

24.

25. 26.

27. 28.

29. 30.

32.

33–34 Find an equation of the tangent line to the curve at the
given point.

33. , 34. ,

35–36 Find equations of the tangent line and normal line to the
curve at the given point.

, 36. ,

; 37–38 Find an equation of the tangent line to the curve at the
given point. Illustrate by graphing the curve and the tangent line
on the same screen.

37. , 38. ,

; 39–42 Find . Compare the graphs of and and use them
to explain why your answer is reasonable.

39. 40.

41. 42.

; 43. (a) Use a graphing calculator or computer to graph the func-
tion in the viewing
rectangle by .("10, 50)("3, 5)

f !x" ! x 4 " 3x 3 " 6x 2 ! 7x ! 30

f !x" ! x !
1
x

f !x" ! 3x 15 " 5x 3 ! 3

f !x" ! 3x 5 " 20x 3 ! 50xf !x" ! e x " 5x

f #ff #!x"

!1, 0"y ! x " sx !1, 2"y ! 3x2 " x3

!1, 9"y ! !1 ! 2x"2!0, 2"y ! x4 ! 2e x35.

!1, 2"y ! x 4 ! 2x 2 " x!1, 1"y ! s4 x 

y ! e x!1 ! 1z !
A
y10 ! Be y31.

v ! &sx !
1
s3 x '2

u ! s5 t  ! 4st 5 

y ! aev !
b
v

!
c
v 2H!x" ! !x ! x"1"3

t!u" ! s2 u ! s3u y ! 4) 2

y !
x 2 " 2sx 

x
y !

x 2 ! 4x ! 3
sx 23.

y ! sx  !x " 1"y ! ax 2 ! bx ! c

f !t" ! st  "
1
st  F !x" ! (1

2 x)5

y ! s3 x G!x" ! sx " 2ex

B!y" ! cy"6A!s" ! "
12
s 5

R!t" ! 5t "3%5V!r" ! 4
3 )r 3

y ! 5e x ! 3y ! x "2%5

h!x" ! !x " 2"!2x ! 3"f !t" ! 1
4!t 4 ! 8"
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69. (a) For what values of is the function dif-
ferentiable? Find a formula for .

(b) Sketch the graphs of and .

70. Where is the function differenti-
able? Give a formula for and sketch the graphs of and .

71. Find the parabola with equation whose tangent
line at (1, 1) has equation .

72. Suppose the curve has a tan-
gent line when with equation and a tangent
line when with equation . Find the values
of , , , and .

For what values of and is the line tangent to
the parabola when ?

74. Find the value of such that the line is tangent to
the curve .

75. Let

Find the values of and that make differentiable every-
where.

76. A tangent line is drawn to the hyperbola at a point .
(a) Show that the midpoint of the line segment cut from this

tangent line by the coordinate axes is .
(b) Show that the triangle formed by the tangent line and the

coordinate axes always has the same area, no matter
where is located on the hyperbola.

Evaluate .

78. Draw a diagram showing two perpendicular lines that
intersect on the -axis and are both tangent to the parabola

. Where do these lines intersect?

79. If , how many lines through the point are normal
lines to the parabola ? What if ?

80. Sketch the parabolas and . Do you
think there is a line that is tangent to both curves? If so, find
its equation. If not, why not?

y ! x 2 ! 2x " 2y ! x 2

c # 1
2y ! x 2

!0, c"c $ 1
2

y ! x 2
y

lim
x l 1

 
x 1000 ! 1

x ! 1
77.

P

P

Pxy ! c

fbm

f !x" ! #x 2

mx " b
if x # 2
if x $ 2

y ! csx 
y ! 3

2 x " 6c

x ! 2y ! ax 2
2x " y ! bba73.

dcba
y ! 2 ! 3xx ! 1 

y ! 2x " 1x ! 0
y ! x 4 " ax 3 " bx 2 " cx " d

y ! 3x ! 2
y ! ax 2 " bx

h%hh%
h!x" ! $ x ! 1 $ " $ x " 2 $

f %f
f %

f !x" ! $ x 2 ! 9 $x58. Where does the normal line to the parabola at the
point (1, 0) intersect the parabola a second time? Illustrate
with a sketch.

Draw a diagram to show that there are two tangent lines to
the parabola that pass through the point . Find
the coordinates of the points where these tangent lines inter-
sect the parabola.

60. (a) Find equations of both lines through the point that
are tangent to the parabola .

(b) Show that there is no line through the point that is
tangent to the parabola. Then draw a diagram to see why.

61. Use the definition of a derivative to show that if ,
then . (This proves the Power Rule for the 
case .)

62. Find the derivative of each function by calculating the
first few derivatives and observing the pattern that occurs.
(a) (b)

63. Find a second-degree polynomial such that ,
, and .

64. The equation is called a differential
equation because it involves an unknown function and its
derivatives and . Find constants such that the
function satisfies this equation. (Differ-
ential equations will be studied in detail in Chapter 9.)

65. Find a cubic function whose graph
has horizontal tangents at the points and .

66. Find a parabola with equation that has
slope 4 at , slope at , and passes through the
point .

67. Let

Is differentiable at 1? Sketch the graphs of and .

68. At what numbers is the following function differentiable?

Give a formula for and sketch the graphs of and .t%tt%

t!x" ! #!1 ! 2x
x 2

x

if x & !1
if !1 # x # 1
if x $ 1

t
f %ff

f !x" ! #2 ! x
x 2 ! 2x " 2

if x # 1
if x $ 1

!2, 15"
x ! !1!8x ! 1
y ! ax 2 " bx " c

!2, 0"!!2, 6"
y ! ax 3 " bx 2 " cx " d

y ! Ax 2 " Bx " C
A, B, and Cy 'y%

y
y ' " y% ! 2y ! x 2

P '!2" ! 2P%!2" ! 3
P!2" ! 5P

f !x" ! 1%xf !x" ! x n

nth

n ! !1
f %!x" ! !1%x 2

f !x" ! 1%x

!2, 7"
y ! x 2 " x

!2, !3"

!0, !4"y ! x 2
59.

y ! x ! x 2
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Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying
photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the
slope of the drop . You decide to connect these two straight stretches and

with part of a parabola , where and are measured in
feet. For the track to be smooth there can’t be abrupt changes in direction, so you want the linear

f !x"xy ! f !x" ! ax 2 " bx " cy ! L 2!x"
y ! L1!x"!1.6

BUILDING A BETTER ROLLER COASTERA P P L I E D
P R O J E C T



segments and to be tangent to the parabola at the transition points and . (See the fig-
ure.) To simplify the equations you decide to place the origin at .

1. (a) Suppose the horizontal distance between and is 100 ft. Write equations in , , and 
that will ensure that the track is smooth at the transition points.

(b) Solve the equations in part (a) for to find a formula for .
; (c) Plot , , and to verify graphically that the transitions are smooth.

(d) Find the difference in elevation between and .

2. The solution in Problem 1 might look smooth, but it might not feel smooth because the piece-
wise defined function [consisting of for , for , and for

] doesn’t have a continuous second derivative. So you decide to improve the design by
using a quadratic function only on the interval and con-
necting it to the linear functions by means of two cubic functions:

(a) Write a system of equations in 11 unknowns that ensure that the functions and their first
two derivatives agree at the transition points.

(b) Solve the equations in part (a) with a computer algebra system to find formulas for
.

(c) Plot , , , , and , and compare with the plot in Problem 1(c).L 2hqtL1

q!x", t!x", and h!x"
CAS

90 & x # 100h!x" ! px 3 " qx 2 " rx " s

 t!x" ! kx 3 " lx 2 " mx " n    0 # x & 10

10 # x # 90q!x" ! ax 2 " bx " c
x $ 100

L 2!x"0 # x # 100f !x"x & 0L1!x"

QP
L 2fL1

f !x"a, b, and c

cbaQP

P
QPL 2L1
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f
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THE PRODUCT AND QUOTIENT RULES

The formulas of this section enable us to differentiate new functions formed from old func-
tions by multiplication or division.

THE PRODUCT RULE

| By analogy with the Sum and Difference Rules, one might be tempted to guess, as  Leibniz
did three centuries ago, that the derivative of a product is the product of the derivatives. We
can see, however, that this guess is wrong by looking at a particular example. Let 
and . Then the Power Rule gives and . But , so

. Thus . The correct formula was discovered by Leibniz (soon
after his false start) and is called the Product Rule.

Before stating the Product Rule, let’s see how we might discover it. We start by assum-
ing that and are both positive differentiable functions. Then we can
interpret the product as an area of a rectangle (see Figure 1). If x changes by an amount

, then the corresponding changes in u and are

and the new value of the product, , can be interpreted as the area of the
large rectangle in Figure 1 (provided that and happen to be positive).

The change in the area of the rectangle is

 ! the sum of the three shaded areas

 (!uv" ! !u " (u"!v " (v" ! uv ! u (v " v (u " (u (v1

(v(u
!u " (u"!v " (v"

(v ! t!x " (x" ! t!x"(u ! f !x " (x" ! f !x"

v(x
uv

v ! t!x"u ! f !x"

! ft"% " f %t%! ft"%!x" ! 3x 2
! ft"!x" ! x 3t%!x" ! 2xf %!x" ! 1t!x" ! x 2

f !x" ! x

3.2

u Î√Î√

√ u√

u

Îu Î√

√ Îu

Îu

FIGURE 1
The geometry of the Product Rule



If we divide by , we get

If we now let , we get the derivative of :

(Notice that as since is differentiable and therefore continuous.)
Although we started by assuming (for the geometric interpretation) that all the quanti-

ties are positive, we notice that Equation 1 is always true. (The algebra is valid whether u,
, , and are positive or negative.) So we have proved Equation 2, known as the

Product Rule, for all differentiable functions u and .

THE PRODUCT RULE If and are both differentiable, then

In words, the Product Rule says that the derivative of a product of two functions is the
first function times the derivative of the second function plus the second function times the
derivative of the first function.

EXAMPLE 1
(a) If , find .
(b) Find the derivative, .

SOLUTION
(a) By the Product Rule, we have

(b) Using the Product Rule a second time, we get

     ! !x " 1"ex " ex ! 1 ! !x " 2"ex

f '!x" !
d
dx

 &!x " 1"ex' ! !x " 1" 
d
dx

 !ex" " ex 
d
dx

 !x " 1"

 ! xex " ex ) 1 ! !x " 1"ex

 f %!x" !
d
dx

 !xex " ! x 
d
dx

 !ex" " ex 
d
dx

 !x"

f !n"!x"nth
f %!x"f !x" ! xex

d
dx

 & f !x"t!x"' ! f !x" 
d
dx

 &t!x"' " t!x" 
d
dx

 & f !x"'

tf

v
(v(uv

f(xl 0(ul 0

 
d
dx

 !uv" ! u 
dv
dx

" v 
du
dx

2

 ! u 
dv
dx

" v 
du
dx

" 0 !
dv
dx

 ! u lim
(x l 0

 
(v
(x

" v lim
(x l 0

 
(u
(x

" ( lim
(x l 0

 (u)( lim
(x l 0

 
(v
(x)

 
d
dx

 !uv" ! lim
(x l 0

 
(!uv"

(x
! lim

(x l 0
 (u 

(v
(x

" v 
(u
(x

" (u 
(v
(x)

uv(xl 0

(!uv"
(x

! u 
(v
(x

" v 
(u
(x

" (u 
(v
(x

(x
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N Recall that in Leibniz notation the definition of
a derivative can be written as

dy
dx

! lim
(x l 0

 
(y
(x

N In prime notation:

! ft"% ! ft% " t f %

3

_1

_3 1.5
f

f ª

FIGURE 2

N Figure 2 shows the graphs of the function 
of Example 1 and its derivative . Notice that

is positive when is increasing and nega-
tive when is decreasing.f

ff %!x"
f %

f



Further applications of the Product Rule give

In fact, each successive differentiation adds another term , so

M

EXAMPLE 2 Differentiate the function .

SOLUTION 1 Using the Product Rule, we have

SOLUTION 2 If we first use the laws of exponents to rewrite , then we can proceed
directly without using the Product Rule.

which is equivalent to the answer given in Solution 1. M

Example 2 shows that it is sometimes easier to simplify a product of functions than 
to use the Product Rule. In Example 1, however, the Product Rule is the only possible
method.

EXAMPLE 3 If , where and , find 

SOLUTION Applying the Product Rule, we get

So M

THE QUOTIENT RULE

We find a rule for differentiating the quotient of two differentiable functions and
in much the same way that we found the Product Rule. If , , and change by

amounts , , and , then the corresponding change in the quotient is

!
v(u ! u(v
v!v " (v"

((u
v) !

u " (u
v " (v

!
u
v

!
!u " (u"v ! u!v " (v"

v!v " (v"

u%v(v(u(x
vuxv ! t!x"

u ! f !x"

f %!4" ! s4 t%!4" "
t!4"
2s4

! 2 ) 3 "
2

2 ) 2
! 6.5

! sx  t%!x" "
t!x"
2sx ! sx  t%!x" " t!x" ) 12 x!1%2

 f %!x" !
d
dx

 [sx  t!x"] ! sx   
d
dx

 &t!x"' " t!x" 
d
dx

 [sx ]

f %!4".t%!4" ! 3t!4" ! 2f !x" ! sx  t!x"

 f %!t" ! 1
2at!1%2 " 3

2 bt 1%2

 f !t" ! ast  " btst  ! at 1%2 " bt 3%2

f !t"

 ! bst  "
a " bt
2st  !

a " 3bt
2st  

 ! st   ! b " !a " bt" !  12 t!1%2

 f %!t" ! st    
d
dt

 !a " bt" " !a " bt" 
d
dt

 (st  )

f !t" ! st   !a " bt"

f !n"!x" ! !x " n"ex

ex

f * !x" ! !x " 3"ex      f !4"!x" ! !x " 4"ex
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N In Example 2, and are constants. It is 
customary in mathematics to use letters near the
beginning of the alphabet to represent constants
and letters near the end of the alphabet to repre-
sent variables.

ba



so

As , also, because is differentiable and therefore continuous. Thus,
using the Limit Laws, we get

THE QUOTIENT RULE If and are differentiable, then

In words, the Quotient Rule says that the derivative of a quotient is the denominator
times the derivative of the numerator minus the numerator times the derivative of the
denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute the
derivative of any rational function, as the next example illustrates.

EXAMPLE 4 Let . Then

M

EXAMPLE 5 Find an equation of the tangent line to the curve at the 
point .

SOLUTION According to the Quotient Rule, we have

 !
!1 " x 2 "ex ! ex!2x"

!1 " x 2 "2 !
ex!1 ! x"2

!1 " x 2 "2

 
dy
dx

!
!1 " x 2 " 

d
dx

 !ex" ! ex  
d
dx

 !1 " x 2 "

!1 " x 2 "2

(1, 1
2e)

y ! ex%!1 " x 2 "V

 !
!x 4 ! 2x 3 " 6x 2 " 12x " 6

!x 3 " 6"2

 !
!2x 4 " x 3 " 12x " 6" ! !3x 4 " 3x 3 ! 6x 2 "

!x 3 " 6"2

 !
!x 3 " 6"!2x " 1" ! !x 2 " x ! 2"!3x 2 "

!x 3 " 6"2

 y% !
!x 3 " 6" 

d
dx

 !x 2 " x ! 2" ! !x 2 " x ! 2" 
d
dx

 !x 3 " 6"

!x 3 " 6"2

y !
x 2 " x ! 2

x 3 " 6
V

d
dx

 *  f !x"
t!x" + !

t!x" 
d
dx

 & f !x"' ! f !x" 
d
dx

 &t!x"'

&t!x"' 2

tf

d
dx(u

v) !
v lim

(x l 0
 
(u
(x

! u lim
(x l 0

 
(v
(x

v lim
(x l 0

!v " (v"
!

v 
du
dx

! u 
dv
dx

v2

v ! t!x"(v l 0(x l 0

d
dx(u

v) ! lim
(x l 0

 
(!u%v"

(x
! lim

(x l 0
 
v 

(u
(x

! u 
(v
(x

v!v " (v"
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N In prime notation:

( f
t)%

!
t f % ! ft%
t2

N We can use a graphing device to check that
the answer to Example 4 is plausible. Figure 3
shows the graphs of the function of Example 4
and its derivative. Notice that when grows 
rapidly (near ), is large. And when 
grows slowly, is near .0y%

yy%!2
y

1.5

_1.5

_4 4

yª

y

FIGURE 3



So the slope of the tangent line at is

This means that the tangent line at is horizontal and its equation is . [See
Figure 4. Notice that the function is increasing and crosses its tangent line at .] M

Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s eas-
ier to rewrite a quotient first to put it in a form that is simpler for the purpose of differen-
tiation. For instance, although it is possible to differentiate the function

using the Quotient Rule, it is much easier to perform the division first and write the func-
tion as

before differentiating.
We summarize the differentiation formulas we have learned so far as follows.

TABLE OF DIFFERENTIATION FORMULAS

( f
t)%

!
tf % ! ft%
t2! ft"% ! ft% " tf %

! f ! t"% ! f % ! t%! f " t"% ! f % " t%!cf "% ! cf %

d
dx

 !ex" ! exd
dx

 !xn " ! nxn!1d
dx

 !c" ! 0

F!x" ! 3x " 2x!1%2

F!x" !
3x 2 " 2sx 

x

NOTE

(1, 12e)
y ! 1

2e(1, 12e)

dy
dx ,

x!1
! 0

(1, 12e)
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2.5

0_2 3.5

y= ´
1+≈

FIGURE 4  

y= e1
2

7. 8.

9.

10.

12.

13. 14.

15. 16.

17. 18. y !
1

s " kesy ! !r 2 ! 2r"er

y !
t

!t ! 1"2y !
t 2 " 2

t 4 ! 3t 2 " 1

y !
x " 1

x 3 " x ! 2
y !

x 3

1 ! x 2

R!t" ! !t " e t"(3 ! st )

F!y" ! ( 1
y2 !

3
y4)!y " 5y3"11.

Y!u" ! !u!2 " u!3"!u5 ! 2u2"
V!x" ! !2x3 " 3"!x4 ! 2x"

f !t" !
2t

4 " t 2t!x" !
3x ! 1
2x " 1

1. Find the derivative of in two ways: by
using the Product Rule and by performing the multiplication
first. Do your answers agree?

2. Find the derivative of the function

in two ways: by using the Quotient Rule and by simplifying
first. Show that your answers are equivalent. Which method do
you prefer?

3–26 Differentiate.

3. 4.

5. 6. y !
e x

1 " x
y !

e x

x 2

t!x" ! sx  e xf !x" ! !x 3 " 2x"e x

F!x" !
x ! 3xsx 

sx 

y ! !x 2 " 1"!x 3 " 1"

EXERCISES3.2



39. (a) If , find and .
; (b) Check to see that your answers to part (a) are reasonable

by comparing the graphs of , , and .

(a) If , find and .
; (b) Check to see that your answers to part (a) are reasonable

by comparing the graphs of , , and .

41. If , find .

42. If , find .

Suppose that , , , and .
Find the following values.
(a) (b)
(c)

44. Suppose that , , , and
. Find .

(a) (b)

(c) (d)

If , where and , find .

46. If and , find

47. If and are the functions whose graphs are shown, let
and .

(a) Find (b) Find 

48. Let and , where and 
are the functions whose graphs are shown.
(a) Find . (b) Find .

F

G

x

y

0 1

1

Q%!7"P%!2"

GFQ!x" ! F!x"%G!x"P!x" ! F!x"G!x"

f
g

x

y

0

1

1

v%!5".u%!1".
v!x" ! f !x"%t!x"u!x" ! f !x"t!x"

tf

d
dx

 (h!x"
x ),

x!2

h%!2" ! !3h!2" ! 4

f %!0"t%!0" ! 5t!0" ! 2f !x" ! e xt!x"45.

h!x" !
t!x"

1 " f !x"
h!x" !

f !x"
t!x"

h!x" ! f !x"t!x"h!x" ! 5f !x" ! 4t!x"
h%!2"t%!2" ! 7

f %!2" ! !2t!2" ! 4f !2" ! !3

!t%f "%!5"
! f%t"%!5"! ft"%!5"

t%!5" ! 2t!5" ! !3f %!5" ! 6f !5" ! 143.

t !n"!x"t!x" ! x%e x

f '!1"f !x" ! x 2%!1 " x"

f 'f %f

f '!x"f %!x"f !x" ! x%!x 2 " 1"40.

f 'f %f

f '!x"f %!x"f !x" ! !x ! 1"e x

19. 20.

21. 22.

23. 24.

26.

27–30 Find and .

27. 28.

29. 30.

31–32 Find an equation of the tangent line to the given curve at
the specified point.

31. , 32. ,

33–34 Find equations of the tangent line and normal line to the
given curve at the specified point.

, 34. ,

35. (a) The curve is called a witch of Maria
Agnesi. Find an equation of the tangent line to this curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

(a) The curve is called a serpentine. Find 
an equation of the tangent line to this curve at the point

.
; (b) Illustrate part (a) by graphing the curve and the tangent

line on the same screen.

37. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .

38. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .f %f

f %!x"f !x" ! x%!x 2 ! 1"

f %f

f %!x"f !x" ! e x%x 3

!3, 0.3"

y ! x%!1 " x 2 "36.

(!1, 12 )

y ! 1%!1 " x2"

!4, 0.4"y !
sx 

x " 1
!0, 0"y ! 2xe x33.

!1, e"y !
e x

x
!1, 1"y !

2x
x " 1

f !x" !
x

3 " e xf !x" !
x 2

1 " 2x

f !x" ! x 5%2e xf !x" ! x 4e x

f '!x"f %!x"

f !x" !
ax " b
cx " d

f !x" !
x

x "
c
x

25.

f !x" !
1 ! xe x

x " e xf !x" !
A

B " Ce x

t!t" !
t ! st 

t 1%3f !t" !
2t

2 " st 

z ! w 3%2!w " cew"y !
v3 ! 2vsv 

v
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write . Then the total revenue earned with selling price
p is .
(a) What does it mean to say that and

?
(b) Assuming the values in part (a), find and interpret

your answer.

(a) Use the Product Rule twice to prove that if , , and are
differentiable, then .

(b) Taking in part (a), show that

(c) Use part (b) to differentiate .

56. (a) If , where and have derivatives of all
orders, show that .

(b) Find similar formulas for and .
(c) Guess a formula for .

57. Find expressions for the first five derivatives of .
Do you see a pattern in these expressions? Guess a formula for

and prove it using mathematical induction.

58. (a) If t is differentiable, the Reciprocal Rule says that

Use the Quotient Rule to prove the Reciprocal Rule.
(b) Use the Reciprocal Rule to differentiate the function in

Exercise 18.
(c) Use the Reciprocal Rule to verify that the Power Rule is

valid for negative integers, that is,

for all positive integers .n

d
dx

 !x!n" ! !nx!n!1

d
dx

 * 1
t!x"+ ! !

t%!x"
&t!x"'2

f !n"!x"

f !x" ! x 2e x

F !n"
F !4"F *

F ' ! f 't " 2 f %t% " ft '
tfF!x" ! f !x"t!x"

y ! e 3x

d
dx

 & f !x"'3 ! 3& f !x"'2 f %!x"

f ! t ! h
! fth"% ! f %th " ft%h " fth%

htf55.

R%!20"
f %!20" ! !350

f !20" ! 10,000
R!p" ! pf !p"

q ! f !p"49. If is a differentiable function, find an expression for the deriv-
ative of each of the following functions.

(a) (b) (c)

If is a differentiable function, find an expression for the
derivative of each of the following functions.

(a) (b)

(c) (d)

How many tangent lines to the curve ) pass
through the point ? At which points do these tangent lines
touch the curve?

52. Find equations of the tangent lines to the curve

that are parallel to the line .

53. In this exercise we estimate the rate at which the total personal
income is rising in the Richmond-Petersburg, Virginia, metro-
politan area. In 1999, the population of this area was 961,400,
and the population was increasing at roughly 9200 people per
year. The average annual income was $30,593 per capita, and
this average was increasing at about $1400 per year (a little
above the national average of about $1225 yearly). Use the
Product Rule and these figures to estimate the rate at which
total personal income was rising in the Richmond-Petersburg
area in 1999. Explain the meaning of each term in the Product
Rule.

54. A manufacturer produces bolts of a fabric with a fixed width.
The quantity q of this fabric (measured in yards) that is sold is
a function of the selling price p (in dollars per yard), so we can

x ! 2y ! 2

y !
x ! 1
x " 1

!1, 2"
y ! x%!x " 151.

y !
1 " x f !x"
sx y !

x 2

f !x"

y !
 f !x"

x 2y ! x 2 f !x"

f50.

y !
t!x"

x
y !

x
t!x"

y ! xt!x"

t

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Before starting this section, you might need to review the trigonometric functions. In par-
ticular, it is important to remember that when we talk about the function defined for all
real numbers by

it is understood that means the sine of the angle whose radian measure is . A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. Recall
from Section 2.5 that all of the trigonometric functions are continuous at every number in
their domains.

If we sketch the graph of the function and use the interpretation of 
as the slope of the tangent to the sine curve in order to sketch the graph of (see Exer-f %

f %!x"f !x" ! sin x

xsin x

f !x" ! sin x
x

f

3.3

N A review of the trigonometric functions is
given in Appendix D.



cise 14 in Section 2.8), then it looks as if the graph of may be the same as the cosine
curve (see Figure 1).

Let’s try to confirm our guess that if , then . From the defini-
tion of a derivative, we have

Two of these four limits are easy to evaluate. Since we regard x as a constant when com-
puting a limit as , we have

The limit of is not so obvious. In Example 3 in Section 2.2 we made the guess,
on the basis of numerical and graphical evidence, that

We now use a geometric argument to prove Equation 2. Assume first that lies between 
0 and . Figure 2(a) shows a sector of a circle with center O, central angle , and +,%2

+

lim
+l 0

 
sin +

+
! 12

!sin h"%h

lim
hl 0

 cos x ! cos xandlim
hl 0

 sin x ! sin x

hl 0

 ! lim
hl 0

 sin x ! lim
hl 0

 
cos h ! 1

h
" lim

hl 0
 cos x ! lim

hl 0
 
sin h

h
1

 ! lim
hl 0

 *sin x ( cos h ! 1
h ) " cos x ( sin h

h )+
 ! lim

hl 0
 * sin x cos h ! sin x

h
"

cos x sin h
h +

 ! lim
hl 0

 
sin x cos h " cos x sin h ! sin x

h

! lim
h l 0

 
sin!x " h" ! sin x

h
 f %!x" ! lim

h l 0
 
 f !x " h" ! f !x"

h

f %!x" ! cos xf !x" ! sin x

x0 2π

x0 π
2

FIGURE 1  

π

π
2

π

ƒ=y= sin x

y

y

fª(xy= )

f %
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Visual 3.3 shows an animation 
of Figure 1.
TEC

N We have used the addition formula for sine.
See Appendix D.



radius 1. BC is drawn perpendicular to OA. By the definition of radian measure, we have
arc . Also . From the diagram we see that

Therefore so

Let the tangent lines at and intersect at . You can see from Figure 2(b) that the 
circumference of a circle is smaller than the length of a circumscribed polygon, and so
arc . Thus

(In Appendix F the inequality is proved directly from the definition of the length
of an arc without resorting to geometric intuition as we did here.) Therefore, we have

so

We know that and , so by the Squeeze Theorem, we have

But the function is an even function, so its right and left limits must be equal.
Hence, we have

so we have proved Equation 2.
We can deduce the value of the remaining limit in (1) as follows:

(by Equation 2)! !1 ! ( 0
1 " 1) ! 0

 ! !lim
+ l 0

 
sin +

+
! lim

+ l 0
 

sin +
cos + " 1

 ! lim
+ l 0

 
!sin2+

+ !cos + " 1"
! !lim

+ l 0
 ( sin +

+
!

sin +
cos + " 1)

 lim
+ l 0

 
cos + ! 1

+
! lim

+ l 0
 ( cos + ! 1

+
!

cos + " 1
cos + " 1) ! lim

+ l 0
 

cos2+ ! 1
+ !cos + " 1"

lim
+l 0

 
sin +

+
! 1

!sin +"%+

lim
+l

 

0"
 
sin +

+
! 1

lim +l 0 cos + ! 1lim +l 0 1 ! 1

 cos + &
sin +

+
& 1

 + &
sin +
cos +

+ # tan +

 ! tan +

 ! $ AD $ ! $ OA $ tan +

 & $ AE $ " $ ED $
 + ! arc AB & $ AE $ " $ EB $

AB & $ AE $ " $ EB $
EBA

sin +
+

& 1sin + & +

$ BC $ & $ AB $ & arc AB

$ BC $ ! $ OB $ sin + ! sin +AB ! +
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N We multiply numerator and denominator by
in order to put the function in a form

in which we can use the limits we know.
cos + " 1



If we now put the limits (2) and (3) in (1), we get

So we have proved the formula for the derivative of the sine function:

EXAMPLE 1 Differentiate .

SOLUTION Using the Product Rule and Formula 4, we have

M

Using the same methods as in the proof of Formula 4, one can prove (see Exercise 20)
that

The tangent function can also be differentiated by using the definition of a derivative,
but it is easier to use the Quotient Rule together with Formulas 4 and 5:

 !
1

cos2x
! sec2x

 !
cos2x ! sin2x

cos2x

 !
cos x ! cos x " sin x !"sin x"

cos2x

 !
cos x 

d
dx

 !sin x" " sin x 
d
dx

 !cos x"

cos2x

 
d
dx

 !tan x" !
d
dx

 # sin x
cos x$

d
dx

 !cos x" ! "sin x5

 ! x 2 cos x ! 2x sin x

 
dy
dx

! x 2 
d
dx

 !sin x" ! sin x 
d
dx

 !x 2 "

y ! x 2 sin xV

d
dx

 !sin x" ! cos x4

 ! !sin x" ! 0 ! !cos x" ! 1 ! cos x

 f #!x" ! lim 
hl 0

 sin x ! lim 
hl 0

 
cos h " 1

h
! lim 

hl 0
 cos x ! lim 

hl 0
 
sin h

h

lim
$l 0

 
cos $ " 1

$
! 03
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N Figure 3 shows the graphs of the function of
Example 1 and its derivative. Notice that 
whenever has a horizontal tangent.y

y# ! 0
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The derivatives of the remaining trigonometric functions, , , and , can also be
found easily using the Quotient Rule (see Exercises 17–19). We collect all the differentia-
tion formulas for trigonometric functions in the following table. Remember that they are
valid only when is measured in radians.

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

EXAMPLE 2 Differentiate . For what values of x does the graph of 
have a horizontal tangent?

SOLUTION The Quotient Rule gives 

In simplifying the answer we have used the identity .
Since is never 0, we see that when , and this occurs when

, where n is an integer (see Figure 4). M

Trigonometric functions are often used in modeling real-world phenomena. In particu-
lar, vibrations, waves, elastic motions, and other quantities that vary in a periodic manner
can be described using trigonometric functions. In the following example we discuss an
instance of simple harmonic motion.

EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest
position and released at time . (See Figure 5 and note that the downward direction
is positive.) Its position at time t is

s ! f !t" ! 4 cos t

t ! 0
V

x ! n% ! %%4
tan x ! 1f #!x" ! 0sec x

tan2x ! 1 ! sec2x

 !
sec x !tan x " 1"

!1 ! tan x"2

 !
sec x !tan x ! tan2x " sec2x"

!1 ! tan x"2

 !
!1 ! tan x" sec x tan x " sec x ! sec2x

!1 ! tan x"2

 f #!x" !
!1 ! tan x" 

d
dx

 !sec x" " sec x 
d
dx

 !1 ! tan x"

!1 ! tan x"2

ff !x" !
sec x

1 ! tan x

d
dx

 !cot x" ! "csc2x
d
dx

 !tan x" ! sec2x

d
dx

 !sec x" ! sec x tan x
d
dx

 !cos x" ! "sin x

d
dx

 !csc x" ! "csc x cot x
d
dx

 !sin x" ! cos x

x

cot sec csc

d
dx

 !tan x" ! sec2x6
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N When you memorize this table, it is helpful 
to notice that the minus signs go with the der-
ivatives of the “cofunctions,” that is, cosine,
cosecant, and cotangent.
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FIGURE 4
The horizontal tangents in Example 2
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Find the velocity and acceleration at time t and use them to analyze the motion of the
object.

SOLUTION The velocity and acceleration are

The object oscillates from the lowest point to the highest point
. The period of the oscillation is , the period of .

The speed is , which is greatest when , that is, when
. So the object moves fastest as it passes through its equilibrium position

. Its speed is 0 when , that is, at the high and low points.
The acceleration . It has greatest magnitude at the high

and low points. See the graphs in Figure 6. M

EXAMPLE 4 Find the 27th derivative of .

SOLUTION The first few derivatives of are as follows:

We see that the successive derivatives occur in a cycle of length 4 and, in particular,
whenever is a multiple of 4. Therefore

and, differentiating three more times, we have

M

Our main use for the limit in Equation 2 has been to prove the differentiation formula
for the sine function. But this limit is also useful in finding certain other trigonometric lim-
its, as the following two examples show.

EXAMPLE 5 Find .

SOLUTION In order to apply Equation 2, we first rewrite the function by multiplying and
dividing by 7:

sin 7x
4x

!
7
4 # sin 7x

7x $

lim
xl 0

 
sin 7x

4x

f !27"!x" ! sin x

f !24"!x" ! cos x

nf !n"!x" ! cos x

f !5"!x" ! "sin x

f !4"!x" ! cos x

f & !x" ! sin x

f '!x" ! "cos x

f #!x" ! "sin x

f !x" ! cos x

cos x

a ! "4 cos t ! 0 when s ! 0
sin t ! 0!s ! 0"

cos t ! 0
& sin t & ! 1& v & ! 4& sin t &

cos t2%!s ! "4 cm"
!s ! 4 cm"

a !
dv
dt

!
d
dt

 !"4 sin t" ! "4 
d
dt

 !sin t" ! "4 cos t

v !
ds
dt

!
d
dt

 !4 cos t" ! 4 
d
dt

 !cos t" ! "4 sin t
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N Look for a pattern.
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If we let , then as , so by Equation 2 we have

M

EXAMPLE 6 Calculate .

SOLUTION Here we divide numerator and denominator by x :

(by the continuity of cosine and Equation 2) M

 ! 1

 !
cos 0

1

 ! lim
xl 0

 
cos x
sin x

x

!
lim 
xl 0 

cos x

lim 
xl 0

 
sin x

x

 lim
xl 0

 x cot x ! lim
xl 0

 
x cos x
sin x

lim
xl 0

 x cot xV

!
7
4

 lim
$ l 0

 
sin $

$
!

7
4

! 1 !
7
4

 lim
xl 0

 
sin 7x

4x
!

7
4

 lim
xl 0
# sin 7x

7x $
xl 0$ l 0$ ! 7x

21–24 Find an equation of the tangent line to the curve at the
given point.

21.

23. , 24. ,

25. (a) Find an equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

26. (a) Find an equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

27. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

graphing both and for .

28. (a) If , find and .
; (b) Check to see that your answers to part (a) are reasonable

by graphing , , and .

If , find .

30. If , find .f '!%%4"f !x" ! sec x

H#!$" and H '!$"H!$" ! $ sin $29.

f 'f #f

f '!x"f #!x"f !x" ! e x cos x

& x & ( %%2f #f

f #!x"f !x" ! sec x " x

!%%3, 1"y ! sec x " 2 cos x

!%%2, %"y ! 2x sin x

!0, 1"y !
1

sin x ! cos x
!0, 1"y ! x ! cos x

!0, 1"y ! e x cos x, 22.!%%3, 2"y ! sec x, 

1–16 Differentiate.

1. 2.

3. 4.

5. 6.

7. 8.

10.

11. 12.

13. 14.

15. 16.

17. Prove that .

18. Prove that .

19. Prove that .

20. Prove, using the definition of derivative, that if ,
then .f #!x" ! "sin x

f !x" ! cos x

d
dx

 !cot x" ! "csc2x

d
dx

 !sec x" ! sec x tan x

d
dx

 !csc x" ! "csc x cot x

y ! x 2  sin x tan xf !x" ! xe x csc x

y ! csc $ !$ ! cot $"y !
sin x

x 2

y !
1 " sec x

tan x
f !$" !

sec $
1 ! sec $

y !
1 ! sin x
x ! cos x

y !
x

2 " tan x
9.

y ! e u !cos u ! cu"h!$" ! csc $ ! e$ cot $

t!t" ! 4 sec t ! tan tt!t" ! t 3 cos t

y ! 2 csc x ! 5 cos xf !x" ! sin x ! 1
2 cot x

f !x" ! sx  sin xf !x" ! 3x 2 " 2 cos x

EXERCISES3.3
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A ladder 10 ft long rests against a vertical wall. Let be the
angle between the top of the ladder and the wall and let be
the distance from the bottom of the ladder to the wall. If the
bottom of the ladder slides away from the wall, how fast does

change with respect to when ?

38. An object with weight is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the
rope makes an angle with the plane, then the magnitude of
the force is

where is a constant called the coefficient of friction.
(a) Find the rate of change of with respect to .
(b) When is this rate of change equal to 0?

; (c) If lb and , draw the graph of as a func-
tion of and use it to locate the value of for which

. Is the value consistent with your answer to 
part (b)?

39–48 Find the limit.

39. 40.

42.

43. 44.

46.

47. 48.

49. Differentiate each trigonometric identity to obtain a new 
(or familiar) identity.

(a)

(b)

(c)

50. A semicircle with diameter sits on an isosceles triangle
to form a region shaped like a two-dimensional ice-PQR

PQ

sin x ! cos x !
1 ! cot x

csc x

sec x !
1

cos x

tan x !
sin x
cos x

lim
x l 1

 
sin!x " 1"
x 2 ! x " 2

lim
% l %%4

 
1 " tan x

sin x " cos x

lim
x l 0

 
sin!x 2"

x
lim
$ l 0

 
sin $

$ ! tan $
45.

lim
t l 0

 
sin2 3t

t 2lim
$ l 0

 
sin!cos $"

sec $

lim
$ l 0

 
cos $ " 1

sin $
lim
t l 0

 
tan 6t
sin 2t

41.

lim
x l 0

 
sin 4x
sin 6x

lim
x l 0

 
sin 3x

x

dF%d$ ! 0
$$

F) ! 0.6W ! 50

$F
)

F !
)W

) sin $ ! cos $

$

W

$ ! %%3$x

x
$37.31. (a) Use the Quotient Rule to differentiate the function

(b) Simplify the expression for by writing it in terms of
and , and then find .

(c) Show that your answers to parts (a) and (b) are
equivalent.

32. Suppose and , and let

and

Find (a) and (b) .

For what values of does the graph of 
have a horizontal tangent?

34. Find the points on the curve at which
the tangent is horizontal.

35. A mass on a spring vibrates horizontally on a smooth 
level surface (see the figure). Its equation of motion is

, where is in seconds and in centimeters.
(a) Find the velocity and acceleration at time .
(b) Find the position, velocity, and acceleration of the mass 

at time . In what direction is it moving at that
time?

; 36. An elastic band is hung on a hook and a mass is hung on the
lower end of the band. When the mass is pulled downward
and then released, it vibrates vertically. The equation of
motion is , , where is measured 
in centimeters and in seconds. (Take the positive direction to
be downward.)
(a) Find the velocity and acceleration at time .
(b) Graph the velocity and acceleration functions.
(c) When does the mass pass through the equilibrium

position for the first time?
(d) How far from its equilibrium position does the mass

travel?
(e) When is the speed the greatest?

t

t
st * 0s ! 2 cos t ! 3 sin t

x x0

equilibrium
position

t ! 2%%3

t
xtx!t" ! 8 sin t

y ! !cos x"%!2 ! sin x"

f !x" ! x ! 2 sin xx33.

h#!%%3"t#!%%3"

h!x" !
cos x
f !x"

t!x" ! f !x" sin x

f #!%%3" ! "2f !%%3" ! 4

f #!x"cos xsin x
f !x"

f !x" !
tan x " 1

sec x
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The figure shows a circular arc of length and a chord of
length , both subtended by a central angle . Find

d

¨

s

lim
$l

 

0! 
s
d

$d
s51.cream cone, as shown in the figure. If is the area of the

semicircle and is the area of the triangle, find

P Q

R

B(¨)

A(¨)

¨

10 cm 10 cm

lim
$l

 

0! 
A!$"
B!$"

B!$"
A!$"

THE CHAIN RULE

Suppose you are asked to differentiate the function 

The differentiation formulas you learned in the previous sections of this chapter do not
enable you to calculate .

Observe that is a composite function. In fact, if we let and let
, then we can write , that is, . We know

how to differentiate both and , so it would be useful to have a rule that tells us how to
find the derivative of in terms of the derivatives of and .

It turns out that the derivative of the composite function is the product of the deriv-
atives of and . This fact is one of the most important of the differentiation rules and is
called the Chain Rule. It seems plausible if we interpret derivatives as rates of change.
Regard as the rate of change of with respect to , as the rate of change of

with respect to , and as the rate of change of with respect to . If changes
twice as fast as and changes three times as fast as , then it seems reasonable that 
changes six times as fast as , and so we expect that 

THE CHAIN RULE If t is differentiable at and is differentiable at , then the
composite function defined by is differentiable at and

is given by the product 

In Leibniz notation, if and are both differentiable functions, then

dy
dx

!
dy
du

 
du
dx

u ! t!x"y ! f !u"

F#!x" ! f #!t!x"" ! t#!x"

F#
xF!x" ! f !t!x""F ! f ! t

t!x"fx

dy
dx

!
dy
du

 
du
dx

x
yuyx

uxydy%dxuy
dy%duxudu%dx

tf
f ! t

tfF ! f ! t
tf

F ! f ! ty ! F!x" ! f !t!x""u ! t!x" ! x 2 ! 1
y ! f !u" ! su F

F#!x"

F!x" ! sx 2 ! 1

3.4

N See Section 1.3 for a review of 
composite functions.



COMMENTS ON THE PROOF OF THE CHAIN RULE Let be the change in corresponding to a
change of in , that is,

Then the corresponding change in is 

It is tempting to write

The only flaw in this reasoning is that in (1) it might happen that (even when
) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at least

suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of
this section. M

The Chain Rule can be written either in the prime notation

or, if and , in Leibniz notation:

Equation 3 is easy to remember because if and were quotients, then we could
cancel . Remember, however, that has not been defined and should not be
thought of as an actual quotient.

EXAMPLE 1 Find if .

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed as
where and . Since

and

we have

 !
1

2sx 2 ! 1
! 2x !

x
sx 2 ! 1

 F#!x" ! f #!t!x"" ! t#!x"

t#!x" ! 2xf #!u" ! 1
2 u"1%2 !

1
2su 

t!x" ! x 2 ! 1f !u" ! su F!x" ! ! f ! t"!x" ! f !t!x""
F

F!x" ! sx 2 ! 1F#!x"

du%dxdudu
du%dxdy%du

dy
dx

!
dy
du

 
du
dx

3

u ! t!x"y ! f !u"

! f ! t"#!x" ! f #!t!x"" ! t#!x"2

+x " 0
+u ! 0

 !
dy
du

 
du
dx

 ! lim
+ul 0

 
+y
+u

! lim
+xl 0

 
+u
+x

 ! lim
+xl 0

 
+y
+u

! lim
+xl 0

 
+u
+x

 ! lim
+xl 0

 
+y
+u

!
+u
+x

1

 
dy
dx

! lim
+xl 0

 
+y
+x

+y ! f !u ! +u" " f !u"

y

+u ! t!x ! +x" " t!x"

x+x
u+u
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(Note that as 
since is continuous.)t

+x l 0+u l 0



SOLUTION 2 (using Equation 3): If we let and , then

M

When using Formula 3 we should bear in mind that refers to the derivative of 
when is considered as a function of (called the derivative of with respect to ), where-
as refers to the derivative of when considered as a function of (the derivative of

with respect to ). For instance, in Example 1, can be considered as a function of 
and also as a function of . Note that

whereas

In using the Chain Rule we work from the outside to the inside. Formula 2 says
that we differentiate the outer function [at the inner function ] and then we multiply
by the derivative of the inner function.

EXAMPLE 2 Differentiate (a) and (b) .

SOLUTION
(a) If , then the outer function is the sine function and the inner function is
the squaring function, so the Chain Rule gives

(b) Note that . Here the outer function is the squaring function and the
inner function is the sine function. So

The answer can be left as or written as (by a trigonometric identity
known as the double-angle formula). M

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine
function. In general, if , where is a differentiable function of , then, by the
Chain Rule,

dy
dx

!
dy
du

 
du
dx

! cos u 
du
dx

xuy ! sin u

sin 2x2 sin x cos x

dy
dx

!
d
dx

 !sin x"2      !       2 ! !sin x" ! cos x

sin2x ! !sin x"2

 ! 2x cos!x 2 "

 
dy
dx

!
d
dx

sin !x 2 " ! cos !x 2 " ! 2x

y ! sin!x 2 "

y ! sin2xy ! sin!x 2 "V

d
dx

f !t!x"" ! f # !t!x"" ! t#!x"

t!x"f
NOTE

dy
du

! f #!u" !
1

2su 

dy
dx

! F#!x" !
x

sx 2 ! 1

(y ! su )u(y ! sx 2 ! 1)
xyuy

uydy%du
xyxy

ydy%dx

 !
1

2sx 2 ! 1
!2x" !

x
sx 2 ! 1

 F#!x" !
dy
du

 
du
dx

!
1

2su  !2x"

y ! su u ! x 2 ! 1
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function
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of inner
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N See Reference Page 2 or Appendix D.



Thus

In a similar fashion, all of the formulas for differentiating trigonometric functions can
be combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function is a
power function. If , then we can write where . By using
the Chain Rule and then the Power Rule, we get

THE POWER RULE COMBINED WITH THE CHAIN RULE If is any real number
and is differentiable, then

Alternatively,

Notice that the derivative in Example 1 could be calculated by taking in Rule 4.

EXAMPLE 3 Differentiate .

SOLUTION Taking and in (4), we have

M

EXAMPLE 4 Find if .

SOLUTION First rewrite :

Thus

M

EXAMPLE 5 Find the derivative of the function 

SOLUTION Combining the Power Rule, Chain Rule, and Quotient Rule, we get 

M! 9# t " 2
2t ! 1$8 !2t ! 1" ! 1 " 2!t " 2"

!2t ! 1"2  !
45!t " 2"8

!2t ! 1"10

 t#!t" ! 9# t " 2
2t ! 1$8

 
d
dt

 # t " 2
2t ! 1$

t!t" ! # t " 2
2t ! 1$9

 ! "1
3 !x 2 ! x ! 1""4%3!2x ! 1"

 f #!x" ! "1
3 !x 2 ! x ! 1""4%3 

d
dx

 !x 2 ! x ! 1"

f !x" ! !x 2 ! x ! 1""1%3f

f !x" !
1

s3 x 2 ! x ! 1
f #!x"V

  ! 100!x 3 " 1"99 ! 3x 2 ! 300x 2!x 3 " 1"99

 
dy
dx

!
d
dx

 !x 3 " 1"100 ! 100!x 3 " 1"99 
d
dx

 !x 3 " 1"

n ! 100u ! t!x" ! x 3 " 1

y ! !x 3 " 1"100

n ! 1
2

d
dx

 't!x"(n ! n't!x"(n"1 ! t#!x"

d
dx

 !u n " ! nun"1 
du
dx

u ! t!x"
n4

dy
dx

!
dy
du

 
du
dx

! nun"1 
du
dx

! n't!x"(n"1t#!x"

u ! t!x"y ! f !u" ! uny ! 't!x"(n
f

d
dx

 !sin u" ! cos u 
du
dx
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EXAMPLE 6 Differentiate .

SOLUTION In this example we must use the Product Rule before using the Chain Rule:

Noticing that each term has the common factor , we could 
factor it out and write the answer as

M

EXAMPLE 7 Differentiate .

SOLUTION Here the inner function is and the outer function is the exponential
function . So, by the Chain Rule,

M

We can use the Chain Rule to differentiate an exponential function with any base .
Recall from Section 1.6 that . So

and the Chain Rule gives

because ln a is a constant. So we have the formula

In particular, if , we get

d
dx

 !2x" ! 2x ln 26

a ! 2

d
dx

 !ax" ! ax ln a5

 ! e !ln a"x , ln a ! ax ln a

 
d
dx

 !ax " !
d
dx

 !e !ln a"x " ! e !ln a"x 
d
dx

 !ln a"x

ax ! !e ln a "x ! e !ln a"x

a ! e ln a
a - 0

dy
dx

!
d
dx

 !e sin x " ! e sin x 
d
dx

 !sin x" ! e sin x cos x

f !x" ! ex
t!x" ! sin x

y ! e sin x

dy
dx

! 2!2x ! 1"4!x 3 " x ! 1"3!17x 3 ! 6x 2 " 9x ! 3"

2!2x ! 1"4!x 3 " x ! 1"3

 ! 4!2x ! 1"5!x 3 " x ! 1"3!3x 2 " 1" ! 5!x 3 " x ! 1"4!2x ! 1"4 ! 2

 ! !x 3 " x ! 1"4 ! 5!2x ! 1"4 
d
dx

 !2x ! 1"

 ! !2x ! 1"5 ! 4!x 3 " x ! 1"3 
d
dx

 !x 3 " x ! 1"

 
dy
dx

! !2x ! 1"5 
d
dx

 !x 3 " x ! 1"4 ! !x 3 " x ! 1"4 
d
dx

 !2x ! 1"5

y ! !2x ! 1"5!x 3 " x ! 1"4
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N The graphs of the functions and in 
Example 6 are shown in Figure 1. Notice that 

is large when increases rapidly and 
when has a horizontal tangent. So our answer
appears to be reasonable.

y
y# ! 0yy#

y#y

N More generally, the Chain Rule gives
d

dx
 !eu" ! eu 

du
dx

N Don’t confuse Formula 5 (where is the expo-
nent ) with the Power Rule (where is the base):

d
dx

 !x n " ! nx n"1

x
x



In Section 3.1 we gave the estimate

This is consistent with the exact formula (6) because .
The reason for the name “Chain Rule” becomes clear when we make a longer chain by

adding another link. Suppose that , , and , where , , and are
differentiable functions. Then, to compute the derivative of with respect to , we use the
Chain Rule twice:

EXAMPLE 8 If , then

Notice that we used the Chain Rule twice. M

EXAMPLE 9 Differentiate .

SOLUTION The outer function is the exponential function, the middle function is the secant
function and the inner function is the tripling function. So we have

M

HOW TO PROVE THE CHAIN RULE

Recall that if and x changes from a to , we defined the increment of y as

According to the definition of a derivative, we have

So if we denote by the difference between the difference quotient and the derivative, 
we obtain

lim 
!xl 0

 " ! lim 
!xl 0

!!y
!x

# f $"a#$ ! f $"a# # f $"a# ! 0

"

lim 
!xl 0

 
!y
!x

! f $"a#

!y ! f "a % !x# # f "a#

a % !xy ! f "x#

 ! 3e sec 3& sec 3& tan 3&

 ! e sec 3& sec 3& tan 3& 
d
d&

 "3&#

 
dy
d&

! e sec 3& 
d
d&

 "sec 3&#

y ! e sec 3&

 ! #cos"cos"tan x## sin"tan x# sec2x

 ! cos"cos"tan x## %#sin"tan x#& 
d
dx

 "tan x#

 f $"x# ! cos"cos"tan x## 
d
dx

 cos"tan x#

f "x# ! sin"cos"tan x##V

dy
dt

!
dy
dx

 
dx
dt

!
dy
du

 
du
dx

 
dx
dt

ty
htfx ! h"t#u ! t"x#y ! f "u#

ln 2 ' 0.693147

d
dx

 "2x# ' "0.69#2x
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But

If we define to be 0 when , then becomes a continuous function of . Thus,
for a differentiable function f, we can write

and is a continuous function of . This property of differentiable functions is what
enables us to prove the Chain Rule.

PROOF OF THE CHAIN RULE Suppose is differentiable at a and is differen-
tiable at . If is an increment in x and and are the corresponding incre-
ments in u and y, then we can use Equation 7 to write

where as . Similarly

where as . If we now substitute the expression for from Equation 8
into Equation 9, we get

so

As , Equation 8 shows that . So both and as .
Therefore

This proves the Chain Rule. M

 � f ��b�t��a� � f ��t�a��t��a�

 
dy

dx
� lim

�x l 0
 
�y

�x
� lim

�x l 0
 � f ��b� � �2 ��t��a� � �1�

�x l 0�2 l 0�1 l 0�u l 0�x l 0

�y

�x
� � f ��b� � �2 ��t��a� � �1�

�y � � f ��b� � �2 ��t��a� � �1� �x

�u�u l 0�2 l 0

�y � f ��b� �u � �2 �u � � f ��b� � �2 � �u9

�x l 0�1 l 0

�u � t��a� �x � �1 �x � �t��a� � �1� �x8

�y�u�xb � t�a�
y � f �u�u � t�x�

�x�

�y � f ��a� �x � � �x where  � l 0 as �x l 07

�x��x � 0�

� �
�y

�x
� f ��a� ? �y � f ��a� �x � � �x
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9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

20. y � �x 2 � 1�s
3 x 2 � 2 y � �2x � 5�4�8x 2 � 5��319.

h�t� � �t 4 � 1�3�t 3 � 1�4

t�x� � �1 � 4x�5�3 � x � x2�8

y � 3 cot�n��y � xe�kx

y � a3 � cos3xy � cos�a3 � x 3 �

f �t� � s
3 1 � tan t 

t�t� �
1

�t 4 � 1�3

f �x� � �1 � x 4�2�3F�x� � s
4 1 � 2x � x 3 1–6 Write the composite function in the form . [Identify the

inner function and the outer function .] Then find
the derivative .

1. 2.

3. 4.

6.

7–46 Find the derivative of the function.

7. 8. F�x� � �4x � x 2�100F�x� � �x 4 � 3x 2 � 2�5

y � sin�e x �y � esx5.

y � tan�sin x�y � �1 � x 2 �10

y � s4 � 3x y � sin 4x

dy�dx
y � f �u�u � t�x�
f �t�x��

EXERCISES3.4



; 58. The function , , arises in
applications to frequency modulation (FM) synthesis.
(a) Use a graph of produced by a graphing device to make

a rough sketch of the graph of .
(b) Calculate and use this expression, with a graphing

device, to graph . Compare with your sketch in part (a).

Find all points on the graph of the function
at which the tangent line is horizontal.

60. Find the -coordinates of all points on the curve
at which the tangent line is horizontal.

If , where , , ,
, and , find .

62. If , where and , 
find .

63. A table of values for , , , and is given.

(a) If , find .
(b) If , find .

64. Let and be the functions in Exercise 63.
(a) If , find .
(b) If , find .

If and are the functions whose graphs are shown, let
, , and . Find

each derivative, if it exists. If it does not exist, explain why.
(a) (b) (c)

66. If is the function whose graph is shown, let 
and . Use the graph of to estimate the value 
of each derivative.
(a) (b)

x

y

0 1

y=ƒ

1

t$"2#h$"2#

ft"x# ! f "x 2 #
h"x# ! f " f "x##f

x

y

0

f

g
1

1

w$"1#v$"1#u$"1#

w"x# ! t"t"x##v"x# ! t" f "x##u"x# ! f "t"x##
tf65.

G$"3#G"x# ! t"t"x##
F$"2#F"x# ! f " f "x##

tf

H$"1#H"x# ! t" f "x##
h$"1#h"x# ! f "t"x##

t$f $tf

h$"1#
f $"1# ! 4f "1# ! 7h"x# ! s4 % 3f "x# 

F$"5#t$"5# ! 6t"5# ! #2
f $"5# ! 3f $"#2# ! 4f "#2# ! 8F"x# ! f "t"x##61.

y ! sin 2x # 2 sin x
x

f "x# ! 2 sin x % sin2x
59.

f $
f $"x#

f $
f

0 ' x ' (f "x# ! sin"x % sin 2x#
21. 22.

24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

38.

39. 40.

41. 42.

43. 44.

45. 46.

47–50 Find the first and second derivatives of the function.

47. 48.

49. 50.

51–54 Find an equation of the tangent line to the curve at the
given point.

51. , 52. ,

53. , 54. ,

(a) Find an equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

56. (a) The curve is called a bullet-nose curve.
Find an equation of the tangent line to this curve at the
point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

57. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .f $f

f $"x#f "x# ! xs2 # x 2 

"1, 1#

y ! ) x )(s2 # x 2 

"0, 1#y ! 2("1 % e#x #
55.

"1, 1(e#y ! x 2e#x"(, 0#y ! sin"sin x#

"0, 0#y ! sin x % sin2x"0, 1#y ! "1 % 2x#10

y ! e e x
y ! e )x sin *x

y ! xe cxh"x# ! sx 2 % 1

y ! %x % "x % sin2x#3& 4y ! cosssin"tan (x#

y ! 23x2

t"x# ! "2ra rx % n#p

y ! sx % sx % sx f "t# ! sin2"esin2 t #

y ! sin"sin"sin x##f "t# ! tan"e t # % e tan t

y ! ek tan sxy ! cot2"sin &#37.

f "t# ! * t
t 2 % 4

y ! cos!1 # e2x

1 % e2x$
y ! x sin 

1
x

y ! sec2x % tan2x

y ! tan2"3&#y ! 2sin (x

G"y# ! ! y 2

y % 1$5

y ! sin"tan 2x#

y !
e u # e#u

e u % e#uy !
r

sr 2 % 1

G"y# !
"y # 1#4

"y2 % 2y#5F"z# ! * z # 1
z % 1

 

y ! 101#x 2

y ! e x cos x23.

y ! e#5x cos 3xy ! ! x 2 % 1
x 2 # 1$3
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x

1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

t$"x#f $"x#t"x#f "x#



Use this model to compare how the number of hours of day-
light is increasing in Philadelphia on March 21 and May 21.

; 81. The motion of a spring that is subject to a frictional force or 
a damping force (such as a shock absorber in a car) is often
modeled by the product of an exponential function and a sine
or cosine function. Suppose the equation of motion of a point
on such a spring is

where is measured in centimeters and in seconds. Find 
the velocity after seconds and graph both the position and
velocity functions for .

82. Under certain circumstances a rumor spreads according to the
equation

where is the proportion of the population that knows the
rumor at time and and are positive constants. [In Sec-
tion 9.4 we will see that this is a reasonable equation for .]
(a) Find .
(b) Find the rate of spread of the rumor.

; (c) Graph for the case , with measured in
hours. Use the graph to estimate how long it will take for
80% of the population to hear the rumor.

83. A particle moves along a straight line with displacement 
velocity , and acceleration . Show that

Explain the difference between the meanings of the deriv-
atives .

Air is being pumped into a spherical weather balloon. At any
time , the volume of the balloon is and its radius is .
(a) What do the derivatives and represent?
(b) Express in terms of .

; 85. The flash unit on a camera operates by storing charge on a
capacitor and releasing it suddenly when the flash is set off.
The following data describe the charge remaining on the
capacitor (measured in microcoulombs, +C) at time (mea-
sured in seconds).

(a) Use a graphing calculator or computer to find an expo-
nential model for the charge.

(b) The derivative represents the electric current (mea-
sured in microamperes, +A) flowing from the capacitor to
the flash bulb. Use part (a) to estimate the current when

s. Compare with the result of Example 2 in 
Section 2.1.
t ! 0.04

Q$"t#

t
Q

dr(dtdV(dt
dV(dtdV(dr

r"t#V"t#t
84.

dv(dt and dv(ds

a"t# ! v"t# 
dv
ds

a"t#v"t#
s"t#,

tk ! 0.5a ! 10p

lim t l , p"t#
p"t#

kat
p"t#

p"t# !
1

1 % ae #k t

0 ' t ' 2
t

ts

s"t# ! 2e#1.5 t sin 2(t

Suppose is differentiable on . Let and
. Find expressions for (a) and (b) .

68. Suppose is differentiable on and is a real number. 
Let and . Find expressions 
for (a) and (b) .

69. Let , where , , ,
, and . Find .

70. If is a twice differentiable function and , find
in terms of , , and .

71. If , where and , 
find .

72. If , where , , ,
, and , find .

73. Show that the function satisfies the differ-
ential equation .

74. For what values of does the function satisfy the
equation ?

Find the 50th derivative of .

76. Find the 1000th derivative of .

The displacement of a particle on a vibrating string is given
by the equation

where is measured in centimeters and in seconds. Find the
velocity of the particle after seconds.

78. If the equation of motion of a particle is given by
, the particle is said to undergo simple 

harmonic motion.
(a) Find the velocity of the particle at time .
(b) When is the velocity 0?

79. A Cepheid variable star is a star whose brightness alternately
increases and decreases. The most easily visible such star is
Delta Cephei, for which the interval between times of maxi-
mum brightness is 5.4 days. The average brightness of this
star is 4.0 and its brightness changes by . In view of
these data, the brightness of Delta Cephei at time , where is
measured in days, has been modeled by the function

(a) Find the rate of change of the brightness after days.
(b) Find, correct to two decimal places, the rate of increase

after one day.

80. In Example 4 in Section 1.3 we arrived at a model for the
length of daylight (in hours) in Philadelphia on the th day of
the year:

L"t# ! 12 % 2.8 sin+ 2(

365
"t # 80#,

t

t

B"t# ! 4.0 % 0.35 sin!2( t
5.4 $

tt
-0.35

t

s ! A cos".t % /#

t
ts

s"t# ! 10 % 1
4 sin"10( t#

77.

f "x# ! xe#x

y ! cos 2x75.

y0 % 5y$ # 6y ! 0
y ! erxr

y0 % 2y$ % y ! 0
y ! Ae#x % Bxe#x

F$"1#f $"3# ! 6f $"2# ! 5
f $"1# ! 4f "2# ! 3f "1# ! 2F"x# ! f "x f "x f "x###

F$"0#
f $"0# ! 2f "0# ! 0F"x# ! f "3f "4 f "x###

t 0t$tf 0
f "x# ! xt"x 2 #t

r$"1#f $"3# ! 6t$"2# ! 5
h$"1# ! 4t"2# ! 3h"1# ! 2r"x# ! f "t"h"x###

G$"x#F$"x#
G"x# ! % f "x#&)F"x# ! f "x ) #

)!f

G$"x#F$"x#G"x# ! e f "x#
F"x# ! f "e x #!f67.
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t 0.00 0.02 0.04 0.06 0.08 0.10

Q 100.00 81.87 67.03 54.88 44.93 36.76



An approach path for an aircraft landing is shown in the figure on the next page and satisfies the
following conditions:

(i) The cruising altitude is when descent starts at a horizontal distance from touchdown at
the origin.

(ii) The pilot must maintain a constant horizontal speed throughout descent.v

!h

WHERE SHOULD A PILOT START DESCENT?A P P L I E D
P R O J E C T

90. Use the Chain Rule and the Product Rule to give an 
alternative proof of the Quotient Rule.
[Hint: Write .]

91. (a) If is a positive integer, prove that

(b) Find a formula for the derivative of 
that is similar to the one in part (a).

92. Suppose is a curve that always lies above the -axis
and never has a horizontal tangent, where is differentiable
everywhere. For what value of is the rate of change of 
with respect to eighty times the rate of change of with
respect to ?

Use the Chain Rule to show that if is measured in degrees,
then

(This gives one reason for the convention that radian measure
is always used when dealing with trigonometric functions in
calculus: The differentiation formulas would not be as simple
if we used degree measure.)

94. (a) Write and use the Chain Rule to show that

(b) If , find and sketch the graphs of 
and . Where is not differentiable?

(c) If , find and sketch the graphs of 
and . Where is not differentiable?

95. If and , where and are twice differen-
tiable functions, show that

96. If and , where and possess third deriva-
tives, find a formula for similar to the one given in
Exercise 95.

d 3y(dx 3
tfu ! t"x#y ! f "u#

d 2 y
dx 2 !

d 2 y
du 2 ! du

dx$2

%
dy
du

 
d 2u
dx 2

tfu ! t"x#y ! f "u#

tt$
tt$"x#t"x# ! sin ) x )

ff $
ff $"x#f "x# ! ) sin x )

d
dx

 ) x ) !
x

) x )

) x ) ! sx 2

d
d&

 "sin &# !
(

180
 cos &

&93.

x
yx

y 5y
f

xy ! f "x#

y ! cosnx cos nx

d
dx

 "sinnx cos nx# ! n sinn#1x cos"n % 1#x

n

f "x#(t"x# ! f "x#%t"x#&#1

; 86. The table gives the US population from 1790 to 1860.

(a) Use a graphing calculator or computer to fit an exponen-
tial function to the data. Graph the data points and the
exponential model. How good is the fit?

(b) Estimate the rates of population growth in 1800 and 1850
by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to estimate the rates
of growth in 1800 and 1850. Compare these estimates
with the ones in part (b).

(d) Use the exponential model to predict the population in
1870. Compare with the actual population of 38,558,000.
Can you explain the discrepancy?

87. Computer algebra systems have commands that differentiate
functions, but the form of the answer may not be convenient
and so further commands may be necessary to simplify the
answer.
(a) Use a CAS to find the derivative in Example 5 and com-

pare with the answer in that example. Then use the sim-
plify command and compare again.

(b) Use a CAS to find the derivative in Example 6. What hap-
pens if you use the simplify command? What happens if
you use the factor command? Which form of the answer
would be best for locating horizontal tangents?

88. (a) Use a CAS to differentiate the function

and to simplify the result.
(b) Where does the graph of have horizontal tangents?
(c) Graph and on the same screen. Are the graphs con-

sistent with your answer to part (b)?

89. Use the Chain Rule to prove the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

f $f
f

f "x# ! * x 4 # x % 1
x 4 % x % 1

CAS

CAS
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Year Population Year Population

1790 3,929,000 1830 12,861,000

1800 5,308,000 1840 17,063,000

1810 7,240,000 1850 23,192,000

1820 9,639,000 1860 31,443,000



(iii) The absolute value of the vertical acceleration should not exceed a constant (which is much
less than the acceleration due to gravity). 

1. Find a cubic polynomial that satisfies condition (i) by imposing
suitable conditions on and at the start of descent and at touchdown.

2. Use conditions (ii) and (iii) to show that  

3. Suppose that an airline decides not to allow vertical acceleration of a plane to exceed 
mi(h . If the cruising altitude of a plane is 35,000 ft and the speed is 300 mi(h, how

far away from the airport should the pilot start descent?

; 4. Graph the approach path if the conditions stated in Problem 3 are satisfied.

2k ! 860

6hv 2

! 2 ' k

P$"x#P"x#
P"x# ! ax 3 % bx 2 % cx % d

k
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IMPLICIT DIFFERENTIATION

The functions that we have met so far can be described by expressing one variable explic-
itly in terms of another variable—for example,

or

or, in general, . Some functions, however, are defined implicitly by a relation
between and such as

or

In some cases it is possible to solve such an equation for as an explicit function (or sev-
eral functions) of . For instance, if we solve Equation 1 for , we get , 
so two of the functions determined by the implicit Equation l are and

. The graphs of and are the upper and lower semicircles of the 
circle . (See Figure 1.)

It’s not easy to solve Equation 2 for explicitly as a function of by hand. (A com-
puter algebra system has no trouble, but the expressions it obtains are very complicated.) 

xy

FIGURE 1  

0 x

y

0 x

y

0 x

y

(c) ©=_œ„„„„„„25-≈(b) ƒ=œ„„„„„„25-≈(a) ≈+¥=25

x 2 % y 2 ! 25
tft"x# ! #s25 # x 2 

f "x# ! s25 # x 2 

y ! -s25 # x 2 yx
y

x 3 % y 3 ! 6xy2

x 2 % y 2 ! 251

yx
y ! f "x#

y ! x sin xy ! sx 3 % 1

3.5

y

x0

y=P(x)

!

h



Nonetheless, (2) is the equation of a curve called the folium of Descartes shown in 
Figure 2 and it implicitly defines as several functions of . The graphs of three such func-
tions are shown in Figure 3. When we say that is a function defined implicitly by Equa-
tion 2, we mean that the equation

is true for all values of in the domain of .

Fortunately, we don’t need to solve an equation for in terms of in order to find the
derivative of . Instead we can use the method of implicit differentiation. This consists of
differentiating both sides of the equation with respect to and then solving the resulting
equation for . In the examples and exercises of this section it is always assumed that the
given equation determines implicitly as a differentiable function of so that the method
of implicit differentiation can be applied.

EXAMPLE 1

(a) If , find .

(b) Find an equation of the tangent to the circle at the point .

SOLUTION 1
(a) Differentiate both sides of the equation :

Remembering that is a function of and using the Chain Rule, we have 

Thus

Now we solve this equation for :

dy
dx

! #
x
y

dy(dx

2x % 2y 
dy
dx

! 0

d
dx

 "y 2 # !
d
dy

 "y 2 # 
dy
dx

! 2y 
dy
dx

xy

 
d
dx

 "x 2 # %
d
dx

 "y 2 # ! 0

 
d
dx

 "x 2 % y 2 # !
d
dx

 "25#

x 2 % y 2 ! 25

"3, 4#x 2 % y 2 ! 25

dy
dx

x 2 % y 2 ! 25

V

xy
y$

x
y

xy

x

y

0

˛+Á=6xy

FIGURE 2  The folium of Descartes

x

y

0

FIGURE 3  Graphs of three functions defined by the folium of Descartes

x

y

0x

y

0

fx

x 3 % % f "x#&3 ! 6x f "x#

f
xy
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(b) At the point we have and , so

An equation of the tangent to the circle at is therefore

SOLUTION 2
(b) Solving the equation , we get . The point lies on
the upper semicircle and so we consider the function .
Differentiating using the Chain Rule, we have

So

and, as in Solution 1, an equation of the tangent is . M

The expression in Solution 1 gives the derivative in terms of
both and . It is correct no matter which function is determined by the given equation.
For instance, for we have

whereas for we have

EXAMPLE 2
(a) Find if .
(b) Find the tangent to the folium of Descartes at the point .
(c) At what points in the first quadrant is the tangent line horizontal? 

SOLUTION
(a) Differentiating both sides of with respect to , regarding as a func-
tion of , and using the Chain Rule on the term and the Product Rule on the term ,
we get

or    x 2 % y 2y$ ! 2xy$ % 2y

 3x 2 % 3y 2y$ ! 6xy$ % 6y

6xyy 3x
yxx 3 % y 3 ! 6xy

"3, 3#x 3 % y 3 ! 6xy
x 3 % y 3 ! 6xyy$

V

dy
dx

! #
x
y

! #
x

#s25 # x 2 
!

x
s25 # x 2 

y ! t"x# ! #s25 # x 2 

dy
dx

! #
x
y

! #
x

s25 # x 2 

y ! f "x# ! s25 # x 2 

yyx
dy(dx ! #x(yNOTE 1

3x % 4y ! 25

 f $"3# ! #
3

s25 # 32 
! #

3
4

 ! 1
2 "25 # x 2 ##1(2"#2x# ! #

x
s25 # x 2 

 f $"x# ! 1
2 "25 # x 2 ##1(2 

d
dx

 "25 # x 2 #

f
f "x# ! s25 # x 2 y ! s25 # x 2 

"3, 4#y ! -s25 # x 2 x 2 % y 2 ! 25

3x % 4y ! 25ory # 4 ! #3
4 "x # 3#

"3, 4#

dy
dx

! #
3
4

y ! 4x ! 3"3, 4#
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N Example 1 illustrates that even when it is 
possible to solve an equation explicitly for in
terms of , it may be easier to use implicit 
differentiation.

x
y



We now solve for :

(b) When ,

and a glance at Figure 4 confirms that this is a reasonable value for the slope at . So
an equation of the tangent to the folium at is

or

(c) The tangent line is horizontal if . Using the expression for from part (a), 
we see that when (provided that . Substituting 
in the equation of the curve, we get

which simplifies to . Since in the first quadrant, we have . If
, then . Thus the tangent is horizontal at (0, 0) and at

, which is approximately (2.5198, 3.1748). Looking at Figure 5, we see that
our answer is reasonable. M

There is a formula for the three roots of a cubic equation that is like the quad-
ratic formula but much more complicated. If we use this formula (or a computer algebra
system) to solve the equation for in terms of , we get three functions
determined by the equation: 

and

(These are the three functions whose graphs are shown in Figure 3.) You can see that the
method of implicit differentiation saves an enormous amount of work in cases such as this.
Moreover, implicit differentiation works just as easily for equations such as

for which it is impossible to find a similar expression for in terms of .

EXAMPLE 3 Find if .

SOLUTION Differentiating implicitly with respect to and remembering that is a function
of , we get

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain 

cos"x % y# ! "1 % y$# ! y 2"#sin x# % "cos x#"2yy$#

x
yx

sin"x % y# ! y 2 cos xy$

xy

y 5 % 3x 2y 2 % 5x 4 ! 12

y ! 1
2 [#f "x# - s#3(s3 #1

2 x 3 % s1
4 x 6 # 8x 3  # s3 #1

2 x 3 # s1
4 x 6 # 8x 3  )]

y ! f "x# ! s3 #1
2 x 3 % s1

4 x 6 # 8x 3  % s3 #1
2 x 3 # s1

4 x 6 # 8x 3  

xyx 3 % y 3 ! 6xy

NOTE 2

"24(3, 25(3 #
y ! 1

2 "28(3 # ! 25(3x ! 161(3 ! 24(3
x 3 ! 16x " 0x 6 ! 16x 3

x 3 % ( 1
2 x 2)3 ! 6x( 1

2 x 2)

y ! 1
2 x 2y 2 # 2x " 0)2y # x 2 ! 0y$ ! 0

y$y$ ! 0

x % y ! 6y # 3 ! #1"x # 3#

"3, 3#
"3, 3#

y$ !
2 ! 3 # 32

32 # 2 ! 3
! #1 

x ! y ! 3

 y$ !
2y # x 2

y 2 # 2x

 "y 2 # 2x#y$ ! 2y # x 2

 y 2y$ # 2xy$ ! 2y # x 2y$
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FIGURE 4

0

y

x

(3, 3)

4

0 4

FIGURE 5  

N The Norwegian mathematician Niels Abel
proved in 1824 that no general formula can be
given for the roots of a fifth-degree equation in
terms of radicals. Later the French mathemati-
cian Evariste Galois proved that it is impossible
to find a general formula for the roots of an 

th-degree equation (in terms of algebraic 
operations on the coefficients) if is any integer
larger than 4.

n
n



Rule on the right side.) If we collect the terms that involve , we get

So

Figure 6, drawn with the implicit-plotting command of a computer algebra system,
shows part of the curve . As a check on our calculation, notice that

when and it appears from the graph that the slope is approximately
at the origin. M

The following example shows how to find the second derivative of a function that is
defined implicitly.

EXAMPLE 4 Find if .

SOLUTION Differentiating the equation implicitly with respect to , we get

Solving for gives

To find we differentiate this expression for using the Quotient Rule and remember-
ing that is a function of :

If we now substitute Equation 3 into this expression, we get

But the values of and must satisfy the original equation . So the answer
simplifies to

M

DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

The inverse trigonometric functions were reviewed in Section 1.6. We discussed their con-
tinuity in Section 2.5 and their asymptotes in Section 2.6. Here we use implicit differenti-
ation to find the derivatives of the inverse trigonometric functions, assuming that these 

y0 ! #
3x 2"16#

y 7 ! #48 
x 2

y 7

x 4 % y 4 ! 16yx

 ! #
3"x 2y 4 % x 6 #

y 7 ! #
3x 2"y 4 % x 4 #

y 7

 y0 ! #

3x 2y 3 # 3x 3y 2!#
x 3

y 3$
y 6

 ! #
y 3 ! 3x 2 # x 3"3y 2y$#

y 6

 y0 !
d
dx

 !#
x 3

y 3$ ! #
y 3 "d(dx#"x 3 # # x 3 "d(dx#"y 3 #

"y 3 #2

xy
y$y0

y$ ! #
x 3

y 33

y$

4x 3 % 4y 3y$ ! 0

x

x 4 % y 4 ! 16y0

#1
x ! y ! 0y$ ! #1

sin"x % y# ! y 2 cos x

y$ !
 y 2 sin x % cos"x % y#
2y cos x # cos"x % y#

cos"x % y# % y 2 sin x ! "2y cos x#y$ # cos"x % y# ! y$

y$
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FIGURE 6

2

_2

_2 2

N Figure 7 shows the graph of the curve
of Example 4. Notice that it’s 

a stretched and flattened version of the circle
. For this reason it’s sometimes

called a fat circle. It starts out very steep on the
left but quickly becomes very flat. This can be
seen from the expression

y$ ! #
x 3

y 3 ! #! x
y$3

x 2 % y 2 ! 4

x 4 % y 4 ! 16

FIGURE 7  

x

2

y

20

x$+y$=16



functions are differentiable. [In fact, if is any one-to-one differentiable function, it can
be proved that its inverse function is also differentiable, except where its tangents are
vertical. This is plausible because the graph of a differentiable function has no corner or
kink and so if we reflect it about , the graph of its inverse function also has no cor-
ner or kink.]

Recall the definition of the arcsine function:

Differentiating implicitly with respect to x, we obtain

Now , since , so

Therefore

The formula for the derivative of the arctangent function is derived in a similar way. If
, then . Differentiating this latter equation implicitly with respect to 

, we have

EXAMPLE 5 Differentiate (a) and (b) .

SOLUTION

(a)

(b)

M !
sx 

2!1 ! x"
! arctansx 

 f "!x" ! x 
1

1 ! (sx )2  ( 1
2 x#1#2) ! arctansx 

 ! #
1

!sin#1x"2s1 # x 2 

 
dy
dx

!
d
dx

 !sin#1x"#1 ! #!sin#1x"#2 
d
dx

 !sin#1x"

f !x" ! x arctansx y !
1

sin#1x
V

d
dx

 !tan#1x" !
1

1 ! x 2

 
dy
dx

!
1

sec2y
!

1
1 ! tan2y

!
1

1 ! x 2

 sec2 y 
dy
dx

! 1

x
tan y ! xy ! tan#1x

d
dx

 !sin#1x" !
1

s1 # x 2 

dy
dx

!
1

cos y
!

1
s1 # x 2 

cos y ! s1 # sin2y ! s1 # x 2 

#$#2 % y % $#2cos y & 0

dy
dx

!
1

cos y
orcos y 

dy
dx

! 1

sin y ! x

#
$

2
% y %

$

2
andsin y ! xmeansy ! sin#1x

y ! x

f #1
f
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N The same method can be used to find a 
formula for the derivative of any inverse function.
See Exercise 67.

N Recall that is an alternative 
notation for .tan#1x

arctan x

N Figure 8 shows the graph of 
and its derivative . 
Notice that is increasing and is always
positive. The fact that as

is reflected in the fact that
as .x l '(f "!x" l 0

x l '(
tan#1x l '$#2

f "!x"f
f "!x" ! 1#!1 ! x 2 "

f !x" ! tan#1x

1.5

_1.5

_6 6

y=tan–! x
y= 1
1+≈

FIGURE 8



The inverse trigonometric functions that occur most frequently are the ones that we
have just discussed. The derivatives of the remaining four are given in the following table.
The proofs of the formulas are left as exercises.

DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

 
d
dx

 !tan#1x" !
1

1 ! x 2      
d
dx

 !cot#1x" ! #
1

1 ! x 2

 
d
dx

 !cos#1x" ! #
1

s1 # x 2 
     

d
dx

 !sec#1x" !
1

xsx 2 # 1

 
d
dx

 !sin#1x" !
1

s1 # x 2 
     

d
dx

 !csc#1x" ! #
1

xsx 2 # 1
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N The formulas for the derivatives of and
depend on the definitions that are used

for these functions. See Exercise 58.
sec#1x

csc#1x

25–30 Use implicit differentiation to find an equation of the 
tangent line to the curve at the given point.

25. , (ellipse)

26. , (hyperbola)

28.

(cardioid) (astroid)

29. 30.
(3, 1) (0, #2)
(lemniscate) (devil’s curve)

31. (a) The curve with equation is called a
kampyle of Eudoxus. Find an equation of the tangent
line to this curve at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on a common screen. (If your graphing device will
graph implicitly defined curves, then use that capability. If

!1, 2"

y 2 ! 5x 4 # x 2

x

y

x

y

0

y2!y2 # 4" ! x2!x2 # 5"2!x 2 ! y 2 "2 ! 25!x 2 # y 2 "

x

y

0 8x

y

(#3s3, 1)(0, 12)
x 2#3 ! y 2#3 ! 4x2 ! y2 ! !2x2 ! 2y2 # x"227.

!1, 2"x2 ! 2xy # y2 ! x ! 2

!1, 1"x2 ! xy ! y2 ! 3

1–4
(a) Find by implicit differentiation.
(b) Solve the equation explicitly for and differentiate to get 

in terms of .
(c) Check that your solutions to parts (a) and (b) are consistent

by substituting the expression for into your solution for 
part (a).

1. 2.

3. 4.

5–20 Find by implicit differentiation.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

16.

17. 18.

19. 20.

21. If and , find .

22. If , find .

23–24 Regard as the independent variable and as the depen-
dent variable and use implicit differentiation to find .

23. 24. y sec x ! x tan yx 4y2 # x 3y ! 2xy3 ! 0

dx#dy
xy

t"!0"t!x" ! x sin t!x" ! x 2

f "!1"f !1" ! 2f !x" ! x2 $ f !x"%3 ! 10

sin x ! cos y ! sin x cos ye y cos x ! 1 ! sin!xy"

tan!x # y" !
y

1 ! x 2sxy ! 1 ! x 2y

sx ! y ! 1 ! x2y2e x#y ! x # y15.

y sin!x 2" ! x sin!y 2"4 cos x sin y ! 1

1 ! x ! sin!xy2"x2y2 ! x sin y ! 4

y 5 ! x 2y 3 ! 1 ! yex2

x 4!x ! y" ! y 2!3x # y"

2x 3 ! x 2y # xy3 ! 2x 2 ! xy # y 2 ! 4

2sx ! sy ! 3x 3 ! y3 ! 1

dy#dx

cos x ! sy ! 5
1
x

!
1
y

! 1

4x 2 ! 9y 2 ! 36xy ! 2x ! 3x 2 ! 4

y

x
y"y

y"

EXERCISES3.5



44. The Power Rule can be proved using implicit differentiation 
for the case where is a rational number, , and

is assumed beforehand to be a differentiable
function. If , then . Use implicit differentia-
tion to show that

45–54 Find the derivative of the function. Simplify where 
possible.

45. 46.

48.

49. 50.

51. 52.

53. 54.

; 55–56 Find . Check that your answer is reasonable by com-
paring the graphs of and .

55. 56.

57. Prove the formula for by the same method as 
for .

58. (a) One way of defining is to say that 
and or . Show

that, with this definition,

(b) Another way of defining that is sometimes used is 
to say that and ,

. Show that, with this definition,

59–62 Two curves are orthogonal if their tangent lines are per-
pendicular at each point of intersection. Show that the given fami-
lies of curves are orthogonal trajectories of each other, that is,
every curve in one family is orthogonal to every curve in the
other family. Sketch both families of curves on the same axes.

59.

60.

62.

The equation represents a “rotated
ellipse,” that is, an ellipse whose axes are not parallel to the
coordinate axes. Find the points at which this ellipse crosses

x 2 # xy ! y 2 ! 363.

x 2 ! 3y 2 ! by ! ax 3, 

x 2 ! 2y 2 ! ky ! cx 2, 61.

x 2 ! y 2 ! byx 2 ! y 2 ! ax, 

ax ! by ! 0x 2 ! y 2 ! r 2, 

d
dx

!sec#1x" !
1

& x &sx 2 # 1

y " 0
0 % y % $y ! sec#1x &? sec y ! x

sec#1x

d
dx

 !sec#1x" !
1

xsx 2 # 1

$ % y ) 3$#20 % y ) $#2sec y ! x
y ! sec#1x &?sec#1x

!d#dx"!sin#1x"
!d#dx"!cos#1x"

f !x" ! arctan!x 2 # x"f !x" ! s1 # x 2  arcsin x

f "f
f "!x"

y ! arctan'1 # x
1 ! x

y ! cos#1!e2x"

F!*" ! arcsin ssin * h!t" ! cot#1!t" ! cot#1!1#t"

y ! tan#1(x #s1 ! x 2 )G!x" ! s1 # x 2  arccos x

t!x" ! sx 2 # 1 sec#1 xy ! sin#1!2x ! 1"47.

y ! stan#1x y ! tan#1sx 

y" !
 p
q

 x ! p#q"#1

y q ! x py ! x p#q
y ! f !x" ! x n

n ! p#qn
not, you can still graph this curve by graphing its upper
and lower halves separately.)

32. (a) The curve with equation is called the
Tschirnhausen cubic. Find an equation of the tangent
line to this curve at the point .

(b) At what points does this curve have horizontal tangents?
; (c) Illustrate parts (a) and (b) by graphing the curve and the

tangent lines on a common screen.

33–36 Find by implicit differentiation.

33. 34.

35. 36.

37. Fanciful shapes can be created by using the implicit plotting
capabilities of computer algebra systems.
(a) Graph the curve with equation

At how many points does this curve have horizontal 
tangents? Estimate the -coordinates of these points.

(b) Find equations of the tangent lines at the points (0, 1) 
and (0, 2).

(c) Find the exact -coordinates of the points in part (a).
(d) Create even more fanciful curves by modifying the equa-

tion in part (a).

38. (a) The curve with equation

has been likened to a bouncing wagon. Use a computer
algebra system to graph this curve and discover why.

(b) At how many points does this curve have horizontal 
tangent lines? Find the -coordinates of these points.

Find the points on the lemniscate in Exercise 29 where the 
tangent is horizontal.

40. Show by implicit differentiation that the tangent to the ellipse

at the point is

41. Find an equation of the tangent line to the hyperbola

at the point .

42. Show that the sum of the - and -intercepts of any tangent
line to the curve is equal to .

43. Show, using implicit differentiation, that any tangent line at 
a point to a circle with center is perpendicular to the 
radius .OP

OP

csx ! sy ! sc 

yx

!x0, y0"

x 2

a 2 #
 y 2

b2 ! 1

x0 x
a 2 !

 y0 y
b2 ! 1

!x0, y0 "

x 2

a 2 !
 y 2

b2 ! 1

39.

x

2y 3 ! y 2 # y 5 ! x 4 # 2x 3 ! x 2

CAS

x

x

y!y 2 # 1"!y # 2" ! x!x # 1"!x # 2"

CAS

x 4 ! y4 ! a4x 3 ! y 3 ! 1

sx ! sy ! 19x2 ! y2 ! 9

y+

!1, #2"

y 2 ! x 3 ! 3x 2
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DERIVATIVES OF LOGARITHMIC FUNCTIONS

In this section we use implicit differentiation to find the derivatives of the logarithmic func-
tions and, in particular, the natural logarithmic function . [It can be
proved that logarithmic functions are differentiable; this is certainly plausible from their
graphs (see Figure 12 in Section 1.6).]

PROOF Let . Then

Differentiating this equation implicitly with respect to x, using Formula 3.4.5, we get

and so M

If we put in Formula 1, then the factor on the right side becomes 
and we get the formula for the derivative of the natural logarithmic function :

d
dx

 !ln x" !
1
x

2

loge x ! ln x
ln e ! 1ln aa ! e

dy
dx

!
1

ay ln a
!

1
x ln a

ay!ln a" 
dy
dx

! 1

a y ! x

y ! loga x

d
dx

 !loga x" !
1

x ln a
1

y ! ln xy ! loga x

3.6
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(b) If and , find .

68. (a) Show that is one-to-one.
(b) What is the value of ?
(c) Use the formula from Exercise 67(a) to find .

69. The figure shows a lamp located three units to the right of 
the -axis and a shadow created by the elliptical region

. If the point is on the edge of the
shadow, how far above the -axis is the lamp located?

?

x

y

30_5
≈+4¥=5

x
!#5, 0"x 2 ! 4y 2 % 5

y

! f #1""!1"
f #1!1"

f !x" ! 2x ! cos x

! f #1""!5"f "!4" ! 2
3f !4" ! 5the -axis and show that the tangent lines at these points are

parallel.

64. (a) Where does the normal line to the ellipse
at the point intersect the ellipse

a second time? 
; (b) Illustrate part (a) by graphing the ellipse and the normal

line.

65. Find all points on the curve where the slope of
the tangent line is .

66. Find equations of both the tangent lines to the ellipse
that pass through the point .

(a) Suppose is a one-to-one differentiable function and its
inverse function is also differentiable. Use implicit
differentiation to show that

provided that the denominator is not 0.

! f #1""!x" !
1

 f "! f #1!x""

f #1
f67.

!12, 3"x 2 ! 4y 2 ! 36

#1
x 2 y 2 ! xy ! 2

!#1, 1"x 2 # xy ! y 2 ! 3

x

N Formula 3.4.5 says that

d
dx

 !a x " ! a x  ln a



By comparing Formulas 1 and 2, we see one of the main reasons that natural logarithms
(logarithms with base e) are used in calculus: The differentiation formula is simplest when

because .

EXAMPLE 1 Differentiate .

SOLUTION To use the Chain Rule, we let . Then , so

M

In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

or

EXAMPLE 2 Find .

SOLUTION Using (3), we have

M

EXAMPLE 3 Differentiate .

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

M

EXAMPLE 4 Differentiate .

SOLUTION Using Formula 1 with , we have

M

EXAMPLE 5 Find .

SOLUTION 1

 !
x # 2 # 1

2 !x ! 1"
!x ! 1"!x # 2"

!
x # 5

2!x ! 1"!x # 2"

 !
sx # 2 

x ! 1
 
sx # 2  , 1 # !x ! 1"( 1

2 )!x # 2"#1#2

x # 2

 
d
dx

 ln 
x ! 1
sx # 2 !

1
x ! 1
sx # 2 

 
d
dx

 
x ! 1
sx # 2 

d
dx

 ln 
x ! 1
sx # 2 

 !
cos x

!2 ! sin x" ln 10

 f "!x" !
d
dx

 log10!2 ! sin x" !
1

!2 ! sin x" ln 10
 

d
dx

 !2 ! sin x"

a ! 10

f !x" ! log10!2 ! sin x"

f "!x" ! 1
2 !ln x"#1#2 

d
dx

 !ln x" !
1

2sln x !
1
x

!
1

2xsln x 

f !x" ! sln x 

d
dx

 ln!sin x" !
1

sin x
 

d
dx

 !sin x" !
1

sin x
 cos x ! cot x

d
dx

 ln!sin x"

d
dx

 $ln t!x"% !
t"!x"
t!x"

d
dx

 !ln u" !
1
u

 
du
dx

3

dy
dx

!
dy
du

 
du
dx

!
1
u

 
du
dx

!
1

x 3 ! 1
 !3x 2 " !

3x 2

x 3 ! 1

y ! ln uu ! x 3 ! 1

y ! ln!x 3 ! 1"V

ln e ! 1a ! e
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N Figure 1 shows the graph of the function 
of Example 5 together with the graph of its deriv-
ative. It gives a visual check on our calculation.
Notice that is large negative when is
rapidly decreasing.

ff "!x"

f

x0

y

1
f

f ª

FIGURE 1



SOLUTION 2 If we first simplify the given function using the laws of logarithms, then the
differentiation becomes easier:

(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answer as in Solution 1.) M

EXAMPLE 6 Find if .

SOLUTION Since

it follows that

Thus for all . M

The result of Example 6 is worth remembering:

LOGARITHMIC DIFFERENTIATION

The calculation of derivatives of complicated functions involving products, quotients, or
powers can often be simplified by taking logarithms. The method used in the following
example is called logarithmic differentiation.

EXAMPLE 7 Differentiate .

SOLUTION We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

Differentiating implicitly with respect to gives

1
y

 
dy
dx

!
3
4

!
1
x

!
1
2

!
2x

x 2 ! 1
# 5 !

3
3x ! 2

x

ln y ! 3
4 ln x ! 1

2 ln!x 2 ! 1" # 5 ln!3x ! 2"

y !
x 3#4sx 2 ! 1

!3x ! 2"5

d
dx

 ln & x & !
1
x

4

x " 0f "!x" ! 1#x

1
x

if x - 0

1
#x

 !#1" !
1
x

   if x ) 0
f "!x" !

f !x" ! (ln x
ln!#x"

if x - 0
if x ) 0

f !x" ! ln & x &f "!x"V

 !
1

x ! 1
#

1
2 ) 1

x # 2*
 
d
dx

 ln 
x ! 1
sx # 2 !

d
dx

 [ln!x ! 1" # 1
2 ln!x # 2"]
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N Figure 2 shows the graph of the function
in Example 6 and its derivative

. Notice that when is small, the
graph of is steep and so is
large (positive or negative).

f "!x"y ! ln & x &
xf "!x" ! 1#x

f !x" ! ln & x &

3

_3

_3 3

f
f ª

FIGURE 2



Solving for , we get

Because we have an explicit expression for , we can substitute and write

M

STEPS IN LOGARITHMIC DIFFERENTIATION

1. Take natural logarithms of both sides of an equation and use the Laws
of Logarithms to simplify.

2. Differentiate implicitly with respect to .

3. Solve the resulting equation for .

If for some values of , then is not defined, but we can write
and use Equation 4. We illustrate this procedure by proving the general ver-

sion of the Power Rule, as promised in Section 3.1.

THE POWER RULE If is any real number and , then

PROOF Let and use logarithmic differentiation:

Therefore

Hence M

| You should distinguish carefully between the Power Rule , where the
base is variable and the exponent is constant, and the rule for differentiating exponential
functions , where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

1. ( and are constants)

2.

3.

4. To find , logarithmic differentiation can be used, as in the next
example.

!d#dx"$ f !x"% t!x"

d
dx

 $a t!x"% ! a t!x"!ln a"t"!x"

d
dx

 $ f !x"%b ! b$ f !x"%b#1 f "!x"

ba
d
dx

 !ab " ! 0

$!ax"" ! ax ln a%

$!xn "" ! nxn#1 %

y" ! n 
y
x

! n 
xn

x
! nxn#1

y"

y
!

n
x

x " 0ln & y & ! ln & x &n ! n ln & x &
y ! x n

f "!x" ! nxn#1

f !x" ! xnn

& y & ! & f !x" &
ln f !x"xf !x" ) 0

y"

x

y ! f !x"

dy
dx

!
x 3#4sx 2 ! 1

!3x ! 2"5 ) 3
4x

!
x

x 2 ! 1
#

15
3x ! 2*

y

  
dy
dx

! y) 3
4x

!
x

x 2 ! 1
#

15
3x ! 2*

dy#dx
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N If we hadn’t used logarithmic differentiation in
Example 7, we would have had to use both the
Quotient Rule and the Product Rule. The resulting
calculation would have been horrendous.

N If , we can show that for
directly from the definition of a derivative.n - 1

f "!0" ! 0x ! 0



EXAMPLE 8 Differentiate .

SOLUTION 1 Using logarithmic differentiation, we have

SOLUTION 2 Another method is to write :

(as in Solution 1) M

THE NUMBER e AS A LIMIT

We have shown that if , then . Thus . We now use this fact
to express the number as a limit.

From the definition of a derivative as a limit, we have

Because , we have

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

Formula 5 is illustrated by the graph of the function in Figure 4 and a
table of values for small values of . This illustrates the fact that, correct to seven decimal
places,

e + 2.7182818

x
y ! !1 ! x"1#x

e ! lim
xl 0

 !1 ! x"1#x5

e ! e1 ! elimx l 0 ln!1!x"1#x
! lim

x l 0
 eln!1!x"1#x

! lim
x l 0

 !1 ! x"1#x

lim
x l 0

 ln!1 ! x"1#x ! 1

f "!1" ! 1

 ! lim
xl 0

 ln!1 ! x"1#x

 ! lim
xl 0

 
ln!1 ! x" # ln 1

x
! lim

xl 0
 
1
x

 ln!1 ! x"

 f "!1" ! lim
hl 0

 
 f !1 ! h" # f !1"

h
! lim

xl 0
 
 f !1 ! x" # f !1"

x

e
f "!1" ! 1f "!x" ! 1#xf !x" ! ln x

! xsx )2 ! ln x
2sx *

d
dx

 (xsx ) !
d
dx

 (esx  ln x ) ! esx  ln x 
d
dx

 (sx  ln x)

xsx 

! !e ln x "sx 

 y" ! y) 1
sx !

ln x
2sx * ! xsx )2 ! ln x

2sx *
 
 y"

y
! sx !

1
x

! !ln x" 
1

2sx  

 ln y ! ln xsx 

! sx  ln x

y ! xsx 

V
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N Figure 3 illustrates Example 8 by showing
the graphs of and its derivative.f !x" ! xsx

FIGURE 3

1

1

f

f ª

x0

y

FIGURE 4

2
3

y=(1+x)!?®

1

0

y

x

x

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181

(1 ! x)1/x



If we put in Formula 5, then as and so an alternative expression
for is

e ! lim
nl(

 )1 !
1
n*n

6

e
xl 0!nl (n ! 1#x
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33–34 Find an equation of the tangent line to the curve at the
given point.

33. , 34.

; 35. If , find . Check that your answer is
reasonable by comparing the graphs of and .

; 36. Find equations of the tangent lines to the curve 
at the points and . Illustrate by graphing the
curve and its tangent lines.

37–48 Use logarithmic differentiation to find the derivative of
the function.

37. 38.

39. 40.

42.

44.

45. 46.

47. 48.

49. Find if .

Find if .

51. Find a formula for if .

52. Find .

Use the definition of derivative to prove that

54. Show that for any .x - 0lim
nl(

 )1 !
x
n*n

! e x

lim
x l 0

 
ln!1 ! x"

x
! 1

53.

d 9

dx 9 !x 8 ln x"

f !x" ! ln!x # 1"f !n"!x"

x y ! y xy"50.

y ! ln!x 2 ! y 2 "y"

y ! !ln x"cos xy ! !tan x"1#x

y ! !sin x" ln xy ! !cos x"x

y ! sx xy ! x sin x43.

y ! x cos xy ! x x41.

y ! '4 x 2 ! 1
x 2 # 1

 y !
sin2x tan4x
!x 2 ! 1"2

y ! sx  e x2

!x 2 ! 1"10y ! !2x ! 1"5!x 4 # 3"6

!e, 1#e"!1, 0"
y ! !ln x"#x

f "f
f "!x"f !x" ! sin x ! ln x

y ! ln!x 3 # 7",  !2, 0"!1, 1"y ! ln(xe x2)

1. Explain why the natural logarithmic function is used
much more frequently in calculus than the other logarithmic
functions .

2–22 Differentiate the function.

2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

20.

21. 22.

23–26 Find and .

23. 24.

25. 26.

27–30 Differentiate and find the domain of .

28.

29. 30.

31. If , find .

32. If , find .f "!0"f !x" ! ln!1 ! e 2x"

f "!1"f !x" !
ln x
x 2

f !x" ! ln ln ln xf !x" ! ln!x 2 # 2x"

f !x" !
1

1 ! ln x
f !x" !

x
1 # ln!x # 1"

27.

ff

y ! ln!sec x ! tan x"y ! ln(x ! s1 ! x 2 )

y !
ln x
x 2y ! x 2 ln!2x"

y+y"

y ! log2!e#x cos $x"y ! 2x log10 sx 

y ! $ln!1 ! e x "% 2y ! ln!e#x ! xe#x "19.

H!z" ! ln'a 2 # z 2

a 2 ! z 2
 y ! ln &2 # x # 5x 2 &

y !
1

ln x
f !u" !

ln u
1 ! ln!2u"

F!y" ! y ln!1 ! e y"t!x" ! ln(xsx 2 # 1)

h!x" ! ln(x ! sx 2 # 1)F!t" ! ln 
!2t ! 1"3

!3t # 1"4

f !t" !
1 ! ln t
1 # ln t

f !x" ! sin x ln!5x"

f !x" ! ln s5 x f !x" ! s5 ln x 

f !x" ! log5!xe x"f !x" ! log2!1 # 3x"

f !x" ! ln!sin2x"f !x" ! sin!ln x"

f !x" ! ln!x 2 ! 10"

y ! loga x

y ! ln x
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RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES

We know that if , then the derivative can be interpreted as the rate of change
of with respect to . In this section we examine some of the applications of this idea to
physics, chemistry, biology, economics, and other sciences.

Let’s recall from Section 2.7 the basic idea behind rates of change. If changes from
to , then the change in is

and the corresponding change in is

The difference quotient 

is the average rate of change of y with respect to x over the interval and can be
interpreted as the slope of the secant line in Figure 1. Its limit as is the deriv-
ative , which can therefore be interpreted as the instantaneous rate of change of y
with respect to x or the slope of the tangent line at . Using Leibniz notation,
we write the process in the form

Whenever the function has a specific interpretation in one of the sciences, its
derivative will have a specific interpretation as a rate of change. (As we discussed in Sec-
tion 2.7, the units for are the units for y divided by the units for x.) We now look at
some of these interpretations in the natural and social sciences.

PHYSICS

If is the position function of a particle that is moving in a straight line, then 
represents the average velocity over a time period , and represents the instan-
taneous velocity (the rate of change of displacement with respect to time). The instanta-
neous rate of change of velocity with respect to time is acceleration: .
This was discussed in Sections 2.7 and 2.8, but now that we know the differentiation for-
mulas, we are able to solve problems involving the motion of objects more easily.

EXAMPLE 1 The position of a particle is given by the equation

where is measured in seconds and in meters.
(a) Find the velocity at time .
(b) What is the velocity after 2 s? After 4 s?
(c) When is the particle at rest?
(d) When is the particle moving forward (that is, in the positive direction)?
(e) Draw a diagram to represent the motion of the particle.
(f) Find the total distance traveled by the particle during the first five seconds.

t
st

s ! f !t" ! t 3 # 6t 2 ! 9t 

V

a!t" ! v"!t" ! s+!t"

v ! ds#dt.t
.s#.ts ! f !t"

dy#dx

y ! f !x"

dy
dx

! lim
.x l 0

 
.y
.x

P!x1, f !x1""
f "!x1"

.xl 0PQ
$x1, x2 %

.y

.x
!

 f !x2 " # f !x1"
x2 # x1

.y ! f !x2 " # f !x1"

y

.x ! x2 # x1

xx2x1

x

xy
dy#dxy ! f !x"

3.7
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(g) Find the acceleration at time and after 4 s.
(h) Graph the position, velocity, and acceleration functions for .
(i) When is the particle speeding up? When is it slowing down?

SOLUTION
(a) The velocity function is the derivative of the position function.

(b) The velocity after 2 s means the instantaneous velocity when , that is,

The velocity after 4 s is

(c) The particle is at rest when , that is,

and this is true when or . Thus the particle is at rest after 1 s and after 3 s.
(d) The particle moves in the positive direction when , that is, 

This inequality is true when both factors are positive or when both factors are
negative . Thus the particle moves in the positive direction in the time intervals

and . It moves backward (in the negative direction) when .
(e) Using the information from part (d) we make a schematic sketch in Figure 2 of the
motion of the particle back and forth along a line (the -axis).
(f) Because of what we learned in parts (d) and (e), we need to calculate the distances
traveled during the time intervals [0, 1], [1, 3], and [3, 5] separately.

The distance traveled in the first second is

From to the distance traveled is

From to the distance traveled is

The total distance is .

(g) The acceleration is the derivative of the velocity function:

a!4" ! 6!4" ! 12 ! 12 m#s2

a!t" !
d 2s
dt 2 !

dv
dt

! 6t ! 12

4 " 4 " 20 ! 28 m

$ f !5" ! f !3" $ ! $ 20 ! 0 $ ! 20 m

t ! 5t ! 3

$ f !3" ! f !1" $ ! $ 0 ! 4 $ ! 4 m

t ! 3t ! 1

$ f !1" ! f !0" $ ! $ 4 ! 0 $ ! 4 m

s

1 # t # 3t $ 3t # 1
!t # 1"

!t $ 3"

3t 2 ! 12t " 9 ! 3!t ! 1"!t ! 3" $ 0

v!t" $ 0
t ! 3t ! 1

3t 2 ! 12t " 9 ! 3!t 2 ! 4t " 3" ! 3!t ! 1"!t ! 3" ! 0

v!t" ! 0

v!4" ! 3!4"2 ! 12!4" " 9 ! 9 m#s

v!2" !
ds
dt %

t!2
! 3!2"2 ! 12!2" " 9 ! !3 m#s

! 2t

 v!t" !
ds
dt

! 3t 2 ! 12t " 9

 s ! f !t" ! t 3 ! 6t 2 " 9t

0 % t % 5
t
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t=0
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t=1
s=4

s

t=3
s=0

FIGURE 2



(h) Figure 3 shows the graphs of .

(i) The particle speeds up when the velocity is positive and increasing ( are both
positive) and also when the velocity is negative and decreasing ( are both nega-
tive). In other words, the particle speeds up when the velocity and acceleration have the
same sign. (The particle is pushed in the same direction it is moving.) From Figure 3 we
see that this happens when and when . The particle slows down when

have opposite signs, that is, when and when . Figure 4 sum-
marizes the motion of the particle.

M

EXAMPLE 2 If a rod or piece of wire is homogeneous, then its linear density is uniform
and is defined as the mass per unit length and measured in kilograms per
meter. Suppose, however, that the rod is not homogeneous but that its mass measured
from its left end to a point is , as shown in Figure 5.

The mass of the part of the rod that lies between and is given by
, so the average density of that part of the rod is

If we now let (that is, ), we are computing the average density over
smaller and smaller intervals. The linear density at is the limit of these average
densities as ; that is, the linear density is the rate of change of mass with respect
to length. Symbolically, 

Thus the linear density of the rod is the derivative of mass with respect to length.

& ! lim
'xl 0

 
'm
'x

!
dm
dx

'xl 0
x1&

x2 l x1'xl 0

average density !
'm
'x

!
 f !x2 " ! f !x1"

x2 ! x1

'm ! f !x2 " ! f !x1"
x ! x2x ! x1

x¡ x™
This part of the rod has mass ƒ. 

x

FIGURE 5

m ! f !x"x

!& ! m#l"

FIGURE 4
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For instance, if , where is measured in meters and in kilograms,
then the average density of the part of the rod given by is

while the density right at is

M

EXAMPLE 3 A current exists whenever electric charges move. Figure 6 shows part of
a wire and electrons moving through a shaded plane surface. If is the net charge that
passes through this surface during a time period , then the average current during this
time interval is defined as

If we take the limit of this average current over smaller and smaller time intervals, we
get what is called the current at a given time :

Thus the current is the rate at which charge flows through a surface. It is measured in
units of charge per unit time (often coulombs per second, called amperes). M

Velocity, density, and current are not the only rates of change that are important in
physics. Others include power (the rate at which work is done), the rate of heat flow, tem-
perature gradient (the rate of change of temperature with respect to position), and the rate
of decay of a radioactive substance in nuclear physics.

CHEMISTRY

EXAMPLE 4 A chemical reaction results in the formation of one or more substances
(called products) from one or more starting materials (called reactants). For instance, the
“equation”

indicates that two molecules of hydrogen and one molecule of oxygen form two mole-
cules of water. Let’s consider the reaction

where A and B are the reactants and C is the product. The concentration of a reactant A
is the number of moles ( 6.022 10 molecules) per liter and is denoted by

. The concentration varies during a reaction, so , , and are all functions of &C'&B'&A'&A'
23(1 mole !

A " B l C

2H2 " O2 l 2H2O

I ! lim
'tl 0

 
'Q
't

!
dQ
dt

t1I

average current !
'Q
't

!
Q2 ! Q1

t2 ! t1

't
'Q

V

& !
dm
dx %

x!1
!

1
2sx  %

x!1
! 0.50 kg#m

x ! 1

'm
'x

!
 f !1.2" ! f !1"

1.2 ! 1
!
s1.2 ! 1

0.2
( 0.48 kg#m

1 % x % 1.2
mxm ! f !x" ! sx 
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time . The average rate of reaction of the product C over a time interval is

But chemists are more interested in the instantaneous rate of reaction, which is
obtained by taking the limit of the average rate of reaction as the time interval 
approaches 0:

Since the concentration of the product increases as the reaction proceeds, the derivative
will be positive, and so the rate of reaction of C is positive. The concentrations

of the reactants, however, decrease during the reaction, so, to make the rates of reaction
of A and B positive numbers, we put minus signs in front of the derivatives and

. Since A and B each decrease at the same rate that C increases, we have

More generally, it turns out that for a reaction of the form

we have

The rate of reaction can be determined from data and graphical methods. In some cases
there are explicit formulas for the concentrations as functions of time, which enable us to
compute the rate of reaction (see Exercise 22). M

EXAMPLE 5 One of the quantities of interest in thermodynamics is compressibility. If a
given substance is kept at a constant temperature, then its volume depends on its pres-
sure . We can consider the rate of change of volume with respect to pressure—namely,
the derivative . As increases, decreases, so . The compressibility
is defined by introducing a minus sign and dividing this derivative by the volume :

Thus measures how fast, per unit volume, the volume of a substance decreases as the
pressure on it increases at constant temperature.

For instance, the volume (in cubic meters) of a sample of air at was found to
be related to the pressure (in kilopascals) by the equation

V !
5.3
P

P
25)CV

*

isothermal compressibility ! * ! !
1
V

 
dV
dP

V
dV#dP # 0VPdV#dP

P
V

!
1
a

 
d &A'

dt
! !

1
b

 
d &B'

dt
!

1
c

 
d &C'

dt
!

1
d

 
d &D'

dt

aA " bB l cC " dD

rate of reaction !
d &C'

dt
! !

d &A'
dt

! !
d &B'

dt

'&'&'&d &B'#dt
d &A'#dt

d &C'#dt

rate of reaction ! lim
'tl 0

 
'&C'

't
!

d &C'
dt

't

'&C'
't

!
&C'!t2 " ! &C'!t1"

t2 ! t1

t1 % t % t2!t"
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The rate of change of with respect to when is

The compressibility at that pressure is

M

BIOLOGY

EXAMPLE 6 Let be the number of individuals in an animal or plant popula-
tion at time . The change in the population size between the times and is

, and so the average rate of growth during the time period 
is

The instantaneous rate of growth is obtained from this average rate of growth by let-
ting the time period approach 0:

Strictly speaking, this is not quite accurate because the actual graph of a population
function would be a step function that is discontinuous whenever a birth or
death occurs and therefore not differentiable. However, for a large animal or plant 
population, we can replace the graph by a smooth approximating curve as in Figure 7.

FIGURE 7
A smooth curve approximating

a growth function
t

n

0

n ! f !t"

growth rate ! lim
'tl 0

 
'n
't

!
dn
dt

't

average rate of growth !
'n
't

!
 f !t2 " ! f !t1"

t2 ! t1

t1 % t % t2'n ! f !t2 " ! f !t1"
t ! t2t ! t1t

n ! f !t"
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1
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dV
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To be more specific, consider a population of bacteria in a homogeneous nutrient
medium. Suppose that by sampling the population at certain intervals it is determined
that the population doubles every hour. If the initial population is and the time is
measured in hours, then

and, in general,

The population function is .
In Section 3.4 we showed that

So the rate of growth of the bacteria population at time t is

For example, suppose that we start with an initial population of bacteria. Then
the rate of growth after 4 hours is

This means that, after 4 hours, the bacteria population is growing at a rate of about
1109 bacteria per hour. M

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a vein
or artery, we can model the shape of the blood vessel by a cylindrical tube with radius 
and length as illustrated in Figure 8.

Because of friction at the walls of the tube, the velocity of the blood is greatest
along the central axis of the tube and decreases as the distance from the axis increases
until becomes 0 at the wall. The relationship between and is given by the law of
laminar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840.
This law states that

where is the viscosity of the blood and is the pressure difference between the ends
of the tube. If and are constant, then is a function of with domain .&0, R'rvlP

P+

v !
P

4+l
 !R2 ! r 2 "1

rvv
r

v

FIGURE 8
Blood flow in an artery

R r
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dn
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! 100 ! 24 ln 2 ! 1600 ln 2 ( 1109
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d
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 !n02t" ! n02t ln 2
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The average rate of change of the velocity as we move from outward to 
is given by

and if we let , we obtain the velocity gradient, that is, the instantaneous rate of
change of velocity with respect to r :

Using Equation 1, we obtain

For one of the smaller human arteries we can take , cm, cm,
and , which gives

At cm the blood is flowing at a speed of

and the velocity gradient at that point is

To get a feeling for what this statement means, let’s change our units from centi-
meters to micrometers ( ,m). Then the radius of the artery is ,m. The
velocity at the central axis is ,m#s, which decreases to ,m#s at a distance
of ,m. The fact that (,m#s)#,m means that, when ,m, the
velocity is decreasing at a rate of about ,m#s for each micrometer that we proceed
away from the center. M

ECONOMICS

EXAMPLE 8 Suppose is the total cost that a company incurs in producing units
of a certain commodity. The function is called a cost function. If the number of items
produced is increased from to , then the additional cost is ,
and the average rate of change of the cost is

The limit of this quantity as , that is, the instantaneous rate of change of cost l 0'x

'C
'x

!
C!x2 " ! C!x1"

x2 ! x1
!

C!x1 " 'x" ! C!x1"
'x

'C ! C!x2 " ! C!x1"x2x1

C
xC!x"V

74
r ! 20dv#dr ! !74r ! 20

11,11011,850
801 cm ! 10,000

dv
dr %

r!0.002
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2!0.027"2

( !74 !cm#s"#cm
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 v!0.002" ( 1.85 ( 104!64 ( 10!6 ! 4 ( 10!6 "
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 ( 1.85 ( 104!6.4 ( 10!5 ! r 2 "

 v !
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4!0.027"2
 !0.000064 ! r 2 "

P ! 4000 dynes#cm2
l ! 2R ! 0.008+ ! 0.027

dv
dr

!
P

4+l
 !0 ! 2r" ! !

Pr
2+l

velocity gradient ! lim
'rl 0

 
'v
'r

!
dv
dr

'rl 0

'v
'r

!
v!r2 " ! v!r1"

r2 ! r1

r ! r2r ! r1
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with respect to the number of items produced, is called the marginal cost by economists:

[Since often takes on only integer values, it may not make literal sense to let 
approach 0, but we can always replace by a smooth approximating function as in
Example 6.]

Taking and large (so that is small compared to ), we have

Thus the marginal cost of producing units is approximately equal to the cost of pro-
ducing one more unit [the st unit].

It is often appropriate to represent a total cost function by a polynomial

where represents the overhead cost (rent, heat, maintenance) and the other terms 
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be
proportional to , but labor costs might depend partly on higher powers of because of
overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of producing
items is

Then the marginal cost function is

The marginal cost at the production level of 500 items is

This gives the rate at which costs are increasing with respect to the production level
when and predicts the cost of the 501st item.

The actual cost of producing the 501st item is

Notice that . M

Economists also study marginal demand, marginal revenue, and marginal profit, which
are the derivatives of the demand, revenue, and profit functions. These will be considered
in Chapter 4 after we have developed techniques for finding the maximum and minimum
values of functions.

OTHER SCIENCES

Rates of change occur in all the sciences. A geologist is interested in knowing the rate at
which an intruded body of molten rock cools by conduction of heat into surrounding rocks.
An engineer wants to know the rate at which water flows into or out of a reservoir. An 
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 ! ! &10,000 " 5!500" " 0.01!500"2 '
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C!x" ! a " bx " cx 2 " dx 3

!n " 1"
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C-!n" ( C!n " 1" ! C!n"
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C!x"
'xx

marginal cost ! lim
'xl 0
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dC
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urban geographer is interested in the rate of change of the population density in a city as
the distance from the city center increases. A meteorologist is concerned with the rate of
change of atmospheric pressure with respect to height (see Exercise 17 in Section 3.8).

In psychology, those interested in learning theory study the so-called learning curve,
which graphs the performance of someone learning a skill as a function of the train-
ing time . Of particular interest is the rate at which performance improves as time passes,
that is, .

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If denotes the proportion of a population that knows a rumor
by time , then the derivative represents the rate of spread of the rumor (see Exer-
cise 82 in Section 3.4).

A SINGLE IDEA, MANY INTERPRETATIONS

Velocity, density, current, power, and temperature gradient in physics; rate of reaction and
compressibility in chemistry; rate of growth and blood velocity gradient in biology; mar-
ginal cost and marginal profit in economics; rate of heat flow in geology; rate of improve-
ment of performance in psychology; rate of spread of a rumor in sociology—these are all
special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its
abstractness. A single abstract mathematical concept (such as the derivative) can have dif-
ferent interpretations in each of the sciences. When we develop the properties of the math-
ematical concept once and for all, we can then turn around and apply these results to all of
the sciences. This is much more efficient than developing properties of special concepts in
each separate science. The French mathematician Joseph Fourier (1768–1830) put it suc-
cinctly: “Mathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.”

dp#dtt
p!t"

dP#dt
t

P!t"
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(a) (b)

6. Graphs of the position functions of two particles are shown,
where is measured in seconds. When is each particle speed-
ing up? When is it slowing down? Explain.
(a) (b)

7. The position function of a particle is given by
.

(a) When does the particle reach a velocity of ?5 m#s
s ! t 3 ! 4.5t 2 ! 7t, t . 0

t

s

0 1 t

s

0 1

t

t

√

0 1 t

√

0 1

1–4 A particle moves according to a law of motion ,
, where is measured in seconds and in feet.

(a) Find the velocity at time .
(b) What is the velocity after 3 s?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 8 s.
(f) Draw a diagram like Figure 2 to illustrate the motion of the

particle.
(g) Find the acceleration at time and after 3 s.

; (h) Graph the position, velocity, and acceleration functions for
.

(i) When is the particle speeding up? When is it slowing down?

2.

3. , 4.

5. Graphs of the velocity functions of two particles are shown,
where is measured in seconds. When is each particle speed-
ing up? When is it slowing down? Explain.

t

f !t" ! te!t#2t % 10f !t" ! cos!/ t#4"

f !t" ! 0.01t 4 ! 0.04t 3f !t" ! t 3 ! 12t 2 " 36t1.

0 % t % 8

t

t
stt . 0

s ! f !t"
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A spherical balloon is being inflated. Find the rate of increase
of the surface area with respect to the radius 
when is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can
you make?

16. (a) The volume of a growing spherical cell is ,
where the radius is measured in micrometers
(1 ,m ). Find the average rate of change of 
with respect to when changes from
(i) 5 to 8 ,m (ii) 5 to 6 ,m (iii) 5 to 5.1 ,m

(b) Find the instantaneous rate of change of with respect to
when ,m.

(c) Show that the rate of change of the volume of a sphere
with respect to its radius is equal to its surface area.
Explain geometrically why this result is true. Argue by
analogy with Exercise 13(c).

17. The mass of the part of a metal rod that lies between its left
end and a point meters to the right is kg. Find the linear
density (see Example 2) when is (a) 1 m, (b) 2 m, and 
(c) 3 m. Where is the density the highest? The lowest?

18. If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then Torricelli’s Law gives
the volume of water remaining in the tank after minutes as

Find the rate at which water is draining from the tank after 
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what
time is the water flowing out the fastest? The slowest? 
Summarize your findings.

The quantity of charge in coulombs (C) that has passed
through a point in a wire up to time (measured in seconds)
is given by . Find the current when
(a) s and (b) s. [See Example 3. The unit of
current is an ampere ( A C#s).] At what time is the cur-
rent lowest?

20. Newton’s Law of Gravitation says that the magnitude of the
force exerted by a body of mass on a body of mass is

where is the gravitational constant and is the distance
between the bodies.
(a) Find and explain its meaning. What does the minus

sign indicate?
(b) Suppose it is known that the earth attracts an object with 

a force that decreases at the rate of 2 N#km when 
r ! 20,000 km. How fast does this force change when 
r ! 10,000 km?

Boyle’s Law states that when a sample of gas is compressed
at a constant temperature, the product of the pressure and the
volume remains constant: .
(a) Find the rate of change of volume with respect to 

pressure.

PV ! C

21.

dF#dr

rG

F !
GmM

r 2

Mm
F

! 11
t ! 1t ! 0.5

Q!t" ! t 3 ! 2t 2 " 6t " 2
t

Q19.

0 % t % 40V ! 5000)1 !
t

40*2

tV

x
3x 2x

r ! 5r
V

rr
V! 10!6 m

r
V ! 4

3 /r 3

r
r!S ! 4/r 2 "

15.(b) When is the acceleration 0? What is the significance of
this value of ?

8. If a ball is given a push so that it has an initial velocity of
down a certain inclined plane, then the distance it has

rolled after seconds is .
(a) Find the velocity after 2 s.
(b) How long does it take for the velocity to reach ?

9. If a stone is thrown vertically upward from the surface of the
moon with a velocity of , its height (in meters) after 

seconds is .
(a) What is the velocity of the stone after 3 s?
(b) What is the velocity of the stone after it has risen 25 m?

10. If a ball is thrown vertically upward with a velocity of 
80 ft#s, then its height after seconds is .
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 96 ft above the

ground on its way up? On its way down?

11. (a) A company makes computer chips from square wafers 
of silicon. It wants to keep the side length of a wafer very
close to 15 mm and it wants to know how the area of
a wafer changes when the side length x changes. Find

and explain its meaning in this situation.
(b) Show that the rate of change of the area of a square with

respect to its side length is half its perimeter. Try to
explain geometrically why this is true by drawing a
square whose side length x is increased by an amount .
How can you approximate the resulting change in area

if is small?

12. (a) Sodium chlorate crystals are easy to grow in the shape of
cubes by allowing a solution of water and sodium chlorate
to evaporate slowly. If V is the volume of such a cube
with side length x, calculate when mm and
explain its meaning.

(b) Show that the rate of change of the volume of a cube with
respect to its edge length is equal to half the surface area
of the cube. Explain geometrically why this result is true
by arguing by analogy with Exercise 11(b).

13. (a) Find the average rate of change of the area of a circle
with respect to its radius as changes from
(i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1

(b) Find the instantaneous rate of change when .
(c) Show that the rate of change of the area of a circle with

respect to its radius (at any ) is equal to the circumfer-
ence of the circle. Try to explain geometrically why this 
is true by drawing a circle whose radius is increased
by an amount . How can you approximate the resulting
change in area if is small?

14. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of 60 cm#s. Find the rate at which
the area within the circle is increasing after (a) 1 s, (b) 3 s,
and (c) 5 s. What can you conclude?

'r'A
'r

r

r ! 2

rr

x ! 3dV#dx

'x'A

'x

A-!15"

A!x"

s ! 80t ! 16t 2t

h ! 10t ! 0.83t 2t
10 m#s

35 m#s

s ! 5t " 3t 2t
5 m#s

t
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(c) Use your model in part (b) to find a model for the rate of
population growth in the 20th century.

(d) Use part (c) to estimate the rates of growth in 1920 and
1980. Compare with your estimates in part (a).

(e) Estimate the rate of growth in 1985.

; 26. The table shows how the average age of first marriage of
Japanese women varied in the last half of the 20th century.

(a) Use a graphing calculator or computer to model these
data with a fourth-degree polynomial.

(b) Use part (a) to find a model for .
(c) Estimate the rate of change of marriage age for women 

in 1990.
(d) Graph the data points and the models for .

27. Refer to the law of laminar flow given in Example 7.
Consider a blood vessel with radius 0.01 cm, length 3 cm,
pressure difference , and viscosity .
(a) Find the velocity of the blood along the centerline ,

at radius cm, and at the wall .
(b) Find the velocity gradient at , , and

.
(c) Where is the velocity the greatest? Where is the velocity

changing most?

The frequency of vibrations of a vibrating violin string is
given by

where is the length of the string, is its tension, and is 
its linear density. [See Chapter 11 in D. E. Hall, Musical
Acoustics, 3d ed. (Pacific Grove, CA: Brooks/Cole, 2002).]
(a) Find the rate of change of the frequency with respect to

(i) the length (when and are constant),
(ii) the tension (when and are constant), and

(iii) the linear density (when and are constant).
(b) The pitch of a note (how high or low the note sounds) is

determined by the frequency . (The higher the frequency,
the higher the pitch.) Use the signs of the derivatives in
part (a) to determine what happens to the pitch of a note

(i) when the effective length of a string is decreased by
placing a finger on the string so a shorter portion of
the string vibrates,

(ii) when the tension is increased by turning a tuning
peg,

(iii) when the linear density is increased by switching to
another string.

f

TL
!L

!T

!TL

f !
1

2L
 !T

!
 

28.

r ! 0.01
r ! 0.005r ! 0

r ! R ! 0.01 cmr ! 0.005
r ! 0

" ! 0.0273000 dynes"cm2

A and A#

A##t$

(b) A sample of gas is in a container at low pressure and is
steadily compressed at constant temperature for 10 min-
utes. Is the volume decreasing more rapidly at the begin-
ning or the end of the 10 minutes? Explain.

(c) Prove that the isothermal compressibility (see 
Example 5) is given by .

22. If, in Example 4, one molecule of the product C is formed 
from one molecule of the reactant A and one molecule of 
the reactant B, and the initial concentrations of A and B have
a common value , then

where is a constant.
(a) Find the rate of reaction at time .
(b) Show that if C , then

(c) What happens to the concentration as ?
(d) What happens to the rate of reaction as ?
(e) What do the results of parts (c) and (d) mean in practical

terms?

23. In Example 6 we considered a bacteria population that 
doubles every hour. Suppose that another population of 
bacteria triples every hour and starts with 400 bacteria. Find
an expression for the number of bacteria after hours and
use it to estimate the rate of growth of the bacteria population
after 2.5 hours.

24. The number of yeast cells in a laboratory culture increases
rapidly initially but levels off eventually. The population is
modeled by the function

where is measured in hours. At time the population is
20 cells and is increasing at a rate of . Find the
values of and . According to this model, what happens to
the yeast population in the long run?

; 25. The table gives the population of the world in the 20th 
century.

(a) Estimate the rate of population growth in 1920 and in
1980 by averaging the slopes of two secant lines.

(b) Use a graphing calculator or computer to find a cubic
function (a third-degree polynomial) that models the data. 

ba
12 cells"hour
t ! 0t

n ! f #t$ !
a

1 $ be%0.7t

tn

t l &
t l &

dx
dt

! k#a % x$2

%x ! &
t

k

&C% ! a 2kt"#akt $ 1$

&A% ! &B% ! a moles"L

' ! 1"P
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Population Population
Year (in millions) Year (in millions)

1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560

t t

1950 23.0 1980 25.2
1955 23.8 1985 25.5
1960 24.4 1990 25.9
1965 24.5 1995 26.3
1970 24.2 2000 27.0
1975 24.7

A#t$A#t$
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33. The gas law for an ideal gas at absolute temperature (in
kelvins), pressure (in atmospheres), and volume (in
liters) is , where is the number of moles of the
gas and is the gas constant. Suppose that, at a 
certain instant, atm and is increasing at a rate of
0.10 atm"min and and is decreasing at a rate of
0.15 L"min. Find the rate of change of with respect to time
at that instant if mol.

34. In a fish farm, a population of fish is introduced into a pond
and harvested regularly. A model for the rate of change of the
fish population is given by the equation

where is the birth rate of the fish, is the maximum 
population that the pond can sustain (called the carrying
capacity), and is the percentage of the population that is
harvested.
(a) What value of corresponds to a stable population?
(b) If the pond can sustain 10,000 fish, the birth rate is 5%,

and the harvesting rate is 4%, find the stable population
level.

(c) What happens if is raised to 5%?

In the study of ecosystems, predator-prey models are often
used to study the interaction between species. Consider 
populations of tundra wolves, given by , and caribou,
given by , in northern Canada. The interaction has been
modeled by the equations

(a) What values of and correspond to stable 
populations?

(b) How would the statement “The caribou go extinct” be 
represented mathematically?

(c) Suppose that , , , and 
. Find all population pairs that lead to

stable populations. According to this model, is it possible
for the two species to live in balance or will one or both
species become extinct?

#C, W $d ! 0.0001
c ! 0.05b ! 0.001a ! 0.05

dW"dtdC"dt

dW
dt

! %cW $ dCW
dC
dt

! aC % bCW

C#t$
W#t$
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dP"dt

'

Pcr0

dP
dt

! r0'1 %
P#t$
Pc
(P#t$ % 'P#t$

n ! 10
T

V ! 10 L
P ! 8.0

R ! 0.0821
nPV ! nRT

VP
T29. The cost, in dollars, of producing yards of a certain fabric is

(a) Find the marginal cost function.
(b) Find and explain its meaning. What does it 

predict?
(c) Compare with the cost of manufacturing the

201st yard of fabric.

30. The cost function for production of a commodity is

(a) Find and interpret .
(b) Compare with the cost of producing the 101st

item.

If is the total value of the production when there are 
workers in a plant, then the average productivity of the

workforce at the plant is

(a) Find . Why does the company want to hire more 
workers if ?

(b) Show that if is greater than the average 
productivity.

32. If denotes the reaction of the body to some stimulus of
strength , the sensitivity is defined to be the rate of change
of the reaction with respect to . A particular example is that
when the brightness of a light source is increased, the eye
reacts by decreasing the area of the pupil. The experimental
formula

has been used to model the dependence of on when is
measured in square millimeters and is measured in appro-
priate units of brightness.
(a) Find the sensitivity.

; (b) Illustrate part (a) by graphing both and as functions 
of . Comment on the values of and at low levels of
brightness. Is this what you would expect?
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40 $ 24x 0.4
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EXPONENTIAL GROWTH AND DECAY

In many natural phenomena, quantities grow or decay at a rate proportional to their size.
For instance, if is the number of individuals in a population of animals or bacte-
ria at time , then it seems reasonable to expect that the rate of growth is proportion-
al to the population ; that is, for some constant . Indeed, under ideal
conditions (unlimited environment, adequate nutrition, immunity to disease) the mathe-
matical model given by the equation predicts what actually happens fairly
accurately. Another example occurs in nuclear physics where the mass of a radioactive
substance decays at a rate proportional to the mass. In chemistry, the rate of a unimolecu-
lar first-order reaction is proportional to the concentration of the substance. In finance, the 

f ##t$ ! kf #t$

kf ##t$ ! kf #t$f #t$
f ##t$t

y ! f #t$

3.8



value of a savings account with continuously compounded interest increases at a rate pro-
portional to that value.

In general, if is the value of a quantity at time and if the rate of change of with
respect to is proportional to its size at any time, then

where is a constant. Equation 1 is sometimes called the law of natural growth (if )
or the law of natural decay (if ). It is called a differential equation because it
involves an unknown function and its derivative . 

It’s not hard to think of a solution of Equation 1. This equation asks us to find a function
whose derivative is a constant multiple of itself. We have met such functions in this chap-
ter. Any exponential function of the form , where is a constant, satisfies

We will see in Section 9.4 that any function that satsifies must be of the form
. To see the significance of the constant , we observe that

Therefore is the initial value of the function.

THEOREM The only solutions of the differential equation are the
exponential functions

POPULATION GROWTH

What is the significance of the proportionality constant k? In the context of population
growth, where is the size of a population at time , we can write

The quantity

is the growth rate divided by the population size; it is called the relative growth rate.
According to (3), instead of saying “the growth rate is proportional to population size” we
could say “the relative growth rate is constant.” Then (2) says that a population with con-
stant relative growth rate must grow exponentially. Notice that the relative growth rate k
appears as the coefficient of t in the exponential function . For instance, if

and t is measured in years, then the relative growth rate is and the populationk ! 0.02

dP
dt

! 0.02P
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grows at a relative rate of 2% per year. If the population at time 0 is , then the expres-
sion for the population is

EXAMPLE 1 Use the fact that the world population was 2560 million in 1950 and
3040 million in 1960 to model the population of the world in the second half of the 20th
century. (Assume that the growth rate is proportional to the population size.) What is the
relative growth rate? Use the model to estimate the world population in 1993 and to
predict the population in the year 2020.

SOLUTION We measure the time t in years and let t ! 0 in the year 1950. We measure the
population in millions of people. Then and Since we
are assuming that , Theorem 2 gives

The relative growth rate is about 1.7% per year and the model is

We estimate that the world population in 1993 was

The model predicts that the population in 2020 will be

The graph in Figure 1 shows that the model is fairly accurate to the end of the 20th cen-
tury (the dots represent the actual population), so the estimate for 1993 is quite reliable.
But the prediction for 2020 is riskier.

M

RADIOACTIVE DECAY

Radioactive substances decay by spontaneously emitting radiation. If is the mass
remaining from an initial mass of the substance after time t, then the relative decay rate

%
1
m

 
dm
dt

m0

m#t$

FIGURE 1
A model for world population growth
in the second half of the 20th century
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t20 40
Years since 1950

Population
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P=2560e0.017185t

P#70$ ! 2560e 0.017185#70$ ) 8524 million

P#43$ ! 2560e 0.017185#43$ ) 5360 million

P#t$ ! 2560e 0.017185t

 k !
1
10

 ln 
3040
2560

) 0.017185

 P#10$ ! 2560e 10k ! 3040

P#t$ ! P#0$ekt ! 2560ekt

dP"dt ! kP
P#10) ! 3040.P#0$ ! 2560P#t$
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has been found experimentally to be constant. (Since is negative, the relative decay
rate is positive.) It follows that

where k is a negative constant. In other words, radioactive substances decay at a rate pro-
portional to the remaining mass. This means that we can use (2) to show that the mass
decays exponentially:

Physicists express the rate of decay in terms of half-life, the time required for half of
any given quantity to decay.

EXAMPLE 2 The half-life of radium-226 is 1590 years.
(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the
sample that remains after years.
(b) Find the mass after 1000 years correct to the nearest milligram.
(c) When will the mass be reduced to 30 mg?

SOLUTION
(a) Let be the mass of radium-226 (in milligrams) that remains after years. Then

and , so (2) gives

In order to determine the value of , we use the fact that . Thus

and

Therefore

We could use the fact that to write the expression for in the alternative
form

(b) The mass after 1000 years is 

(c) We want to find the value of such that , that is,

We solve this equation for by taking the natural logarithm of both sides:

Thus Mt ! %1590 
ln 0.3
ln 2

) 2762 years

 %
ln 2
1590

 t ! ln 0.3

t

e%#ln 2$t"1590 ! 0.3or100e%#ln 2$t"1590 ! 30

m#t$ ! 30t

m#1000$ ! 100e%#ln 2$1000"1590 ) 65 mg

m#t$ ! 100 * 2%t"1590

m#t$e ln 2 ! 2

m#t$ ! 100e%#ln 2$t"1590

 k ! %
ln 2
1590

 1590k ! ln 12 ! %ln 2

e 1590k ! 1
2so100e 1590k ! 50

y#1590$ ! 1
2 #100$k

m#t$ ! m#0$ekt ! 100ekt

y#0$ ! 100dm"dt ! km
tm#t$

t
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dm
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As a check on our work in Example 2, we use a graphing device to draw the graph of
in Figure 2 together with the horizontal line . These curves intersect when

, and this agrees with the answer to part (c).

NEWTON’S LAW OF COOLING

Newton’s Law of Cooling states that the rate of cooling of an object is proportional to
the temperature difference between the object and its surroundings, provided that this
difference is not too large. (This law also applies to warming.) If we let be the tem-
perature of the object at time and be the temperature of the surroundings, then we
can formulate Newton’s Law of Cooling as a differential equation:

where is a constant. This equation is not quite the same as Equation 1, so we  make
the change of variable . Because is constant, we have 
and so the equation becomes

We can then use (2) to find an expression for , from which we can find .

EXAMPLE 3 A bottle of soda pop at room temperature ( F) is placed in a refrigerator
where the temperature is F. After half an hour the soda pop has cooled to F.
(a) What is the temperature of the soda pop after another half hour?
(b) How long does it take for the soda pop to cool to F?

SOLUTION
(a) Let be the temperature of the soda after minutes. The surrounding temperature
is , so Newton’s Law of Cooling states that

If we let , then , so satisfies

and by (2) we have

We are given that , so and

Taking logarithms, we have

k !
ln(17

28)
30

) %0.01663

e30k ! 17
2828e30k ! 17

y#30$ ! 61 % 44 ! 17T#30$ ! 61
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dy
dt
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Thus

So after another half hour the pop has cooled to about F.

(b) We have when

The pop cools to F after about 1 hour 33 minutes. M

Notice that in Example 3, we have

which is to be expected. The graph of the temperature function is shown in Figure 3.

CONTINUOUSLY COMPOUNDED INTEREST

EXAMPLE 4 If $1000 is invested at 6% interest, compounded annually, then after 
1 year the investment is worth , after 2 years it’s worth

, and after years it’s worth . In general, if
an amount is invested at an interest rate in this example), then after 

years it’s worth . Usually, however, interest is compounded more frequently,
say, times a year. Then in each compounding period the interest rate is and there
are compounding periods in years, so the value of the investment is

For instance, after 3 years at 6% interest a $1000 investment will be worth

 with daily compounding $1000'1 $
0.06
365 (365 ! 3

! $1197.20

 with monthly compounding $1000#1.005$36 ! $1196.68

 with quarterly compounding $1000#1.015$12 ! $1195.62

 with semiannual compounding $1000#1.03$6 ! $1194.05

 with annual compounding $1000#1.06$3 ! $1191.02

A0'1 $
r
n(nt

tnt
r"nn

A0#1 $ r$tt
#r ! 0.06rA0

$1000#1.06$tt$&1000#1.06$%1.06 ! $1123.60
$1000#1.06$ ! $1060

lim
t l &

 T#t$ ! lim
t l &

 #44 $ 28e%0.01663t$ ! 44 $ 28 ! 0 ! 44
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  t !
ln( 6

28)
%0.01663

) 92.6

e%0.01663t ! 6
28

44 $ 28e%0.01663t ! 50

T#t$ ! 50

54+

T#60$ ! 44 $ 28e%0.01663#60$ ) 54.3

  T#t$ ! 44 $ 28e%0.01663t

  y#t$ ! 28e%0.01663t
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You can see that the interest paid increases as the number of compounding periods 
increases. If we let , then we will be compounding the interest continuously and
the value of the investment will be

(where )

But the limit in this expression is equal to the number e. (See Equation 3.6.6). So with
continuous compounding of interest at interest rate r, the amount after t years is

If we differentiate this function, we get

which says that, with continuous compounding of interest, the rate of increase of an
investment is proportional to its size.

Returning to the example of $1000 invested for 3 years at 6% interest, we see that
with continuous compounding of interest the value of the investment will be

Notice how close this is to the amount we calculated for daily compounding, $1197.20.
But the amount is easier to compute if we use continuous compounding. M

 A#3$ ! $1000e #0.06$3 ! $1197.22

 
dA
dt

! rA0ert ! rA#t$

A#t$ ! A0ert

m ! n"r ! A0* lim
ml&

 '1 $
1
m(m+rt

 ! A0*lim
nl&

 '1 $
r
n(n"r+rt

 A#t$ ! lim
nl&

 A0'1 $
r
n(nt

! lim
nl&

 A0*'1 $
r
n(n"r+rt

nl &
#n$

A bacteria culture initially contains 100 cells and grows at a
rate proportional to its size. After an hour the population has
increased to 420.
(a) Find an expression for the number of bacteria after 

hours.
(b) Find the number of bacteria after 3 hours.
(c) Find the rate of growth after 3 hours.
(d) When will the population reach 10,000?

4. A bacteria culture grows with constant relative growth rate.
After 2 hours there are 600 bacteria and after 8 hours the
count is 75,000. 
(a) Find the initial population.
(b) Find an expression for the population after hours.t

t

3.1. A population of protozoa develops with a constant relative
growth rate of 0.7944 per member per day. On day zero the
population consists of two members. Find the population size
after six days.

2. A common inhabitant of human intestines is the bacterium
Escherichia coli. A cell of this bacterium in a nutrient-broth
medium divides into two cells every 20 minutes. The initial
population of a culture is 60 cells.
(a) Find the relative growth rate.
(b) Find an expression for the number of cells after hours.
(c) Find the number of cells after 8 hours.
(d) Find the rate of growth after 8 hours.
(e) When will the population reach 20,000 cells?

t

EXERCISES3.8
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(b) How long will the reaction take to reduce the concentra-
tion of N O to 90% of its original value?

8. Bismuth-210 has a half-life of 5.0 days. 
(a) A sample originally has a mass of 800 mg. Find a formula

for the mass remaining after days.
(b) Find the mass remaining after 30 days.
(c) When is the mass reduced to 1 mg?
(d) Sketch the graph of the mass function.

The half-life of cesium-137 is 30 years. Suppose we have a
100-mg sample.
(a) Find the mass that remains after years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

10. A sample of tritium-3 decayed to 94.5% of its original
amount after a year.
(a) What is the half-life of tritium-3?
(b) How long would it take the sample to decay to 20% of its

original amount?

11. Scientists can determine the age of ancient objects by the
method of radiocarbon dating. The bombardment of the
upper atmosphere by cosmic rays converts nitrogen to a
radioactive isotope of carbon, C, with a half-life of about
5730 years. Vegetation absorbs carbon dioxide through the
atmosphere and animal life assimilates C through food
chains. When a plant or animal dies, it stops replacing its 
carbon and the amount of C begins to decrease through
radioactive decay. Therefore the level of radioactivity 
must also decay exponentially.
A parchment fragment was discovered that had about 74%

as much C radioactivity as does plant material on the earth
today. Estimate the age of the parchment.

12. A curve passes through the point and has the property
that the slope of the curve at every point is twice the 
-coordinate of . What is the equation of the curve?

A roast turkey is taken from an oven when its temperature
has reached and is placed on a table in a room where
the temperature is .
(a) If the temperature of the turkey is after half an

hour, what is the temperature after 45 minutes?
(b) When will the turkey have cooled to ?

14. A thermometer is taken from a room where the temperature is
C to the outdoors, where the temperature is . After one

minute the thermometer reads C.
(a) What will the reading on the thermometer be after one

more minute?
(b) When will the thermometer read C?

15. When a cold drink is taken from a refrigerator, its tempera-
ture is C. After 25 minutes in a C room its temperature
has increased to C.
(a) What is the temperature of the drink after 50 minutes?
(b) When will its temperature be C?15+

10+
20+5+

6+

12+
5+C20+

100+F

150+F
75+F

185+F
13.

Py
P

#0, 5$

14

14

14

14

t

9.

t

52

(c) Find the number of cells after 5 hours.
(d) Find the rate of growth after 5 hours.
(e) When will the population reach 200,000?

The table gives estimates of the world population, in millions,
from 1750 to 2000:

(a) Use the exponential model and the population figures for
1750 and 1800 to predict the world population in 1900
and 1950. Compare with the actual figures.

(b) Use the exponential model and the population figures for
1850 and 1900 to predict the world population in 1950.
Compare with the actual population.

(c) Use the exponential model and the population figures for
1900 and 1950 to predict the world population in 2000.
Compare with the actual population and try to explain the
discrepancy.

6. The table gives the population of the United States, in
millions, for the years 1900–2000.

(a) Use the exponential model and the census figures for
1900 and 1910 to predict the population in 2000. 
Compare with the actual figure and try to explain the 
discrepancy.

(b) Use the exponential model and the census figures for
1980 and 1990 to predict the population in 2000.
Compare with the actual population. Then use this model
to predict the population in the years 2010 and 2020.

; (c) Graph both of the exponential functions in parts (a) 
and (b) together with a plot of the actual population. 
Are these models reasonable ones?

7. Experiments show that if the chemical reaction 

takes place at , the rate of reaction of dinitrogen pent-
oxide is proportional to its concentration as follows:

(a) Find an expression for the concentration N O after 
seconds if the initial concentration is .Ct

5%2&

%
d&N2O5%

dt
! 0.0005&N2O5%

45+C

N2O5l 2NO2 $ 1
2 O2

5.
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Year Population Year Population

1750 790 1900 1650
1800 980 1950 2560
1850 1260 2000 6080

Year Population Year Population

1900 76 1960 179
1910 92 1970 203
1920 106 1980 227
1930 123 1990 250
1940 131 2000 275
1950 150
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; (b) Suppose $1000 is borrowed and the interest is com-
pounded continuously. If is the amount due after 

years, where , graph for each of the inter-
est rates 6%, 8%, and 10% on a common screen.

(a) If $3000 is invested at 5% interest, find the value of the
investment at the end of 5 years if the interest is com-
pounded (i) annually, (ii) semiannually, (iii) monthly, 
(iv) weekly, (v) daily, and (vi) continuously.

(b) If is the amount of the investment at time for the
case of continuous compounding, write a differential
equation and an initial condition satisfied by .

20. (a) How long will it take an investment to double in value if
the interest rate is 6% compounded continuously?

(b) What is the equivalent annual interest rate?

A#t$

tA#t$

19.

A#t$0 , t , 3t
A#t$

16. A freshly brewed cup of coffee has temperature C in a 
C room. When its temperature is C, it is cooling at a

rate of C per minute. When does this occur?

17. The rate of change of atmospheric pressure with respect to
altitude is proportional to , provided that the temperature
is constant. At C the pressure is kPa at sea level and

kPa at m.
(a) What is the pressure at an altitude of 3000 m?
(b) What is the pressure at the top of Mount McKinley, at an

altitude of 6187 m?

18. (a) If $1000 is borrowed at 8% interest, find the amounts 
due at the end of 3 years if the interest is compounded
(i) annually, (ii) quarterly, (iii) monthly, (iv) weekly, 
(v) daily, (vi) hourly, and (viii) continuously.

h ! 100087.14
101.315+

Ph
P

1+
70+20+

95+

RELATED RATES

If we are pumping air into a balloon, both the volume and the radius of the balloon are
increasing and their rates of increase are related to each other. But it is much easier to
measure directly the rate of increase of the volume than the rate of increase of the radius.

In a related rates problem the idea is to compute the rate of change of one quantity in
terms of the rate of change of another quantity (which may be more easily measured). The
procedure is to find an equation that relates the two quantities and then use the Chain Rule
to differentiate both sides with respect to time.

EXAMPLE 1 Air is being pumped into a spherical balloon so that its volume increases
at a rate of . How fast is the radius of the balloon increasing when the diameter
is 50 cm?

SOLUTION We start by identifying two things:

the given information:

the rate of increase of the volume of air is 

and the unknown:

the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive
notation:

Let V be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the
volume and the radius are both functions of the time . The rate of increase of the vol-
ume with respect to time is the derivative , and the rate of increase of the radius is

. We can therefore restate the given and the unknown as follows:

Given:

Unknown:
dr
dt

when r ! 25 cm

dV
dt

! 100 cm3"s

dr"dt
dV"dt

t

100 cm3"s

100 cm3"s
V

3.9

N According to the Principles of Problem Solving
discussed on page 76, the first step is to under-
stand the problem. This includes reading the
problem carefully, identifying the given and the
unknown, and introducing suitable notation.



In order to connect and , we first relate and by the formula for the
volume of a sphere:

In order to use the given information, we differentiate each side of this equation with
respect to . To differentiate the right side, we need to use the Chain Rule:

Now we solve for the unknown quantity:

If we put and in this equation, we obtain

The radius of the balloon is increasing at the rate of cm!s. M

EXAMPLE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder
slides away from the wall at a rate of 1 ft!s, how fast is the top of the ladder sliding
down the wall when the bottom of the ladder is 6 ft from the wall? 

SOLUTION We first draw a diagram and label it as in Figure 1. Let feet be the distance
from the bottom of the ladder to the wall and feet the distance from the top of the lad-
der to the ground. Note that and are both functions of (time, measured in seconds).

We are given that ft!s and we are asked to find when ft (see
Figure 2). In this problem, the relationship between and is given by the Pythagorean
Theorem:

Differentiating each side with respect to using the Chain Rule, we have

and solving this equation for the desired rate, we obtain

When , the Pythagorean Theorem gives and so, substituting these values and
, we have

The fact that is negative means that the distance from the top of the ladder to
the ground is decreasing at a rate of . In other words, the top of the ladder is sliding
down the wall at a rate of . M3

4 ft!s

3
4 ft!s

dy!dt

dy
dt

! !
6
8

"1# ! !
3
4

 ft!s

dx!dt ! 1
y ! 8x ! 6

dy
dt

! !
x
y

 
dx
dt

2x 
dx
dt

" 2y 
dy
dt

! 0

t

x 2 " y 2 ! 100

yx
x ! 6dy!dtdx!dt ! 1

tyx
y

x

1!"25## $ 0.0127

dr
dt

!
1

4#"25#2 100 !
1

25#

dV!dt ! 100r ! 25

dr
dt

!
1

4#r 2  
dV
dt

dV
dt

!
dV
dr

 
dr
dt

! 4#r 2 
dr
dt

t

V ! 4
3 #r 3

rVdr!dtdV!dtN The second stage of problem solving is to
think of a plan for connecting the given and the
unknown.

ground

wall

10
y

x

FIGURE 1

y

x

dy
dt =?

dx
dt =1

FIGURE 2

N Notice that, although is not constant,
is constant.dV!dt

dr!dt
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EXAMPLE 3 A water tank has the shape of an inverted circular cone with base radius 2 m
and height 4 m. If water is being pumped into the tank at a rate of 2 m !min, find the rate
at which the water level is rising when the water is 3 m deep.

SOLUTION We first sketch the cone and label it as in Figure 3. Let , , and be the vol-
ume of the water, the radius of the surface, and the height of the water at time , where 
is measured in minutes.

We are given that m !min and we are asked to find when is 3 m.
The quantities and are related by the equation

but it is very useful to express as a function of alone. In order to eliminate , we use
the similar triangles in Figure 3 to write

and the expression for becomes

Now we can differentiate each side with respect to :

so

Substituting m and m !min, we have

The water level is rising at a rate of . M

STRATEGY It is useful to recall some of the problem-solving principles from page 76
and adapt them to related rates in light of our experience in Examples 1–3:

1. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of time.

4. Express the given information and the required rate in terms of derivatives.

5. Write an equation that relates the various quantities of the problem. If necessary, use
the geometry of the situation to eliminate one of the variables by substitution (as in
Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect to .

7. Substitute the given information into the resulting equation and solve for the 
unknown rate.

The following examples are further illustrations of the strategy.

t

8!"9## $ 0.28 m!min

dh
dt

!
4

# "3#2 ! 2 !
8

9#

3dV!dt ! 2h ! 3

 
dh
dt

!
4

#h 2  
dV
dt

 
dV
dt

!
#

4
 h 2 

dh
dt

t

V !
1
3

#%h
2&2

h !
#

12
h 3

V

r !
h
2

r
h

!
2
4

rhV

V ! 1
3 #r 2h

hV
hdh!dt3dV!dt ! 2

tt
hrV

3
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FIGURE 3

2

r

h
4

N Look back: What have we learned from 
Examples 1–3 that will help us solve future 
problems?

| WARNING A common error is to sub-
stitute the given numerical information (for
quantities that vary with time) too early. This
should be done only after the differentiation.
(Step 7 follows Step 6.) For instance, in Example
3 we dealt with general values of until we
finally substituted at the last stage. (If
we had put earlier, we would have got-
ten , which is clearly wrong.)dV!dt ! 0

h ! 3
h ! 3

h



EXAMPLE 4 Car A is traveling west at and car B is traveling north at 
. Both are headed for the intersection of the two roads. At what rate are 

the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the 
intersection?

SOLUTION We draw Figure 4, where is the intersection of the roads. At a given time let
be the distance from car A to , let be the distance from car B to , and let be the

distance between the cars, where , , and are measured in miles.
We are given that mi!h and mi!h. (The derivatives are

negative because and are decreasing.) We are asked to find . The equation that
relates , , and is given by the Pythagorean Theorem:

Differentiating each side with respect to , we have

When mi and mi, the Pythagorean Theorem gives mi, so

The cars are approaching each other at a rate of 78 mi!h. M

EXAMPLE 5 A man walks along a straight path at a speed of 4 ft!s. A searchlight is
located on the ground 20 ft from the path and is kept focused on the man. At what rate is
the searchlight rotating when the man is 15 ft from the point on the path closest to the
searchlight?

SOLUTION We draw Figure 5 and let be the distance from the man to the point on 
the path closest to the searchlight. We let be the angle between the beam of the search-
light and the perpendicular to the path.

We are given that ft!s and are asked to find when . The equa-
tion that relates and can be written from Figure 5:

Differentiating each side with respect to , we get

so
d$

dt
!

1
20

 cos2$ 
dx
dt

!
1
20

 cos2$ "4# !
1
5

 cos2$

dx
dt

! 20 sec2$ 
d$

dt

t

x ! 20 tan $
x

20
! tan $

$x
x ! 15d$!dtdx!dt ! 4

$
x

V

 ! !78 mi!h

 
dz
dt

!
1

0.5
 '0.3"!50# " 0.4"!60#(

z ! 0.5y ! 0.4x ! 0.3

 
dz
dt

!
1
z

 %x 
dx
dt

" y 
dy
dt &

 2z 
dz
dt

! 2x 
dx
dt

" 2y 
dy
dt

t

z2 ! x 2 " y 2

zyx
dz!dtyx

dy!dt ! !60dx!dt ! !50
zyx

zCyCx
t,C

60 mi!h
50 mi!hV

244 | | | | CHAPTER 3 DIFFERENTIATION RULES

FIGURE 4

C

zy

x

B

A

FIGURE 5

x

20
¨



When , the length of the beam is 25, so and

The searchlight is rotating at a rate of 0.128 rad!s. M

d$

dt
!

1
5

 %4
5&2

!
16
125

! 0.128 

cos $ ! 4
5x ! 15
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which the distance from the plane to the station is increasing
when it is 2 mi away from the station.

If a snowball melts so that its surface area decreases at a rate of
1 cm !min, find the rate at which the diameter decreases when
the diameter is 10 cm.

13. A street light is mounted at the top of a 15-ft-tall pole. A man 
6 ft tall walks away from the pole with a speed of 5 ft!s along
a straight path. How fast is the tip of his shadow moving when
he is 40 ft from the pole?

14. At noon, ship A is 150 km west of ship B. Ship A is sailing east
at 35 km!h and ship B is sailing north at 25 km!h. How fast is
the distance between the ships changing at 4:00 PM?

Two cars start moving from the same point. One travels south
at 60 mi!h and the other travels west at 25 mi!h. At what rate
is the distance between the cars increasing two hours later?

16. A spotlight on the ground shines on a wall 12 m away. If a man
2 m tall walks from the spotlight toward the building at a speed
of 1.6 m!s, how fast is the length of his shadow on the building
decreasing when he is 4 m from the building?

17. A man starts walking north at 4 ft!s from a point . Five min-
utes later a woman starts walking south at 5 ft!s from a point
500 ft due east of . At what rate are the people moving apart
15 min after the woman starts walking?

18. A baseball diamond is a square with side 90 ft. A batter hits the
ball and runs toward first base with a speed of 24 ft!s.
(a) At what rate is his distance from second base decreasing

when he is halfway to first base?
(b) At what rate is his distance from third base increasing at

the same moment?

90 ft

P

P

15.

2
12.

1. If is the volume of a cube with edge length and the cube
expands as time passes, find in terms of .

2. (a) If is the area of a circle with radius and the circle
expands as time passes, find in terms of .

(b) Suppose oil spills from a ruptured tanker and spreads in a
circular pattern. If the radius of the oil spill increases at a
constant rate of , how fast is the area of the spill
increasing when the radius is 30 m?

3. Each side of a square is increasing at a rate of . At what
rate is the area of the square increasing when the area of the
square is ?

4. The length of a rectangle is increasing at a rate of and
its width is increasing at a rate of . When the length is
20 cm and the width is 10 cm, how fast is the area of the
rectangle increasing?

5. A cylindrical tank with radius 5 m is being filled with water 
at a rate of . How fast is the height of the water
increasing?

6. The radius of a sphere is increasing at a rate of . How
fast is the volume increasing when the diameter is 80 mm?

7. If and , find when .

8. If and , find when .

9. If , , and , find when
and .

10. A particle moves along the curve . As it reaches
the point , the -coordinate is increasing at a rate of

. How fast is the -coordinate of the point changing at
that instant?

11–14
(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

11. A plane flying horizontally at an altitude of 1 mi and a speed of
passes directly over a radar station. Find the rate at 500 m!h

x4 cm!s
y"2, 3#

y ! s1 " x 3 

y ! 12x ! 5
dz!dtdy!dt ! 3dx!dt ! 2z2 ! x2 " y2

y ! 4dx!dtdy!dt ! 6x2 " y2 ! 25

x ! 2dy!dtdx!dt ! 5y ! x 3 " 2x

4 mm!s

3 m3!min

3 cm!s
8 cm!s

16 cm2

6 cm!s

1 m!s

dr!dtdA!dt
rA

dx!dtdV!dt
xV

EXERCISES3.9
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equal. How fast is the height of the pile increasing when the
pile is 10 ft high?

28. A kite 100 ft above the ground moves horizontally at a speed
of 8 ft!s. At what rate is the angle between the string and the
horizontal decreasing when 200 ft of string has been let out?

29. Two sides of a triangle are 4 m and 5 m in length and the angle
between them is increasing at a rate of 0.06 rad!s. Find the rate
at which the area of the triangle is increasing when the angle
between the sides of fixed length is .

30. How fast is the angle between the ladder and the ground chang-
ing in Example 2 when the bottom of the ladder is 6 ft from the
wall?

Boyle’s Law states that when a sample of gas is compressed at
a constant temperature, the pressure and volume satisfy the
equation , where is a constant. Suppose that at a cer-
tain instant the volume is 600 cm , the pressure is 150 kPa, and
the pressure is increasing at a rate of 20 kPa!min. At what rate
is the volume decreasing at this instant?

32. When air expands adiabatically (without gaining or losing
heat), its pressure and volume are related by the equation

, where is a constant. Suppose that at a certain
instant the volume is 400 cm and the pressure is 80 kPa and is
decreasing at a rate of 10 kPa!min. At what rate is the volume
increasing at this instant?

33. If two resistors with resistances and are connected in 
parallel, as in the figure, then the total resistance , measured
in ohms ( ), is given by

If and are increasing at rates of and ,
respectively, how fast is changing when and

?

34. Brain weight as a function of body weight in fish has 
been modeled by the power function , where 

and are measured in grams. A model for body weight WB
B ! 0.007W 2!3

WB

R¡ R™

R2 ! 100 %
R1 ! 80 %R

0.2 %!s0.3 %!sR2R1

1
R

!
1
R1

"
1
R2

%
R

R2R1

3
CPV 1.4 ! C

VP

3
CPV ! C

VP
31.

#!3

The altitude of a triangle is increasing at a rate of 1 cm!min
while the area of the triangle is increasing at a rate of 
2 cm !min. At what rate is the base of the triangle changing
when the altitude is 10 cm and the area is ?

20. A boat is pulled into a dock by a rope attached to the bow of
the boat and passing through a pulley on the dock that is 1 m
higher than the bow of the boat. If the rope is pulled in at a rate
of 1 m!s, how fast is the boat approaching the dock when it is
8 m from the dock?

21. At noon, ship A is 100 km west of ship B. Ship A is sailing
south at 35 km!h and ship B is sailing north at 25 km!h. How
fast is the distance between the ships changing at 4:00 PM?

22. A particle is moving along the curve . As the particle
passes through the point , its -coordinate increases at a
rate of . How fast is the distance from the particle to the
origin changing at this instant?

23. Water is leaking out of an inverted conical tank at a rate of
10,000 cm !min at the same time that water is being pumped
into the tank at a constant rate. The tank has height 6 m and the
diameter at the top is 4 m. If the water level is rising at a rate
of 20 cm!min when the height of the water is 2 m, find the rate
at which water is being pumped into the tank.

24. A trough is 10 ft long and its ends have the shape of isosceles
triangles that are 3 ft across at the top and have a height of 1 ft.
If the trough is being filled with water at a rate of 12 ft !min,
how fast is the water level rising when the water is 6 inches
deep?

A water trough is 10 m long and a cross-section has the shape
of an isosceles trapezoid that is 30 cm wide at the bottom,
80 cm wide at the top, and has height 50 cm. If the trough is
being filled with water at the rate of 0.2 , how fast is the
water level rising when the water is 30 cm deep?

26. A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the
shallow end, and 9 ft deep at its deepest point. A cross-section
is shown in the figure. If the pool is being filled at a rate of
0.8 , how fast is the water level rising when the depth at
the deepest point is 5 ft?

Gravel is being dumped from a conveyor belt at a rate of 
30 , and its coarseness is such that it forms a pile in the
shape of a cone whose base diameter and height are always 

ft3!min
27.

3
6

12 6166

ft3!min

m3!min

25.

3

3

3 cm!s
x"4, 2#

y ! sx 

100 cm2

2

19.
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(b) If the television camera is always kept aimed at the rocket,
how fast is the camera’s angle of elevation changing at that
same moment?

38. A lighthouse is located on a small island 3 km away from the
nearest point on a straight shoreline and its light makes four
revolutions per minute. How fast is the beam of light moving
along the shoreline when it is 1 km from ?

39. A plane flies horizontally at an altitude of and passes
directly over a tracking telescope on the ground. When the
angle of elevation is , this angle is decreasing at a rate of

. How fast is the plane traveling at that time?

40. A Ferris wheel with a radius of is rotating at a rate of one
revolution every 2 minutes. How fast is a rider rising when his
seat is 16 m above ground level?

41. A plane flying with a constant speed of 300 km!h passes over 
a ground radar station at an altitude of 1 km and climbs at an
angle of 30 . At what rate is the distance from the plane to the
radar station increasing a minute later?

42. Two people start from the same point. One walks east at
3 mi!h and the other walks northeast at 2 mi!h. How fast is
the distance between the people changing after 15 minutes?

A runner sprints around a circular track of radius 100 m at 
a constant speed of 7 m!s. The runner’s friend is standing 
at a distance 200 m from the center of the track. How fast is 
the distance between the friends changing when the distance
between them is 200 m?

44. The minute hand on a watch is 8 mm long and the hour hand 
is 4 mm long. How fast is the distance between the tips of the
hands changing at one o’clock?

43.

&

10 m

#!6 rad!min
#!3

5 km

P

P

as a function of body length (measured in centimeters) is
. If, over 10 million years, the average length of 

a certain species of fish evolved from 15 cm to 20 cm at a con-
stant rate, how fast was this species’ brain growing when the
average length was 18 cm? 

35. Two sides of a triangle have lengths 12 m and 15 m. The angle
between them is increasing at a rate of . How fast is the
length of the third side increasing when the angle between the
sides of fixed length is 60 ?

36. Two carts, A and B, are connected by a rope 39 ft long that
passes over a pulley (see the figure). The point is on the
floor 12 ft directly beneath and between the carts. Cart A is
being pulled away from at a speed of 2 ft!s. How fast is cart
B moving toward at the instant when cart A is 5 ft from ?

A television camera is positioned 4000 ft from the base of a
rocket launching pad. The angle of elevation of the camera has
to change at the correct rate in order to keep the rocket in sight.
Also, the mechanism for focusing the camera has to take into
account the increasing distance from the camera to the rising
rocket. Let’s assume the rocket rises vertically and its speed is
600 ft!s when it has risen 3000 ft.
(a) How fast is the distance from the television camera to the

rocket changing at that moment?

37.

A B

Q

P

12 f t

QQ
Q

P
QP

&

2 &!min

W ! 0.12L2.53
L

LINEAR APPROXIMATIONS AND DIFFERENTIALS

We have seen that a curve lies very close to its tangent line near the point of tangency. In
fact, by zooming in toward a point on the graph of a differentiable function, we noticed
that the graph looks more and more like its tangent line. (See Figure 2 in Section 2.7.) This
observation is the basis for a method of finding approximate values of functions.

The idea is that it might be easy to calculate a value of a function, but difficult (or
even impossible) to compute nearby values of f. So we settle for the easily computed val-
ues of the linear function L whose graph is the tangent line of f at . (See Figure 1.)

In other words, we use the tangent line at as an approximation to the curve
when x is near a. An equation of this tangent line is

and the approximation

is called the linear approximation or tangent line approximation of f at a. The linear

f "x# $ f "a# " f '"a#"x ! a#1

y ! f "a# " f '"a#"x ! a#

y ! f "x#
"a, f "a##

"a, f "a##

f "a#

3.10

x0

y

{a, f(a)}

y=ƒ

y=L(x)

FIGURE 1



function whose graph is this tangent line, that is,

is called the linearization of f at a.

EXAMPLE 1 Find the linearization of the function at and use it
to approximate the numbers and . Are these approximations overestimates
or underestimates?

SOLUTION The derivative of is

and so we have and . Putting these values into Equation 2, we see that
the linearization is

The corresponding linear approximation (1) is

(when is near )

In particular, we have

The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent
line approximation is a good approximation to the given function when is near l. We
also see that our approximations are overestimates because the tangent line lies above the
curve.

Of course, a calculator could give us approximations for and , but the 
linear approximation gives an approximation over an entire interval. M

In the following table we compare the estimates from the linear approximation in
Example 1 with the true values. Notice from this table, and also from Figure 2, that the tan-
gent line approximation gives good estimates when x is close to 1 but the accuracy of the
approximation deteriorates when x is farther away from 1.

s4.05 s3.98 

x

s4.05 $ 7
4 " 1.05

4 ! 2.0125ands3.98 $ 7
4 " 0.98

4 ! 1.995

1xsx " 3 $
7
4

"
x
4

L"x# ! f "1# " f '"1#"x ! 1# ! 2 " 1
4 "x ! 1# !

7
4

"
x
4

f '"1# ! 1
4f "1# ! 2

f '"x# ! 1
2 "x " 3#!1!2 !

1
2sx " 3 

f "x# ! "x " 3#1!2

s4.05 s3.98 
a ! 1f "x# ! sx " 3 V

L"x# ! f "a# " f '"a#"x ! a#2
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x From Actual value

0.9 1.975 1.97484176 . . .

0.98 1.995 1.99499373 . . .

1 2 2.00000000 . . .

1.05 2.0125 2.01246117 . . .

1.1 2.025 2.02484567 . . .

2 2.25 2.23606797 . . .

3 2.5 2.44948974 . . .s6 

s5 

s4.1 

s4.05 

s4 

s3.98 

s3.9 

L"x#



How good is the approximation that we obtained in Example 1? The next example
shows that by using a graphing calculator or computer we can determine an interval through-
out which a linear approximation provides a specified accuracy.

EXAMPLE 2 For what values of is the linear approximation

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTION Accuracy to within 0.5 means that the functions should differ by less than 0.5: 

Equivalently, we could write

This says that the linear approximation should lie between the curves obtained by shift-
ing the curve upward and downward by an amount 0.5. Figure 3 shows 
the tangent line intersecting the upper curve at 
and . Zooming in and using the cursor, we estimate that the -coordinate of is about 

and the -coordinate of is about 8.66. Thus we see from the graph that the
approximation

is accurate to within 0.5 when . (We have rounded to be safe.)
Similarly, from Figure 4 we see that the approximation is accurate to within 0.1 when

. M

APPLICATIONS TO PHYSICS

Linear approximations are often used in physics. In analyzing the consequences of an
equation, a physicist sometimes needs to simplify a function by replacing it with its linear
approximation. For instance, in deriving a formula for the period of a pendulum, physics
textbooks obtain the expression for tangential acceleration and then replace

by with the remark that is very close to if is not too large. [See, for exam-
ple, Physics: Calculus, 2d ed., by Eugene Hecht (Pacific Grove, CA: Brooks/Cole, 2000),
p. 431.] You can verify that the linearization of the function at a ! 0 is

and so the linear approximation at 0 is

(see Exercise 42). So, in effect, the derivation of the formula for the period of a pendulum
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,
both and are replaced by their linearizations. In other words, the linear approx-
imations

and cos $ $ 1sin $ $ $

cos $sin $

sin x $ x

L"x# ! x
f "x# ! sin x

$$sin $$sin $
aT ! !t sin $

!1.1 ( x ( 3.9

!2.6 ( x ( 8.6

sx " 3 $
7
4

"
x
4

Qx!2.66
PxQ

Py ! sx " 3 " 0.5y ! "7 " x#!4
y ! sx " 3 

sx " 3 ! 0.5 (
7
4

"
x
4

( sx " 3 " 0.5

)sx " 3 ! %7
4

"
x
4& ) ( 0.5

sx " 3 $
7
4

"
x
4

x
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are used because is close to 0. The results of calculations made with these approxi-
mations became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by
Eugene Hecht (San Francisco: Addison-Wesley, 2002), p. 154.]

In Section 11.11 we will present several other applications of the idea of linear approx-
imations to physics.

DIFFERENTIALS

The ideas behind linear approximations are sometimes formulated in the terminology and
notation of differentials. If , where is a differentiable function, then the differ-
ential is an independent variable; that is, can be given the value of any real number.
The differential is then defined in terms of by the equation

So is a dependent variable; it depends on the values of and . If is given a spe-
cific value and is taken to be some specific number in the domain of , then the numer-
ical value of is determined.

The geometric meaning of differentials is shown in Figure 5. Let and
be points on the graph of and let . The corresponding

change in is

The slope of the tangent line is the derivative . Thus the directed distance from S
to R is . Therefore represents the amount that the tangent line rises or falls
(the change in the linearization), whereas represents the amount that the curve 
rises or falls when changes by an amount .

EXAMPLE 3 Compare the values of and if and 
changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION
(a) We have

In general,

When and , this becomes

(b)

When ,

Mdy ! '3"2#2 " 2"2# ! 2(0.01 ! 0.14

dx ! )x ! 0.01

 )y ! f "2.01# ! f "2# ! 0.140701

 f "2.01# ! "2.01#3 " "2.01#2 ! 2"2.01# " 1 ! 9.140701

dy ! '3"2#2 " 2"2# ! 2(0.05 ! 0.7

dx ! )x ! 0.05x ! 2

dy ! f '"x# dx ! "3x 2 " 2x ! 2# dx

 )y ! f "2.05# ! f "2# ! 0.717625

 f "2.05# ! "2.05#3 " "2.05#2 ! 2"2.05# " 1 ! 9.717625

 f "2# ! 23 " 22 ! 2"2# " 1 ! 9

x
y ! f "x# ! x 3 " x 2 ! 2x " 1dy)y

dxx
y ! f "x#)y

dyf '"x# dx ! dy
f '"x#PR

)y ! f "x " )x# ! f "x#

y
dx ! )xfQ"x " )x, f "x " )x##

P"x, f "x##
dy

fx
dxdxxdy

dy ! f '"x# dx3

dxdy
dxdx
fy ! f "x#

$
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N If , we can divide both sides of 
Equation 3 by to obtain

We have seen similar equations before, but now
the left side can genuinely be interpreted as a
ratio of differentials.

dy
dx

! f '"x#

dx
dx " 0

R
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y
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Q
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FIGURE 6 
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dy Îy

N Figure 6 shows the function in Example 3 and
a comparison of and when . The
viewing rectangle is by .'6, 18('1.8, 2.5(
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Notice that the approximation becomes better as becomes smaller in
Example 3. Notice also that was easier to compute than . For more complicated func-
tions it may be impossible to compute exactly. In such cases the approximation by dif-
ferentials is especially useful.

In the notation of differentials, the linear approximation (1) can be written as

For instance, for the function in Example 1, we have

If a ! 1 and , then

and

just as we found in Example 1.
Our final example illustrates the use of differentials in estimating the errors that occur

because of approximate measurements.

EXAMPLE 4 The radius of a sphere was measured and found to be 21 cm with a pos-
sible error in measurement of at most 0.05 cm. What is the maximum error in using this
value of the radius to compute the volume of the sphere?

SOLUTION If the radius of the sphere is , then its volume is . If the error in the
measured value of is denoted by , then the corresponding error in the calcu-
lated value of is , which can be approximated by the differential

When and , this becomes

The maximum error in the calculated volume is about 277 cm . M

Although the possible error in Example 4 may appear to be rather large, a bet-
ter picture of the error is given by the relative error, which is computed by dividing the
error by the total volume:

Thus the relative error in the volume is about three times the relative error in the radius. 
In Example 4 the relative error in the radius is approximately 
and it produces a relative error of about 0.007 in the volume. The errors could also be
expressed as percentage errors of in the radius and in the volume.0.7%0.24%

dr!r ! 0.05!21 $ 0.0024

)V
V

$
dV
V

!
4#r 2 dr

4
3 #r 3 ! 3 

dr
r

NOTE

3

dV ! 4#"21#20.05 $ 277

dr ! 0.05r ! 21

dV ! 4#r 2 dr

)VV
dr ! )rr

V ! 4
3 #r 3r

V

s4.05 ! f "1.05# $ f "1# " dy ! 2.0125

dy !
0.05

2s1 " 3 ! 0.0125

dx ! )x ! 0.05

dy ! f '"x# dx !
dx

2sx " 3 

f "x# ! sx " 3 

f "a " dx# $ f "a# " dy

)y
)ydy

)x)y $ dy
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25. 26.

27. 28.

29–31 Explain, in terms of linear approximations or differentials,
why the approximation is reasonable.

30.

31.

32. Let

and

(a) Find the linearizations of , , and at . What do
you notice? How do you explain what happened?

; (b) Graph , , and and their linear approximations. For
which function is the linear approximation best? For
which is it worst? Explain.

The edge of a cube was found to be 30 cm with a possible
error in measurement of 0.1 cm. Use differentials to estimate
the maximum possible error, relative error, and percentage
error in computing (a) the volume of the cube and (b) the sur-
face area of the cube.

34. The radius of a circular disk is given as 24 cm with a maxi-
mum error in measurement of 0.2 cm.
(a) Use differentials to estimate the maximum error in the

calculated area of the disk.
(b) What is the relative error? What is the percentage error?

35. The circumference of a sphere was measured to be 84 cm
with a possible error of 0.5 cm.
(a) Use differentials to estimate the maximum error in the 

calculated surface area. What is the relative error?
(b) Use differentials to estimate the maximum error in the 

calculated volume. What is the relative error?

36. Use differentials to estimate the amount of paint needed to
apply a coat of paint 0.05 cm thick to a hemispherical dome
with diameter 50 m.

37. (a) Use differentials to find a formula for the approximate
volume of a thin cylindrical shell with height , inner
radius , and thickness .

(b) What is the error involved in using the formula from
part (a)?

38. One side of a right triangle is known to be 20 cm long and
the opposite angle is measured as , with a possible error 
of .
(a) Use differentials to estimate the error in computing the

length of the hypotenuse.
(b) What is the percentage error?

!1"
30"

#rr
h

33.

htf

a ! 0htf

h!x" ! 1 $ ln!1 % 2x"

t!x" ! e%2xf !x" ! !x % 1"2

ln 1.05 # 0.05

!1.01"6 # 1.06sec 0.08 # 129.

s99.8 tan 44"

1$1002!8.06"2$31–4 Find the linearization of the function at .

1. , 2. ,

, 4. ,

; Find the linear approximation of the function 
at and use it to approximate the numbers and

. Illustrate by graphing and the tangent line.

; 6. Find the linear approximation of the function 
at and use it to approximate the numbers and

. Illustrate by graphing and the tangent line.

; 7–10 Verify the given linear approximation at . Then deter-
mine the values of for which the linear approximation is accu-
rate to within 0.1.

7. 8.

10.

11–14 Find the differential of each function.

11. (a) (b)

12. (a) (b)

(a) (b)

14. (a) (b)

15–18 (a) Find the differential and (b) evaluate for the
given values of and .

, ,

16. , ,

17. , ,

18. , ,

19–22 Compute and for the given values of and
. Then sketch a diagram like Figure 5 showing the line

segments with lengths , , and .

19. , ,

20. , ,

21. , ,

22. , ,

23–28 Use a linear approximation (or differentials) to estimate
the given number.

23. 24. e%0.015!2.001"5

#x ! 0.5x ! 0y ! e x

#x ! 1x ! 4y ! 2$x

#x ! 1x ! 1y ! sx 

#x ! %0.4x ! 2y ! 2x % x 2

#ydydx
dx ! #x

xdy#y

dx ! 0.05x ! &$3y ! cos x

dx ! %0.1x ! &$4y ! tan x

dx ! %0.01x ! 1y ! 1$!x $ 1"

dx ! 0.1x ! 0y ! e x $1015.

dxx
dydy

y ! s1 $ ln z y ! e tan & t

y ! !1 $ r 3"%2y !
u $ 1
u % 1

13.

y ! e%u cos uy ! s$!1 $ 2s"

y ! lns1 $ t 2 y ! x 2 sin 2x

e x # 1 $ x1$!1 $ 2x"4 # 1 % 8x9.

tan x # xs3 1 % x # 1 % 1
3 x

x
a ! 0

ts3 1.1 
s3 0.95 a ! 0
t!x" ! s3 1 $ x 

fs0.99 
s0.9 a ! 0

f !x" ! s1 % x 5.

a ! 16f !x" ! x 3$4a ! &$2f !x" ! cos x3.

a ! 1f !x" ! ln xa ! %1f !x" ! x 4 $ 3x 2

aL!x"

EXERCISES3.10
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pendulum. He then says, “for small angles, the value of in
radians is very nearly the value of ; they differ by less
than 2% out to about 20°.”
(a) Verify the linear approximation at 0 for the sine function:

; (b) Use a graphing device to determine the values of for
which and differ by less than 2%. Then verify
Hecht’s statement by converting from radians to degrees.

Suppose that the only information we have about a function 
is that and the graph of its derivative is as shown.
(a) Use a linear approximation to estimate and .
(b) Are your estimates in part (a) too large or too small?

Explain.

44. Suppose that we don’t have a formula for but we know
that and for all .
(a) Use a linear approximation to estimate 

and .
(b) Are your estimates in part (a) too large or too small?

Explain.

t!2.05"
t!1.95"

xt'!x" ! sx 2 $ 5 t!2" ! %4
t!x"

y

x0 1

y=fª(x)

1

f !1.1"f !0.9"
f !1" ! 5

f43.

xsin x
x

sin x # x

sin (
(39. If a current passes through a resistor with resistance ,

Ohm’s Law states that the voltage drop is . If is
constant and is measured with a certain error, use differen-
tials to show that the relative error in calculating is approxi-
mately the same (in magnitude) as the relative error in .

When blood flows along a blood vessel, the flux (the
volume of blood per unit time that flows past a given point) 
is proportional to the fourth power of the radius of the
blood vessel:

(This is known as Poiseuille’s Law; we will show why it 
is true in Section 8.4.) A partially clogged artery can be
expanded by an operation called angioplasty, in which a 
balloon-tipped catheter is inflated inside the artery in order 
to widen it and restore the normal blood flow.

Show that the relative change in is about four times the
relative change in . How will a 5% increase in the radius
affect the flow of blood?

41. Establish the following rules for working with differentials
(where denotes a constant and and are functions of ). 
(a) (b)
(c) (d)

(e) (f)

42. On page 431 of Physics: Calculus, 2d ed., by Eugene Hecht
(Pacific Grove, CA: Brooks/Cole, 2000), in the course of
deriving the formula for the period of a 
pendulum of length L, the author obtains the equation

for the tangential acceleration of the bob of theaT ! %t sin (

T ! 2&sL$t 

d!x n " ! nx n%1 dxd%u
v& !

v du % u dv
v2

d!uv" ! u dv $ v dud!u $ v" ! du $ dv
d!cu" ! c dudc ! 0

xvuc

R
F

F ! kR 4

R

F40.

R
I

R
VV ! RI
RI

The tangent line approximation is the best first-degree (linear) approximation to near
because and have the same rate of change (derivative) at . For a better approxi-

mation than a linear one, let’s try a second-degree (quadratic) approximation . In other
words, we approximate a curve by a parabola instead of by a straight line. To make sure that the
approximation is a good one, we stipulate the following:

(i) ( and should have the same value at .)

(ii) ( and should have the same rate of change at .)

(iii) (The slopes of and should change at the same rate at .)

1. Find the quadratic approximation to the function that
satisfies conditions (i), (ii), and (iii) with . Graph , , and the linear approximation

on a common screen. Comment on how well the functions and approximate .

2. Determine the values of for which the quadratic approximation in Problem 1
is accurate to within 0.1. [Hint: Graph , and on
a common screen.]

y ! cos x $ 0.1y ! cos x % 0.1, y ! P!x"
f !x" ! P!x"x

fLPL!x" ! 1
fPa ! 0

f !x" ! cos xP!x" ! A $ Bx $ Cx 2

afPP )!a" ! f )!a"
afPP'!a" ! f '!a"

afPP!a" ! f !a"

P!x"
aL!x"f !x"x ! a

f !x"L!x"
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3. To approximate a function by a quadratic function near a number , it is best to write 
in the form

Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

4. Find the quadratic approximation to near . Graph , the quadratic
approximation, and the linear approximation from Example 2 in Section 3.10 on a common
screen. What do you conclude?

5. Instead of being satisfied with a linear or quadratic approximation to near , let’s
try to find better approximations with higher-degree polynomials. We look for an th-degree
polynomial

such that and its first derivatives have the same values at as and its first 
derivatives. By differentiating repeatedly and setting , show that these conditions are
satisfied if , and in general

where . The resulting polynomial

is called the th-degree Taylor polynomial of centered at .

6. Find the 8th-degree Taylor polynomial centered at for the function .
Graph together with the Taylor polynomials in the viewing rectangle [%5, 5]
by [%1.4, 1.4] and comment on how well they approximate .f

T2, T4, T6, T8f
f !x" ! cos xa ! 0

afn

Tn!x" ! f !a" $ f '!a"!x % a" $
 f )!a"

2!
!x % a"2 $ * * * $

 f !n"!a"
n!

!x % a"n

k! ! 1 ! 2 ! 3 ! 4 ! * * * ! k

ck !
 f !k"!a"

k!

c0 ! f !a", c1 ! f '!a", c2 ! 1
2 f )!a"

x ! a
nfx ! anTn

Tn!x" ! c0 $ c1!x % a" $ c2!x % a"2 $ c3!x % a"3 $ * * * $ cn!x % a"n

n
x ! af !x"

fa ! 1f !x" ! sx $ 3 

P!x" ! f !a" $ f '!a"!x % a" $ 1
2 f )!a"!x % a"2

P!x" ! A $ B!x % a" $ C!x % a"2

PaPf

254 | | | | CHAPTER 3 DIFFERENTIATION RULES

HYPERBOLIC FUNCTIONS

Certain even and odd combinations of the exponential functions and arise so fre-
quently in mathematics and its applications that they deserve to be given special names. 
In many ways they are analogous to the trigonometric functions, and they have the same
relationship to the hyperbola that the trigonometric functions have to the circle. For this
reason they are collectively called hyperbolic functions and individually called hyperbolic
sine, hyperbolic cosine, and so on. 

DEFINITION OF THE HYPERBOLIC FUNCTIONS

coth x !
cosh x
sinh x

tanh x !
sinh x
cosh x

sech x !
1

cosh x
cosh x !

ex $ e%x

2

csch x !
1

sinh x
sinh x !

ex % e%x

2

e%xe x

3.11



The graphs of hyperbolic sine and cosine can be sketched using graphical addition as
in Figures 1 and 2.

Note that has domain and range , while has domain and range .
The graph of is shown in Figure 3. It has the horizontal asymptotes . (See
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Chapter 7.
Applications to science and engineering occur whenever an entity such as light, velocity,
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can be rep-
resented by hyperbolic functions. The most famous application is the use of hyperbolic
cosine to describe the shape of a hanging wire. It can be proved that if a heavy flexible
cable (such as a telephone or power line) is suspended between two points at the same
height, then it takes the shape of a curve with equation called a cate-
nary (see Figure 4). (The Latin word catena means “chain.”)

Another application of hyperbolic functions occurs in the description of ocean waves:
The velocity of a water wave with length moving across a body of water with depth is
modeled by the function

where is the acceleration due to gravity. (See Figure 5 and Exercise 49.)
The hyperbolic functions satisfy a number of identities that are similar to well-known

trigonometric identities. We list some of them here and leave most of the proofs to the
exercises.

HYPERBOLIC IDENTITIES

cosh!x $ y" ! cosh x cosh y $ sinh x sinh y

sinh!x $ y" ! sinh x cosh y $ cosh x sinh y

1 % tanh2x ! sech2xcosh2x % sinh2x ! 1

cosh!%x" ! cosh xsinh!%x" ! %sinh x

t

v ! ' tL
2&

 tanh%2&d
L &

dL

y ! c $ a cosh!x$a"

y ! !1tanh
(1, +"!cosh!!sinh
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FIGURE 4
A catenary y=c+a cosh(x/a)
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FIGURE 5
Idealized ocean wave 



EXAMPLE 1 Prove (a) and (b) .

SOLUTION

(a)

(b) We start with the identity proved in part (a):

If we divide both sides by , we get

or M

The identity proved in Example 1(a) gives a clue to the reason for the name “hyper-
bolic” functions:

If is any real number, then the point lies on the unit circle 
because . In fact, can be interpreted as the radian measure of 
in Figure 6. For this reason the trigonometric functions are sometimes called circular
functions.

Likewise, if is any real number, then the point lies on the right branch
of the hyperbola because and . This time, 
does not represent the measure of an angle. However, it turns out that represents twice
the area of the shaded hyperbolic sector in Figure 7, just as in the trigonometric case rep-
resents twice the area of the shaded circular sector in Figure 6.

The derivatives of the hyperbolic functions are easily computed. For example,

We list the differentiation formulas for the hyperbolic functions as Table 1. The remaining
proofs are left as exercises. Note the analogy with the differentiation formulas for trigono-
metric functions, but beware that the signs are different in some cases.

DERIVATIVES OF HYPERBOLIC FUNCTIONS

 
d
dx

 !tanh x" ! sech2x 
d
dx

 !coth x" ! %csch2x

 
d
dx

 !cosh x" ! sinh x  
d
dx

 !sech x" ! %sech x tanh x

 
d
dx

 !sinh x" ! cosh x 
d
dx

 !csch x" ! %csch x coth x

1

d
dx

 !sinh x" !
d
dx

 % ex % e%x

2 & !
ex $ e%x

2
! cosh x

t
t

tcosh t , 1cosh2t % sinh2t ! 1x 2 % y 2 ! 1
P!cosh t, sinh t"t

"POQtcos2t $ sin2t ! 1
x 2 $ y 2 ! 1P!cos t, sin t"t

 1 % tanh2x ! sech2x

 1 %
sinh2x
cosh2x

!
1

cosh2x

cosh2x

cosh2x % sinh2x ! 1

!
4
4

! 1!
e 2x $ 2 $ e%2x

4
%

e 2x % 2 $ e%2x

4

 cosh2x % sinh2x ! % ex $ e%x

2 &2

% % ex % e%x

2 &2

1 % tanh2x ! sech2xcosh2x % sinh2x ! 1V
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FIGURE 7
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The Gateway Arch in St. Louis was 
designed using a hyperbolic cosine function
(Exercise 48).
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EXAMPLE 2 Any of these differentiation rules can be combined with the Chain Rule. For
instance,

M

INVERSE HYPERBOLIC FUNCTIONS

You can see from Figures 1 and 3 that and are one-to-one functions and so they
have inverse functions denoted by and . Figure 2 shows that is not one-
to-one, but when restricted to the domain it becomes one-to-one. The inverse hyper-
bolic cosine function is defined as the inverse of this restricted function.

The remaining inverse hyperbolic functions are defined similarly (see Exercise 28).
We can sketch the graphs of , , and in Figures 8, 9, and 10 by using

Figures 1, 2, and 3.

Since the hyperbolic functions are defined in terms of exponential functions, it’s not
surprising to learn that the inverse hyperbolic functions can be expressed in terms of log-
arithms. In particular, we have:

EXAMPLE 3 Show that .

SOLUTION Let . Then

x ! sinh y !
ey % e%y

2

y ! sinh%1x

sinh%1x ! ln(x $ sx 2 $ 1)

 tanh%1x ! 1
2 ln%1 $ x

1 % x&  %1 - x - 15

 cosh%1x ! ln(x $ sx 2 % 1) x , 14

 sinh%1x ! ln(x $ sx 2 $ 1) x " !3

FIGURE 8 y=sinh–! x
domain=R range=R

0

y

x

FIGURE 9 y=cosh–! x
domain=[1, `}    range=[0, `}

0

y

x1

FIGURE 10 y=tanh–! x
domain=(_1, 1)    range=R

0

y

x1_1

tanh%1cosh%1sinh%1

 y ! tanh%1x  &?  tanh y ! x

 y ! cosh%1x &?  cosh y ! x and y , 0

 y ! sinh%1x  &? sinh y ! x2

(0, +"
coshtanh%1sinh%1

tanhsinh

d
dx

 (cosh sx ) ! sinh sx !
d
dx

 sx !
sinh sx 

2sx 

SECTION 3.11 HYPERBOLIC FUNCTIONS | | | | 257

N Formula 3 is proved in Example 3. The 
proofs of Formulas 4 and 5 are requested in 
Exercises 26 and 27.



so

or, multiplying by ,

This is really a quadratic equation in :

Solving by the quadratic formula, we get

Note that , but (because ). Thus the minus sign is
inadmissible and we have

Therefore

(See Exercise 25 for another method.) M

DERIVATIVES OF INVERSE HYPERBOLIC FUNCTIONS

The inverse hyperbolic functions are all differentiable because the hyperbolic functions
are differentiable. The formulas in Table 6 can be proved either by the method for inverse
functions or by differentiating Formulas 3, 4, and 5.

EXAMPLE 4 Prove that .

SOLUTION 1 Let . Then . If we differentiate this equation implicitly
with respect to , we get

Since and , we have , so

dy
dx

!
1

cosh y
!

1
s1 $ sinh2y 

!
1

s1 $ x 2 

cosh y ! s1 $ sinh2y cosh y , 0cosh2y % sinh2y ! 1

cosh y 
dy
dx

! 1

x
sinh y ! xy ! sinh%1x

d
dx

 !sinh%1x" !
1

s1 $ x 2 
V

 
d
dx

 !tanh%1x" !
1

1 % x 2  
d
dx

 !coth%1x" !
1

1 % x 2

 
d
dx

 !cosh%1x" !
1

sx 2 % 1
 

d
dx

 !sech%1x" ! %
1

xs1 % x 2 

 
d
dx

 !sinh%1x" !
1

s1 $ x 2 
 

d
dx

 !csch%1x" ! %
1

) x )sx 2 $ 1

6

y ! ln!ey" ! ln(x $ sx 2 $ 1)

ey ! x $ sx 2 $ 1

x - sx 2 $ 1x % sx 2 $ 1 - 0ey . 0

ey !
2x ! s4x 2 $ 4 

2
! x ! sx 2 $ 1

!ey "2 % 2x!ey" % 1 ! 0

ey

e 2y % 2xey % 1 ! 0

ey

ey % 2x % e%y ! 0
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N Notice that the formulas for the derivatives of
and appear to be identical. But

the domains of these functions have no numbers
in common: is defined for ,
whereas is defined for ) x ) . 1.coth%1x

) x ) - 1tanh%1x

coth%1xtanh%1x



SOLUTION 2 From Equation 3 (proved in Example 3), we have

M

EXAMPLE 5 Find .

SOLUTION Using Table 6 and the Chain Rule, we have

M �
1

1 � sin2x
 cos x �

cos x

cos2x
� sec x

 
d

dx
 �tanh�1�sin x�� �

1

1 � �sin x�2  
d

dx
 �sin x�

d

dx
 �tanh�1�sin x��V

 �
1

sx 2 � 1

 �
sx 2 � 1 � x

(x � sx 2 � 1)sx 2 � 1

 �
1

x � sx 2 � 1
 �1 �

x

sx 2 � 1�
 �

1

x � sx 2 � 1
 

d

dx
 (x � sx 2 � 1)

 
d

dx
 �sinh�1x� �

d

dx
 ln(x � sx 2 � 1)
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13.

14.

16.

18.

19.
( any real number)

20. If , find the values of the other hyperbolic
functions at .

21. If and , find the values of the other
hyperbolic functions at .

22. (a) Use the graphs of , , and in Figures 1–3 to
draw the graphs of , , and .cothsechcsch

tanhcoshsinh

x
x � 0cosh x � 5

3

x
tanh x � 12

13

n
�cosh x � sinh x�n � cosh nx � sinh nx

1 � tanh x

1 � tanh x
� e 2x

tanh�ln x� �
x 2 � 1

x 2 � 1
17.

cosh 2x � cosh2x � sinh2x

sinh 2x � 2 sinh x cosh x15.

tanh�x � y� �
tanh x � tanh y

1 � tanh x tanh y

coth2x � 1 � csch2x1–6 Find the numerical value of each expression.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

7–19 Prove the identity.

7.
(This shows that is an odd function.)

8.
(This shows that is an even function.)

10.

11.

12. cosh�x � y� � cosh x cosh y � sinh x sinh y

sinh�x � y� � sinh x cosh y � cosh x sinh y

cosh x � sinh x � e�x

cosh x � sinh x � e x9.

cosh
cosh��x� � cosh x

sinh
sinh��x� � �sinh x

sinh�1 1sinh 1

cosh�1 1sech 0

cosh�ln 3�cosh 3

sinh 2sinh�ln 2�

tanh 1tanh 0

cosh 0sinh 0

EXERCISES3.11



for the central curve of the arch, where and are measured
in meters and .

; (a) Graph the central curve.
(b) What is the height of the arch at its center?
(c) At what points is the height 100 m?
(d) What is the slope of the arch at the points in part (c)?

49. If a water wave with length moves with velocity in a body
of water with depth , then

where is the acceleration due to gravity. (See Figure 5.)
Explain why the approximation

is appropriate in deep water.

; 50. A flexible cable always hangs in the shape of a catenary
, where and are constants and 

(see Figure 4 and Exercise 52). Graph several members of the
family of functions . How does the graph
change as varies?

A telephone line hangs between two poles 14 m apart in the
shape of the catenary , where and

are measured in meters.
(a) Find the slope of this curve where it meets the right pole.
(b) Find the angle between the line and the pole.

52. Using principles from physics it can be shown that when a
cable is hung between two poles, it takes the shape of a curve

that satisfies the differential equation 

where is the linear density of the cable, is the acceleration
due to gravity, and is the tension in the cable at its lowest
point, and the coordinate system is chosen appropriately. 
Verify that the function

is a solution of this differential equation.

y ! f !x" !
T
/t  cosh% /tx

T &

T
t/

d 2 y
dx 2 !

/t
T '1 $ %dy

dx&2 

y ! f !x"

y

0 x_7 7

5
¨

(

y
xy ! 20 cosh!x$20" % 15

51.

a
y ! a cosh!x$a"

a . 0acy ! c $ a cosh!x$a"

v # ' tL
2&

 

t

v ! ' tL
2&

 tanh%2&d
L &

d
vL

) x ) 0 91.20
yx; (b) Check the graphs that you sketched in part (a) by using a

graphing device to produce them.

23. Use the definitions of the hyperbolic functions to find each of
the following limits.
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

24. Prove the formulas given in Table 1 for the derivatives of the
functions (a) , (b) , (c) , (d) , and (e) .

25. Give an alternative solution to Example 3 by letting
and then using Exercise 9 and Example 1(a) 

with replaced by .

26. Prove Equation 4.

27. Prove Equation 5 using (a) the method of Example 3 and 
(b) Exercise 18 with replaced by .

28. For each of the following functions (i) give a definition like
those in (2), (ii) sketch the graph, and (iii) find a formula sim-
ilar to Equation 3.
(a) (b) (c)

29. Prove the formulas given in Table 6 for the derivatives of the
following functions.
(a) (b) (c)
(d) (e)

30–47 Find the derivative. Simplify where possible.

30. 31.

32. 33.

34.

36. 37.

38. 39.

40. 41.

42. 43.

44.

46.

47.

48. The Gateway Arch in St. Louis was designed by Eero Saarinen
and was constructed using the equation

y ! 211.49 % 20.96 cosh 0.03291765x

y ! coth%1sx 2 $ 1

y ! sech%1s1 % x 2 , x . 0

y ! x sinh%1!x$3" % s9 $ x 2 45.

y ! x tanh%1x $ ln s1 % x 2 

y ! tanh%1sx y ! x 2 sinh%1!2x"

G!x" !
1 % cosh x
1 $ cosh x

y ! ' 
1 $ tanh x 

1 % tanh x 
 4

y ! arctan!tanh x"y ! sinh!cosh x"

f !t" ! sech2!e t"f !t" ! csch t !1 % ln csch t"

y ! e cosh 3x35.y ! x coth!1 $ x 2"

h!x" ! ln!cosh x"t!x" ! cosh!ln x"

f !x" ! x sinh x % cosh xf !x" ! tanh!1 $ e 2x"

coth%1sech%1
csch%1tanh%1cosh%1

coth%1sech%1csch%1

yx

yx
y ! sinh%1x

cothsechcschtanhcosh

lim
xl%+

 csch x

lim
x l

 

0%
 coth xlim

x l
 

0$
 coth x

lim
xl+

 coth xlim
xl+

 sech x

lim
xl%+

 sinh xlim
xl+

 sinh x

lim
xl%+

 tanh xlim
xl+

 tanh x
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55. At what point of the curve does the tangent have
slope 1?

56. If , show that .

57. Show that if and , then there exist numbers 
and such that equals either or

. In other words, almost every function of the
form is a shifted and stretched hyperbolic
sine or cosine function.

f !x" ! ae x $ be%x
1 cosh!x $ 2"

1 sinh!x $ 2"ae x $ be%x2
1b " 0a " 0

sec ( ! cosh xx ! ln!sec ( $ tan ("

y ! cosh x(a) Show that any function of the form

satisfies the differential equation .
(b) Find such that , , 

and .

54. Evaluate .lim
xl+

 
sinh x

e x

y'!0" ! 6
y!0" ! %4y) ! 9yy ! y!x"
y) ! m 2 y

y ! A sinh mx $ B cosh mx

53.

REVIEW

C O N C E P T  C H E C K

3

3. (a) How is the number defined?
(b) Express as a limit.
(c) Why is the natural exponential function used more

often in calculus than the other exponential functions ?
(d) Why is the natural logarithmic function used more

often in calculus than the other logarithmic functions
?

4. (a) Explain how implicit differentiation works.
(b) Explain how logarithmic differentiation works.

5. (a) Write an expression for the linearization of at .
(b) If , write an expression for the differential .
(c) If , draw a picture showing the geometric mean-

ings of and .dy#y
dx ! #x

dyy ! f !x"
af

y ! loga x

y ! ln x
y ! a x

y ! e x
e

e1. State each differentiation rule both in symbols and in words.
(a) The Power Rule (b) The Constant Multiple Rule
(c) The Sum Rule (d) The Difference Rule
(e) The Product Rule (f) The Quotient Rule
(g) The Chain Rule

2. State the derivative of each function.
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
( j) (k) (l)
(m) (n) (o)
(p) (q) (r)
(s) (t) y ! tanh%1xy ! cosh%1x

y ! sinh%1xy ! tanh xy ! cosh x
y ! sinh xy ! tan%1xy ! cos%1x
y ! sin%1xy ! cot xy ! sec x
y ! csc xy ! tan xy ! cos x
y ! sin xy ! loga xy ! ln x
y ! a xy ! e xy ! x n

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If and are differentiable, then

2. If and are differentiable, then

3. If and are differentiable, then

4. If is differentiable, then .

5. If is differentiable, then .
d
dx

 f (sx ) !
 f '!x"
2sx f

d
dx

 sf !x" !
f '!x"

2sf !x" f

d
dx

 ( f !t!x""* ! f '!t!x""t'!x"

tf

d
dx

 ( f !x"t!x"* ! f '!x"t'!x"

tf

d
dx

 ( f !x" $ t!x"* ! f '!x" $ t'!x"

tf

6. If , then .

7.

8.

9.

10.

11. If , then .

12. An equation of the tangent line to the parabola 
at is .y % 4 ! 2x!x $ 2"!%2, 4"

y ! x 2

lim
x l 2

 
t!x" % t!2"

x % 2
! 80t!x" ! x 5

d
dx

 ) x 2 $ x ) ! ) 2x $ 1 )

d
dx

 !tan2x" !
d
dx

 !sec2x"

d
dx

 !ln 10" !
1

10

d
dx

 !10 x " ! x10 x%1

y' ! 2ey ! e 2

T R U E - F A L S E  Q U I Z
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1–50 Calculate .

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. If , find .f !!2"f !t" ! s4t " 1

y ! sin2(cosssin #x )y ! cos(estan 3x )

y ! x tanh$1sx y ! cosh$1!sinh x"

y ! ln # x 2 $ 4
2x " 5 #y ! ln!cosh 3x"

y !
sin mx

x
y ! x sinh!x 2 "

y !
!x " %"4

x 4 " %4y !
sx " 1 !2 $ x"5

!x " 3"7

xe y ! y $ 1y ! tan2!sin &"

y ! arctan(arcsin sx )y ! sin(tan s1 " x 3 )
y ! st ln!t 4" y ! cot!3x 2 " 5"

y ! 10tan #&y ! ln $ sec 5x " tan 5x $
y ! e cos x " cos!e x "y ! x tan$1!4x"

y !
!x 2 " 1"4

!2x " 1"3!3x $ 1"5y ! ln sin x $ 1
2 sin2x

y ! !cos x"xy ! log 5!1 " 2x"

y ! ssin sx  sin!xy" ! x2 $ y

y ! 1%s3 x " sx   y ! !1 $ x $1 "$1

y ! sec!1 " x 2 "y ! 3 x ln x

y ! ln!x 2e x "y ! e cx !c sin x $ cos x"

x 2 cos y " sin 2y ! xyy !
sec 2&

1 " tan 2&

y ! ln!csc 5x"xy 4 " x 2y ! x " 3y

y !
1

sin!x $ sin x"
y !

e1%x

x 2

y ! !arcsin 2x"2y ! sx  cos sx 

y ! emx cos nxy !
t

1 $ t 2

y ! e$t!t 2 $ 2t " 2"y ! esin 2&

y !
e x

1 " x 2y ! 2xsx 2 " 1

y !
3x $ 2
s2x " 1

y ! sx "
1
s3 x 4 

y ! cos!tan x"y ! !x 4 $ 3x 2 " 5"3

y' 52. If , find .

53. Find if .

54. Find if .

55. Use mathematical induction (page 77) to show that if
, then .

56. Evaluate .

57–59 Find an equation of the tangent to the curve at the given
point.

57. , 58. ,

59. ,

60–61 Find equations of the tangent line and normal line to the
curve at the given point.

60. ,

61. ,

; 62. If , find . Graph and on the same screen
and comment.

63. (a) If , find .
(b) Find equations of the tangent lines to the curve

at the points and .
; (c) Illustrate part (b) by graphing the curve and tangent lines

on the same screen.

; (d) Check to see that your answer to part (a) is reasonable by
comparing the graphs of and .

64. (a) If , , find and .
; (b) Check to see that your answers to part (a) are reasonable by

comparing the graphs of , , and .

65. At what points on the curve , , 
is the tangent line horizontal?

66. Find the points on the ellipse where the tangent
line has slope 1.

67. If , show that

68. (a) By differentiating the double-angle formula

obtain the double-angle formula for the sine function.
(b) By differentiating the addition formula

obtain the addition formula for the cosine function.

sin!x " a" ! sin x cos a " cos x sin a

cos 2x ! cos2x $ sin2x

 f '!x"
f !x"

!
1

x $ a
"

1
x $ b

"
1

x $ c

f !x" ! !x $ a"!x $ b"!x $ c"

x 2 " 2y 2 ! 1

0 ( x ( 2#y ! sin x " cos x

f !f 'f

f !f '$#%2 ) x ) #%2f !x" ! 4x $ tan x

f 'f

!4, 4"!1, 2"y ! xs5 $ x 

f '!x"f !x" ! xs5 $ x 

f 'ff '!x"f !x" ! xesin x

!0, 2"y ! !2 " x"e$x

!2, 1"x2 " 4xy " y2 ! 13

!0, 1"y ! s1 " 4 sin x 

!0, $1"y !
x2 $ 1
x2 " 1

!#%6, 1"y ! 4 sin2x

lim
tl 0

 
t 3

tan3 !2t"

f !n"!x" ! !x " n"e xf !x" ! xe x

f !x" ! 1%!2 $ x"f !n"!x"

x 6 " y 6 ! 1y !

t !!#%6"t!&" ! & sin &

E X E R C I S E S



(b) Find , the rate at which the drug is cleared from 
circulation.

(c) When is this rate equal to 0?

87. An equation of motion of the form 
represents damped oscillation of an object. Find the velocity
and acceleration of the object.

88. A particle moves along a horizontal line so that its coordinate
at time is , , where and are
positive constants.
(a) Find the velocity and acceleration functions.
(b) Show that the particle always moves in the positive 

direction.

89. A particle moves on a vertical line so that its coordinate at
time is , .
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward and when is it 

moving downward?
(c) Find the distance that the particle travels in the time 

interval .
; (d) Graph the position, velocity, and acceleration functions

for .
(e) When is the particle speeding up? When is it slowing

down?

90. The volume of a right circular cone is , where 
is the radius of the base and is the height.

(a) Find the rate of change of the volume with respect to the
height if the radius is constant.

(b) Find the rate of change of the volume with respect to the
radius if the height is constant.

91. The mass of part of a wire is kilograms, where 
is measured in meters from one end of the wire. Find the

linear density of the wire when m.

92. The cost, in dollars, of producing units of a certain com-
modity is

(a) Find the marginal cost function.
(b) Find and explain its meaning.
(c) Compare with the cost of producing the 101st

item.

93. A bacteria culture contains 200 cells initially and grows at a
rate proportional to its size. After half an hour the population
has increased to 360 cells.
(a) Find the number of bacteria after hours.
(b) Find the number of bacteria after 4 hours.
(c) Find the rate of growth after 4 hours.
(d) When will the population reach 10,000?

94. Cobalt-60 has a half-life of 5.24 years.
(a) Find the mass that remains from a 100-mg sample after

20 years.
(b) How long would it take for the mass to decay to 1 mg?

t

C'!100"
C'!100"

C!x" ! 920 " 2x $ 0.02x 2 " 0.00007x 3

x

x ! 4
x

x(1 " sx )

hr
V ! #r 2h%3

0 ( t ( 3

0 ( t ( 3

t * 0y ! t 3 $ 12t " 3t

cbt * 0x ! sb 2 " c 2t 2 t

s ! Ae$ct cos!+t " ,"

C'!t"69. Suppose that and , where
, , , , and .

Find (a) and (b) .

70. If and are the functions whose graphs are shown, let
, , and . 

Find (a) , (b) , and (c) .

71–78 Find in terms of .

71. 72.

73. 74.

75. 76.

77. 78.

79–81 Find in terms of and .

79. 80.

81.

; 82. (a) Graph the function in the viewing 
rectangle by .

(b) On which interval is the average rate of change larger:
or ?

(c) At which value of is the instantaneous rate of change
larger: or ?

(d) Check your visual estimates in part (c) by computing
and comparing the numerical values of 

and .

83. At what point on the curve is the tangent 
horizontal?

84. (a) Find an equation of the tangent to the curve that is
parallel to the line .

(b) Find an equation of the tangent to the curve that
passes through the origin.

85. Find a parabola that passes through the
point and whose tangent lines at and 
have slopes 6 and , respectively.

86. The function , where a, b, and K are
positive constants and , is used to model the concentra-
tion at time t of a drug injected into the bloodstream.
(a) Show that .lim t l - C!t" ! 0

b . a
C!t" ! K!e$at $ e$bt "

$2
x ! 5x ! $1!1, 4"

y ! ax 2 " bx " c

y ! e x
x $ 4y ! 1

y ! e x

y ! &ln!x " 4"'2

f '!5"
f '!2"f '!x"

x ! 5x ! 2
x

&2, 3'&1, 2'

&$2, 8'&0, 8'
f !x" ! x $ 2 sin x

h!x" ! f !t!sin 4x""

h!x" ! (  f !x"
t!x"

h!x" !
 f !x"t!x"

f !x" " t!x"

t'f 'h'

f !x" ! t!ln x"f !x" ! ln $ t!x" $
f !x" ! e t!x"f !x" ! t!e x "

f !x" ! t!t!x""f !x" ! &t!x"'2

f !x" ! t!x 2 "f !x" ! x 2t!x"

t'f '

0

g

f

y

x1

1

C'!2"Q'!2"P'!2"
C!x" ! f !t!x""Q!x" ! f !x"%t!x"P!x" ! f !x"t!x"

tf

F'!2"h'!2"
f '!5" ! 11f '!2" ! $2t'!2" ! 4t!2" ! 5f !2" ! 3

F!x" ! f !t!x""h!x" ! f !x"t!x"
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;102. (a) Find the linear approximation to 
near 3.

(b) Illustrate part (a) by graphing and the linear 
approximation.

(c) For what values of is the linear approximation accurate
to within 0.1?

103. (a) Find the linearization of at . State
the corresponding linear approximation and use it to give
an approximate value for .

; (b) Determine the values of for which the linear approxima-
tion given in part (a) is accurate to within 0.1.

104. Evaluate if , , and .

105. A window has the shape of a square surmounted by a semi-
circle. The base of the window is measured as having width
60 cm with a possible error in measurement of 0.1 cm. Use
differentials to estimate the maximum error possible in com-
puting the area of the window.

106–108 Express the limit as a derivative and evaluate.

106. 107.

108.

109. Evaluate .

110. Suppose is a differentiable function such that 
and . Show that .

111. Find if it is known that

112. Show that the length of the portion of any tangent line to the
astroid cut off by the coordinate axes is
constant.

x 2%3 " y 2%3 ! a 2%3

d
dx

 & f !2x"' ! x 2

f '!x"

t'!x" ! 1%!1 " x 2 "f '!x" ! 1 " & f !x"'2
f !t!x"" ! xf

lim
x l 0

 
s1 " tan x $ s1 " sin x 

x 3

lim
&l#%3

 
cos & $ 0.5

& $ #%3

lim
h l 0

 
s4 16 " h $ 2

h
lim
xl1

 
x 17 $ 1
x $ 1

dx ! 0.2x ! 2y ! x 3 $ 2x 2 " 1dy

x
s3 1.03 

a ! 0f !x" ! s3 1 " 3x 

x

f

f !x" ! s25 $ x 2 95. Let be the concentration of a drug in the bloodstream. 
As the body eliminates the drug, decreases at a rate that
is proportional to the amount of the drug that is present at the
time. Thus , where is a positive number
called the elimination constant of the drug. 
(a) If is the concentration at time , find the concen-

tration at time .
(b) If the body eliminates half the drug in 30 hours, how long

does it take to eliminate 90% of the drug?

96. A cup of hot chocolate has temperature in a room kept
at . After half an hour the hot chocolate cools to .
(a) What is the temperature of the chocolate after another

half hour?
(b) When will the chocolate have cooled to ?

97. The volume of a cube is increasing at a rate of 10 .
How fast is the surface area increasing when the length of an
edge is 30 cm?

98. A paper cup has the shape of a cone with height 10 cm and
radius 3 cm (at the top). If water is poured into the cup at a
rate of , how fast is the water level rising when the
water is 5 cm deep?

99. A balloon is rising at a constant speed of . A boy is
cycling along a straight road at a speed of . When he
passes under the balloon, it is 45 ft above him. How fast is
the distance between the boy and the balloon increasing 
3 s later?

100. A waterskier skis over the ramp shown in the figure at a
speed of . How fast is she rising as she leaves the
ramp?

101. The angle of elevation of the sun is decreasing at a rate of
. How fast is the shadow cast by a 400-ft-tall 

building increasing when the angle of elevation of the sun 
is ?#%6

0.25 rad%h

4 ft
15 ft

30 ft%s

15 ft%s
5 ft%s

2 cm3%s

cm3%min

40/C

60/C20/C
80/C

t
t ! 0C0

kC'!t" ! $kC!t"

C!t"
C!t"
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Before you look at the example, cover up the solution and try it yourself first.

EXAMPLE 1 How many lines are tangent to both of the parabolas and
? Find the coordinates of the points at which these tangents touch the 

parabolas.

SOLUTION To gain insight into this problem, it is essential to draw a diagram. So we sketch
the parabolas (which is the standard parabola shifted 1 unit upward)
and (which is obtained by reflecting the first parabola about the x-axis). If
we try to draw a line tangent to both parabolas, we soon discover that there are only two
possibilities, as illustrated in Figure 1.

Let P be a point at which one of these tangents touches the upper parabola and let a
be its x-coordinate. (The choice of notation for the unknown is important. Of course we
could have used b or c or or instead of a. However, it’s not advisable to use x in
place of a because that x could be confused with the variable x in the equation of the
parabola.) Then, since P lies on the parabola , its y-coordinate must be 
Because of the symmetry shown in Figure 1, the coordinates of the point Q where the
tangent touches the lower parabola must be .

To use the given information that the line is a tangent, we equate the slope of the line
PQ to the slope of the tangent line at P. We have

If , then the slope of the tangent line at P is . Thus the condi-
tion that we need to use is that

Solving this equation, we get , so and . Therefore the
points are (1, 2) and ($1, $2). By symmetry, the two remaining points are ($1, 2) 
and (1, $2). M

EXAMPLE 2 For what values of does the equation have exactly one 
solution?

SOLUTION One of the most important principles of problem solving is to draw a diagram,
even if the problem as stated doesn’t explicitly mention a geometric situation. Our pres-
ent problem can be reformulated geometrically as follows: For what values of does the
curve intersect the curve in exactly one point?

Let’s start by graphing and for various values of . We know that,
for , is a parabola that opens upward if and downward if .
Figure 2 shows the parabolas for several positive values of . Most of them
don’t intersect at all and one intersects twice. We have the feeling that there
must be a value of (somewhere between and ) for which the curves intersect
exactly once, as in Figure 3.

To find that particular value of , we let be the -coordinate of the single point of
intersection. In other words, , so is the unique solution of the given equa-
tion. We see from Figure 3 that the curves just touch, so they have a common tangent 

aln a ! ca 2
xac

0.30.1c
y ! ln x

cy ! cx 2
c ) 0c . 0y ! cx 2c " 0

cy ! cx 2y ! ln x
y ! cx 2y ! ln x

c

ln x ! cx 2c

a ! 01a 2 ! 11 " a 2 ! 2a 2

1 " a 2

a
! 2a

f '!a" ! 2af !x" ! 1 " x 2

mPQ !
1 " a 2 $ !$1 $ a 2 "

a $ !$a"
!

1 " a 2

a

!$a, $!1 " a 2 ""

1 " a 2.y ! 1 " x 2

x1x0

y ! $1 $ x 2
y ! x 2y ! 1 " x 2

y ! 1 " x 2
y ! $1 $ x 2
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line when . That means the curves and have the same slope when
. Therefore

Solving the equations and , we get

Thus and

For negative values of we have the situation illustrated in Figure 4: All parabolas
with negative values of intersect exactly once. And let’s not forget

about : The curve is just the -axis, which intersects exactly
once.

To summarize, the required values of are and . M

1. Find points and on the parabola so that the triangle formed by the -axis
and the tangent lines at and is an equilateral triangle.

; 2. Find the point where the curves and are tangent to each
other, that is, have a common tangent line. Illustrate by sketching both curves and the 
common tangent.

3. Show that the tangent lines to the parabola at any two points with 
-coordinates and must intersect at a point whose -coordinate is halfway between 

and .

4. Show that

d
dx ) sin2x

1 " cot x
"

cos2x
1 " tan x* ! $cos 2x

q
pxqpx

y ! ax 2 " bx " c

y ! 3!x 2 $ x"y ! x 3 $ 3x " 4

x

y

P Q

A

0B C

QP
xABCy ! 1 $ x 2QP

PROBLEMS

c ( 0c ! 1%!2e"c

y ! ln xxy ! 0x 2 ! 0c ! 0
y ! ln xcy ! cx 2

c

c !
ln a
a 2 !

ln e 1%2

e
!

1
2e

a ! e 1%2

ln a ! ca 2 ! c !
1
2c

!
1
2

1%a ! 2caln a ! ca 2

1
a

! 2ca

x ! a
y ! cx 2y ! ln xx ! a

y

y=ln x

x
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5. Show that .

6. A car is traveling at night along a highway shaped like a parabola with its vertex at the origin
(see the figure). The car starts at a point 100 m west and 100 m north of the origin and travels
in an easterly direction. There is a statue located 100 m east and 50 m north of the origin. At
what point on the highway will the car’s headlights illuminate the statue?

7. Prove that .

8. Find the th derivative of the function .

9. The figure shows a circle with radius 1 inscribed in the parabola . Find the center of the
circle.

10. If is differentiable at , where , evaluate the following limit in terms of :

11. The figure shows a rotating wheel with radius 40 cm and a connecting rod with length
1.2 m. The pin slides back and forth along the -axis as the wheel rotates counterclockwise
at a rate of 360 revolutions per minute.
(a) Find the angular velocity of the connecting rod, , in radians per second, 

when .
(b) Express the distance in terms of .
(c) Find an expression for the velocity of the pin in terms of .

12. Tangent lines and are drawn at two points and on the parabola and they
intersect at a point . Another tangent line is drawn at a point between and ; it 
intersects at and at . Show that

13. Show that

where and are positive numbers, , and .

14. Evaluate .lim
x l #

 
e sin x $ 1

x $ #

& ! tan$1!b%a"r 2 ! a 2 " b 2ba

d n

dx n  !e ax sin bx" ! r ne ax sin!bx " n&"

$ PQ1 $
$ PP1 $ " $ PQ2 $

$ PP2 $ ! 1

Q2T2Q1T1

P2P1TP
y ! x 2P2P1T2T1

&P
&x ! $ OP $

& ! #%3
d1%dt

xP
AP

lim
x l a

 
 f !x" $ f !a"
sx $ sa 

f '!a"a . 0af

x0

y

11

y=≈

y ! x 2

f !x" ! x n%!1 $ x"n

d n

dx n  !sin4x " cos4x" ! 4n$1  cos!4x " n#%2"

sin$1!tanh x" ! tan$1!sinh x"
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y
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15. Let and be the tangent and normal lines to the ellipse at any point on
the ellipse in the first quadrant. Let and be the - and -intercepts of and and be
the intercepts of . As moves along the ellipse in the first quadrant (but not on the axes),
what values can , , , and take on? First try to guess the answers just by looking at the
figure. Then use calculus to solve the problem and see how good your intuition is.

16. Evaluate .

17. (a) Use the identity for (see Equation 14b in Appendix D) to show that if two
lines and intersect at an angle , then

where and are the slopes of and , respectively.
(b) The angle between the curves and at a point of intersection is defined to be the

angle between the tangent lines to and at (if these tangent lines exist). Use part (a)
to find, correct to the nearest degree, the angle between each pair of curves at each point
of intersection.
(i) and

(ii) and

18. Let be a point on the parabola with focus . Let be the angle
between the parabola and the line segment , and let be the angle between the horizontal
line and the parabola as in the figure. Prove that . (Thus, by a principle of geo-
metrical optics, light from a source placed at will be reflected along a line parallel to the 
-axis. This explains why paraboloids, the surfaces obtained by rotating parabolas about their

axes, are used as the shape of some automobile headlights and mirrors for telescopes.)

0 x

y
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1 " m1m2

1L 2L1
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19. Suppose that we replace the parabolic mirror of Problem 18 by a spherical mirror. Although
the mirror has no focus, we can show the existence of an approximate focus. In the figure, 

is a semicircle with center . A ray of light coming in toward the mirror parallel to the axis
along the line will be reflected to the point on the axis so that (the
angle of incidence is equal to the angle of reflection). What happens to the point as is
taken closer and closer to the axis?

20. If and are differentiable functions with and , show that

21. Evaluate .

22. (a) The cubic function has three distinct zeros: 0, 2, and 6. Graph 
and its tangent lines at the average of each pair of zeros. What do you notice?

(b) Suppose the cubic function has three distinct zeros: 
, , and . Prove, with the help of a computer algebra system, that a tangent line drawn at

the average of the zeros intersects the graph of at the third zero.

23. For what value of does the equation have exactly one solution?

24. For which positive numbers is it true that for all ?

25. If

show that .

26. Given an ellipse , where , find the equation of the set of all points
from which there are two tangents to the curve whose slopes are (a) reciprocals and (b) nega-
tive reciprocals.

27. Find the two points on the curve that have a common tangent line.

28. Suppose that three points on the parabola have the property that their normal lines
intersect at a common point. Show that the sum of their -coordinates is 0.

29. A lattice point in the plane is a point with integer coordinates. Suppose that circles with radius
are drawn using all lattice points as centers. Find the smallest value of such that any line

with slope intersects some of these circles.

30. A cone of radius centimeters and height centimeters is lowered point first at a rate of
1 cm%s into a tall cylinder of radius centimeters that is partially filled with water. How fast is
the water level rising at the instant the cone is completely submerged?

31. A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It is
partially filled with a liquid that oozes through the sides at a rate proportional to the area of
the container that is in contact with the liquid. (The surface area of a cone is , where is
the radius and is the slant height.) If we pour the liquid into the container at a rate of

, then the height of the liquid decreases at a rate of 0.3 cm%min when the height is
10 cm. If our goal is to keep the liquid at a constant height of 10 cm, at what rate should we
pour the liquid into the container?

2 cm3%min
l

r#rl

R
hr
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5

rr

x
y ! x 2

y ! x 4 $ 2x 2 $ x

a " bx 2%a 2 " y 2%b 2 ! 1
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y !
x
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$
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 arctan 
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a " sa 2 $ 1 " cos x
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e2x ! ksx k

fa and b
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f !x" ! !x $ a"!x $ b"!x $ c"

ff !x" ! x!x $ 2"!x $ 6"CAS
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We have already investigated some of the applications of derivatives, but now that we
know the differentiation rules we are in a better position to pursue the applications of
differentiation in greater depth. Here we learn how derivatives affect the shape of a
graph of a function and, in particular, how they help us locate maximum and minimum
values of functions. Many practical problems require us to minimize a cost or maximize
an area or somehow find the best possible outcome of a situation. In particular, we will
be able to investigate the optimal shape of a can and to explain the location of rainbows
in the sky.

Calculus reveals all the important aspects of graphs of functions.
Members of the family of functions are illustrated.f !x" ! cx ! sin x

APPLICATIONS OF
DIFFERENTIATION

4

x

y



MAXIMUM AND MINIMUM VALUES

Some of the most important applications of differential calculus are optimization prob-
lems, in which we are required to find the optimal (best) way of doing something. Here are
examples of such problems that we will solve in this chapter:

! What is the shape of a can that minimizes manufacturing costs?

! What is the maximum acceleration of a space shuttle? (This is an important 
question to the astronauts who have to withstand the effects of acceleration.)

! What is the radius of a contracted windpipe that expels air most rapidly during 
a cough?

! At what angle should blood vessels branch so as to minimize the energy expended
by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a function.
Let’s first explain exactly what we mean by maximum and minimum values.

DEFINITION A function has an absolute maximum (or global maximum)
at if for all in , where is the domain of . The number is
called the maximum value of on . Similarly, has an absolute minimum at 
if for all in and the number is called the minimum value of 
on . The maximum and minimum values of are called the extreme values of .

Figure 1 shows the graph of a function with absolute maximum at and absolute 
minimum at . Note that is the highest point on the graph and is the low-
est point. If we consider only values of near [for instance, if we restrict our attention
to the interval ], then is the largest of those values of and is called a local
maximum value of . Likewise, is called a local minimum value of because

for near [in the interval , for instance]. The function also has a local
minimum at . In general, we have the following definition.

DEFINITION A function has a local maximum (or relative maximum) at 
if when x is near c. [This means that for all in some
open interval containing c.] Similarly, has a local minimum at if 
when is near c.

EXAMPLE 1 The function takes on its (local and absolute) maximum value
of 1 infinitely many times, since for any integer and for
all . Likewise, is its minimum value, where is any integer. M

EXAMPLE 2 If , then because for all . Therefore 
is the absolute (and local) minimum value of . This corresponds to the fact that the
origin is the lowest point on the parabola . (See Figure 2.) However, there is no
highest point on the parabola and so this function has no maximum value. M

EXAMPLE 3 From the graph of the function , shown in Figure 3, we see that
this function has neither an absolute maximum value nor an absolute minimum value. In
fact, it has no local extreme values either. M

f !x" ! x 3

y ! x 2
f

f !0" ! 0xx 2 " 0f !x" " f !0"f !x" ! x 2
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xf !c" " f !x"f !c" " f !x"
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ff !c"f
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ff !c"Dxf !c" % f !x"

cfDf
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EXAMPLE 4 The graph of the function

is shown in Figure 4. You can see that is a local maximum, whereas the
absolute maximum is . (This absolute maximum is not a local maximum
because it occurs at an endpoint.) Also, is a local minimum and 
is both a local and an absolute minimum. Note that has neither a local nor an absolute
maximum at . M

We have seen that some functions have extreme values, whereas others do not. The 
following theorem gives conditions under which a function is guaranteed to possess
extreme values.

THE EXTREME VALUE THEOREM If is continuous on a closed interval ,
then attains an absolute maximum value and an absolute minimum value

at some numbers and in .

The Extreme Value Theorem is illustrated in Figure 5. Note that an extreme value can
be taken on more than once. Although the Extreme Value Theorem is intuitively very plau-
sible, it is difficult to prove and so we omit the proof.

Figures 6 and 7 show that a function need not possess extreme values if either hypoth-
esis (continuity or closed interval) is omitted from the Extreme Value Theorem.

The function f whose graph is shown in Figure 6 is defined on the closed interval [0, 2]
but has no maximum value. (Notice that the range of f is [0, 3). The function takes on val-
ues arbitrarily close to 3, but never actually attains the value 3.) This does not contradict
the Extreme Value Theorem because f is not continuous. [Nonetheless, a discontinuous
function could have maximum and minimum values. See Exercise 13(b).]
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The function t shown in Figure 7 is continuous on the open interval (0, 2) but has nei-
ther a maximum nor a minimum value. [The range of t is . The function takes on
arbitrarily large values.] This does not contradict the Extreme Value Theorem because the
interval (0, 2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed interval has a
maximum value and a minimum value, but it does not tell us how to find these extreme
values. We start by looking for local extreme values.

Figure 8 shows the graph of a function with a local maximum at and a local minimum
at . It appears that at the maximum and minimum points the tangent lines are horizontal
and therefore each has slope 0. We know that the derivative is the slope of the tangent line,
so it appears that and . The following theorem says that this is always
true for differentiable functions.

FERMAT’S THEOREM If has a local maximum or minimum at , and if 
exists, then .

PROOF Suppose, for the sake of definiteness, that has a local maximum at c. Then,
according to Definition 2, if is sufficiently close to . This implies that if 

is sufficiently close to 0, with being positive or negative, then

and therefore

We can divide both sides of an inequality by a positive number. Thus, if and is
sufficiently small, we have

Taking the right-hand limit of both sides of this inequality (using Theorem 2.3.2), we get

But since exists, we have

and so we have shown that .
If , then the direction of the inequality (5) is reversed when we divide by :

So, taking the left-hand limit, we have
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N Fermat’s Theorem is named after Pierre 
Fermat (1601–1665), a French lawyer who took
up mathematics as a hobby. Despite his amateur
status, Fermat was one of the two inventors of
analytic geometry (Descartes was the other). His
methods for finding tangents to curves and maxi-
mum and minimum values (before the invention
of limits and derivatives) made him a forerunner
of Newton in the creation of differential calculus.

0 xc d

y
{c, f (c)}

{d, f (d)}

FIGURE 8



We have shown that and also that . Since both of these inequalities
must be true, the only possibility is that .

We have proved Fermat’s Theorem for the case of a local maximum. The case of a
local minimum can be proved in a similar manner, or we could use Exercise 76 to
deduce it from the case we have just proved (see Exercise 77). M

The following examples caution us against reading too much into Fermat’s Theorem.
We can’t expect to locate extreme values simply by setting and solving for .

EXAMPLE 5 If , then , so . But has no maximum or
minimum at 0, as you can see from its graph in Figure 9. (Or observe that for

but for .) The fact that simply means that the curve 
has a horizontal tangent at . Instead of having a maximum or minimum at ,
the curve crosses its horizontal tangent there. M

EXAMPLE 6 The function has its (local and absolute) minimum value at 0,
but that value can’t be found by setting because, as was shown in Example 5
in Section 2.8, does not exist. (See Figure 10.) M

| WARNING Examples 5 and 6 show that we must be careful when using Fermat’s 
Theorem. Example 5 demonstrates that even when there need not be a maximum
or minimum at . (In other words, the converse of Fermat’s Theorem is false in general.)
Furthermore, there may be an extreme value even when does not exist (as in 
Example 6).

Fermat’s Theorem does suggest that we should at least start looking for extreme values
of at the numbers where or where does not exist. Such numbers are
given a special name.

DEFINITION A critical number of a function is a number in the domain of
such that either or does not exist.

EXAMPLE 7 Find the critical numbers of .

SOLUTION The Product Rule gives

[The same result could be obtained by first writing .] Therefore
if , that is, , and does not exist when . Thus the

critical numbers are and . M

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (compare
Definition 6 with Theorem 4):

If f has a local maximum or minimum at c, then c is a critical number of f.7

03
2

x ! 0f &!x"x ! 3
212 $ 8x ! 0f &!x" ! 0

f !x" ! 4x 3%5 $ x 8%5

 !
$5x ! 3!4 $ x"

5x 2%5 !
12 $ 8x

5x 2%5

 f &!x" ! x 3%5!$1" ! !4 $ x"( 3
5 x$2%5) ! $x3%5 !

3!4 $ x"
5x 2%5

f !x" ! x 3%5!4 $ x"V

f &!c"f &!c" ! 0f
cf6

f &!c"f &!c" ! 0cf

f &!c"
c

f &!c" ! 0

f &!0"
f &!x" ! 0

f !x" ! & x &

!0, 0"!0, 0"
y ! x 3f &!0" ! 0x ' 0x 3 ' 0x ( 0

x 3 ( 0
ff &!0" ! 0f &!x" ! 3x 2f !x" ! x 3

xf &!x" ! 0

f &!c" ! 0
f &!c" % 0f &!c" " 0
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FIGURE 9
If ƒ=˛, then fª(0)=0 but ƒ
has no maximum or minimum.

y=˛

x

y

0

FIGURE 10
If ƒ=| x |, then f(0)=0 is a
minimum value, but fª(0) does not exist.

x0

y=|x|

y

FIGURE 11

3.5

_2

_0.5 5

N Figure 11 shows a graph of the function 
in Example 7. It supports our answer because
there is a horizontal tangent when and
a vertical tangent when .x ! 0

x ! 1.5
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To find an absolute maximum or minimum of a continuous function on a closed interval,
we note that either it is local [in which case it occurs at a critical number by (7)] or it occurs
at an endpoint of the interval. Thus the following three-step procedure always works.

THE CLOSED INTERVAL METHOD To find the absolute maximum and minimum
values of a continuous function on a closed interval :

1. Find the values of at the critical numbers of in .

2. Find the values of at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value; 
the smallest of these values is the absolute minimum value.

EXAMPLE 8 Find the absolute maximum and minimum values of the function

SOLUTION Since is continuous on , we can use the Closed Interval Method:

Since exists for all , the only critical numbers of occur when , that is,
or . Notice that each of these critical numbers lies in the interval .

The values of at these critical numbers are

The values of at the endpoints of the interval are

Comparing these four numbers, we see that the absolute maximum value is 
and the absolute minimum value is .

Note that in this example the absolute maximum occurs at an endpoint, whereas the
absolute minimum occurs at a critical number. The graph of is sketched in Figure 12. M

If you have a graphing calculator or a computer with graphing software, it is possible
to estimate maximum and minimum values very easily. But, as the next example shows,
calculus is needed to find the exact values.

EXAMPLE 9
(a) Use a graphing device to estimate the absolute minimum and maximum values of
the function .
(b) Use calculus to find the exact minimum and maximum values.

SOLUTION
(a) Figure 13 shows a graph of in the viewing rectangle by . By mov-
ing the cursor close to the maximum point, we see that the -coordinates don’t change
very much in the vicinity of the maximum. The absolute maximum value is about 6.97
and it occurs when . Similarly, by moving the cursor close to the minimum point,
we see that the absolute minimum value is about and it occurs when . It is x ' 1.0$0.68

x ' 5.2

y
#$1, 8$#0, 2#$f

f !x" ! x $ 2 sin x, 0 % x % 2#

f

f !2" ! $3
f !4" ! 17

f !4" ! 17f ($1
2 ) ! 1

8

f

f !2" ! $3f !0" ! 1

f
($1

2, 4)x ! 2x ! 0
f &!x" ! 0fxf &!x"

 f &!x" ! 3x 2 $ 6x ! 3x!x $ 2"

 f !x" ! x 3 $ 3x 2 ! 1

[$1
2, 4]f

$1
2 % x % 4f !x" ! x 3 $ 3x 2 ! 1

V

f

!a, b"ff

#a, b$f
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FIGURE 12
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possible to get more accurate estimates by zooming in toward the maximum and mini-
mum points, but instead let’s use calculus.

(b) The function is continuous on . Since ,
we have when and this occurs when or . The values
of at these critical points are

and

The values of at the endpoints are 

Comparing these four numbers and using the Closed Interval Method, we see that the
absolute minimum value is and the absolute maximum value is

. The values from part (a) serve as a check on our work. M

EXAMPLE 10 The Hubble Space Telescope was deployed on April 24, 1990, by the space
shuttle Discovery. A model for the velocity of the shuttle during this mission, from liftoff
at until the solid rocket boosters were jettisoned at , is given by

(in feet per second). Using this model, estimate the absolute maximum and minimum
values of the acceleration of the shuttle between liftoff and the jettisoning of the boosters.

SOLUTION We are asked for the extreme values not of the given velocity function, but
rather of the acceleration function. So we first need to differentiate to find the acceleration:

We now apply the Closed Interval Method to the continuous function a on the interval
. Its derivative is

The only critical number occurs when :

Evaluating at the critical number and at the endpoints, we have

So the maximum acceleration is about and the minimum acceleration is 
about . M21.52 ft%s2

62.87 ft%s2

a!126" ' 62.87a!t1" ' 21.52a!0" ! 23.61

a!t"

t1 !
0.18058
0.007812

' 23.12

a&!t" ! 0

a&!t" ! 0.007812t $ 0.18058

0 % t % 126

 ! 0.003906t 2 $ 0.18058t ! 23.61

 a!t" ! v&!t" !
d
dt

 !0.001302t 3 $ 0.09029t 2 ! 23.61t $ 3.083"

v!t" ! 0.001302t 3 $ 0.09029t 2 ! 23.61t $ 3.083

t ! 126 st ! 0

f !5#%3" ! 5#%3 ! s3 
f !#%3" ! #%3 $ s3 

f !2#" ! 2# ' 6.28andf !0" ! 0

f

 f !5#%3" !
5#

3
$ 2 sin 

5#

3
!

5#

3
! s3 ' 6.968039

 f !#%3" !
#

3
$ 2 sin 

#

3
!

#

3
$ s3 ' $0.684853

f
5#%3x ! #%3cos x ! 1

2f &!x" ! 0
f &!x" ! 1 $ 2 cos x#0, 2#$f !x" ! x $ 2 sin x
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(c) Sketch the graph of a function that has a local maximum 
at 2 and is not continuous at 2.

12. (a) Sketch the graph of a function on [$1, 2] that has an
absolute maximum but no local maximum.

(b) Sketch the graph of a function on [$1, 2] that has a local
maximum but no absolute maximum.

(a) Sketch the graph of a function on [$1, 2] that has an
absolute maximum but no absolute minimum.

(b) Sketch the graph of a function on [$1, 2] that is discontin-
uous but has both an absolute maximum and an absolute
minimum.

14. (a) Sketch the graph of a function that has two local maxima,
one local minimum, and no absolute minimum.

(b) Sketch the graph of a function that has three local minima,
two local maxima, and seven critical numbers.

15–28 Sketch the graph of by hand and use your sketch to 
find the absolute and local maximum and minimum values of .
(Use the graphs and transformations of Sections 1.2 and 1.3.)

15. ,

16. ,

17. ,

18. ,

19. ,

20. ,

21. ,

22. ,

23. ,

24. ,

26.

27.

28.

29–44 Find the critical numbers of the function.

29. 30.

31. 32.

33. 34.

35. 36. h!p" !
p $ 1
p2 ! 4

t!y" !
y $ 1

y 2 $ y ! 1

t!t" ! & 3t $ 4 &s!t" ! 3t 4 ! 4t 3 $ 6t 2

f !x" ! x 3 ! x 2 ! xf !x" ! x 3 ! 3x 2 $ 24x

f !x" ! x 3 ! x 2 $ xf !x" ! 5x 2 ! 4x

f !x" ! (4 $ x2

2x $ 1
if $2 % x ' 0
if 0 % x % 2

f !x" ! (1 $ x
2x $ 4

if 0 % x ' 2
if 2 % x % 3

f !x" ! e x

f !x" ! 1 $ sx 25.

$3#%2 % t % 3#%2f !t" ! cos t

0 ' x % 2f !x" ! ln x

$2 % x ' 5f !x" ! 1 ! !x ! 1"2

$3 % x % 2f !x" ! x 2

0 % x % 2f !x" ! x 2

0 % x ' 2f !x" ! x 2

0 ' x % 2f !x" ! x 2

0 ' x ' 2f !x" ! x 2

x % 5f !x" ! 3 $ 2x

x " 1f !x" ! 8 $ 3x

f
f

13.

1. Explain the difference between an absolute minimum and a
local minimum.

2. Suppose is a continuous function defined on a closed 
interval .
(a) What theorem guarantees the existence of an absolute max-

imum value and an absolute minimum value for ?
(b) What steps would you take to find those maximum and

minimum values?

3–4 For each of the numbers a, b, c, d, r, and s, state whether the
function whose graph is shown has an absolute maximum or min-
imum, a local maximum or minimum, or neither a maximum 
nor a minimum.

3. 4.

5–6 Use the graph to state the absolute and local maximum and
minimum values of the function.

5. 6.

7–10 Sketch the graph of a function that is continuous on 
[1, 5] and has the given properties.

7. Absolute minimum at 2, absolute maximum at 3, 
local minimum at 4

8. Absolute minimum at 1, absolute maximum at 5, 
local maximum at 2, local minimum at 4

Absolute maximum at 5, absolute minimum at 2, 
local maximum at 3, local minima at 2 and 4

10. has no local maximum or minimum, but 2 and 4 are critical
numbers

(a) Sketch the graph of a function that has a local maximum 
at 2 and is differentiable at 2.

(b) Sketch the graph of a function that has a local maximum 
at 2 and is continuous but not differentiable at 2.

11.

f

9.

f

y

0 x

y=©

1

1

y

0 x

y=ƒ
1

1

x

y

0 a b c d r sx

y

0 a b c d r s

f

#a, b$
f

EXERCISES4.1
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68.

69. Between and , the volume (in cubic centimeters)
of 1 kg of water at a temperature is given approximately by
the formula

Find the temperature at which water has its maximum
density.

70. An object with weight is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the
rope makes an angle with the plane, then the magnitude of
the force is

where is a positive constant called the coefficient of friction
and where . Show that is minimized when

.

71. A model for the US average price of a pound of white sugar
from 1993 to 2003 is given by the function

where is measured in years since August of 1993. Estimate
the times when sugar was cheapest and most expensive dur-
ing the period 1993–2003.

; 72. On May 7, 1992, the space shuttle Endeavour was launched 
on mission STS-49, the purpose of which was to install a new
perigee kick motor in an Intelsat communications satellite.
The table gives the velocity data for the shuttle between
liftoff and the jettisoning of the solid rocket boosters.

(a) Use a graphing calculator or computer to find the cubic
polynomial that best models the velocity of the shuttle for
the time interval . Then graph this polynomial.

(b) Find a model for the acceleration of the shuttle and use it
to estimate the maximum and minimum values of the
acceleration during the first 125 seconds.

t ! #0, 125$

t

! 0.03629t 2 $ 0.04458t ! 0.4074

 S!t" ! $0.00003237t 5 ! 0.0009037t 4 $ 0.008956t 3

tan * ! +
F0 % * % #%2

+

F !
+W

+ sin * ! cos *

*

W

V ! 999.87 $ 0.06426T ! 0.0085043T 2 $ 0.0000679T 3

T
V30,C0,C

f !x" ! x $ 2 cos x,  $2 % x % 0

f !x" ! xsx $ x 2 67.37. 38.

40.

42.

43. 44.

; 45–46 A formula for the derivative of a function is given. How
many critical numbers does have?

45. 46.

47–62 Find the absolute maximum and absolute minimum values
of on the given interval.

47. ,

48. ,

,

50. ,

51. ,

52. ,

53. ,

54. ,

55. ,

56. ,

57. ,

58. ,

59. ,

60. ,

61.

62.

63. If and are positive numbers, find the maximum value 
of , .

; 64. Use a graph to estimate the critical numbers of
correct to one decimal place.

; 65–68
(a) Use a graph to estimate the absolute maximum and minimum

values of the function to two decimal places.
(b) Use calculus to find the exact maximum and minimum

values.

65.

66. f !x" ! ex3$x, $1 % x % 0

f !x" ! x5 $ x3 ! 2,  $1 % x % 1

f !x" ! & x 3 $ 3x 2 ! 2 &

0 % x % 1f !x" ! x a!1 $ x"b
ba

f !x" ! e$x $ e$2x, #0, 1$

f !x" ! ln!x 2 ! x ! 1", #$1, 1$

[ 1
2, 2]f !x" ! x $ ln x

#$1, 4$f !x" ! xe$x2%8

##%4, 7#%4$f !t" ! t ! cot !t%2"

#0,#%2$f !t" ! 2cos t ! sin 2t

#0, 8$f !t" ! s3 t !8 $ t"

#$1, 2$f !t" ! ts4 $ t 2 

#$4, 4$f !x" !
x2 $ 4
x2 ! 4

#0, 2$f !x" !
x

x 2 ! 1

#$1, 2$f !x" ! !x2 $ 1"3

#$2, 3$f !x" ! x 4 $ 2x 2 ! 3

#$1, 4$f !x" ! x 3 $ 6x 2 ! 9x ! 2

#$2, 3$f !x" ! 2x 3 $ 3x 2 $ 12x ! 149.

#0, 3$f !x" ! x 3 $ 3x ! 1

#0, 3$f !x" ! 3x 2 $ 12x ! 5

f

f &!x" !
100 cos2 x
10 ! x 2 $ 1f &!x" ! 5e$0.1 & x & sinx $ 1

f
f

f !x" ! x $2 ln xf !x" ! x 2e$3x

t!*" ! 4* $ tan *f !*" ! 2 cos * ! sin2*41.

t!x" ! x 1%3 $ x$2%3F!x" ! x 4%5!x $ 4"2 39.

t!x" ! s1 $ x 2 h!t" ! t 3%4 $ 2 t 1%4

Event Time (s) Velocity (ft%s)

Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151
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(b) What is the absolute maximum value of on the interval?
(c) Sketch the graph of on the interval .

74. Show that 5 is a critical number of the function

but does not have a local extreme value at 5.

75. Prove that the function

has neither a local maximum nor a local minimum.

76. If has a minimum value at , show that the function
has a maximum value at .

77. Prove Fermat’s Theorem for the case in which has a local
minimum at .

A cubic function is a polynomial of degree 3; that is, it has the
form , where .
(a) Show that a cubic function can have two, one, or no critical

number(s). Give examples and sketches to illustrate the
three possibilities.

(b) How many local extreme values can a cubic function have?

a " 0f !x" ! ax 3 ! bx 2 ! cx ! d
78.

c
f

ct!x" ! $f !x"
cf

f !x" ! x 101 ! x 51 ! x ! 1

t
t!x" ! 2 ! !x $ 5"3

#0, r0 $v
v73. When a foreign object lodged in the trachea (windpipe) forces

a person to cough, the diaphragm thrusts upward causing an
increase in pressure in the lungs. This is accompanied by a
contraction of the trachea, making a narrower channel for the
expelled air to flow through. For a given amount of air to
escape in a fixed time, it must move faster through the
narrower channel than the wider one. The greater the velocity
of the airstream, the greater the force on the foreign object.
X rays show that the radius of the circular tracheal tube
contracts to about two-thirds of its normal radius during a
cough. According to a mathematical model of coughing, the
velocity of the airstream is related to the radius of the
trachea by the equation

where is a constant and is the normal radius of the trachea.
The restriction on is due to the fact that the tracheal wall stiff-
ens under pressure and a contraction greater than is
prevented (otherwise the person would suffocate).
(a) Determine the value of in the interval at which 

has an absolute maximum. How does this compare with
experimental evidence?

v[ 1
2 r0, r0]r

1
2 r0

r
r0k

1
2 r0 % r % r0v!r" ! k!r0 $ r"r 2

rv

Rainbows are created when raindrops scatter sunlight. They have fascinated mankind since
ancient times and have inspired attempts at scientific explanation since the time of Aristotle. In
this project we use the ideas of Descartes and Newton to explain the shape, location, and colors
of rainbows. 

1. The figure shows a ray of sunlight entering a spherical raindrop at . Some of the light is
reflected, but the line shows the path of the part that enters the drop. Notice that the light
is refracted toward the normal line and in fact Snell’s Law says that ,
where is the angle of incidence, is the angle of refraction, and is the index of
refraction for water. At some of the light passes through the drop and is refracted into the
air, but the line shows the part that is reflected. (The angle of incidence equals the angle
of reflection.) When the ray reaches , part of it is reflected, but for the time being we are
more interested in the part that leaves the raindrop at . (Notice that it is refracted away
from the normal line.) The angle of deviation is the amount of clockwise rotation that
the ray has undergone during this three-stage process. Thus

Show that the minimum value of the deviation is and occurs when .
The significance of the minimum deviation is that when we have , so

. This means that many rays with become deviated by approximately
the same amount. It is the concentration of rays coming from near the direction of minimum
deviation that creates the brightness of the primary rainbow. The figure at the left shows 
that the angle of elevation from the observer up to the highest point on the rainbow is

. (This angle is called the rainbow angle.)

2. Problem 1 explains the location of the primary rainbow, but how do we explain the colors?
Sunlight comprises a range of wavelengths, from the red range through orange, yellow,

180, $ 138, ! 42,

- ' 59.4,.D%.- ' 0
D&!-" ' 0- ' 59.4,

- ' 59.4,D!-" ' 138,

D!-" ! !- $ /" ! !# $ 2/" ! !- $ /" ! # ! 2- $ 4/

D!-"
C

C
BC

B
k ' 4

3/-
sin - ! k sin /AO

AB
A

THE CALCULUS OF RAINBOWSA P P L I E D
P R O J E C T

å

å

D(å )∫

A
from
sun

Formation of the primary rainbow

to
observer

C

B

O
∫
∫

∫

rays from sun

rays from sun

42°

138°

observer



green, blue, indigo, and violet. As Newton discovered in his prism experiments of 1666, the
index of refraction is different for each color. (The effect is called dispersion.) For red light
the refractive index is whereas for violet light it is . By repeating the
calculation of Problem 1 for these values of , show that the rainbow angle is about for
the red bow and for the violet bow. So the rainbow really consists of seven individual
bows corresponding to the seven colors.

3. Perhaps you have seen a fainter secondary rainbow above the primary bow. That results from
the part of a ray that enters a raindrop and is refracted at , reflected twice (at and ), and
refracted as it leaves the drop at (see the figure). This time the deviation angle is the
total amount of counterclockwise rotation that the ray undergoes in this four-stage process.
Show that

and has a minimum value when

Taking , show that the minimum deviation is about and so the rainbow angle for
the secondary rainbow is about , as shown in the figure.

4. Show that the colors in the secondary rainbow appear in the opposite order from those in the
primary rainbow.

42° 51°

51!
129!k ! 4

3

cos " ! ! k 2 # 1
8

D""#

D""# ! 2" # 6$ % 2&

D""#D
CBA

40.6!
42.3!k

k $ 1.3435k $ 1.3318

Formation of the secondary rainbow
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THE MEAN VALUE THEOREM

We will see that many of the results of this chapter depend on one central fact, which is
called the Mean Value Theorem. But to arrive at the Mean Value Theorem we first need the
following result.

ROLLE’S THEOREM Let be a function that satisfies the following three hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

3.

Then there is a number in such that .f '"c# ! 0"a, b#c

f "a# ! f "b#
"a, b#f

%a, b&f

f

4.2

N Rolle’s Theorem was first published in 
1691 by the French mathematician Michel Rolle
(1652–1719) in a book entitled Méthode pour
résoudre les égalitéz. He was a vocal critic of the
methods of his day and attacked calculus as
being a “collection of ingenious fallacies.” Later,
however, he became convinced of the essential
correctness of the methods of calculus.
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Before giving the proof let’s take a look at the graphs of some typical functions that sat-
isfy the three hypotheses. Figure 1 shows the graphs of four such functions. In each case
it appears that there is at least one point on the graph where the tangent is hori-
zontal and therefore . Thus Rolle’s Theorem is plausible.

PROOF There are three cases:

CASE I N , a constant
Then , so the number can be taken to be any number in .

CASE II N for some x in [as in Figure 1(b) or (c)]
By the Extreme Value Theorem (which we can apply by hypothesis 1), has a maxi-
mum value somewhere in . Since , it must attain this maximum value at
a number in the open interval . Then has a local maximum at and, by hypoth-
esis 2, is differentiable at . Therefore by Fermat’s Theorem.

CASE III N for some x in [as in Figure 1(c) or (d)]
By the Extreme Value Theorem, has a minimum value in and, since , 
it attains this minimum value at a number in . Again by Fermat’s
Theorem. M

EXAMPLE 1 Let’s apply Rolle’s Theorem to the position function of a moving
object. If the object is in the same place at two different instants and , then

. Rolle’s Theorem says that there is some instant of time between and
when ; that is, the velocity is 0. (In particular, you can see that this is true

when a ball is thrown directly upward.) M

EXAMPLE 2 Prove that the equation has exactly one real root.

SOLUTION First we use the Intermediate Value Theorem (2.5.10) to show that a root exists.
Let . Then and . Since is a polynomi-
al, it is continuous, so the Intermediate Value Theorem states that there is a number 
between 0 and 1 such that . Thus the given equation has a root.

To show that the equation has no other real root, we use Rolle’s Theorem and argue by
contradiction. Suppose that it had two roots and . Then and, since 
is a polynomial, it is differentiable on and continuous on . Thus, by Rolle’s
Theorem, there is a number between and such that . But

(since ) so can never be 0. This gives a contradiction. Therefore the equation
can’t have two real roots. M

f '"x#x 2 ( 0

for all xf '"x# ! 3x 2 % 1 ( 1

f '"c# ! 0bac
%a, b&"a, b#

ff "a# ! 0 ! f "b#ba

f "c# ! 0
c

ff "1# ! 1 ) 0f "0# ! #1 * 0f "x# ! x 3 % x # 1

x 3 % x # 1 ! 0

f '"c# ! 0b
at ! cf "a# ! f "b#

t ! bt ! a
s ! f "t#

f '"c# ! 0"a, b#c
f "a# ! f "b#%a, b&f

"a, b#f "x# * f "a#

f '"c# ! 0cf
cf"a, b#c

f "a# ! f "b#%a, b&
f

"a, b#f "x# ) f "a#

"a, b#cf '"x# ! 0
f "x# ! k
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N Take cases

N Figure 2 shows a graph of the function
discussed in Example 2.

Rolle’s Theorem shows that, no matter how much
we enlarge the viewing rectangle, we can never
find a second -intercept.x

f "x# ! x 3 % x # 1

FIGURE 2

_2

3

_3

2



Our main use of Rolle’s Theorem is in proving the following important theorem, which
was first stated by another French mathematician, Joseph-Louis Lagrange.

THE MEAN VALUE THEOREM Let be a function that satisfies the following
hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

Then there is a number in such that

or, equivalently,

Before proving this theorem, we can see that it is reasonable by interpreting it geomet-
rically. Figures 3 and 4 show the points and on the graphs of two dif-
ferentiable functions. The slope of the secant line is

which is the same expression as on the right side of Equation 1. Since is the slope of
the tangent line at the point , the Mean Value Theorem, in the form given by Equa-
tion 1, says that there is at least one point on the graph where the slope of the
tangent line is the same as the slope of the secant line . In other words, there is a point

where the tangent line is parallel to the secant line .

PROOF We apply Rolle’s Theorem to a new function defined as the difference between
and the function whose graph is the secant line . Using Equation 3, we see that the

equation of the line can be written as

or as y ! f "a# %
 f "b# # f "a#

b # a
 "x # a#

y # f "a# !
 f "b# # f "a#

b # a
 "x # a#

AB
ABf

h

FIGURE 3 FIGURE 4

0 x

y

a c b

B{b, f(b)}

P{c, f(c)}

A{a, f(a)}

0 x

y

c¡ c™

BP¡

A P™

ba

ABP
AB

P"c, f "c##
"c, f "c##

f '"c#

mAB !
 f "b# # f "a#

b # a
3

AB
B"b, f "b##A"a, f "a##

f "b# # f "a# ! f '"c#"b # a#2

f '"c# !
 f "b# # f "a#

b # a
1

"a, b#c

"a, b#f

%a, b&f

f
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N The Mean Value Theorem is an example of
what is called an existence theorem. Like the
Intermediate Value Theorem, the Extreme Value
Theorem, and Rolle’s Theorem, it guarantees that
there exists a number with a certain property,
but it doesn’t tell us how to find the number.



So, as shown in Figure 5,

First we must verify that satisfies the three hypotheses of Rolle’s Theorem.

1. The function is continuous on because it is the sum of and a first-degree
polynomial, both of which are continuous.

2. The function is differentiable on because both and the first-degree poly-
nomial are differentiable. In fact, we can compute directly from Equation 4:

(Note that and are constants.)

3.

Therefore, .

Since satisfies the hypotheses of Rolle’s Theorem, that theorem says there is a num-
ber in such that . Therefore

and so M

EXAMPLE 3 To illustrate the Mean Value Theorem with a specific function, let’s con-
sider . Since is a polynomial, it is continuous and differ-
entiable for all , so it is certainly continuous on and differentiable on .
Therefore, by the Mean Value Theorem, there is a number in such that

Now , and , so this equation becomes

which gives , that is, . But must lie in , so . 
Figure 6 illustrates this calculation: The tangent line at this value of is parallel to the
secant line . M

EXAMPLE 4 If an object moves in a straight line with position function , then
the average velocity between and is

 f "b# # f "a#
b # a

t ! bt ! a
s ! f "t#V

OB
c

c ! 2's3 "0, 2#cc ! +2's3 c 2 ! 4
3

6 ! "3c 2 # 1#2 ! 6c 2 # 2

f '"x# ! 3x 2 # 1f "2# ! 6, f "0# ! 0

f "2# # f "0# ! f '"c#"2 # 0#

"0, 2#c
"0, 2#%0, 2&x

ff "x# ! x 3 # x, a ! 0, b ! 2
V

f '"c# !
 f "b# # f "a#

b # a

0 ! h'"c# ! f '"c# #
 f "b# # f "a#

b # a

h'"c# ! 0"a, b#c
h

h"a# ! h"b#

 ! f "b# # f "a# # % f "b# # f "a#& ! 0

 h"b# ! f "b# # f "a# #
 f "b# # f "a#

b # a
 "b # a#

 h"a# ! f "a# # f "a# #
 f "b# # f "a#

b # a
 "a # a# ! 0

% f "b# # f "a#&'"b # a#f "a#

h'"x# ! f '"x# #
 f "b# # f "a#

b # a

h'
f"a, b#h

f%a, b&h

h

h"x# ! f "x# # f "a# #
 f "b# # f "a#

b # a
 "x # a#4
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The Mean Value Theorem was first formulated by
Joseph-Louis Lagrange (1736–1813), born in Italy
of a French father and an Italian mother. He was a
child prodigy and became a professor in Turin at
the tender age of 19. Lagrange made great con-
tributions to number theory, theory of functions, 
theory of equations, and analytical and celestial
mechanics. In particular, he applied calculus to the
analysis of the stability of the solar system. At 
the invitation of Frederick the Great, he succeeded
Euler at the Berlin Academy and, when Frederick
died, Lagrange accepted King Louis XVI’s invitation
to Paris, where he was given apartments in the
Louvre and became a professor at the Ecole Poly-
technique. Despite all the trappings of luxury and
fame, he was a kind and quiet man, living only for
science.

LAGRANGE AND THE MEAN VALUE THEOREM
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and the velocity at is . Thus the Mean Value Theorem (in the form of Equa-
tion 1) tells us that at some time between and the instantaneous velocity 
is equal to that average velocity. For instance, if a car traveled 180 km in 2 hours, then
the speedometer must have read 90 km'h at least once.

In general, the Mean Value Theorem can be interpreted as saying that there is a num-
ber at which the instantaneous rate of change is equal to the average rate of change over
an interval. M

The main significance of the Mean Value Theorem is that it enables us to obtain infor-
mation about a function from information about its derivative. The next example provides
an instance of this principle.

EXAMPLE 5 Suppose that and for all values of . How large can
possibly be?

SOLUTION We are given that is differentiable (and therefore continuous) everywhere. 
In particular, we can apply the Mean Value Theorem on the interval . There exists a
number such that

so

We are given that for all , so in particular we know that . Multiply-
ing both sides of this inequality by 2, we have , so

The largest possible value for is 7. M

The Mean Value Theorem can be used to establish some of the basic facts of differen-
tial calculus. One of these basic facts is the following theorem. Others will be found in the
following sections.

THEOREM If for all in an interval , then is constant on .

PROOF Let and be any two numbers in with . Since is differen-
tiable on , it must be differentiable on and continuous on . By apply-
ing the Mean Value Theorem to on the interval , we get a number such that

and

Since for all , we have , and so Equation 6 becomes

Therefore has the same value at any two numbers and in . This means that 
is constant on . M

COROLLARY If for all in an interval , then is con-
stant on ; that is, where is a constant.cf "x# ! t"x# % c"a, b#

f # t"a, b#xf '"x# ! t'"x#7

"a, b#
f"a, b#x2x1f

f "x2 # ! f "x1#orf "x2 # # f "x1# ! 0

f '"c# ! 0xf '"x# ! 0

f "x2 # # f "x1# ! f '"c#"x2 # x1#6

x1 * c * x2

c%x1, x2 &f
%x1, x2 &"x1, x2 #"a, b#

fx1 * x2"a, b#x2x1

"a, b#f"a, b#xf '"x# ! 05

f "2#

f "2# ! #3 % 2 f '"c# , #3 % 10 ! 7

2 f '"c# , 10
f '"c# , 5xf '"x# , 5

f "2# ! f "0# % 2 f '"c# ! #3 % 2 f '"c#

f "2# # f "0# ! f '"c#"2 # 0#
c

%0, 2&
f

f "2#
xf '"x# , 5f "0# ! #3V

f '"c#bat ! c
f '"c#t ! c
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PROOF Let . Then

for all in . Thus, by Theorem 5, is constant; that is, is constant. M

Care must be taken in applying Theorem 5. Let

The domain of is and for all in . But is obviously not a
constant function. This does not contradict Theorem 5 because is not an interval. Notice
that is constant on the interval and also on the interval .

EXAMPLE 6 Prove the identity .

SOLUTION Although calculus isn’t needed to prove this identity, the proof using calculus is
quite simple. If , then

for all values of . Therefore , a constant. To determine the value of , we put
[because we can evaluate exactly]. Then

Thus . Mtan#1x % cot#1x ! &'2

C ! f "1# ! tan#1 1 % cot#1 1 !
&

4
%

&

4
!

&

2

f "1#x ! 1
Cf "x# ! Cx

f '"x# !
1

1 % x 2 #
1

1 % x 2 ! 0

f "x# ! tan#1x % cot#1x

tan#1x % cot#1x ! &'2

"#-, 0#"0, -#f
D

fDxf '"x# ! 0D ! (x ) x " 0*f

f "x# !
x

) x ) ! +1
#1

if x ) 0
if x * 0

NOTE

f # tF"a, b#x

F'"x# ! f '"x# # t'"x# ! 0

F"x# ! f "x# # t"x#
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7. Use the graph of to estimate the values of that satisfy the
conclusion of the Mean Value Theorem for the interval .

8. Use the graph of given in Exercise 7 to estimate the values
of that satisfy the conclusion of the Mean Value Theorem
for the interval .%1, 7&

c
f

y

y =ƒ

1

x0 1

%0, 8&
cf1–4 Verify that the function satisfies the three hypotheses of

Rolle’s Theorem on the given interval. Then find all numbers 
that satisfy the conclusion of Rolle’s Theorem.

1.

2.

3.

4.

Let . Show that but there is no
number in such that . Why does this not
contradict Rolle’s Theorem?

6. Let . Show that but there is no 
number in such that . Why does this not
contradict Rolle’s Theorem?

f '"c# ! 0"0, &#c
f "0# ! f "&#f "x# ! tan x

f '"c# ! 0"#1, 1#c
f "#1# ! f "1#f "x# ! 1 # x 2'35.

%&'8, 7&'8&f "x# ! cos 2x,

%0, 9&f "x# ! sx # 1
3 x,

%0, 3&f "x# ! x 3 # x 2 # 6x % 2,

%1, 3&f "x# ! 5 # 12x % 3x 2,

c

EXERCISES4.2



(b) Suppose is twice differentiable on and has three
roots. Show that has at least one real root.

(c) Can you generalize parts (a) and (b)?

If and for , how small can
possibly be?

24. Suppose that for all values of . Show that
.

Does there exist a function such that , ,
and for all ?

26. Suppose that and are continuous on and differentiable
on . Suppose also that and for

. Prove that . [Hint: Apply the Mean
Value Theorem to the function .]

27. Show that if .

28. Suppose is an odd function and is differentiable every-
where. Prove that for every positive number , there exists 
a number in such that .

29. Use the Mean Value Theorem to prove the inequality

30. If (c a constant) for all , use Corollary 7 to show
that for some constant .

31. Let and

Show that for all in their domains. Can we
conclude from Corollary 7 that is constant?

32. Use the method of Example 6 to prove the identity 

33. Prove the identity

34. At 2:00 PM a car’s speedometer reads 30 mi'h. At 2:10 PM it
reads 50 mi'h. Show that at some time between 2:00 and
2:10 the acceleration is exactly 120 mi'h .

Two runners start a race at the same time and finish in a tie.
Prove that at some time during the race they have the same
speed. [Hint: Consider , where and are
the position functions of the two runners.]

36. A number a is called a fixed point of a function if
. Prove that if for all real numbers x, then

has at most one fixed point.f
f '"x# " 1f "a# ! a

f

htf "t# ! t"t# # h"t#

35.

2

arcsin 
x # 1
x % 1

! 2 arctan sx #
&

2

x ( 02 sin#1x ! cos#1"1 # 2x 2 #

f # t
xf '"x# ! t'"x#

t"x# !

1
x

1 %
1
x

if

if

x ) 0

x * 0

f "x# ! 1'x

df "x# ! cx % d
xf '"x# ! c

for all a and b) sin a # sin b ) , ) a # b )

f '"c# ! f "b#'b"#b, b#c
b

f

x ) 0s1 % x * 1 % 1
2 x

h ! f # t
f "b# * t"b#a * x * b

f '"x# * t'"x#f "a# ! t"a#"a, b#
%a, b&tf

xf '"x# , 2
f "2# ! 4f "0# ! #1f25.

18 , f "8# # f "2# , 30
x3 , f '"x# , 5

f "4#
1 , x , 4f '"x# ( 2f "1# ! 1023.

f .
!f; 9. (a) Graph the function in the viewing rect-

angle by .
(b) Graph the secant line that passes through the points 

and on the same screen with .
(c) Find the number that satisfies the conclusion of the

Mean Value Theorem for this function and the interval
. Then graph the tangent line at the point 

and notice that it is parallel to the secant line.

; 10. (a) In the viewing rectangle by , graph the
function and its secant line through the
points and . Use the graph to estimate 
the -coordinates of the points where the tangent line is
parallel to the secant line.

(b) Find the exact values of the numbers that satisfy the
conclusion of the Mean Value Theorem for the interval

and compare with your answers to part (a).

11–14 Verify that the function satisfies the hypotheses of the
Mean Value Theorem on the given interval. Then find all numbers 

that satisfy the conclusion of the Mean Value Theorem.

,

12. ,

13.

14. ,

15. Let . Show that there is no value of in
such that . Why does this

not contradict the Mean Value Theorem?

16. Let . Show that there is no value of 
such that . Why does this not con-
tradict the Mean Value Theorem?

17. Show that the equation has exactly
one real root.

18. Show that the equation has exactly one
real root.

Show that the equation has at most one
root in the interval .

20. Show that the equation has at most two 
real roots.

21. (a) Show that a polynomial of degree 3 has at most three 
real roots.

(b) Show that a polynomial of degree has at most real
roots.

22. (a) Suppose that is differentiable on and has two roots.
Show that has at least one root.f '

!f

nn

x 4 % 4x % c ! 0

%#2, 2&
x 3 # 15x % c ! 019.

2x # 1 # sin x ! 0

1 % 2x % x 3 % 4x 5 ! 0

f "3# # f "0# ! f '"c#"3 # 0#
cf "x# ! 2 # )2x # 1)

f "4# # f "1# ! f '"c#"4 # 1#"1, 4#
cf "x# ! "x # 3##2

%1, 4&f "x# !
x

x % 2

f "x# ! e#2x, %0, 3&

%0, 2&f "x# ! x 3 % x # 1

%#1, 1&f "x# ! 3x 2 % 2x % 511.

c

%#2, 2&

c

x
"2, 4#"#2, #4#

f "x# ! x 3 # 2x
%#5, 5&%#3, 3&

"c, f "c##%1, 8&
f

c
f"8, 8.5#

"1, 5#
%0, 10&%0, 10&

f "x# ! x % 4'x
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HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH

Many of the applications of calculus depend on our ability to deduce facts about a func-
tion f from information concerning its derivatives. Because represents the slope of
the curve at the point , it tells us the direction in which the curve proceeds
at each point. So it is reasonable to expect that information about will provide us with
information about .

WHAT DOES SAY ABOUT ?

To see how the derivative of can tell us where a function is increasing or decreasing, look
at Figure 1. (Increasing functions and decreasing functions were defined in Section 1.1.)
Between A and B and between C and D, the tangent lines have positive slope and so

. Between B and C, the tangent lines have negative slope and so . Thus
it appears that f increases when is positive and decreases when is negative. To
prove that this is always the case, we use the Mean Value Theorem.

INCREASING/DECREASING TEST

(a) If on an interval, then is increasing on that interval.

(b) If on an interval, then is decreasing on that interval.

PROOF
(a) Let and be any two numbers in the interval with . According to the defi-
nition of an increasing function (page 20) we have to show that .

Because we are given that , we know that is differentiable on . So,
by the Mean Value Theorem there is a number c between and such that

Now by assumption and because . Thus the right side of
Equation 1 is positive, and so

This shows that f is increasing.
Part (b) is proved similarly. M

EXAMPLE 1 Find where the function is increasing and
where it is decreasing.

SOLUTION

To use the I'D Test we have to know where and where . This
depends on the signs of the three factors of , namely, , , and . We
divide the real line into intervals whose endpoints are the critical numbers , and 

and arrange our work in a chart. A plus sign indicates that the given expression is posi-
tive, and a minus sign indicates that it is negative. The last column of the chart gives the 
2

#1, 0
x % 1x # 212xf '"x#

f '"x# * 0f '"x# ) 0

f '"x# ! 12x 3 # 12x 2 # 24x ! 12x"x # 2#"x % 1#

f "x# ! 3x 4 # 4x 3 # 12x 2 % 5V

f "x1# * f "x2 #orf "x2 # # f "x1# ) 0

x1 * x2x2 # x1 ) 0f '"c# ) 0

f "x2 # # f "x1# ! f '"c#"x2 # x1#1

x2x1

%x1, x2 &ff '"x# ) 0
f "x1# * f "x2 #

x1 * x2x2x1

ff '"x# * 0

ff '"x# ) 0

f '"x#f '"x#
f '"x# * 0f '"x# ) 0

f

ff '

f "x#
f '"x#

"x, f "x##y ! f "x#
f '"x#

4.3
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N Let’s abbreviate the name of this test to 
the I/D Test.



conclusion based on the I'D Test. For instance, for , so is decreas-
ing on (0, 2). (It would also be true to say that f is decreasing on the closed interval .)

The graph of f shown in Figure 2 confirms the information in the chart. M

Recall from Section 4.1 that if has a local maximum or minimum at , then must be
a critical number of (by Fermat’s Theorem), but not every critical number gives rise to a
maximum or a minimum. We therefore need a test that will tell us whether or not has a
local maximum or minimum at a critical number.

You can see from Figure 2 that is a local maximum value of because 
increases on and decreases on . Or, in terms of derivatives, for

and for . In other words, the sign of changes from
positive to negative at . This observation is the basis of the following test.

THE FIRST DERIVATIVE TEST Suppose that is a critical number of a continuous 
function .

(a) If changes from positive to negative at , then has a local maximum at .

(b) If changes from negative to positive at , then has a local minimum at .

(c) If does not change sign at (for example, if is positive on both sides of c
or negative on both sides), then has no local maximum or minimum at .

The First Derivative Test is a consequence of the I'D Test. In part (a), for instance, since
the sign of changes from positive to negative at c, is increasing to the left of c and
decreasing to the right of c. It follows that has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such as those
in Figure 3.

FIGURE 3  
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f
ff '"x#

cf
f 'cf '

cfcf '

cfcf '

f
c

0
f '"x#0 * x * 2f '"x# * 0#1 * x * 0

f '"x# ) 0"0, 2#"#1, 0#
fff "0# ! 5

f
f

ccf

%0, 2&
f0 * x * 2f '"x# * 0
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Interval x # 2 x % 1 f

# # # # decreasing on (#-, #1)
# # % % increasing on (#1, 0)
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% % % % increasing on (2, -) x ) 2
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 #1 * x * 0

 x * #1

f '"x#12x
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EXAMPLE 2 Find the local minimum and maximum values of the function f in 
Example 1.

SOLUTION From the chart in the solution to Example 1 we see that changes from neg-
ative to positive at #1, so is a local minimum value by the First Derivative
Test. Similarly, changes from negative to positive at 2, so is also a local
minimum value. As previously noted, is a local maximum value because 
changes from positive to negative at 0. M

EXAMPLE 3 Find the local maximum and minimum values of the function

SOLUTION To find the critical numbers of , we differentiate:

So when . The solutions of this equation are and .
Because is differentiable everywhere, the only critical numbers are and 
and so we analyze in the following table.

Because changes from positive to negative at , the First Derivative Test tells us
that there is a local maximum at and the local maximum value is

Likewise, changes from negative to positive at and so

is a local minimum value. The graph of in Figure 4 supports our conclusion.

M
FIGURE 4  

y=x+2 sin x

6

0 2π

t

t"4&'3# !
4&

3
% 2 sin 

4&

3
!

4&

3
% 2,#

s3 

2 - !
4&

3
# s3 $ 2.46

4&'3t'"x#

t"2&'3# !
2&

3
% 2 sin 

2&

3
!

2&

3
% 2,s3 

2 - !
2&

3
% s3 $ 3.83

2&'3
2&'3t'"x#

t
4&'32&'3t

4&'32&'3cos x ! #1
2t'"x# ! 0

t'"x# ! 1 % 2 cos x

t

0 , x , 2&t"x# ! x % 2 sin x

f '"x#f "0# ! 5
f "2# ! #27f '

f "#1# ! 0
f '"x#

V
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Interval

% increasing on 

# decreasing on 

% increasing on "4&'3, 2&# 4&'3 * x * 2&

"2'3, 4&'3# 2&'3 * x * 4&'3

"0, 2&'3# 0 * x * 2&'3

tt'"x# ! 1 % 2 cos x
N The + signs in the table come from the fact
that when . From the
graph of , this is true in the indicated
intervals.

y ! cos x
cos x ) #1

2t'"x# ) 0



WHAT DOES SAY ABOUT ?

Figure 5 shows the graphs of two increasing functions on . Both graphs join point 
to point but they look different because they bend in different directions. How can we
distinguish between these two types of behavior? In Figure 6 tangents to these curves have
been drawn at several points. In (a) the curve lies above the tangents and is called con-
cave upward on . In (b) the curve lies below the tangents and is called concave
downward on .

DEFINITION If the graph of lies above all of its tangents on an interval , then it
is called concave upward on . If the graph of lies below all of its tangents on I,
it is called concave downward on .

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on the
intervals , , and and concave downward (CD) on the intervals , ,
and .

Let’s see how the second derivative helps determine the intervals of concavity. Looking
at Figure 6(a), you can see that, going from left to right, the slope of the tangent increases.

FIGURE 7  
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This means that the derivative is an increasing function and therefore its derivative 
is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from left to right,
so decreases and therefore is negative. This reasoning can be reversed and suggests
that the following theorem is true. A proof is given in Appendix F with the help of the
Mean Value Theorem.

CONCAVITY TEST

(a) If for all in , then the graph of is concave upward on .

(b) If for all in , then the graph of is concave downward on .

EXAMPLE 4 Figure 8 shows a population graph for Cyprian honeybees raised in an 
apiary. How does the rate of population increase change over time? When is this rate
highest? Over what intervals is P concave upward or concave downward?

SOLUTION By looking at the slope of the curve as t increases, we see that the rate of
increase of the population is initially very small, then gets larger until it reaches a maxi-
mum at about t ! 12 weeks, and decreases as the population begins to level off. As the
population approaches its maximum value of about 75,000 (called the carrying capac-
ity), the rate of increase, , approaches 0. The curve appears to be concave upward on
(0, 12) and concave downward on (12, 18). M

In Example 4, the population curve changed from concave upward to concave down-
ward at approximately the point (12, 38,000). This point is called an inflection point of the
curve. The significance of this point is that the rate of population increase has its maximum
value there. In general, an inflection point is a point where a curve changes its direction of
concavity.

DEFINITION A point on a curve is called an inflection point if is
continuous there and the curve changes from concave upward to concave down-
ward or from concave downward to concave upward at .

For instance, in Figure 7, , and are the points of inflection. Notice that if a
curve has a tangent at a point of inflection, then the curve crosses its tangent there.

In view of the Concavity Test, there is a point of inflection at any point where the sec-
ond derivative changes sign.
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EXAMPLE 5 Sketch a possible graph of a function that satisfies the following 
conditions:

SOLUTION Condition (i) tells us that is increasing on and decreasing on .
Condition (ii) says that is concave upward on and , and concave down-
ward on . From condition (iii) we know that the graph of has two horizontal
asymptotes: and .

We first draw the horizontal asymptote as a dashed line (see Figure 9). We
then draw the graph of approaching this asymptote at the far left, increasing to its maxi-
mum point at and decreasing toward the x-axis at the far right. We also make sure
that the graph has inflection points when and 2. Notice that we made the curve
bend upward for and , and bend downward when x is between %2 and 2.

M

Another application of the second derivative is the following test for maximum and
minimum values. It is a consequence of the Concavity Test.

THE SECOND DERIVATIVE TEST Suppose is continuous near .

(a) If and , then has a local minimum at .

(b) If and , then has a local maximum at .

For instance, part (a) is true because near c and so is concave upward near
c. This means that the graph of lies above its horizontal tangent at c and so has a local
minimum at c. (See Figure 10.)

EXAMPLE 6 Discuss the curve with respect to concavity, points of
inflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION If , then

To find the critical numbers we set and obtain and . To use the
Second Derivative Test we evaluate at these critical numbers:

Since and , is a local minimum. Since , the
Second Derivative Test gives no information about the critical number 0. But since

for and also for , the First Derivative Test tells us that does
not have a local maximum or minimum at 0. [In fact, the expression for shows that
f decreases to the left of 3 and increases to the right of 3.]

f "!x"
f0 # x # 3x # 0f "!x" # 0

f !!0" ! 0f !3" ! %27f !!3" $ 0f "!3" ! 0

f !!3" ! 36 $ 0f !!0" ! 0

f !
x ! 3x ! 0f "!x" ! 0

 f !!x" ! 12x 2 % 24x ! 12x!x % 2"

 f "!x" ! 4x 3 % 12x 2 ! 4x 2!x % 3"

f !x" ! x 4 % 4x 3

y ! x 4 % 4x 3V

ff
ff !!x" $ 0

cff !!c" # 0f "!c" ! 0

cff !!c" $ 0f "!c" ! 0

cf !

x $ 2x # %2
x ! %2

x ! 1
f

y ! %2
y ! 0y ! %2

f!%2, 2"
!2, &"!%&, %2"f

!1, &"!%&, 1"f

 !iii" lim 
xl%&

 f !x" ! %2, lim 
xl&

 f !x" ! 0

 !ii" f !!x" $ 0 on !%&, %2" and !2, &", f !!x" # 0 on !%2, 2"

 !i" f "!x" $ 0 on !%&, 1", f "!x" # 0 on !1, &"
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Since when or , we divide the real line into intervals with these
numbers as endpoints and complete the following chart.

The point is an inflection point since the curve changes from concave upward to
concave downward there. Also, is an inflection point since the curve changes
from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we
sketch the curve in Figure 11. M

The Second Derivative Test is inconclusive when . In other words, at
such a point there might be a maximum, there might be a minimum, or there might be nei-
ther (as in Example 6). This test also fails when does not exist. In such cases the First
Derivative Test must be used. In fact, even when both tests apply, the First Derivative Test
is often the easier one to use.

EXAMPLE 7 Sketch the graph of the function .

SOLUTION You can use the differentiation rules to check that the first two derivatives are

Since when and does not exist when or , the critical
numbers are , and .

To find the local extreme values we use the First Derivative Test. Since changes
from negative to positive at 0, is a local minimum. Since changes from
positive to negative at 4, is a local maximum. The sign of does not change
at 6, so there is no minimum or maximum there. (The Second Derivative Test could be
used at 4, but not at 0 or 6 since does not exist at either of these numbers.)

Looking at the expression for and noting that for all , we have
for and for and for . So is concave down-

ward on and and concave upward on , and the only inflection point
is . The graph is sketched in Figure 12. Note that the curve has vertical tangents at

and because as and as . M

EXAMPLE 8 Use the first and second derivatives of , together with asymp-
totes, to sketch its graph.

SOLUTION Notice that the domain of is , so we check for vertical asymptotes
by computing the left and right limits as . As , we know that ,t ! 1#xl &xl 0'xl 0

$x % x " 0&f

f !x" ! e 1#x

xl 6xl 0% f "!x" %l &!6, 0"!0, 0"
!6, 0"

!6, &"!0, 6"!%&, 0"
fx $ 6f !!x" $ 00 # x # 6x # 0f !!x" # 0
xx 4#3 ( 0f !!x"

f !

f "f !4" ! 25#3
f "f !0" ! 0

f "

60, 4
x ! 6x ! 0f "!x"x ! 4f "!x" ! 0

f !!x" !
%8

x 4#3!6 % x"5#3f "!x" !
4 % x

x 1#3!6 % x"2#3

f !x" ! x 2#3!6 % x"1#3

f !!c"

f !!c" ! 0NOTE

!2, %16"
!0, 0"

2x ! 0f !!x" ! 0
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N Try reproducing the graph in Figure 12 
with a graphing calculator or computer. Some
machines produce the complete graph, some 
produce only the portion to the right of the 

-axis, and some produce only the portion
between and . For an explanation
and cure, see Example 7 in Section 1.4. An
equivalent expression that gives the correct
graph is
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so

and this shows that is a vertical asymptote. As , we have ,
so

As , we have and so

This shows that is a horizontal asymptote.
Now let’s compute the derivative. The Chain Rule gives

Since and for all , we have for all . Thus is
decreasing on and on . There is no critical number, so the function has no
maximum or minimum. The second derivative is

Since and , we have when and 
when . So the curve is concave downward on and concave upward on

and on . The inflection point is .
To sketch the graph of we first draw the horizontal asymptote (as a dashed

line), together with the parts of the curve near the asymptotes in a preliminary sketch
[Figure 13(a)]. These parts reflect the information concerning limits and the fact that is
decreasing on both and . Notice that we have indicated that as

even though does not exist. In Figure 13(b) we finish the sketch by incorpo-
rating the information concerning concavity and the inflection point. In Figure 13(c) we
check our work with a graphing device.

M

(a) Preliminary sketch (b) Finished sketch

FIGURE 13
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In Module 4.3 you can practice using
graphical information about to determine
the shape of the graph of .f
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(c) On what intervals is concave upward or concave down-
ward? Explain.

(d) What are the -coordinates of the inflection points of ?
Why?

9–18
(a) Find the intervals on which is increasing or decreasing.
(b) Find the local maximum and minimum values of .
(c) Find the intervals of concavity and the inflection points.

9.

10.

12.

13.

14. ,

15. 16.

18.

19–21 Find the local maximum and minimum values of using
both the First and Second Derivative Tests. Which method do you
prefer?

19. 20.

21.

22. (a) Find the critical numbers of .
(b) What does the Second Derivative Test tell you about the

behavior of at these critical numbers?
(c) What does the First Derivative Test tell you?

23. Suppose is continuous on .
(a) If and , what can you say about ?
(b) If and , what can you say about ?

24–29 Sketch the graph of a function that satisfies all of the
given conditions.

24. for all , vertical asymptote ,

if or , if 

,
if or ,
if or ,
if , if or x $ 3x # 1f !!x" # 01 # x # 3f !!x" $ 0

x $ 40 # x # 2f "!x" # 0
2 # x # 4x # 0f "!x" $ 0

f "!0" ! f "!2" ! f "!4" ! 025.

1 # x # 3f !!x" # 0x $ 3x # 1f !!x" $ 0

x ! 1x " 1f "!x" $ 0

ff !!6" ! 0f "!6" ! 0
ff !!2" ! %5f "!2" ! 0

!%&, &"f !

f

f !x" ! x 4!x % 1"3

f !x" ! x ' s1 % x 

f !x" !
x

x 2 ' 4
f !x" ! x 5 % 5x ' 3

f

f !x" ! sx e%xf !x" ! !ln x"#sx 17.

f !x" ! x 2 ln xf !x" ! e2x ' e%x

0 * x * 2+f !x" ! cos2x % 2 sin x

f !x" ! sin x ' cos x,  0 * x * 2+

f !x" !
x 2

x 2 ' 3

f !x" ! x4 % 2x2 ' 311.

f !x" ! 4x 3 ' 3x 2 % 6x ' 1

f !x" ! 2x 3 ' 3x 2 % 36x

f
f

3

y

0 x5 71 9

y=fª(x)

fx

f1–2 Use the given graph of to find the following.
(a) The open intervals on which is increasing.
(b) The open intervals on which is decreasing.
(c) The open intervals on which is concave upward.
(d) The open intervals on which is concave downward.
(e) The coordinates of the points of inflection.

1. 2.

3. Suppose you are given a formula for a function .
(a) How do you determine where is increasing or 

decreasing?
(b) How do you determine where the graph of is concave

upward or concave downward?
(c) How do you locate inflection points?

4. (a) State the First Derivative Test.
(b) State the Second Derivative Test. Under what circum-

stances is it inconclusive? What do you do if it fails?

5–6 The graph of the derivative of a function is shown.
(a) On what intervals is increasing or decreasing?
(b) At what values of x does have a local maximum or

minimum?

6.

The graph of the second derivative of a function is
shown. State the -coordinates of the inflection points of .
Give reasons for your answers.

8. The graph of the first derivative of a function is shown.
(a) On what intervals is increasing? Explain.
(b) At what values of does have a local maximum or 

minimum? Explain.
fx

f
ff "
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(d) Use the information from parts (a)–(c) to sketch the graph.
Check your work with a graphing device if you have one.

33. 34.

35. 36.

37. 38.

40.

42.

43. ,

44. ,

45–52
(a) Find the vertical and horizontal asymptotes.
(b) Find the intervals of increase or decrease.
(c) Find the local maximum and minimum values.
(d) Find the intervals of concavity and the inflection points.
(e) Use the information from parts (a)–(d) to sketch the graph 

of .

45. 46.

47.

48. ,

49. 50.

52.

53. Suppose the derivative of a function is
. On what interval is 

increasing?

54. Use the methods of this section to sketch the curve
, where is a positive constant. What

do the members of this family of curves have in common?
How do they differ from each other?

; 55–56
(a) Use a graph of to estimate the maximum and minimum 

values. Then find the exact values.
(b) Estimate the value of at which increases most rapidly.

Then find the exact value.

56.

; 57–58
(a) Use a graph of to give a rough estimate of the intervals of

concavity and the coordinates of the points of inflection.
(b) Use a graph of to give better estimates.

57. , 0 * x * 2+f !x" ! cos x ' 1
2 cos 2x

f !

f

f !x" ! x 2 e%xf !x" !
x ' 1
sx 2 ' 1

55.

fx

f

ay ! x3 % 3a2x ' 2a3

ff "!x" ! !x ' 1"2!x % 3"5!x % 6"4
f

f !x" ! earctan xf !x" ! e %1#!x'1"51.

f !x" !
e x

1 ' e xf !x" ! ln!1 % ln x"

%+#2 # x # +#2f !x" ! x tan x

f !x" ! sx 2 ' 1 % x

f !x" !
x2

!x % 2"2f !x" !
x 2

x 2 % 1

f

%2+ * t * 2+f !t" ! t ' cos t

0 * , * 2+f !," ! 2 cos , ' cos2,

f !x" ! ln!x 4 ' 27"C!x" ! x1#3!x ' 4"41.

B!x" ! 3x 2#3 % xA!x" ! xsx ' 3 39.

h!x" ! x5 % 2x 3 ' xh!x" ! !x ' 1"5 % 5x % 2

t!x" ! 200 ' 8x 3 ' x 4f !x" ! 2 ' 2x 2 % x 4

f !x" ! 2 ' 3x % x 3f !x" ! 2x 3 % 3x 2 % 12x

26. , if ,
if , if ,
if , inflection point 

27. if , if ,

, , if 

28. if , if ,

, , ,

if , if 

29. and for all 

30. Suppose , and and 
for all .
(a) Sketch a possible graph for .
(b) How many solutions does the equation have?

Why?
(c) Is it possible that ? Why?

31–32 The graph of the derivative of a continuous function 
is shown.
(a) On what intervals is increasing or decreasing?
(b) At what values of x does have a local maximum or

minimum?
(c) On what intervals is concave upward or downward?
(d) State the x-coordinate(s) of the point(s) of inflection.
(e) Assuming that , sketch a graph of f.

32.

33–44
(a) Find the intervals of increase or decrease.
(b) Find the local maximum and minimum values.
(c) Find the intervals of concavity and the inflection points.
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; 65. A drug response curve describes the level of medication in
the bloodstream after a drug is administered.  A surge func-
tion is often used to model the response
curve, reflecting an initial surge in the drug level and then a
more gradual decline.  If, for a particular drug,

, and is measured in minutes, estimate the
times corresponding to the inflection points and explain
their significance.  If you have a graphing device, use it to
graph the drug response curve.

66. The family of bell-shaped curves

occurs in probability and statistics, where it is called the nor-
mal density function. The constant is called the mean and
the positive constant is called the standard deviation. For
simplicity, let’s scale the function so as to remove the factor

and let’s analyze the special case where .
So we study the function

(a) Find the asymptote, maximum value, and inflection points
of .

(b) What role does play in the shape of the curve?
; (c) Illustrate by graphing four members of this family on the

same screen.

Find a cubic function that has a
local maximum value of at and a local minimum value
of 0 at 1.

68. For what values of the numbers and does the function

have the maximum value ?

69. Show that the curve has three points
of inflection and they all lie on one straight line.

70. Show that the curves and touch the curve
at its inflection points.

71. Suppose is differentiable on an interval and for
all numbers in except for a single number . Prove that 
is increasing on the entire interval .

72–74 Assume that all of the functions are twice differentiable
and the second derivatives are never 0.

72. (a) If and are concave upward on , show that is
concave upward on .

(b) If is positive and concave upward on , show that the
function is concave upward on .

73. (a) If and are positive, increasing, concave upward func-
tions on , show that the product function is concave
upward on .

(b) Show that part (a) remains true if and are both 
decreasing.

tf
I

ftI
tf

It!x" ! ' f !x"( 2
If

I
f ' tItf

I
fcIx

f "!x" $ 0If

y ! e%x sin x
y ! %e%xy ! e%x

y ! !1 ' x"#!1 ' x 2"

f !2" ! 1

f !x" ! axe bx2

ba

%23
f !x" ! ax 3 ' bx 2 ' cx ' d67.

-
f

f !x" ! e%x 2#!2- 2"

. ! 01#(-s2+ )

-
.

y !
1

-s2+  e
%!x%."2#!2- 2"

tp ! 4, k ! 0.07
A ! 0.01,

S!t" ! At pe%kt

58.

59–60 Estimate the intervals of concavity to one decimal place
by using a computer algebra system to compute and graph .

59. 60.

61. A graph of a population of yeast cells in a new laboratory
culture as a function of time is shown.
(a) Describe how the rate of population increase varies.
(b) When is this rate highest?
(c) On what intervals is the population function concave

upward or downward?
(d) Estimate the coordinates of the inflection point.

62. Let be the temperature at time where you live and sup-
pose that at time you feel uncomfortably hot. How do
you feel about the given data in each case?
(a) (b)
(c) (d)

Let be a measure of the knowledge you gain by studying
for a test for t hours. Which do you think is larger,

or ? Is the graph of K concave
upward or concave downward? Why?

Coffee is being poured into the mug shown in the figure at a
constant rate (measured in volume per unit time). Sketch a
rough graph of the depth of the coffee in the mug as a func-
tion of time. Account for the shape of the graph in terms of
concavity. What is the significance of the inflection point?

64.

K!3" % K!2"K!8" % K!7"

K!t"63.

f "!3" ! %2,  f !!3" ! %4f "!3" ! %2,  f !!3" ! 4
f "!3" ! 2,  f !!3" ! %4f "!3" ! 2,  f !!3" ! 4

t ! 3
tf !t"

2 6 10 14 184 8 12 160
Time (in hours)
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yeast cells

100
200
300
400
500
600
700

f !x" !
x 2 tan%1 x
1 ' x 3f !x" !

x 4 ' x 3 ' 1
sx 2 ' x ' 1 

f !
CAS

f !x" ! x 3!x % 2"4
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79. Prove that if is a point of inflection of the graph 
of and exists in an open interval that contains , then

. [Hint: Apply the First Derivative Test and 
Fermat’s Theorem to the function .]

80. Show that if , then , but is not an
inflection point of the graph of .

81. Show that the function has an inflection point at
but does not exist.

82. Suppose that is continuous and , but
. Does have a local maximum or minimum at ?

Does have a point of inflection at ?

83. The three cases in the First Derivative Test cover the
situations one commonly encounters but do not exhaust all
possibilities. Consider the functions whose values
at 0 are all 0 and, for 

(a) Show that 0 is a critical number of all three functions but
their derivatives change sign infinitely often on both sides
of 0.

(b) Show that has neither a local maximum nor a local mini-
mum at 0, has a local minimum, and has a local 
maximum.

ht
f

h!x" ! x 4 )%2 ' sin 
1
x*

t!x" ! x 4 )2 ' sin 
1
x*f !x" ! x 4 sin 

1
x

x " 0,
f, t, and h

cf
cff /!c" $ 0

f "!c" ! f !!c" ! 0f /

t!!0"!0, 0"
t!x" ! x % x %

f
!0, 0"f !!0" ! 0f !x" ! x 4

t ! f "
f !!c" ! 0

cf !f
!c, f !c""(c) Suppose is increasing and is decreasing. Show, by 

giving three examples, that may be concave upward,
concave downward, or linear. Why doesn’t the argument
in parts (a) and (b) work in this case?

74. Suppose and are both concave upward on . 
Under what condition on will the composite function

be concave upward?

Show that for . [Hint: Show that
is increasing on .]

76. (a) Show that for .
(b) Deduce that for .
(c) Use mathematical induction to prove that for and

any positive integer ,

77. Show that a cubic function (a third-degree polynomial)
always has exactly one point of inflection. If its graph has 
three -intercepts , and , show that the -coordinate of
the inflection point is .

; 78. For what values of does the polynomial
have two inflection points? One inflec-

tion point? None? Illustrate by graphing for several values
of . How does the graph change as decreases?cc
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INDETERMINATE FORMS AND L’HOSPITAL’S RULE

Suppose we are trying to analyze the behavior of the function

Although is not defined when , we need to know how behaves near 1. In partic-
ular, we would like to know the value of the limit

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the quo-
tient of the limits, see Section 2.3) because the limit of the denominator is 0. In fact,
although the limit in (1) exists, its value is not obvious because both numerator and denom-
inator approach and is not defined.

In general, if we have a limit of the form

where both and as , then this limit may or may not exist and is
called an indeterminate form of type . We met some limits of this type in Chapter 2. For0

0

xl at!x"l 0f !x"l 0

lim
xl a

 
 f !x"
t!x"

0
00

lim
xl1

 
ln x

x % 1
1

Fx ! 1F

F!x" !
ln x

x % 1

4.4



rational functions, we can cancel common factors:

We used a geometric argument to show that

But these methods do not work for limits such as (1), so in this section we introduce a sys-
tematic method, known as l’Hospital’s Rule, for the evaluation of indeterminate forms.

Another situation in which a limit is not obvious occurs when we look for a horizontal
asymptote of F and need to evaluate the limit

It isn’t obvious how to evaluate this limit because both numerator and denominator become
large as . There is a struggle between numerator and denominator. If the numerator
wins, the limit will be ; if the denominator wins, the answer will be 0. Or there may be
some compromise, in which case the answer may be some finite positive number.

In general, if we have a limit of the form

where both (or ) and (or ), then the limit may or may not exist
and is called an indeterminate form of type . We saw in Section 2.6 that this type of
limit can be evaluated for certain functions, including rational functions, by dividing
numerator and denominator by the highest power of that occurs in the denominator. For
instance,

This method does not work for limits such as (2), but l’Hospital’s Rule also applies to this
type of indeterminate form.

L’HOSPITAL’S RULE Suppose and are differentiable and on an open 
interval that contains (except possibly at ). Suppose that

and

or that and

(In other words, we have an indeterminate form of type or .) Then

if the limit on the right side exists (or is or ).%&&
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L’Hospital’s Rule is named after a 
French nobleman, the Marquis de l’Hospital
(1661–1704), but was discovered by a Swiss 
mathematician, John Bernoulli (1667–1748). You
might sometimes see l’Hospital spelled as 
l’Hôpital, but he spelled his own name l’Hospital,
as was common in the 17th century. See Exer-
cise 77 for the example that the Marquis used to
illustrate his rule. See the project on page 307 
for further historical details.

L’HOSPITAL



L’Hospital’s Rule says that the limit of a quotient of functions is equal to the
limit of the quotient of their derivatives, provided that the given conditions are satisfied. It
is especially important to verify the conditions regarding the limits of and before using
l’Hospital’s Rule.

L’Hospital’s Rule is also valid for one-sided limits and for limits at infinity or
negative infinity; that is, “ ” can be replaced by any of the symbols , ,

, or .

For the special case in which , and are continuous, and
, it is easy to see why l’Hospital’s Rule is true. In fact, using the alternative form

of the definition of a derivative, we have

It is more difficult to prove the general version of l’Hospital’s Rule. See Appendix F.

EXAMPLE 1 Find .

SOLUTION Since

we can apply l’Hospital’s Rule:

M

EXAMPLE 2 Calculate .

SOLUTION We have and , so l’Hospital’s Rule gives

Since and as , the limit on the right side is also indeterminate,
but a second application of l’Hospital’s Rule gives
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FIGURE 1

N Figure 1 suggests visually why l’Hospital’s
Rule might be true. The first graph shows two
differentiable functions and , each of which
approaches as . If we were to zoom in
toward the point , the graphs would start
to look almost linear. But if the functions actually
were linear, as in the second graph, then their
ratio would be

which is the ratio of their derivatives. This sug-
gests that
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tf

| Notice that when using l’Hospital’s Rule we
differentiate the numerator and denominator
separately. We do not use the Quotient Rule.

N The graph of the function of Example 2 is
shown in Figure 2. We have noticed previously
that exponential functions grow far more rapidly
than power functions, so the result of Example 2
is not unexpected. See also Exercise 69.
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EXAMPLE 3 Calculate .

SOLUTION Since and as , l’Hospital’s Rule applies:

Notice that the limit on the right side is now indeterminate of type . But instead of
applying l’Hospital’s Rule a second time as we did in Example 2, we simplify the
expression and see that a second application is unnecessary:

M

EXAMPLE 4 Find . (See Exercise 38 in Section 2.2.)

SOLUTION Noting that both and as , we use l’Hospital’s Rule:

Since the limit on the right side is still indeterminate of type , we apply l’Hospital’s
Rule again:

Because , we simplify the calculation by writing

We can evaluate this last limit either by using l’Hospital’s Rule a third time or by
writing as and making use of our knowledge of trigonometric limits.
Putting together all the steps, we get

M

EXAMPLE 5 Find .

SOLUTION If we blindly attempted to use l’Hospital’s Rule, we would get

|

This is wrong! Although the numerator as , notice that the denomi-
nator does not approach , so l’Hospital’s Rule can’t be applied here.0!1 " cos x"
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N The graph of the function of Example 3 is
shown in Figure 3. We have discussed previously
the slow growth of logarithms, so it isn’t surpris-
ing that this ratio approaches as . See
also Exercise 70.

x l !0

0

_1

2

10,000

y= ln x
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FIGURE 3

N The graph in Figure 4 gives visual confirma-
tion of the result of Example 4. If we were to 
zoom in too far, however, we would get an 
inaccurate graph because is close to 
when is small. See Exercise 38(d) in 
Section 2.2.
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The required limit is, in fact, easy to find because the function is continuous at and
the denominator is nonzero there:

M

Example 5 shows what can go wrong if you use l’Hospital’s Rule without thinking.
Other limits can be found using l’Hospital’s Rule but are more easily found by other meth-
ods. (See Examples 3 and 5 in Section 2.3, Example 3 in Section 2.6, and the discussion
at the beginning of this section.) So when evaluating any limit, you should consider other
methods before using l’Hospital’s Rule.

INDETERMINATE PRODUCTS

If and (or ), then it isn’t clear what the value of
, if any, will be. There is a struggle between and . If wins, the answer

will be ; if wins, the answer will be (or ). Or there may be a compromise where
the answer is a finite nonzero number. This kind of limit is called an indeterminate form
of type . We can deal with it by writing the product as a quotient:

or

This converts the given limit into an indeterminate form of type or so that we can
use l’Hospital’s Rule.

EXAMPLE 6 Evaluate .

SOLUTION The given limit is indeterminate because, as , the first factor 
approaches 0 while the second factor approaches . Writing , we
have as , so l’Hospital’s Rule gives

M

In solving Example 6 another possible option would have been to write

This gives an indeterminate form of the type , but if we apply l’Hospital’s Rule we get
a more complicated expression than the one we started with. In general, when we rewrite
an indeterminate product, we try to choose the option that leads to the simpler limit.

INDETERMINATE DIFFERENCES

If and , then the limit

is called an indeterminate form of type . Again there is a contest between and .
Will the answer be ( wins) or will it be ( wins) or will they compromise on a finite
number? To find out, we try to convert the difference into a quotient (for instance, by using
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y=x ln x

FIGURE 5

N Figure 5 shows the graph of the function in
Example 6. Notice that the function is undefined
at ; the graph approaches the origin but
never quite reaches it.

x ! 0



a common denominator, or rationalization, or factoring out a common factor) so that we
have an indeterminate form of type or .

EXAMPLE 7 Compute .

SOLUTION First notice that and as , so the limit is inde-
terminate. Here we use a common denominator:

Note that the use of l’Hospital’s Rule is justified because and 
as . M

INDETERMINATE POWERS

Several indeterminate forms arise from the limit

1. and type 

2. and type 

3. and type 

Each of these three cases can be treated either by taking the natural logarithm:

,

or by writing the function as an exponential:

(Recall that both of these methods were used in differentiating such functions.) In either
method we are led to the indeterminate product , which is of type .

EXAMPLE 8 Calculate .

SOLUTION First notice that as , we have and , so the
given limit is indeterminate. Let

Then

so l’Hospital’s Rule gives

So far we have computed the limit of , but what we want is the limit of . To find this yln y
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we use the fact that :

M

EXAMPLE 9 Find .

SOLUTION Notice that this limit is indeterminate since for any but 
for any . We could proceed as in Example 8 or by writing the function as an 
exponential:

In Example 6 we used l’Hospital’s Rule to show that

Therefore
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N The graph of the function , , is
shown in Figure 6. Notice that although is not
defined, the values of the function approach as

. This confirms the result of Example 9.x l 0$

1
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x ' 0y ! x x
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FIGURE 6

5–64 Find the limit. Use l’Hospital’s Rule where appropriate. If
there is a more elementary method, consider using it. If l’Hospital’s
Rule doesn’t apply, explain why.

5. 6.

7. 8.

9. 10.
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13. 14.
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1–4 Given that

which of the following limits are indeterminate forms? For those
that are not an indeterminate form, evaluate the limit where 
possible.

(a) (b)

(c) (d)
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63. 64.

; 65–66 Use a graph to estimate the value of the limit. Then use
l’Hospital’s Rule to find the exact value.

65. 66.

; 67–68 Illustrate l’Hospital’s Rule by graphing both and
near to see that these ratios have the same limit

as . Also calculate the exact value of the limit.

67. ,

68. ,

Prove that

for any positive integer . This shows that the exponential
function approaches infinity faster than any power of .

70. Prove that

for any number . This shows that the logarithmic func-
tion approaches more slowly than any power of .

71. What happens if you try to use l’Hospital’s Rule to evaluate

Evaluate the limit using another method.

72. If an object with mass is dropped from rest, one model for
its speed after seconds, taking air resistance into account,
is

where is the acceleration due to gravity and is a positive
constant. (In Chapter 9 we will be able to deduce this equa-
tion from the assumption that the air resistance is propor-
tional to the speed of the object; is the proportionality 
constant.)
(a) Calculate . What is the meaning of this limit?
(b) For fixed , use l’Hospital’s Rule to calculate .

What can you conclude about the velocity of a falling
object in a vacuum?
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the arc . Let be the area of the triangle . Find
.

79. If is continuous, , and , evaluate

80. For what values of and is the following equation true?

If is continuous, use l’Hospital’s Rule to show that

Explain the meaning of this equation with the aid of a 
diagram.

82. If is continuous, show that

83. Let

(a) Use the definition of derivative to compute .
(b) Show that has derivatives of all orders that are defined

on . [Hint: First show by induction that there is a
polynomial and a nonnegative integer such that

for .]

; 84. Let

(a) Show that is continuous at .
(b) Investigate graphically whether is differentiable at by

zooming in several times toward the point on the
graph of .

(c) Show that is not differentiable at . How can you 
reconcile this fact with the appearance of the graphs in
part (b)?
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PQRB!("PR73. If an initial amount of money is invested at an interest rate
compounded times a year, the value of the investment

after years is

If we let , we refer to the continuous compounding
of interest. Use l’Hospital’s Rule to show that if interest is
compounded continuously, then the amount after years is

74. If a metal ball with mass is projected in water and the force
of resistance is proportional to the square of the velocity, then
the distance the ball travels in time is

where is a positive constant. Find .

75. If an electrostatic field acts on a liquid or a gaseous polar
dielectric, the net dipole moment per unit volume is

Show that .

76. A metal cable has radius and is covered by insulation, so
that the distance from the center of the cable to the exterior of
the insulation is . The velocity of an electrical impulse in
the cable is

where is a positive constant. Find the following limits and
interpret your answers.
(a) (b)

77. The first appearance in print of l’Hospital’s Rule was in 
the book Analyse des Infiniment Petits published by the 
Marquis de l’Hospital in 1696. This was the first calculus 
textbook ever published and the example that the Marquis 
used in that book to illustrate his rule was to find the limit 
of the function

as approaches , where . (At that time it was common
to write instead of .) Solve this problem.

78. The figure shows a sector of a circle with central angle . Let
be the area of the segment between the chord and PRA!("
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L’Hospital’s Rule was first published in 1696 in the Marquis de l’Hospital’s calculus textbook
Analyse des Infiniment Petits, but the rule was discovered in 1694 by the Swiss mathematician
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a
curious business arrangement whereby the Marquis de l’Hospital bought the rights to Bernoulli’s
mathematical discoveries. The details, including a translation of l’Hospital’s letter to Bernoulli
proposing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of l’Hospital’s Rule. Start by pro-
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good
source) and outline the business deal between them. Then give l’Hospital’s statement of his rule,
which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notice that
l’Hospital and Bernoulli formulated the rule geometrically and gave the answer in terms of dif-
ferentials. Compare their statement with the version of l’Hospital’s Rule given in Section 4.4 and
show that the two statements are essentially the same.

1. Howard Eves, In Mathematical Circles (Volume 2: Quadrants III and IV) (Boston: Prindle,
Weber and Schmidt, 1969), pp. 20–22.

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See the
article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II and the
article on the Marquis de l’Hospital by Abraham Robinson in Volume VIII.

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),
p. 484.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, NJ: Princeton Uni-
versity Press, 1969), pp. 315–316.

THE ORIGINS OF L’HOSPITAL’S RULEW R I T I N G
P R O J E C T

www.stewartcalculus.com
The Internet is another source of infor-
mation for this project. Click on History 
of Mathematics for a list of reliable websites.
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SUMMARY OF CURVE SKETCHING

So far we have been concerned with some particular aspects of curve sketching: domain,
range, and symmetry in Chapter 1; limits, continuity, and asymptotes in Chapter 2; deriva-
tives and tangents in Chapters 2 and 3; and extreme values, intervals of increase and
decrease, concavity, points of inflection, and l’Hospital’s Rule in this chapter. It is now
time to put all of this information together to sketch graphs that reveal the important fea-
tures of functions.

You might ask: Why don’t we just use a graphing calculator or computer to graph a
curve? Why do we need to use calculus?

It’s true that modern technology is capable of producing very accurate graphs. But even
the best graphing devices have to be used intelligently. We saw in Section 1.4 that it is
extremely important to choose an appropriate viewing rectangle to avoid getting a mis-
leading graph. (See especially Examples 1, 3, 4, and 5 in that section.) The use of calculus
enables us to discover the most interesting aspects of graphs and in many cases to calcu-
late maximum and minimum points and inflection points exactly instead of approximately.

For instance, Figure 1 shows the graph of . At first
glance it seems reasonable: It has the same shape as cubic curves like , and it
appears to have no maximum or minimum point. But if you compute the derivative, you
will see that there is a maximum when and a minimum when . Indeed, if
we zoom in to this portion of the graph, we see that behavior exhibited in Figure 2. Without
calculus, we could easily have overlooked it.

In the next section we will graph functions by using the interaction between calculus
and graphing devices. In this section we draw graphs by first considering the following 
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information. We don’t assume that you have a graphing device, but if you do have one you
should use it as a check on your work.

GUIDELINES FOR SKETCHING A CURVE

The following checklist is intended as a guide to sketching a curve by hand. Not
every item is relevant to every function. (For instance, a given curve might not have an
asymptote or possess symmetry.) But the guidelines provide all the information you need
to make a sketch that displays the most important aspects of the function.

A. Domain It’s often useful to start by determining the domain of , that is, the set of
values of for which is defined.

B. Intercepts The -intercept is and this tells us where the curve intersects the -axis.
To find the -intercepts, we set and solve for . (You can omit this step if the
equation is difficult to solve.)

C. Symmetry

(i) If for all in , that is, the equation of the curve is unchanged
when is replaced by , then is an even function and the curve is symmetric about
the -axis. This means that our work is cut in half. If we know what the curve looks like
for , then we need only reflect about the -axis to obtain the complete curve [see
Figure 3(a)]. Here are some examples: , and .

(ii) If for all in , then is an odd function and the curve is
symmetric about the origin. Again we can obtain the complete curve if we know what
it looks like for . [Rotate 180° about the origin; see Figure 3(b).] Some simple
examples of odd functions are , and .

(iii) If for all in , where is a positive constant, then is called
a periodic function and the smallest such number is called the period. For instance,

has period and has period . If we know what the graph looks
like in an interval of length , then we can use translation to sketch the entire graph (see
Figure 4).

D. Asymptotes

(i) Horizontal Asymptotes. Recall from Section 2.6 that if either 
or , then the line is a horizontal asymptote of the curve .
If it turns out that (or ), then we do not have an asymptote to the
right, but that is still useful information for sketching the curve.

(ii) Vertical Asymptotes. Recall from Section 2.2 that the line is a vertical
asymptote if at least one of the following statements is true:
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FIGURE 3
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(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method does
not apply.) Furthermore, in sketching the curve it is very useful to know exactly which
of the statements in (1) is true. If is not defined but is an endpoint of the domain
of , then you should compute or , whether or not this limit is
infinite.

(iii) Slant Asymptotes. These are discussed at the end of this section.
E. Intervals of Increase or Decrease Use the I /D Test. Compute and find the intervals 

on which is positive ( is increasing) and the intervals on which is negative
( is decreasing).

F. Local Maximum and Minimum Values Find the critical numbers of [the numbers 
where or does not exist]. Then use the First Derivative Test. If 
changes from positive to negative at a critical number , then is a local maximum.
If changes from negative to positive at , then is a local minimum. Although it
is usually preferable to use the First Derivative Test, you can use the Second Derivative
Test if and . Then implies that is a local minimum,
whereas implies that is a local maximum.

G. Concavity and Points of Inflection Compute and use the Concavity Test. The curve
is concave upward where and concave downward where . Inflec-
tion points occur where the direction of concavity changes.

H. Sketch the Curve Using the information in items A–G, draw the graph. Sketch the
asymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and
inflection points. Then make the curve pass through these points, rising and falling
according to E, with concavity according to G, and approaching the asymptotes. If addi-
tional accuracy is desired near any point, you can compute the value of the derivative
there. The tangent indicates the direction in which the curve proceeds.

EXAMPLE 1 Use the guidelines to sketch the curve .

A. The domain is

B. The - and -intercepts are both 0.
C. Since , the function is even. The curve is symmetric about the -axis.

D.

Therefore the line is a horizontal asymptote. 
Since the denominator is 0 when , we compute the following limits:

Therefore the lines and are vertical asymptotes. This information
about limits and asymptotes enables us to draw the preliminary sketch in Figure 5,
showing the parts of the curve near the asymptotes.
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FIGURE 5  
Preliminary sketch
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E.

Since when and when , is
increasing on and and decreasing on and .

F. The only critical number is . Since changes from positive to negative at 0,
is a local maximum by the First Derivative Test.

G.

Since for all , we have

and . Thus the curve is concave upward on the intervals
and and concave downward on . It has no point of inflection

since 1 and are not in the domain of .
H. Using the information in E–G, we finish the sketch in Figure 6. M

EXAMPLE 2 Sketch the graph of .

A. Domain
B. The - and -intercepts are both 0.
C. Symmetry: None
D. Since

there is no horizontal asymptote. Since as and is always
positive, we have

and so the line is a vertical asymptote.

E.

We see that when (notice that is not in the domain of ), so the
only critical number is 0. Since when and when

, is decreasing on and increasing on .
F. Since and changes from negative to positive at 0, is a local

(and absolute) minimum by the First Derivative Test.

G.

Note that the denominator is always positive. The numerator is the quadratic
, which is always positive because its discriminant is ,

which is negative, and the coefficient of is positive. Thus for all in the
domain of , which means that is concave upward on and there is no point
of inflection.

H. The curve is sketched in Figure 7. M
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EXAMPLE 3 Sketch the graph of .

A. The domain is .
B. The x- and -intercepts are both 0.
C. Symmetry: None
D. Because both x and become large as , we have . As ,

however, and so we have an indeterminate product that requires the use of
l’Hospital’s Rule:

Thus the x-axis is a horizontal asymptote.

E.

Since is always positive, we see that when , and when
. So f is increasing on and decreasing on .

F. Because and changes from negative to positive at ,
is a local (and absolute) minimum.

G.

Since if and if , is concave upward on 
and concave downward on . The inflection point is .

H. We use this information to sketch the curve in Figure 8. M

EXAMPLE 4 Sketch the graph of .

A. The domain is .
B. The -intercept is . The -intercepts occur when , that is,

, where is an integer.
C. is neither even nor odd, but for all and so is periodic and

has period . Thus, in what follows, we need to consider only and then
extend the curve by translation in part H.

D. Asymptotes: None

E.

Thus when 
. So is increasing on and decreasing on 

and .
F. From part E and the First Derivative Test, we see that the local minimum value 

is and the local maximum value is .
G. If we use the Quotient Rule again and simplify, we get

Because and for all , we know that when
, that is, . So is concave upward on and

concave downward on and . The inflection points are 
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H. The graph of the function restricted to is shown in Figure 9. Then we
extend it, using periodicity, to the complete graph in Figure 10.

M

EXAMPLE 5 Sketch the graph of .

A. The domain is

B. The -intercept is . To find the -intercept we set

We know that , so we have and therefore the 
-intercepts are .

C. Since , is even and the curve is symmetric about the -axis.
D. We look for vertical asymptotes at the endpoints of the domain. Since as

and also as , we have

Thus the lines and are vertical asymptotes.

E.

Since when and when , is increasing 
on and decreasing on .

F. The only critical number is . Since changes from positive to negative at ,
is a local maximum by the First Derivative Test.

G.

Since for all , the curve is concave downward on and has no
inflection point.

H. Using this information, we sketch the curve in Figure 11. M

SLANT ASYMPTOTES

Some curves have asymptotes that are oblique, that is, neither horizontal nor vertical. If

then the line is called a slant asymptote because the vertical distance y ! mx % b
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Interval x f

! ! % % CU on 

! % % ! CD on 

% % % % CU on 

% ! % ! CD on (s3 , ")x $ s3 

(0, s3 )0 ' x ' s3 

(!s3 , 0)!s3 ' x ' 0

(!", !s3 )x ' !s3 
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between the curve and the line approaches 0, as in Figure 12. (A
similar situation exists if we let .) For rational functions, slant asymptotes occur
when the degree of the numerator is one more than the degree of the denominator. In such
a case the equation of the slant asymptote can be found by long division as in the follow-
ing example.

EXAMPLE 6 Sketch the graph of .

A. The domain is .
B. The - and -intercepts are both 0.
C. Since , is odd and its graph is symmetric about the origin.
D. Since is never 0, there is no vertical asymptote. Since as and

as , there is no horizontal asymptote. But long division gives

as

So the line is a slant asymptote.

E.

Since for all (except 0), is increasing on .
F. Although , does not change sign at 0, so there is no local maximum or

minimum.

G.

Since when or , we set up the following chart:

The points of inflection are , and .
H. The graph of is sketched in Figure 13. Mf
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51. 52.

53. In the theory of relativity,  the mass of a particle is

where is the rest mass of the particle, is the mass when
the particle moves with speed relative to the observer, and 
is the speed of light. Sketch the graph of as a function of .

54. In the theory of relativity, the energy of a particle is

where is the rest mass of the particle, is its wave length,
and is Planck’s constant. Sketch the graph of as a function
of . What does the graph say about the energy?

55. The figure shows a beam of length embedded in concrete
walls. If a constant load is distributed evenly along its
length, the beam takes the shape of the deflection curve

where and are positive constants. ( is Young’s modulus of
elasticity and is the moment of inertia of a cross-section of
the beam.) Sketch the graph of the deflection curve.

56. Coulomb’s Law states that the force of attraction between two
charged particles is directly proportional to the product of the
charges and inversely proportional to the square of the distance
between them. The figure shows particles with charge 1 located
at positions 0 and 2 on a coordinate line and a particle with
charge at a position between them. It follows from Cou-
lomb’s Law that the net force acting on the middle particle is

where is a positive constant. Sketch the graph of the net force
function. What does the graph say about the force?
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1–52 Use the guidelines of this section to sketch the curve.

1. 2.

3. 4.

6.

7. 8.

10.

11. 12.

13. 14.

15. 16.

18.

20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

,

34. ,

35. ,

36. ,

37. 38.

39. 40. ,

42.

43. 44.

45. 46.

47. 48.

49. 50. y � �x 2 � 3�e�xy � xe�x 2

y �
ln x

x 2y � ln�sin x�

y � ln�x 2 � 3x � 2�y � �1 � e x ��2

y � e x�xy � x � ln x

y � e2 x � e xy � 1��1 � e �x �41.

0 � x � 2�y � e�x sin xy � esin x

y �
sin x

2 � cos x
y �

sin x

1 � cos x

0 � x � ��2y � sec x � tan x

0 � x � 3�y � 1
2 x � sin x

���2 � x � ��2y � 2x � tan x

���2 � x � ��2y � x tan x33.

y � x � cos xy � 3 sin x � sin3x

y � s
3 x 3 � 1y � s

3 x 2 � 1

y � x 5�3 � 5x 2�3y � x � 3x1�3

y �
x

sx 2 � 1
y �

s1 � x 2 

x

y � xs2 � x 2 y �
x

sx 2 � 1

y � sx 2 � x  � xy � sx 2 � x � 2 

y � 2sx � xy � xs5 � x 19.

y �
x

x 3 � 1
y �

x 2

x 2 � 3
17.

y � 1 �
1

x
�

1

x 2y �
x � 1

x 2

y �
x 2

x 2 � 9
y �

x

x 2 � 9

y �
x

x 2 � 9
y �

1

x 2 � 9

y �
x 2 � 4

x 2 � 2x
y �

x

x � 1
9.

y � �4 � x 2 �5y � 2x 5 � 5x 2 � 1

y � x�x � 2�3y � x 4 � 4x 35.

y � 8x 2 � x 4y � 2 � 15x � 9x 2 � x 3

y � x 3 � 6x 2 � 9xy � x 3 � x

EXERCISES4.5



SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS | | | | 315

68. Show that the curve has two slant asymptotes:
and . Use this fact to help sketch the

curve.

69. Show that the lines and are slant
asymptotes of the hyperbola .

70. Let . Show that

This shows that the graph of approaches the graph of ,
and we say that the curve is asymptotic to the
parabola . Use this fact to help sketch the graph of .

71. Discuss the asymptotic behavior of in the
same manner as in Exercise 70. Then use your results to help
sketch the graph of .

72. Use the asymptotic behavior of to sketch
its graph without going through the curve-sketching procedure
of this section.

f !x" ! cos x % 1#x 2

f

f !x" ! !x 4 % 1"#x

fy ! x 2
y ! f !x"

y ! x 2f

lim
xl+"

 ' f !x" ! x 2 ( ! 0

f !x" ! !x 3 % 1"#x

!x 2#a 2 " ! !y 2#b 2 " ! 1
y ! !!b#a"xy ! !b#a"x

y ! !x ! 2y ! x % 2
y ! sx2 % 4x 57–60 Find an equation of the slant asymptote. Do not sketch the

curve.

58.

59. 60.

61–66 Use the guidelines of this section to sketch the curve. In
guideline D find an equation of the slant asymptote.

61. 62.

63. 64.

65. 66.

67. Show that the curve has two slant asymptotes:
and . Use this fact to help sketch

the curve.
y ! x ! (#2y ! x % (#2

y ! x ! tan!1x

y !
!x % 1"3

!x ! 1"2y !
2x 3 % x 2 % 1

x 2 % 1

y ! e x ! xxy ! x 2 % 4

y !
x 2 % 12
x ! 2

y !
!2x 2 % 5x ! 1

2x ! 1

y !
5x 4 % x 2 % x
x 3 ! x 2 % 2

y !
4x 3 ! 2x 2 % 5
2x 2 % x ! 3

y !
2x 3 % x 2 % x % 3

x 2 % 2x
y !

x2 % 1
x % 1

57.

GRAPHING WITH CALCULUS AND CALCULATORS

The method we used to sketch curves in the preceding section was a culmination of much
of our study of differential calculus. The graph was the final object that we produced. In
this section our point of view is completely different. Here we start with a graph produced
by a graphing calculator or computer and then we refine it. We use calculus to make sure
that we reveal all the important aspects of the curve. And with the use of graphing devices
we can tackle curves that would be far too complicated to consider without technology.
The theme is the interaction between calculus and calculators.

EXAMPLE 1 Graph the polynomial . Use the graphs of 
and to estimate all maximum and minimum points and intervals of concavity.

SOLUTION If we specify a domain but not a range, many graphing devices will deduce a
suitable range from the values computed. Figure 1 shows the plot from one such device
if we specify that . Although this viewing rectangle is useful for showing
that the asymptotic behavior (or end behavior) is the same as for , it is obviously
hiding some finer detail. So we change to the viewing rectangle by 
shown in Figure 2.

From this graph it appears that there is an absolute minimum value of about 3
when (by using the cursor) and is decreasing on and increas-
ing on . Also, there appears to be a horizontal tangent at the origin and inflec-
tion points when and when is somewhere between and .

Now let’s try to confirm these impressions using calculus. We differentiate and get 

 f #!x" ! 60x 4 % 60x 3 % 18x ! 4

 f &!x" ! 12x 5 % 15x 4 % 9x 2 ! 4x

!1!2xx ! 0
!!1.62, ""

!!", !1.62"fx + !1.62
!15.3

'!50, 100('!3, 2(
y ! 2x 6

!5 * x * 5

f #
f &f !x" ! 2x 6 % 3x 5 % 3x 3 ! 2x 2

4.6

41,000

_1000
_5 5

y=ƒ

FIGURE 1

100

_50

_3 2

y=ƒ

FIGURE 2

N If you have not already read Section 1.4, you
should do so now. In particular, it explains how
to avoid some of the pitfalls of graphing devices
by choosing appropriate viewing rectangles.



When we graph in Figure 3 we see that changes from negative to positive when
; this confirms (by the First Derivative Test) the minimum value that we

found earlier. But, perhaps to our surprise, we also notice that changes from posi-
tive to negative when and from negative to positive when . This means
that has a local maximum at 0 and a local minimum when , but these were
hidden in Figure 2. Indeed, if we now zoom in toward the origin in Figure 4, we see
what we missed before: a local maximum value of 0 when and a local minimum
value of about when .

What about concavity and inflection points? From Figures 2 and 4 there appear to be
inflection points when is a little to the left of and when is a little to the right of 0.
But it’s difficult to determine inflection points from the graph of , so we graph the sec-
ond derivative in Figure 5. We see that changes from positive to negative when

and from negative to positive when . So, correct to two decimal
places, is concave upward on and and concave downward on

. The inflection points are and .
We have discovered that no single graph reveals all the important features of this

polynomial. But Figures 2 and 4, when taken together, do provide an accurate picture. M

EXAMPLE 2 Draw the graph of the function

in a viewing rectangle that contains all the important features of the function. Estimate
the maximum and minimum values and the intervals of concavity. Then use calculus to
find these quantities exactly.

SOLUTION Figure 6, produced by a computer with automatic scaling, is a disaster. Some
graphing calculators use by as the default viewing rectangle, so let’s
try it. We get the graph shown in Figure 7; it’s a major improvement.

The -axis appears to be a vertical asymptote and indeed it is because 

Figure 7 also allows us to estimate the -intercepts: about and . The exact val-
ues are obtained by using the quadratic formula to solve the equation ;
we get .

To get a better look at horizontal asymptotes, we change to the viewing rectangle
by in Figure 8. It appears that is the horizontal asymptote and

this is easily confirmed:

lim
xl+"

 
x 2 % 7x % 3

x 2 ! lim
xl+"

 )1 %
7
x

%
3
x 2* ! 1

y ! 1'!5, 10('!20, 20(
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y=ƒ

FIGURE 6
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x ! (!7 + s37 )#2
x 2 % 7x % 3 ! 0
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xl 0

 
x 2 % 7x % 3

x 2 ! "

y

'!10, 10('!10, 10(

f !x" !
x 2 % 7x % 3

x 2

V

!0.19, !0.05"!!1.23, !10.18"!!1.23, 0.19"
!0.19, ""!!", !1.23"f

x + 0.19x + !1.23
f #f #

f
x!1x

x + 0.35!0.1
x ! 0

x + 0.35f
x + 0.35x ! 0
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To estimate the minimum value we zoom in to the viewing rectangle by
in Figure 9. The cursor indicates that the absolute minimum value is about 

when , and we see that the function decreases on and and
increases on . The exact values are obtained by differentiating:

This shows that when and when and when
. The exact minimum value is .

Figure 9 also shows that an inflection point occurs somewhere between and
. We could estimate it much more accurately using the graph of the second deriv-

ative, but in this case it’s just as easy to find exact values. Since

we see that when . So is concave upward on and
and concave downward on . The inflection point is .

The analysis using the first two derivatives shows that Figures 7 and 8 display all the
major aspects of the curve. M

EXAMPLE 3 Graph the function .

SOLUTION Drawing on our experience with a rational function in Example 2, let’s start by
graphing in the viewing rectangle by . From Figure 10 we have
the feeling that we are going to have to zoom in to see some finer detail and also zoom
out to see the larger picture. But, as a guide to intelligent zooming, let’s first take a close
look at the expression for . Because of the factors and in the
denominator, we expect and to be the vertical asymptotes. Indeed

To find the horizontal asymptotes we divide numerator and denominator by :

This shows that , so the -axis is a horizontal asymptote.
It is also very useful to consider the behavior of the graph near the -intercepts using

an analysis like that in Example 11 in Section 2.6. Since is positive, does not
change sign at 0 and so its graph doesn’t cross the -axis at 0. But, because of the factor

, the graph does cross the -axis at and has a horizontal tangent there.
Putting all this information together, but without using derivatives, we see that the curve
has to look something like the one in Figure 11.

!1x!x % 1"3
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f !x"x 2
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Now that we know what to look for, we zoom in (several times) to produce the graphs
in Figures 12 and 13 and zoom out (several times) to get Figure 14.

We can read from these graphs that the absolute minimum is about and occurs
when . There is also a local maximum when and a local
minimum when . These graphs also show three inflection points near 

and and two between and . To estimate the inflection points closely we
would need to graph , but to compute by hand is an unreasonable chore. If you
have a computer algebra system, then it’s easy to do (see Exercise 15).

We have seen that, for this particular function, three graphs (Figures 12, 13, and 14)
are necessary to convey all the useful information. The only way to display all these
features of the function on a single graph is to draw it by hand. Despite the exaggera-
tions and distortions, Figure 11 does manage to summarize the essential nature of the
function. M

EXAMPLE 4 Graph the function . For , estimate all
maximum and minimum values, intervals of increase and decrease, and inflection points
correct to one decimal place.

SOLUTION We first note that is periodic with period . Also, is odd and 
for all . So the choice of a viewing rectangle is not a problem for this function: We start
with by . (See Figure 15.) 

It appears that there are three local maximum values and two local minimum values in
that window. To confirm this and locate them more accurately, we calculate that

and graph both and in Figure 16.f &f

f &!x" ! cos!x % sin 2x" ! !1 % 2 cos 2x"
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N The family of functions

where is a constant, occurs in applications to
frequency modulation (FM) synthesis. A sine
wave is modulated by a wave with a different
frequency . The case where is
studied in Example 4. Exercise 25 explores
another special case.

c ! 2!sin cx"

c

f !x" ! sin!x % sin cx"



Using zoom-in and the First Derivative Test, we find the following values to one deci-
mal place.

The second derivative is

Graphing both and in Figure 17, we obtain the following approximate values:

Having checked that Figure 15 does indeed represent accurately for , 
we can state that the extended graph in Figure 18 represents accurately for

. M

Our final example is concerned with families of functions. As discussed in Section 1.4,
this means that the functions in the family are related to each other by a formula that con-
tains one or more arbitrary constants. Each value of the constant gives rise to a member of
the family and the idea is to see how the graph of the function changes as the constant
changes.

EXAMPLE 5 How does the graph of vary as varies?

SOLUTION The graphs in Figures 19 and 20 (the special cases and ) show
two very different-looking curves. Before drawing any more graphs, let’s see what mem-
bers of this family have in common. Since

for any value of , they all have the -axis as a horizontal asymptote. A vertical asymp-
tote will occur when . Solving this quadratic equation, we get

. When , there is no vertical asymptote (as in Figure 19). When
, the graph has a single vertical asymptote because

When , there are two vertical asymptotes: (as in Figure 20).
Now we compute the derivative:

This shows that when (if ), when , and x ' !1f &!x" $ 0c " 1x ! !1f &!x" ! 0

f &!x" ! !
2x % 2

!x 2 % 2x % c"2

x ! !1 + s1 ! c c ' 1

lim
xl!1

 
1

x 2 % 2x % 1
! lim

xl!1
 

1
!x % 1"2 ! "

x ! !1c ! 1
c $ 1x ! !1 + s1 ! c 

x 2 % 2x % c ! 0
xc
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xl+"

 
1

x 2 % 2x % c
! 0

c ! !2c ! 2

cf !x" ! 1#!x 2 % 2x % c"V

!2( * x * 2(
f

0 * x * (f

 Inflection points:  !0, 0", !0.8, 0.97", !1.3, 0.97", !1.8, 0.97", !2.3, 0.97"

 Concave downward on: !0, 0.8", !1.3, 1.8", !2.3, ("

 Concave upward on:  !0.8, 1.3", !1.8, 2.3"

f #f

f #!x" ! !!1 % 2 cos 2x"2 sin!x % sin 2x" ! 4 sin 2x cos!x % sin 2x"

 Local minimum values:  f !1.0" + 0.94, f !2.1" + 0.94

 Local maximum values: f !0.6" + 1, f !1.6" + 1, f !2.5" + 1

 Intervals of decrease:  !0.6, 1.0", !1.6, 2.1", !2.5, ("

 Intervals of increase:  !0, 0.6", !1.0, 1.6", !2.1, 2.5"

SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS | | | | 319

FIGURE 19
c=2

y= 1
≈+2x+2

2

_2

_5 4

1.2

_1.2

0 π

f

f ·

FIGURE 17

1.2

_1.2

_2π 2π

FIGURE 18

FIGURE 20
c=_2

2

_2

_5 4

y= 1
≈+2x-2



when . For , this means that increases on 
and decreases on . For , there is an absolute maximum value

. For , is a local maximum value and the
intervals of increase and decrease are interrupted at the vertical asymptotes.

Figure 21 is a “slide show” displaying five members of the family, all graphed in the
viewing rectangle by . As predicted, is the value at which a transi-
tion takes place from two vertical asymptotes to one, and then to none. As increases 
from , we see that the maximum point becomes lower; this is explained by the fact that

as . As decreases from , the vertical asymptotes become more
widely separated because the distance between them is , which becomes large
as . Again, the maximum point approaches the -axis because 
as .

There is clearly no inflection point when . For we calculate that

and deduce that inflection points occur when . So the inflection
points become more spread out as increases and this seems plausible from the last two
parts of Figure 21. M

c
x ! !1 " s3!c ! 1"#3

f #!x" !
2!3x 2 $ 6x $ 4 ! c"
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c % 1c & 1
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FIGURE 21 The family of functions ƒ=1/(≈+2x+c)
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See an animation of Figure 21 in
Visual 4.6.
TEC

9–10 Produce graphs of that reveal all the important aspects of
the curve. Estimate the intervals of increase and decrease and
intervals of concavity, and use calculus to find these intervals
exactly.

9.

10.

11–12
(a) Graph the function.
(b) Use l’Hospital’s Rule to explain the behavior as .
(c) Estimate the minimum value and intervals of concavity. Then

use calculus to find the exact values.

12. f !x" ! xe1#x

f !x" ! x 2 ln x11.

x l 0

f !x" !
1
x 8 !

2 + 108

x 4

f !x" ! 1 $
1
x

$
8
x 2 $

1
x 3

f1–8 Produce graphs of that reveal all the important aspects of
the curve. In particular, you should use graphs of and to esti-
mate the intervals of increase and decrease, extreme values, inter-
vals of concavity, and inflection points.

1.

2.

3.

4.

5.

6.

7. ,

8. f !x" !
e x

x 2 ! 9

!4 & x & 4f !x" ! x 2 ! 4x $ 7 cos x

f !x" ! tan x $ 5 cos x

f !x" !
x

x 3 ! x 2 ! 4x $ 1

f !x" !
x 2 ! 1

40x 3 $ x $ 1

f !x" ! x 6 ! 10x 5 ! 400x 4 $ 2500x 3

f !x" ! x6 ! 15x 5 $ 75x 4 ! 125x 3 ! x

f !x" ! 4x 4 ! 32x 3 $ 89x 2 ! 95x $ 29

f #f *
f
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the same time. Find all the maximum and minimum values
and inflection points. Then graph in the viewing rectangle

by and comment on symmetry.

26–33 Describe how the graph of varies as varies. Graph
several members of the family to illustrate the trends that you dis-
cover. In particular, you should investigate how maximum and
minimum points and inflection points move when changes. You
should also identify any transitional values of at which the basic
shape of the curve changes.

26. 27.

28. 29.

32. 33.

The family of functions , where , ,
and are positive numbers and , has been used to
model the concentration of a drug injected into the blood-
stream at time . Graph several members of this family.
What do they have in common? For fixed values of and ,
discover graphically what happens as increases. Then use
calculus to prove what you have discovered.

35. Investigate the family of curves given by , where
is a real number. Start by computing the limits as .

Identify any transitional values of where the basic shape
changes. What happens to the maximum or minimum points
and inflection points as changes? Illustrate by graphing sev-
eral members of the family.

36. Investigate the family of curves given by the equation
. Start by determining the transitional

value of at which the number of inflection points changes.
Then graph several members of the family to see what shapes
are possible. There is another transitional value of at which
the number of critical numbers changes. Try to discover it
graphically. Then prove what you have discovered.

37. (a) Investigate the family of polynomials given by the equa-
tion . For what values of does
the curve have minimum points?

(b) Show that the minimum and maximum points of every
curve in the family lie on the parabola . Illus-
trate by graphing this parabola and several members of
the family.

38. (a) Investigate the family of polynomials given by the equa-
tion . For what values of does
the curve have maximum and minimum points?

(b) Show that the minimum and maximum points of every
curve in the family lie on the curve . Illustrate
by graphing this curve and several members of the family.

y ! x ! x 3

cf !x" ! 2x 3 $ cx 2 $ 2x

y ! 1 ! x 2

cf !x" ! cx 4 ! 2x 2 $ 1

c

c
f !x" ! x 4 $ cx 2 $ x

c

c
x l "'c

f !x" ! xe!cx

b
aC

t ! 0

b % aC
baf !t" ! C!e!at ! e!bt "34.

f !x" ! cx $ sin xf !x" !
1

!1 ! x 2 "2 $ cx 2

f !x" !
cx

1 $ c 2x 231.f !x" ! ln!x 2 $ c"30.

f !x" ! e!c#x 2

f !x" ! xs c 2 ! x 2 

f !x" ! x 4 $ cx 2f !x" ! x 3 $ cx

c
c

cf

$!1.2, 1.2%$!2,, 2,%
f

13–14 Sketch the graph by hand using asymptotes and intercepts,
but not derivatives. Then use your sketch as a guide to producing
graphs (with a graphing device) that display the major features of 
the curve. Use these graphs to estimate the maximum and mini-
mum values.

14.

15. If is the function considered in Example 3, use a computer
algebra system to calculate and then graph it to confirm
that all the maximum and minimum values are as given in the
example. Calculate and use it to estimate the intervals of
concavity and inflection points.

16. If is the function of Exercise 14, find and and use their
graphs to estimate the intervals of increase and decrease and
concavity of .

17–22 Use a computer algebra system to graph and to find 
and . Use graphs of these derivatives to estimate the intervals
of increase and decrease, extreme values, intervals of concavity,
and inflection points of .

17. 18.

19. ,

20.

21. 22.

23–24
(a) Graph the function.
(b) Explain the shape of the graph by computing the limit as

or as .
(c) Estimate the maximum and minimum values and then use 

calculus to find the exact values.
(d) Use a graph of to estimate the x-coordinates of the inflec-

tion points.

24.

25. In Example 4 we considered a member of the family of func-
tions that occur in FM synthesis. Here
we investigate the function with . Start by graphing in
the viewing rectangle by . How many local
maximum points do you see? The graph has more than are
visible to the naked eye. To discover the hidden maximum
and minimum points you will need to examine the graph of

very carefully. In fact, it helps to look at the graph of at f #f *

$!1.2, 1.2%$0, ,%
fc ! 3

f !x" ! sin!x $ sin cx"

f !x" ! !sin x"sin xf !x" ! x 1#x23.

f #

x l 'x l 0$

CAS

f !x" !
1

1 $ e tan xf !x" !
1 ! e1#x

1 $ e1#x

f !x" ! !x 2 ! 1"e arctan x

x & 20f !x" ! sx $ 5 sin x 

f !x" !
x 2#3

1 $ x $ x 4f !x" !
sx 

x 2 $ x $ 1

f

f #
f *fCAS

f

f #f *fCAS

f #

f *
fCAS

f !x" !
!2x $ 3"2!x ! 2"5

x 3!x ! 5"2

f !x" !
!x $ 4"!x ! 3"2

x 4!x ! 1"
13.
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OPTIMIZATION PROBLEMS

The methods we have learned in this chapter for finding extreme values have practical
applications in many areas of life. A businessperson wants to minimize costs and maxi-
mize profits. A traveler wants to minimize transportation time. Fermat’s Principle in optics
states that light follows the path that takes the least time. In this section and the next we
solve such problems as maximizing areas, volumes, and profits and minimizing distances,
times, and costs.

In solving such practical problems the greatest challenge is often to convert the word
problem into a mathematical optimization problem by setting up the function that is to be
maximized or minimized. Let’s recall the problem-solving principles discussed on page 76
and adapt them to this situation:

STEPS IN SOLVING OPTIMIZATION PROBLEMS

1. Understand the Problem The first step is to read the problem carefully until it is
clearly understood. Ask yourself: What is the unknown? What are the given quanti-
ties? What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify the
given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or
minimized (let’s call it for now). Also select symbols for other
unknown quantities and label the diagram with these symbols. It may help to use
initials as suggestive symbols—for example, for area, for height, for time.

4. Express in terms of some of the other symbols from Step 3.
5. If has been expressed as a function of more than one variable in Step 4, use the

given information to find relationships (in the form of equations) among these
variables. Then use these equations to eliminate all but one of the variables in the
expression for . Thus will be expressed as a function of one variable , say,

. Write the domain of this function.
6. Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or mini-

mum value of . In particular, if the domain of is a closed interval, then the
Closed Interval Method in Section 4.1 can be used.

EXAMPLE 1 A farmer has 2400 ft of fencing and wants to fence off a rectangular field
that borders a straight river. He needs no fence along the river. What are the dimensions
of the field that has the largest area?

SOLUTION In order to get a feeling for what is happening in this problem, let’s experiment
with some special cases. Figure 1 (not to scale) shows three possible ways of laying out 
the 2400 ft of fencing. 

FIGURE 1
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We see that when we try shallow, wide fields or deep, narrow fields, we get relatively
small areas. It seems plausible that there is some intermediate configuration that pro-
duces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area of the rectangle.
Let and be the depth and width of the rectangle (in feet). Then we express in terms
of and :

We want to express as a function of just one variable, so we eliminate by expressing
it in terms of . To do this we use the given information that the total length of the fenc-
ing is 2400 ft. Thus 

From this equation we have , which gives

Note that 0 and (otherwise ). So the function that we wish to maxi-
mize is

The derivative is , so to find the critical numbers we solve the 
equation

which gives . The maximum value of must occur either at this critical number
or at an endpoint of the interval. Since , and ,
the Closed Interval Method gives the maximum value as .

[Alternatively, we could have observed that for all , so is always
concave downward and the local maximum at must be an absolute maximum.]

Thus the rectangular field should be 600 ft deep and 1200 ft wide. M

EXAMPLE 2 A cylindrical can is to be made to hold 1 L of oil. Find the dimensions
that will minimize the cost of the metal to manufacture the can.

SOLUTION Draw the diagram as in Figure 3, where is the radius and the height (both in
centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions and h. So the surface area is

To eliminate we use the fact that the volume is given as 1 L, which we take to be
1000 cm . Thus

which gives . Substitution of this into the expression for gives

A � 2�r 2 � 2�r�1000

�r 2 � � 2�r 2 �
2000

r

Ah � 1000���r 2 �

�r 2h � 1000

3
h

A � 2�r 2 � 2�rh

2�r

hr

V

x � 600
AxA��x� � �4 � 0

A�600� � 720,000
A�1200� � 0A�0� � 0, A�600� � 720,000

Ax � 600

2400 � 4x � 0

A��x� � 2400 � 4x

0 � x � 1200A�x� � 2400x � 2x2

A � 0x � 1200x 	

A � x �2400 � 2x� � 2400x � 2x 2

y � 2400 � 2x

2x � y � 2400

x
yA

A � xy
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Ayx
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x
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Therefore the function that we want to minimize is

To find the critical numbers, we differentiate:

Then when , so the only critical number is .
Since the domain of is , we can’t use the argument of Example 1 concerning

endpoints. But we can observe that for and for
, so is decreasing for all to the left of the critical number and increas-

ing for all to the right. Thus must give rise to an absolute minimum.
[Alternatively, we could argue that as and as , so

there must be a minimum value of , which must occur at the critical number. See
Figure 5.]

The value of corresponding to is

Thus, to minimize the cost of the can, the radius should be cm and the height
should be equal to twice the radius, namely, the diameter. M

The argument used in Example 2 to justify the absolute minimum is a variant
of the First Derivative Test (which applies only to local maximum or minimum values) and
is stated here for future reference.

FIRST DERIVATIVE TEST FOR ABSOLUTE EXTREME VALUES Suppose that is a criti-
cal number of a continuous function defined on an interval.

(a) If for all and for all , then is the absolute
maximum value of .

(b) If for all and for all , then is the absolute
minimum value of .

An alternative method for solving optimization problems is to use implicit dif-
ferentiation. Let’s look at Example 2 again to illustrate the method. We work with the same
equations

but instead of eliminating h, we differentiate both equations implicitly with respect to r :

The minimum occurs at a critical number, so we set , simplify, and arrive at the
equations

and subtraction gives , or .h ! 2r2r ! h ! 0

2h $ rh* ! 02r $ h $ rh* ! 0

A* ! 0

2,rh $ ,r 2h* ! 0A* ! 4,r $ 2,h $ 2,rh*

,r 2h ! 100A ! 2,r 2 $ 2,rh

NOTE 2

f
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f
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f
c
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N In the Applied Project on page 333 we investi-
gate the most economical shape for a can by 
taking into account other manufacturing costs.

Module 4.7 takes you through six
additional optimization problems, including
animations of the physical situations.
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EXAMPLE 3 Find the point on the parabola that is closest to the point .

SOLUTION The distance between the point and the point is

(See Figure 6.) But if lies on the parabola, then , so the expression for 
becomes

(Alternatively, we could have substituted to get in terms of alone.) Instead
of minimizing , we minimize its square:

(You should convince yourself that the minimum of occurs at the same point as the
minimum of , but is easier to work with.) Differentiating, we obtain

so when . Observe that when and when
, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-

mum occurs when . (Or we could simply say that because of the geometric nature
of the problem, it’s obvious that there is a closest point but not a farthest point.) The
corresponding value of is . Thus the point on closest to 
is . M

EXAMPLE 4 A man launches his boat from point on a bank of a straight river, 3 km
wide, and wants to reach point , 8 km downstream on the opposite bank, as quickly as
possible (see Figure 7). He could row his boat directly across the river to point and
then run to , or he could row directly to , or he could row to some point between 
and and then run to . If he can row 6 km#h and run 8 km#h, where should he land to
reach as soon as possible? (We assume that the speed of the water is negligible com-
pared with the speed at which the man rows.)

SOLUTION If we let be the distance from to , then the running distance is
and the Pythagorean Theorem gives the rowing distance as

. We use the equation

Then the rowing time is and the running time is , so the total time
as a function of is

The domain of this function is . Notice that if , he rows to and if ,
he rows directly to . The derivative of is
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x
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1
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$
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y ! 2
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d
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d
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Thus, using the fact that , we have

The only critical number is . To see whether the minimum occurs at this criti-
cal number or at an endpoint of the domain , we evaluate at all three points:

Since the smallest of these values of occurs when , the absolute minimum
value of must occur there. Figure 8 illustrates this calculation by showing the graph 
of .

Thus the man should land the boat at a point km ( km) downstream from
his starting point. M

EXAMPLE 5 Find the area of the largest rectangle that can be inscribed in a semicircle
of radius .

SOLUTION 1 Let’s take the semicircle to be the upper half of the circle with
center the origin. Then the word inscribed means that the rectangle has two vertices on
the semicircle and two vertices on the -axis as shown in Figure 9.

Let be the vertex that lies in the first quadrant. Then the rectangle has sides of
lengths and , so its area is

To eliminate we use the fact that lies on the circle and so
. Thus

The domain of this function is . Its derivative is

which is 0 when , that is, (since ). This value of gives a 
maximum value of since and . Therefore the area of the largest
inscribed rectangle is

SOLUTION 2 A simpler solution is possible if we think of using an angle as a variable. Let 
be the angle shown in Figure 10. Then the area of the rectangle is
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FIGURE 8 
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We know that has a maximum value of 1 and it occurs when . So 
has a maximum value of and it occurs when .

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we 
didn’t need to use calculus at all. M

APPLICATIONS TO BUSINESS AND ECONOMICS

In Section 3.7 we introduced the idea of marginal cost. Recall that if , the cost func-
tion, is the cost of producing units of a certain product, then the marginal cost is the rate
of change of with respect to . In other words, the marginal cost function is the deriva-
tive, , of the cost function.

Now let’s consider marketing. Let be the price per unit that the company can
charge if it sells units. Then is called the demand function (or price function) and we
would expect it to be a decreasing function of . If units are sold and the price per unit
is , then the total revenue is

and is called the revenue function. The derivative of the revenue function is called
the marginal revenue function and is the rate of change of revenue with respect to the
number of units sold.

If units are sold, then the total profit is

and is called the profit function. The marginal profit function is , the derivative of
the profit function. In Exercises 53–58 you are asked to use the marginal cost, revenue,
and profit functions to minimize costs and maximize revenues and profits.

EXAMPLE 6 A store has been selling 200 DVD burners a week at each. A mar-
ket survey indicates that for each rebate offered to buyers, the number of units sold
will increase by 20 a week. Find the demand function and the revenue function. How
large a rebate should the store offer to maximize its revenue?

SOLUTION If is the number of DVD burners sold per week, then the weekly increase in
sales is . For each increase of 20 units sold, the price is decreased by . So for
each additional unit sold, the decrease in price will be and the demand function
is

The revenue function is

Since , we see that when . This value of gives an
absolute maximum by the First Derivative Test (or simply by observing that the graph of

is a parabola that opens downward). The corresponding price is

and the rebate is . Therefore, to maximize revenue, the store should
offer a rebate of . M$125
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(d) Use the given information to write an equation that relates
the variables.

(e) Use part (d) to write the total area as a function of one 
variable.

(f) Finish solving the problem and compare the answer with
your estimate in part (a).

10. Consider the following problem: A box with an open top is to
be constructed from a square piece of cardboard, 3 ft wide, by
cutting out a square from each of the four corners and bending
up the sides. Find the largest volume that such a box can have.
(a) Draw several diagrams to illustrate the situation, some short

boxes with large bases and some tall boxes with small
bases. Find the volumes of several such boxes. Does it
appear that there is a maximum volume? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce
notation and label the diagram with your symbols.

(c) Write an expression for the volume.
(d) Use the given information to write an equation that relates

the variables.
(e) Use part (d) to write the volume as a function of one 

variable.
(f) Finish solving the problem and compare the answer with

your estimate in part (a).

11. A farmer wants to fence an area of 1.5 million square feet in a
rectangular field and then divide it in half with a fence parallel
to one of the sides of the rectangle. How can he do this so as to
minimize the cost of the fence?

12. A box with a square base and open top must have a volume of
32,000 cm . Find the dimensions of the box that minimize the
amount of material used.

If 1200 cm of material is available to make a box with a
square base and an open top, find the largest possible volume
of the box.

14. A rectangular storage container with an open top is to have a
volume of 10 m . The length of its base is twice the width.
Material for the base costs $10 per square meter. Material for
the sides costs $6 per square meter. Find the cost of materials
for the cheapest such container.

15. Do Exercise 14 assuming the container has a lid that is made
from the same material as the sides.

(a) Show that of all the rectangles with a given area, the one
with smallest perimeter is a square.

(b) Show that of all the rectangles with a given perimeter, the
one with greatest area is a square.

Find the point on the line that is closest to the 
origin.

18. Find the point on the line that is closest to the
point .

Find the points on the ellipse that are farthest
away from the point .�1, 0�

4x 2 � y 2 � 419.

��3, 1�
6x � y � 9

y � 4x � 717.

16.

3

213.

3

1. Consider the following problem: Find two numbers whose sum
is 23 and whose product is a maximum.
(a) Make a table of values, like the following one, so that the

sum of the numbers in the first two columns is always 23.
On the basis of the evidence in your table, estimate the
answer to the problem.

(b) Use calculus to solve the problem and compare with your
answer to part (a).

2. Find two numbers whose difference is 100 and whose product
is a minimum.

3. Find two positive numbers whose product is 100 and whose
sum is a minimum.

4. Find a positive number such that the sum of the number and its
reciprocal is as small as possible.

5. Find the dimensions of a rectangle with perimeter 100 m
whose area is as large as possible.

6. Find the dimensions of a rectangle with area whose
perimeter is as small as possible.

7. A model used for the yield of an agricultural crop as a func-
tion of the nitrogen level in the soil (measured in appropriate
units) is

where is a positive constant. What nitrogen level gives the
best yield?

8. The rate at which photosynthesis takes
place for a species of phytoplankton is modeled by the function

where is the light intensity (measured in thousands of foot-
candles). For what light intensity is a maximum?

9. Consider the following problem: A farmer with 750 ft of fenc-
ing wants to enclose a rectangular area and then divide it into
four pens with fencing parallel to one side of the rectangle.
What is the largest possible total area of the four pens?
(a) Draw several diagrams illustrating the situation, some with

shallow, wide pens and some with deep, narrow pens. Find
the total areas of these configurations. Does it appear that
there is a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce
notation and label the diagram with your symbols.

(c) Write an expression for the total area.

P
I

P �
100 I

I 2 � I � 4

�in mg carbon�m3�h�

k

Y �
kN

1 � N 2

N
Y

1000 m2

EXERCISES4.7

First number Second number Product

1 22 22
2 21 42
3 20 60
. . .
. . .
. . .



der that will reach from the ground over the fence to the wall
of the building?

37. A cone-shaped drinking cup is made from a circular piece 
of paper of radius by cutting out a sector and joining the
edges and . Find the maximum capacity of such a cup.

38. A cone-shaped paper drinking cup is to be made to hold
of water. Find the height and radius of the cup that

will use the smallest amount of paper.

39. A cone with height is inscribed in a larger cone with 
height so that its vertex is at the center of the base of the
larger cone. Show that the inner cone has maximum volume
when .

40. An object with weight is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the
rope makes an angle with a plane, then the magnitude of
the force is

where is a constant called the coefficient of friction. For
what value of is smallest?

41. If a resistor of ohms is connected across a battery of 
volts with internal resistance ohms, then the power 

(in watts) in the external resistor is

If and are fixed but varies, what is the maximum value
of the power?

42. For a fish swimming at a speed relative to the water, the
energy expenditure per unit time is proportional to . It is
believed that migrating fish try to minimize the total energy
required to swim a fixed distance. If the fish are swimming
against a current , then the time required to swim a
distance is and the total energy required to 
swim the distance is given by

where is the proportionality constant.
(a) Determine the value of that minimizes .
(b) Sketch the graph of .

Note: This result has been verified experimentally; 
migrating fish swim against a current at a speed greater
than the current speed.
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; 20. Find, correct to two decimal places, the coordinates of the
point on the curve that is closest to the point .

21. Find the dimensions of the rectangle of largest area that can
be inscribed in a circle of radius .

Find the area of the largest rectangle that can be inscribed in
the ellipse .

23. Find the dimensions of the rectangle of largest area that can
be inscribed in an equilateral triangle of side if one side of
the rectangle lies on the base of the triangle.

24. Find the dimensions of the rectangle of largest area that has
its base on the -axis and its other two vertices above the 
-axis and lying on the parabola .

25. Find the dimensions of the isosceles triangle of largest area
that can be inscribed in a circle of radius .

26. Find the area of the largest rectangle that can be inscribed in
a right triangle with legs of lengths 3 cm and 4 cm if two
sides of the rectangle lie along the legs.

27. A right circular cylinder is inscribed in a sphere of radius .
Find the largest possible volume of such a cylinder.

28. A right circular cylinder is inscribed in a cone with height 
and base radius . Find the largest possible volume of such a
cylinder.

29. A right circular cylinder is inscribed in a sphere of radius .
Find the largest possible surface area of such a cylinder.

A Norman window has the shape of a rectangle surmounted 
by a semicircle. (Thus the diameter of the semicircle is equal
to the width of the rectangle. See Exercise 56 on page 23.) If
the perimeter of the window is 30 ft, find the dimensions of
the window so that the greatest possible amount of light is
admitted.

31. The top and bottom margins of a poster are each 6 cm and the
side margins are each 4 cm. If the area of printed material on
the poster is fixed at 384 cm , find the dimensions of the
poster with the smallest area.

32. A poster is to have an area of 180 in with 1-inch margins at
the bottom and sides and a 2-inch margin at the top. What
dimensions will give the largest printed area?

A piece of wire 10 m long is cut into two pieces. One piece 
is bent into a square and the other is bent into an equilateral 
triangle. How should the wire be cut so that the total area
enclosed is (a) a maximum? (b) A minimum?

34. Answer Exercise 33 if one piece is bent into a square and the
other into a circle.

35. A cylindrical can without a top is made to contain of 
liquid. Find the dimensions that will minimize the cost of the
metal to make the can.

36. A fence 8 ft tall runs parallel to a tall building at a distance of
4 ft from the building. What is the length of the shortest lad-

V cm3

33.

2

2

30.
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47. An oil refinery is located on the north bank of a straight river
that is 2 km wide. A pipeline is to be constructed from the
refinery to storage tanks located on the south bank of the 
river 6 km east of the refinery. The cost of laying pipe is

over land to a point on the north bank and
under the river to the tanks. To minimize the cost

of the pipeline, where should be located?

; 48. Suppose the refinery in Exercise 47 is located 1 km north of the
river. Where should be located?

The illumination of an object by a light source is directly propor-
tional to the strength of the source and inversely proportional 
to the square of the distance from the source. If two light
sources, one three times as strong as the other, are placed 10 ft
apart, where should an object be placed on the line between the
sources so as to receive the least illumination?

Find an equation of the line through the point that cuts
off the least area from the first quadrant.

51. Let and be positive numbers. Find the length of the shortest
line segment that is cut off by the first quadrant and passes
through the point .

52. At which points on the curve does the
tangent line have the largest slope?

(a) If is the cost of producing units of a commodity,
then the average cost per unit is . Show that
if the average cost is a minimum, then the marginal cost
equals the average cost.

(b) If , in dollars, find (i) the
cost, average cost, and marginal cost at a production level
of 1000 units; (ii) the production level that will minimize
the average cost; and (iii) the minimum average cost.

54. (a) Show that if the profit is a maximum, then the
marginal revenue equals the marginal cost.

(b) If is the cost
function and is the demand function,
find the production level that will maximize profit.

A baseball team plays in a stadium that holds 55,000 spectators.
With ticket prices at , the average attendance had been
27,000. When ticket prices were lowered to , the average
attendance rose to 33,000.
(a) Find the demand function, assuming that it is linear.
(b) How should ticket prices be set to maximize revenue?

56. During the summer months Terry makes and sells necklaces on
the beach. Last summer he sold the necklaces for each and
his sales averaged 20 per day. When he increased the price by

, he found that the average decreased by two sales per day.
(a) Find the demand function, assuming that it is linear.
(b) If the material for each necklace costs Terry , what

should the selling price be to maximize his profit?
$6

$1

$10

$8
$10

55.
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43. In a beehive, each cell is a regular hexagonal prism, open 
at one end with a trihedral angle at the other end as in the fig-
ure. It is believed that bees form their cells in such a way as to
minimize the surface area for a given volume, thus using the
least amount of wax in cell construction. Examination of these
cells has shown that the measure of the apex angle is amaz-
ingly consistent. Based on the geometry of the cell, it can be
shown that the surface area is given by

where , the length of the sides of the hexagon, and , the
height, are constants.
(a) Calculate .
(b) What angle should the bees prefer?
(c) Determine the minimum surface area of the cell (in terms

of and ).
Note: Actual measurements of the angle in beehives have
been made, and the measures of these angles seldom differ
from the calculated value by more than .

44. A boat leaves a dock at 2:00 PM and travels due south at a
speed of 20 km�h. Another boat has been heading due east at
15 km�h and reaches the same dock at 3:00 PM. At what time
were the two boats closest together?

45. Solve the problem in Example 4 if the river is 5 km wide and
point is only 5 km downstream from .

46. A woman at a point on the shore of a circular lake with
radius 2 mi wants to arrive at the point diametrically
opposite on the other side of the lake in the shortest possible
time. She can walk at the rate of 4 mi�h and row a boat at
2 mi�h. How should she proceed?

¨

B

A C
22

A
C

A

AB

s

trihedral
angle ̈

rear
of cell

front
of cell

h

b

2�

�
hs

dS�d�

hs

S � 6sh �
3
2 s2 cot � � (3s 2

s3 �2) csc �

S

�



this consumption . Using the graph, estimate the speed at
which has its minimum value.

Let be the velocity of light in air and the velocity of light
in water. According to Fermat’s Principle, a ray of light will
travel from a point in the air to a point in the water by a
path that minimizes the time taken. Show that

where (the angle of incidence) and (the angle of refrac-
tion) are as shown. This equation is known as Snell’s Law.

64. Two vertical poles and are secured by a rope 
going from the top of the first pole to a point on the ground
between the poles and then to the top of the second pole as in
the figure. Show that the shortest length of such a rope occurs
when .

65. The upper right-hand corner of a piece of paper, 12 in. by
8 in., as in the figure, is folded over to the bottom edge. How
would you fold it so as to minimize the length of the fold? In
other words, how would you choose to minimize ?
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G57. A manufacturer has been selling 1000 television sets a week

at each. A market survey indicates that for each 
rebate offered to the buyer, the number of sets sold will
increase by 100 per week.
(a) Find the demand function.
(b) How large a rebate should the company offer the buyer in

order to maximize its revenue?
(c) If its weekly cost function is , how

should the manufacturer set the size of the rebate in order
to maximize its profit?

58. The manager of a 100-unit apartment complex knows from
experience that all units will be occupied if the rent is 
per month. A market survey suggests that, on average, one
additional unit will remain vacant for each increase in
rent. What rent should the manager charge to maximize 
revenue?

59. Show that of all the isosceles triangles with a given perimeter,
the one with the greatest area is equilateral.

60. The frame for a kite is to be made from six pieces of wood.
The four exterior pieces have been cut with the lengths 
indicated in the figure. To maximize the area of the kite, how
long should the diagonal pieces be?

; 61. A point needs to be located somewhere on the line so
that the total length of cables linking to the points , ,
and is minimized (see the figure). Express as a function
of and use the graphs of and to estimate
the minimum value.

62. The graph shows the fuel consumption of a car (measured
in gallons per hour) as a function of the speed of the car. At
very low speeds the engine runs inefficiently, so initially 
decreases as the speed increases. But at high speeds the fuel
consumption increases. You can see that is minimized for
this car when mi#h. However, for fuel efficiency, what
must be minimized is not the consumption in gallons per hour
but rather the fuel consumption in gallons per mile. Let’s call 
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observer stand so as to maximize the angle subtended at his
eye by the painting?)

71. Find the maximum area of a rectangle that can be circum-
scribed about a given rectangle with length and width .
[Hint: Express the area as a function of an angle .]

72. The blood vascular system consists of blood vessels (arteries,
arterioles, capillaries, and veins) that convey blood from 
the heart to the organs and back to the heart. This system
should work so as to minimize the energy expended by the
heart in pumping the blood. In particular, this energy is
reduced when the resistance of the blood is lowered. One of
Poiseuille’s Laws gives the resistance of the blood as

where is the length of the blood vessel, is the radius, and
is a positive constant determined by the viscosity of the

blood. (Poiseuille established this law experimentally, but it
also follows from Equation 8.4.2.) The figure shows a main
blood vessel with radius branching at an angle into a
smaller vessel with radius 

©
 M

an
fre

d 
Ca

ge
 / 

Pe
te

r A
rn

ol
d

b

A

B

r¡

r™

¨

C

a

vascular
branching

r2

$r1

C
rL

R ! C 
L
r 4

R

$
WL

¨

h

d

$66. A steel pipe is being carried down a hallway 9 ft wide. At the
end of the hall there is a right-angled turn into a narrower
hallway 6 ft wide. What is the length of the longest pipe that
can be carried horizontally around the corner?

67. An observer stands at a point , one unit away from a track.
Two runners start at the point in the figure and run along
the track. One runner runs three times as fast as the other.
Find the maximum value of the observer’s angle of sight 
between the runners. [Hint: Maximize .]

68. A rain gutter is to be constructed from a metal sheet of width
30 cm by bending up one-third of the sheet on each side
through an angle . How should be chosen so that the gut-
ter will carry the maximum amount of water?

Where should the point be chosen on the line segment 
so as to maximize the angle ?

70. A painting in an art gallery has height and is hung so that
its lower edge is a distance above the eye of an observer (as
in the figure). How far from the wall should the observer
stand to get the best view? (In other words, where should the 
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(d) If the ornithologists observe that birds of a certain species
reach the shore at a point 4 km from B, how many times
more energy does it take a bird to fly over water than land?

; 74. Two light sources of identical strength are placed 10 m apart.
An object is to be placed at a point on a line ! parallel to
the line joining the light sources and at a distance meters
from it (see the figure). We want to locate on ! so that the
intensity of illumination is minimized. We need to use the
fact that the intensity of illumination for a single source is
directly proportional to the strength of the source and
inversely proportional to the square of the distance from the
source.
(a) Find an expression for the intensity at the point .
(b) If m, use graphs of and to show that the

intensity is minimized when m, that is, when is
at the midpoint of !.

(c) If m, show that the intensity (perhaps surpris-
ingly) is not minimized at the midpoint.

(d) Somewhere between m and m there is a
transitional value of at which the point of minimal illu-
mination abruptly changes. Estimate this value of by
graphical methods. Then find the exact value of .
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Px ! 5
I%!x"I!x"d ! 5
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C D
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(a) Use Poiseuille’s Law to show that the total resistance of
the blood along the path is

where and are the distances shown in the figure.
(b) Prove that this resistance is minimized when

(c) Find the optimal branching angle (correct to the nearest
degree) when the radius of the smaller blood vessel is
two-thirds the radius of the larger vessel.

73. Ornithologists have determined that some species of birds
tend to avoid flights over large bodies of water during
daylight hours. It is believed that more energy is required to
fly over water than land because air generally rises over land
and falls over water during the day. A bird with these tenden-
cies is released from an island that is 5 km from the nearest
point on a straight shoreline, flies to a point on the shore-
line, and then flies along the shoreline to its nesting area .
Assume that the bird instinctively chooses a path that will
minimize its energy expenditure. Points and are 13 km
apart.
(a) In general, if it takes 1.4 times as much energy to fly over

water as land, to what point should the bird fly in order
to minimize the total energy expended in returning to its
nesting area?

(b) Let and L denote the energy (in joules) per kilometer
flown over water and land, respectively. What would a
large value of the ratio W#L mean in terms of the bird’s
flight? What would a small value mean? Determine the
ratio corresponding to the minimum expenditure of
energy.

(c) What should the value of be in order for the bird to
fly directly to its nesting area ? What should the value 
of be for the bird to fly to and then along the shore
to ?D
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In this project we investigate the most economical shape for a can. We first interpret this to mean
that the volume of a cylindrical can is given and we need to find the height and radius that
minimize the cost of the metal to make the can (see the figure). If we disregard any waste metal
in the manufacturing process, then the problem is to minimize the surface area of the cylinder.
We solved this problem in Example 2 in Section 4.7 and we found that ; that is, the height
should be the same as the diameter. But if you go to your cupboard or your supermarket with a
ruler, you will discover that the height is usually greater than the diameter and the ratio varies
from 2 up to about 3.8. Let’s see if we can explain this phenomenon.

1. The material for the cans is cut from sheets of metal. The cylindrical sides are formed by
bending rectangles; these rectangles are cut from the sheet with little or no waste. But if the 
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top and bottom discs are cut from squares of side (as in the figure), this leaves considerable
waste metal, which may be recycled but has little or no value to the can makers. If this is the
case, show that the amount of metal used is minimized when

2. A more efficient packing of the discs is obtained by dividing the metal sheet into hexagons and
cutting the circular lids and bases from the hexagons (see the figure). Show that if this strategy
is adopted, then

3. The values of that we found in Problems 1 and 2 are a little closer to the ones that 
actually occur on supermarket shelves, but they still don’t account for everything. If we 
look more closely at some real cans, we see that the lid and the base are formed from discs
with radius larger than that are bent over the ends of the can. If we allow for this we would
increase . More significantly, in addition to the cost of the metal we need to incorporate the
manufacturing of the can into the cost. Let’s assume that most of the expense is incurred in
joining the sides to the rims of the cans. If we cut the discs from hexagons as in Problem 2,
then the total cost is proportional to

where is the reciprocal of the length that can be joined for the cost of one unit area of metal.
Show that this expression is minimized when

; 4. Plot as a function of and use your graph to argue that when a can is large or
joining is cheap, we should make approximately 2.21 (as in Problem 2). But when the can
is small or joining is costly, should be substantially larger.

5. Our analysis shows that large cans should be almost square but small cans should be tall and
thin. Take a look at the relative shapes of the cans in a supermarket. Is our conclusion usually
true in practice? Are there exceptions? Can you suggest reasons why small cans are not always
tall and thin?
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Discs cut from hexagons

Discs cut from squares

NEWTON’S METHOD

Suppose that a car dealer offers to sell you a car for $18,000 or for payments of $375 per
month for five years. You would like to know what monthly interest rate the dealer is, in
effect, charging you. To find the answer, you have to solve the equation

(The details are explained in Exercise 41.) How would you solve such an equation?
For a quadratic equation there is a well-known formula for the roots.

For third- and fourth-degree equations there are also formulas for the roots, but they are 
ax 2 " bx " c ! 0

48x!1 " x"60 ! !1 " x"60 " 1 ! 01

4.8

3



extremely complicated. If f is a polynomial of degree 5 or higher, there is no such formula
(see the note on page 210). Likewise, there is no formula that will enable us to find the
exact roots of a transcendental equation such as .

We can find an approximate solution to Equation 1 by plotting the left side of the equa-
tion. Using a graphing device, and after experimenting with viewing rectangles, we pro-
duce the graph in Figure 1.

We see that in addition to the solution x ! 0, which doesn’t interest us, there is a solu-
tion between 0.007 and 0.008. Zooming in shows that the root is approximately 0.0076. If
we need more accuracy we could zoom in repeatedly, but that becomes tiresome. A faster
alternative is to use a numerical rootfinder on a calculator or computer algebra system. If
we do so, we find that the root, correct to nine decimal places, is 0.007628603.

How do those numerical rootfinders work? They use a variety of methods, but most of
them make some use of Newton’s method, also called the Newton-Raphson method. We
will explain how this method works, partly to show what happens inside a calculator or
computer, and partly as an application of the idea of linear approximation.

The geometry behind Newton’s method is shown in Figure 2, where the root that we are
trying to find is labeled . We start with a first approximation , which is obtained by
guessing, or from a rough sketch of the graph of , or from a computer-generated graph 
of f. Consider the tangent line to the curve at the point and look 
at the -intercept of , labeled . The idea behind Newton’s method is that the tangent line
is close to the curve and so its x-intercept, , is close to the x-intercept of the curve 
(namely, the root r that we are seeking). Because the tangent is a line, we can easily find
its x-intercept.

To find a formula for in terms of we use the fact that the slope of L is , so its
equation is

Since the -intercept of is , we set and obtain

If , we can solve this equation for :

We use as a second approximation to r.
Next we repeat this procedure with replaced by , using the tangent line at

. This gives a third approximation:

If we keep repeating this process, we obtain a sequence of approximations 
as shown in Figure 3. In general, if the th approximation is and , then the
next approximation is given by
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N Try to solve Equation 1 using the numerical
rootfinder on your calculator or computer. Some
machines are not able to solve it. Others are suc-
cessful but require you to specify a starting point
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FIGURE 2

y

0 x

{x ¡, f(x¡)}

x™ x ¡
L

r

y=ƒ

y

0 xx™ x¡x£
x¢

r

FIGURE 3

{x™, f(x™)}

{x¡, f(x¡)}



If the numbers become closer and closer to as becomes large, then we say that
the sequence converges to and we write

| Although the sequence of successive approximations converges to the desired root for
functions of the type illustrated in Figure 3, in certain circumstances the sequence may not
converge. For example, consider the situation shown in Figure 4. You can see that is a
worse approximation than . This is likely to be the case when is close to 0. It might
even happen that an approximation (such as in Figure 4) falls outside the domain of .
Then Newton’s method fails and a better initial approximation should be chosen. See
Exercises 31–34 for specific examples in which Newton’s method works very slowly or
does not work at all.

EXAMPLE 1 Starting with , find the third approximation to the root of the 
equation .

SOLUTION We apply Newton’s method with

and

Newton himself used this equation to illustrate his method and he chose after
some experimentation because , , and . Equation 2
becomes

With we have

Then with we obtain

It turns out that this third approximation is accurate to four decimal places.
M

Suppose that we want to achieve a given accuracy, say to eight decimal places, using
Newton’s method. How do we know when to stop? The rule of thumb that is generally used
is that we can stop when successive approximations and agree to eight decimal
places. (A precise statement concerning accuracy in Newton’s method will be given in
Exercise 37 in Section 11.11.)

Notice that the procedure in going from to is the same for all values of . (It is
called an iterative process.) This means that Newton’s method is particularly convenient
for use with a programmable calculator or a computer.
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In Module 4.8 you can investigate
how Newton’s Method works for several
functions and what happens when you
change .x1
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N Sequences were briefly introduced in 
A Preview of Calculus on page 6. A more 
thorough discussion starts in Section 11.1.
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EXAMPLE 2 Use Newton’s method to find correct to eight decimal places.

SOLUTION First we observe that finding is equivalent to finding the positive root of the
equation

so we take . Then and Formula 2 (Newton’s method)
becomes

If we choose as the initial approximation, then we obtain

Since and agree to eight decimal places, we conclude that

to eight decimal places. M

EXAMPLE 3 Find, correct to six decimal places, the root of the equation .

SOLUTION We first rewrite the equation in standard form:

Therefore we let . Then , so Formula 2 becomes

In order to guess a suitable value for we sketch the graphs of and in
Figure 6. It appears that they intersect at a point whose -coordinate is somewhat less
than 1, so let’s take as a convenient first approximation. Then, remembering to
put our calculator in radian mode, we get

Since and agree to six decimal places (eight, in fact), we conclude that the root of
the equation, correct to six decimal places, is . M

Instead of using the rough sketch in Figure 6 to get a starting approximation for
Newton’s method in Example 3, we could have used the more accurate graph that a calcu-
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lator or computer provides. Figure 7 suggests that we use as the initial approx-
imation. Then Newton’s method gives

and so we obtain the same answer as before, but with one fewer step.
You might wonder why we bother at all with Newton’s method if a graphing device is

available. Isn’t it easier to zoom in repeatedly and find the roots as we did in Section 1.4?
If only one or two decimal places of accuracy are required, then indeed Newton’s method
is inappropriate and a graphing device suffices. But if six or eight decimal places are
required, then repeated zooming becomes tiresome. It is usually faster and more efficient
to use a computer and Newton’s method in tandem—the graphing device to get started and
Newton’s method to finish.

x4 $ 0.73908513x3 $ 0.73908513x2 $ 0.73911114

x1 ! 0.75
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5–8 Use Newton’s method with the specified initial approxima-
tion to find , the third approximation to the root of the given
equation. (Give your answer to four decimal places.)

5. ,

6. ,

7. ,

8. ,

; 9. Use Newton’s method with initial approximation to
find , the second approximation to the root of the equation

. Explain how the method works by first
graphing the function and its tangent line at .

; 10. Use Newton’s method with initial approximation 
to find , the second approximation to the root of the equa-
tion . Explain how the method works by first
graphing the function and its tangent line at .

11–12 Use Newton’s method to approximate the given number
correct to eight decimal places.

11. 12.

13–16 Use Newton’s method to approximate the indicated root of
the equation correct to six decimal places.

13. The root of in the interval 

14. The root of in the
interval 

15. The positive root of 

16. The positive root of 

17–22 Use Newton’s method to find all roots of the equation cor-
rect to six decimal places.

17. 18. e x ! 3 ! 2xx4 ! 1 " x

2 cos x ! x 4

sin x ! x 2

)!2, !1*
2.2x 5 ! 4.4x 3 " 1.3x 2 ! 0.9x ! 4.0 ! 0

)1, 2*x 4 ! 2x 3 " 5x 2 ! 6 ! 0

100s100
   s5 20 

!1, !1"
x4 ! x ! 1 ! 0

x2

x1 ! 1

!!1, 1"
x 3 " x " 3 ! 0

x2

x1 ! !1

x1 ! !1x 5 " 2 ! 0

x1 ! 1x 5 ! x ! 1 ! 0

x1 ! !31
3 x 3 " 1

2 x 2 " 3 ! 0

x1 ! 1x 3 " 2x ! 4 ! 0

x3x1

1. The figure shows the graph of a function . Suppose that
Newton’s method is used to approximate the root of the
equation with initial approximation .
(a) Draw the tangent lines that are used to find and , and

estimate the numerical values of and .
(b) Would be a better first approximation? Explain.

2. Follow the instructions for Exercise 1(a) but use as the
starting approximation for finding the root .

3. Suppose the line is tangent to the curve 
when . If Newton’s method is used to locate a root of
the equation and the initial approximation is ,
find the second approximation .

For each initial approximation, determine graphically what
happens if Newton’s method is used for the function whose
graph is shown.
(a) (b) (c)
(d) (e)

3

y

0 51 x

x1 ! 5x1 ! 4
x1 ! 3x1 ! 1x1 ! 0

4.

x2

x1 ! 3f !x" ! 0
x ! 3

y ! f !x"y ! 5x ! 4

s
x1 ! 9

x

y

0 r
1

1 s

x1 ! 5
x3x2

x3x2

x1 ! 1f !x" ! 0
r

f

EXERCISES4.8

FIGURE 7

1

0 1

y=x

y=cos x



approximation is used. Illustrate your explanation
with a sketch.

35. (a) Use Newton’s method to find the critical numbers of the
function correct to six deci-
mal places.

(b) Find the absolute minimum value of correct to four 
decimal places. 

36. Use Newton’s method to find the absolute maximum value 
of the function , correct to six 
decimal places.

Use Newton’s method to find the coordinates of the inflection
point of the curve , , correct to six deci-
mal places.

38. Of the infinitely many lines that are tangent to the curve
and pass through the origin, there is one that has

the largest slope. Use Newton’s method to find the slope of
that line correct to six decimal places.

39. Use Newton’s method to find the coordinates, correct to six
decimal places, of the point on the parabola that
is closest to the origin.

40. In the figure, the length of the chord is 4 cm and the
length of the arc is 5 cm. Find the central angle , in radi-
ans, correct to four decimal places. Then give the answer to
the nearest degree.

A car dealer sells a new car for . He also offers to sell
the same car for payments of per month for five years.
What monthly interest rate is this dealer charging?

To solve this problem you will need to use the formula for
the present value of an annuity consisting of equal pay-
ments of size with interest rate per time period: 

Replacing by , show that

Use Newton’s method to solve this equation.

42. The figure shows the sun located at the origin and the earth at 
the point . (The unit here is the distance between the
centers of the earth and the sun, called an astronomical unit:
1 AU km.) There are five locations , , ,

, and in this plane of rotation of the earth about the sun
where a satellite remains motionless with respect to the earth
because the forces acting on the satellite (including the gravi-

L 5L 4

L 3L 2L1$ 1.496 ( 108

!1, 0"

48x!1 " x"60 ! !1 " x"60 " 1 ! 0 

xi

A !
R
i

 )1 ! !1 " i "!n *

iR
nA

$375
$18,00041.

5 cm

4 cm

¨

BA

$AB
AB

y ! !x ! 1"2

y ! !sin x

0 ) x ) &y ! ecos x
37.

f !x" ! x cos x, 0 ) x ) &

f

f !x" ! x 6 ! x 4 " 3x 3 ! 2x

x1 " 019. 20.

21. 22.

; 23–28 Use Newton’s method to find all the roots of the equation
correct to eight decimal places. Start by drawing a graph to find
initial approximations.

23.

25. 26.

27. 28.

29. (a) Apply Newton’s method to the equation to
derive the following square-root algorithm used by the
ancient Babylonians to compute :

(b) Use part (a) to compute correct to six decimal
places.

30. (a) Apply Newton’s method to the equation to
derive the following reciprocal algorithm:

(This algorithm enables a computer to find reciprocals
without actually dividing.)

(b) Use part (a) to compute correct to six decimal
places.

Explain why Newton’s method doesn’t work for finding the
root of the equation if the initial approxi-
mation is chosen to be .

32. (a) Use Newton’s method with to find the root of the
equation correct to six decimal places.

(b) Solve the equation in part (a) using as the initial
approximation.

(c) Solve the equation in part (a) using . (You defi-
nitely need a programmable calculator for this part.)

; (d) Graph and its tangent lines at ,
0.6, and 0.57 to explain why Newton’s method is so sen-
sitive to the value of the initial approximation.

33. Explain why Newton’s method fails when applied to the
equation with any initial approximation .
Illustrate your explanation with a sketch.

34. If

then the root of the equation is . Explain why
Newton’s method fails to find the root no matter which initial

x ! 0f !x" ! 0

f !x" ! +sx 

!s!x 

if x * 0
if x + 0

x1 " 0s3 x ! 0

x1 ! 1f !x" ! x 3 ! x ! 1

x1 ! 0.57

x1 ! 0.6
x 3 ! x ! 1

x1 ! 1

x1 ! 1
x 3 ! 3x " 6 ! 0

31.

1#1.6984

xn"1 ! 2xn ! axn
2

1#x ! a ! 0

s1000 

xn"1 !
1
2 &xn "

a
xn
'
sa )

(
x 2 ! a ! 0

e arctan x ! sx 3 " 14e!x 2

 sin x ! x 2 ! x " 1

3 sin!x 2" ! 2xx2s2 ! x ! x 2 ! 1

x 2!4 ! x 2 " !
4

x 2 " 1
24.

x 6 ! x 5 ! 6x 4 ! x 2 " x " 10 ! 0

tan x ! s1 ! x 2 cos x ! sx 

1
x

! 1 " x 3!x ! 2"2 ! ln x
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ANTIDERIVATIVES

A physicist who knows the velocity of a particle might wish to know its position at a given
time. An engineer who can measure the variable rate at which water is leaking from a tank
wants to know the amount leaked over a certain time period. A biologist who knows the
rate at which a bacteria population is increasing might want to deduce what the size of 
the population will be at some future time. In each case, the problem is to find a function
F whose derivative is a known function f. If such a function F exists, it is called an anti-
derivative of f.

DEFINITION A function is called an antiderivative of on an interval if
for all in .

For instance, let . It isn’t difficult to discover an antiderivative of if we keep
the Power Rule in mind. In fact, if , then . But the function

also satisfies . Therefore both and are antiderivatives 
of . Indeed, any function of the form , where is a constant, is an anti-
derivative of . The question arises: Are there any others?

To answer this question, recall that in Section 4.2 we used the Mean Value Theorem to
prove that if two functions have identical derivatives on an interval, then they must differ
by a constant (Corollary 4.2.7). Thus if and are any two antiderivatives of , then

so , where is a constant. We can write this as , so we
have the following result.

THEOREM If is an antiderivative of on an interval , then the most general
antiderivative of on is

where is an arbitrary constant.

Going back to the function , we see that the general antiderivative of is
. By assigning specific values to the constant , we obtain a family of functions

whose graphs are vertical translates of one another (see Figure 1). This makes sense
because each curve must have the same slope at any given value of .x

C1
3 x 3 ! C

ff !x" ! x 2

C

F!x" ! C
If

IfF1

G!x" ! F!x" ! CCG!x" " F!x" ! C

F#!x" ! f !x" ! G#!x"

fGF

f
CH!x" ! 1

3 x 3 ! Cf
GFG#!x" ! x 2G!x" ! 1

3 x 3 ! 100
F#!x" ! x 2 ! f !x"F!x" ! 1

3 x 3
ff !x" ! x 2

IxF#!x" ! f !x"
IfF

4.9

x

y

0
y= ˛

3

y=    -2˛
3

y=    -1˛
3

y=    +1˛
3

y=    +2˛
3

y=    +3˛
3

FIGURE 1
Members of the family of 
antiderivatives of ƒ=≈ 
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Using the value , find the locations of the
libration points (a) and (b) .

L¡ L™L∞

L¢

L£

sun earth

x

y

L 2L 1 

r # 3.04042 $ 10"6tational attractions of the earth and the sun) balance each
other. These locations are called libration points. (A solar
research satellite has been placed at one of these libration
points.) If is the mass of the sun, is the mass of the
earth, and , it turns out that the -coordi-
nate of is the unique root of the fifth-degree equation

and the -coordinate of is the root of the equation

p!x" " 2rx 2 ! 0

L 2x

 ! ! 2!1 " r"x ! r " 1 ! 0 

 p!x" ! x 5 " !2 ! r"x 4 ! !1 ! 2r"x 3 " !1 " r"x 2

L 1

xr ! m2$!m1 ! m2 "
m2m1
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EXAMPLE 1 Find the most general antiderivative of each of the following functions.
(a) (b) (c) ,

SOLUTION
(a) If , then , so an antiderivative of is . By
Theorem 1, the most general antiderivative is .

(b) Recall from Section 3.6 that

So on the interval the general antiderivative of is . We also learned
that

for all . Theorem 1 then tells us that the general antiderivative of is
on any interval that doesn’t contain 0. In particular, this is true on each of the

intervals and . So the general antiderivative of is

(c) We use the Power Rule to discover an antiderivative of . In fact, if , then

Thus the general antiderivative of is

This is valid for since then is defined on an interval. If n is negative
(but ), it is valid on any interval that doesn’t contain 0. M

As in Example 1, every differentiation formula, when read from right to left, gives rise
to an antidifferentiation formula. In Table 2 we list some particular antiderivatives. Each
formula in the table is true because the derivative of the function in the right column
appears in the left column. In particular, the first formula says that the antiderivative of a
constant times a function is the constant times the antiderivative of the function. The sec-
ond formula says that the antiderivative of a sum is the sum of the antiderivatives. (We use
the notation , .)G# ! tF# ! f

n " "1
f !x" ! xnn % 0

F!x" !
xn!1

n ! 1
! C

f !x" ! xn

d
dx

 % xn!1

n ! 1& !
!n ! 1"xn

n ! 1
! xn

n " "1xn

F!x" ! 'ln x ! C1

ln!"x" ! C2

if x & 0
if x ' 0

f!0, ("!"(, 0"
ln ( x ( ! C

f !x" ! 1$xx " 0

d
dx

 !ln ( x (" !
1
x

ln x ! C1$x!0, ("

d
dx

 !ln x" !
1
x

G!x" ! "cos x ! C
"cos xsin xF#!x" ! sin xF!x" ! "cos x

n " "1f !x" ! xnf !x" ! 1$xf !x" ! sin x

Function Particular antiderivative Function Particular antiderivative

cos x sin x

e xe x

ln ( x (1$x

x n!1

n ! 1
x n  !n " "1"

F!x" ! G!x"f !x" ! t!x"

cF!x"c f !x" sin x "cos x

tan x

sec x tan x sec x

tan"1x
1

1 ! x 2

sin"1x
1

s1 " x 2 

sec2x

TABLE OF 
ANTIDIFFERENTIATION FORMULAS

2

N To obtain the most general antiderivative from
the particular ones in Table 2, we have to add a
constant (or constants), as in Example 1.



EXAMPLE 2 Find all functions such that

SOLUTION We first rewrite the given function as follows:

Thus we want to find an antiderivative of 

Using the formulas in Table 2 together with Theorem 1, we obtain

M

In applications of calculus it is very common to have a situation as in Example 2, where
it is required to find a function, given knowledge about its derivatives. An equation that
involves the derivatives of a function is called a differential equation. These will be 
studied in some detail in Chapter 9, but for the present we can solve some elementary dif-
ferential equations. The general solution of a differential equation involves an arbitrary
constant (or constants) as in Example 2. However, there may be some extra conditions
given that will determine the constants and therefore uniquely specify the solution.

EXAMPLE 3 Find if .

SOLUTION The general antiderivative of

is

To determine we use the fact that : 

Thus we have , so the particular solution is

M

EXAMPLE 4 Find if , , and .

SOLUTION The general antiderivative of is

Using the antidifferentiation rules once more, we find that

f !x" ! 4 
x 4

4
! 3 

x 3

3
" 4 

x 2

2
! Cx ! D ! x 4 ! x 3 " 2x 2 ! Cx ! D

f #!x" ! 12 
x 3

3
! 6 

x 2

2
" 4x ! C ! 4x 3 ! 3x 2 " 4x ! C

f )!x" ! 12x 2 ! 6x " 4

f !1" ! 1f !0" ! 4f )!x" ! 12x 2 ! 6x " 4fV

f !x" ! ex ! 20 tan"1x " 3

C ! "2 " 1 ! "3

f !0" ! e 0 ! 20 tan"1 0 ! C ! "2

f !0" ! "2C

f !x" ! ex ! 20 tan"1x ! C

f #!x" ! ex !
20

1 ! x 2

f #!x" ! ex ! 20!1 ! x 2 ""1 and f !0" ! "2f

! "4 cos x ! 2
5 x

5 " 2sx ! C

 t!x" ! 4!"cos x" ! 2 
x 5

5
"

x1$2

1
2

! C

t#!x" ! 4 sin x ! 2x 4 " x"1$2

t#!x" ! 4 sin x !
2x 5

x
"
sx 

x
! 4 sin x ! 2x 4 "

1
sx 

t#!x" ! 4 sin x !
2x 5 " sx 

x

t
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N Figure 2 shows the graphs of the function in
Example 3 and its antiderivative . Notice that

, so is always increasing. Also notice
that when has a maximum or minimum, 
appears to have an inflection point. So the graph
serves as a check on our calculation.

ff #
ff #!x" & 0

f
f #



To determine and we use the given conditions that and . Since
, we have . Since

we have . Therefore the required function is

M

If we are given the graph of a function , it seems reasonable that we should be able to
sketch the graph of an antiderivative . Suppose, for instance, that we are given that

. Then we have a place to start, the point , and the direction in which we
move our pencil is given at each stage by the derivative . In the next example
we use the principles of this chapter to show how to graph even when we don’t have a
formula for . This would be the case, for instance, when is determined by experi-
mental data.

EXAMPLE 5 The graph of a function is given in Figure 3. Make a rough sketch of
an antiderivative , given that .

SOLUTION We are guided by the fact that the slope of is . We start at the
point and draw as an initially decreasing function since is negative when

. Notice that , so has horizontal tangents when and
. For , is positive and so is increasing. We see that has a local

minimum when and a local maximum when . For , is negative
and so is decreasing on . Since as , the graph of becomes flat-
ter as . Also notice that changes from positive to negative at 
and from negative to positive at , so has inflection points when and .
We use this information to sketch the graph of the antiderivative in Figure 4. M

RECTILINEAR MOTION

Antidifferentiation is particularly useful in analyzing the motion of an object moving in a
straight line. Recall that if the object has position function , then the velocity func-
tion is . This means that the position function is an antiderivative of the veloc-
ity function. Likewise, the acceleration function is , so the velocity function is
an antiderivative of the acceleration. If the acceleration and the initial values and 
are known, then the position function can be found by antidifferentiating twice.

EXAMPLE 6 A particle moves in a straight line and has acceleration given by
. Its initial velocity is cm$s and its initial displacement is

cm. Find its position function .

SOLUTION Since , antidifferentiation gives

Note that . But we are given that , so and

v!t" ! 3t 2 ! 4t " 6

C ! "6v!0" ! "6v!0" ! C

v!t" ! 6 
t 2

2
! 4t ! C ! 3t 2 ! 4t ! C

v#!t" ! a!t" ! 6t ! 4

s!t"s!0" ! 9
v!0" ! "6a!t" ! 6t ! 4

V

v!0"s!0"
a!t" ! v#!t"

v!t" ! s#!t"
s ! f !t"

x ! 4x ! 2Fx ! 4
x ! 2F)!x" ! f #!x"xl (

Fxl (f !x"l 0!3, ("F
f !x"x & 3x ! 3x ! 1

FFf !x"1 ' x ' 3x ! 3
x ! 1Ff !1" ! f !3" ! 00 ' x ' 1

f !x"F!0, 2"
f !x"y ! F!x"

F!0" ! 2F
fV

f !x"f
F

F#!x" ! f !x"
!0, 1"F!0" ! 1

F
f

f !x" ! x 4 ! x 3 " 2x 2 " 3x ! 4

C ! "3

f !1" ! 1 ! 1 " 2 ! C ! 4 ! 1

D ! 4f !0" ! 0 ! D ! 4
f !1" ! 1f !0" ! 4DC
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Since , is the antiderivative of :

This gives . We are given that , so and the required position
function is

M

An object near the surface of the earth is subject to a gravitational force that produces
a downward acceleration denoted by . For motion close to the ground we may assume that

is constant, its value being about (or ft$s ).

EXAMPLE 7 A ball is thrown upward with a speed of ft$s from the edge of a cliff 
ft above the ground. Find its height above the ground seconds later. When does it

reach its maximum height? When does it hit the ground?

SOLUTION The motion is vertical and we choose the positive direction to be upward. At
time the distance above the ground is and the velocity is decreasing. Therefore,
the acceleration must be negative and we have

Taking antiderivatives, we have

To determine we use the given information that . This gives , so

The maximum height is reached when , that is, after s. Since , we
antidifferentiate again and obtain

Using the fact that , we have and so

The expression for is valid until the ball hits the ground. This happens when ,
that is, when

or, equivalently,

Using the quadratic formula to solve this equation, we get

We reject the solution with the minus sign since it gives a negative value for . Therefore
the ball hits the ground after s. M3(1 ! s13 )$2 # 6.9

t

t !
3 * 3s13 

2

 t 2 " 3t " 27 ! 0

 "16t 2 ! 48t ! 432 ! 0

s!t" ! 0s!t"

s!t" ! "16t 2 ! 48t ! 432

432 ! 0 ! Ds!0" ! 432

s!t" ! "16t 2 ! 48t ! D

s#!t" ! v!t"1.5v!t" ! 0

v!t" ! "32t ! 48

48 ! 0 ! Cv!0" ! 48C

v!t" ! "32t ! C

a!t" !
dv
dt

! "32

v!t"s!t"t

t432
48

2329.8 m$s2t
t

s!t" ! t 3 ! 2t 2 " 6t ! 9

D ! 9s!0" ! 9s!0" ! D

s!t" ! 3 
t 3

3
! 4 

t 2

2
" 6t ! D ! t 3 ! 2t 2 " 6t ! D

vsv!t" ! s#!t"
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FIGURE 5

N Figure 5 shows the position function of the
ball in Example 7. The graph corroborates the
conclusions we reached: The ball reaches its
maximum height after and hits the ground
after .6.9 s

1.5 s



43. , ,

44. , ,

45. , , ,

46. , , ,

47. Given that the graph of passes through the point 
and that the slope of its tangent line at is ,
find .

48. Find a function such that and the line 
is tangent to the graph of .

49–50 The graph of a function is shown. Which graph is an
antiderivative of and why?

50.

51. The graph of a function is shown in the figure. Make a rough
sketch of an antiderivative , given that .

52. The graph of the velocity function of a particle is shown in
the figure. Sketch the graph of the position function.

The graph of is shown in the figure. Sketch the graph of 
if is continuous and .

_1
x

y

0 1 2

1

2 y=fª(x)

f !0" ! "1f
ff #53.

√

0 t

y
y=ƒ

0 x1

F!0" ! 1F

x

y
f

b

c

a

y

x

f b

c

a

49.
f

f

f
x ! y ! 0f #!x" ! x 3f

f !2"
2x ! 1!x, f !x""
!1, 6"f

f )!0" ! 3f #!0" ! 2f !0" ! 1f +!x" ! cos x

f !2" ! 0f !1" ! 0x & 0f )!x" ! x "2

f !," ! 0f !0" ! 0f )!t" ! 2e t ! 3 sin t

f !,$2" ! 0f !0" ! "1f )!x" ! 2 ! cos x1–20 Find the most general antiderivative of the function. (Check
your answer by differentiation.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

14.

15. 16.

17. 18.

19. 20.

; 21–22 Find the antiderivative of that satisfies the given con-
dition. Check your answer by comparing the graphs of and .

22.

23–46 Find .

24.

25. 26.

27. 28.

29.

30.

31. ,

32. , ,

33. , ,

34. , ,

35. , ,

36.

37. , ,

38. , ,

, ,

40. , ,

41. , ,

42. , , f !1" ! 5f !0" ! 8f )!x" ! 20x 3 ! 12x 2 ! 4

f !2" ! 15f !0" ! 9f )!x" ! 2 " 12x

f #!4" ! 7f !4" ! 20f )!t" ! 3$st 

f #!0" ! 4f !0" ! 3f )!-" ! sin - ! cos -39.

f #!0" ! 1f !0" ! 2f )!x" ! 4 " 6x " 40x 3

f #!1" ! "3f !1" ! 5f )!x" ! 24x 2 ! 2x ! 10

f #!x" ! 4$s1 " x 2 , f ( 1
2 ) ! 1

f !"1" ! "1f !1" ! 1f #!x" ! x"1$3

f !"1" ! 0f !1" ! 1
2f #!x" ! !x 2 " 1"$x

f !,$3" ! 4",$2 ' t ' ,$2f #!t" ! 2 cos t ! sec2t

f !1" ! 3x & 0f #!x" ! 2x " 3$x 4

f !1" ! 10f #!x" ! sx !6 ! 5x"

f #!x" ! 8x 3 ! 12x ! 3, f !1" ! 6

f #!x" ! 1 " 6x, f !0" ! 8

f +!t" ! t " st f +!t" ! e t

f )!x" ! 6x ! sin xf )!x" ! 2
3 x 2$3

f )!x" ! 2 ! x 3 ! x 6f )!x" ! 6x ! 12x 223.

f

f !x" ! 4 " 3!1 ! x 2 ""1, F!1" ! 0

f !x" ! 5x 4 " 2x 5, F!0" ! 421.

Ff
fF

f !x" !
2 ! x 2

1 ! x 2f !x" !
x 5 " x 3 ! 2x

x 4

f !x" ! 2sx ! 6 cos xf !x" ! 5e x " 3 cosh x

f !t" ! sin t ! 2 sinh tt!-" ! cos - " 5 sin -

f !x" ! 3e x ! 7 sec2xf !u" !
u4 ! 3su 

u213.

t!x" !
5 " 4x 3 ! 2x 6

x 6f !x" !
10
x 9

f !x" ! s4 x3 ! s3 x 4 f !x" ! 6sx " s6 x 

f !x" ! 2x ! 3x 1.7f !x" ! 5x 1$4 " 7x 3$4

f !x" ! x !2 " x"2f !x" ! !x ! 1"!2x " 1"

f !x" ! 8x 9 " 3x 6 ! 12x 3f !x" ! 1
2 ! 3

4 x 2 " 4
5 x 3

f !x" ! 1
2 x 2 " 2x ! 6f !x" ! x " 3
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EXERCISES4.9



and are positive constants that depend on the material 
of the board and is the acceleration due to gravity.
(a) Find an expression for the shape of the curve.
(b) Use to estimate the distance below the horizontal at

the end of the board.

69. A company estimates that the marginal cost (in dollars per
item) of producing items is . If the cost of
producing one item is , find the cost of producing 
items.

70. The linear density of a rod of length m is given by
, in grams per centimeter, where is measured

in centimeters from one end of the rod. Find the mass of 
the rod.

71. Since raindrops grow as they fall, their surface area increases
and therefore the resistance to their falling increases. A rain-
drop has an initial downward velocity of 10 m$s and its
downward acceleration is

If the raindrop is initially m above the ground, how long
does it take to fall?

72. A car is traveling at 50 mi$h when the brakes are fully
applied, producing a constant deceleration of 22 ft$s . What
is the distance traveled before the car comes to a stop?

What constant acceleration is required to increase the speed
of a car from 30 mi$h to 50 mi$h in 5 s?

74. A car braked with a constant deceleration of 16 ft$s , pro-
ducing skid marks measuring 200 ft before coming to a stop.
How fast was the car traveling when the brakes were first
applied?

75. A car is traveling at when the driver sees an acci-
dent 80 m ahead and slams on the brakes. What constant
deceleration is required to stop the car in time to avoid a
pileup?

76. A model rocket is fired vertically upward from rest. Its accel-
eration for the first three seconds is , at which time
the fuel is exhausted and it becomes a freely “falling” body.
Fourteen seconds later, the rocket’s parachute opens, and the
(downward) velocity slows linearly to ft$s in 5 s. The
rocket then “floats” to the ground at that rate.
(a) Determine the position function and the velocity func-

tion (for all times ). Sketch the graphs of and .vstv
s

"18

a!t" ! 60t

100 km$h

2

73.

2

500

a ! '9 " 0.9t
0

if 0 . t . 10
if t & 10

x/!x" ! 1$sx 
1

100$562
1.92 " 0.002xx

y

x0

f !L"

t !' 0"
IE; 54. (a) Use a graphing device to graph .

(b) Starting with the graph in part (a), sketch a rough graph
of the antiderivative that satisfies .

(c) Use the rules of this section to find an expression for .
(d) Graph using the expression in part (c). Compare with

your sketch in part (b).

; 55–56 Draw a graph of and use it to make a rough sketch of
the antiderivative that passes through the origin.

55. ,

56. ,

57–62 A particle is moving with the given data. Find the posi-
tion of the particle.

58.

59.

60. , ,

61. , ,

62. , ,

63. A stone is dropped from the upper observation deck (the
Space Deck) of the CN Tower, m above the ground.
(a) Find the distance of the stone above ground level at time .
(b) How long does it take the stone to reach the ground?
(c) With what velocity does it strike the ground?
(d) If the stone is thrown downward with a speed of 5 m$s,

how long does it take to reach the ground?

64. Show that for motion in a straight line with constant accelera-
tion , initial velocity , and initial displacement , the dis-
placement after time is

An object is projected upward with initial velocity meters
per second from a point meters above the ground. Show
that 

66. Two balls are thrown upward from the edge of the cliff in
Example 7. The first is thrown with a speed of ft$s and the
other is thrown a second later with a speed of ft$s. Do the
balls ever pass each other?

67. A stone was dropped off a cliff and hit the ground with a
speed of 120 ft$s. What is the height of the cliff? 

68. If a diver of mass stands at the end of a diving board with
length and linear density , then the board takes on the
shape of a curve , where

EIy ) ! mt!L " x" ! 1
2 /t!L " x"2

y ! f !x"
/L

m

24
48

)v!t"*2 ! v0
2 " 19.6)s!t" " s0 *

s0

v065.

s ! 1
2 at 2 ! v0 t ! s0

t
s0v0a

t
450

s!1" ! 20s!0" ! 0a!t" ! t 2 " 4t ! 6

s!2," ! 12s!0" ! 0a!t" ! 10 sin t ! 3 cos t

v!0" ! 5s!0" ! 0a!t" ! cos t ! sin t

a!t" ! t " 2, s!0" ! 1, v!0" ! 3

v!t" ! 1.5st , s!4" ! 10

v!t" ! sin t " cos t, s!0" ! 057.

"1.5 . x . 1.5f !x" ! sx 4 " 2x 2 ! 2 " 1

"2, . x . 2,f !x" !
sin x

1 ! x 2

f

F
F!x"

F!0" ! 1F

f !x" ! 2x " 3sx 
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(b) Suppose that the train starts from rest and must come to 
a complete stop in 15 minutes. What is the maximum dis-
tance it can travel under these conditions?

(c) Find the minimum time that the train takes to travel
between two consecutive stations that are 45 miles apart.

(d) The trip from one station to the next takes 37.5 minutes.
How far apart are the stations?

(b) At what time does the rocket reach its maximum height,
and what is that height?

(c) At what time does the rocket land?

77. A high-speed bullet train accelerates and decelerates at the
rate of . Its maximum cruising speed is 90 mi$h.
(a) What is the maximum distance the train can travel if it

accelerates from rest until it reaches its cruising speed and
then runs at that speed for 15 minutes?

4 ft$s2

CHAPTER 4 REVIEW | | | | 347

REVIEW

C O N C E P T  C H E C K

4

where and as ?
(c) How can you use l’Hospital’s Rule if you have a difference

where and as ?
(d) How can you use l’Hospital’s Rule if you have a power

where and as ?

8. If you have a graphing calculator or computer, why do you
need calculus to graph a function?

9. (a) Given an initial approximation to a root of the equation
, explain geometrically, with a diagram, how the

second approximation in Newton’s method is obtained.
(b) Write an expression for in terms of , , 

and .
(c) Write an expression for in terms of , and

.
(d) Under what circumstances is Newton’s method likely to fail

or to work very slowly?

10. (a) What is an antiderivative of a function ?
(b) Suppose and are both antiderivatives of on an inter-

val . How are and related?F2F1I
fF2F1

f

f #!xn"
xn, f !xn "xn!1

f #!x1"
f !x1"x1x2

x2

f !x" ! 0
x1

x l at!x" l 0f !x" l 0) f !x"*t!x"

x l at!x" l (f !x" l (f !x" " t!x"

x l at!x" l (f !x" l 0f !x"t!x"1. Explain the difference between an absolute maximum and a
local maximum. Illustrate with a sketch.

2. (a) What does the Extreme Value Theorem say?
(b) Explain how the Closed Interval Method works.

3. (a) State Fermat’s Theorem.
(b) Define a critical number of .

4. (a) State Rolle’s Theorem.
(b) State the Mean Value Theorem and give a geometric 

interpretation.

5. (a) State the Increasing/Decreasing Test.
(b) What does it mean to say that is concave upward on an

interval ?
(c) State the Concavity Test.
(d) What are inflection points? How do you find them?

6. (a) State the First Derivative Test.
(b) State the Second Derivative Test.
(c) What are the relative advantages and disadvantages of these

tests?

7. (a) What does l’Hospital’s Rule say?
(b) How can you use l’Hospital’s Rule if you have a product

I
f

f

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If , then has a local maximum or minimum at .

2. If has an absolute minimum value at , then .

3. If is continuous on , then attains an absolute maxi-
mum value and an absolute minimum value at some
numbers and in .

4. If is differentiable and , then there is a number
such that and .

5. If for , then is decreasing on (1, 6).

6. If , then is an inflection point of the 
curve .y ! f !x"

!2, f !2""f )!2" ! 0

f1 ' x ' 6f #!x" ' 0

f #!c" ! 0( c ( ' 1c
f !"1" ! f !1"f

!a, b"dc
f !d "f !c"

f!a, b"f

f #!c" ! 0cf

cff #!c" ! 0

7. If for , then for

8. There exists a function such that , and
for all .

9. There exists a function such that , , and
for all .

10. There exists a function such that , ,
and for all .

11. If and are increasing on an interval , then is 
increasing on .

12. If and are increasing on an interval , then is 
increasing on .I

f " tItf

I
f ! tItf

xf ) !x" & 0
f #!x" ' 0f !x" ' 0f

xf ) !x" & 0
f #!x" ' 0f !x" & 0f

xf #!x" & 1
f !1" ! "2, f !3" ! 0f

0 ' x ' 1.
f !x" ! t!x"0 ' x ' 1f #!x" ! t#!x"
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18. The figure shows the graph of the derivative of a function .
(a) On what intervals is increasing or decreasing?
(b) For what values of does have a local maximum or 

minimum?
(c) Sketch the graph of .
(d) Sketch a possible graph of .

19–34 Use the guidelines of Section 4.5 to sketch the curve.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31. 32.

33. 34.

; 35–38 Produce graphs of that reveal all the important aspects of
the curve. Use graphs of and to estimate the intervals of
increase and decrease, extreme values, intervals of concavity, and
inflection points. In Exercise 35 use calculus to find these quantities
exactly.

35. 36.

37. f !x" ! 3x 6 " 5x 5 ! x 4 " 5x 3 " 2x 2 ! 2

f !x" !
x 3 " x

x 2 ! x ! 3
f !x" !

x 2 " 1
x 3

f )f #
f

y ! x ! ln!x 2 ! 1"y ! xe"2x

y ! e2x"x 2

y ! sin"1!1$x"

y ! 4x " tan x, ",$2 ' x ' ,$2

y ! sin2x " 2 cos x

y ! s3 x 2 ! 1 y ! xs2 ! x 

y ! s1 " x ! s1 ! x y ! x 2$!x ! 8"

y !
1
x 2 "

1
!x " 2"2y !

1
x!x " 3"2

y !
1

1 " x 2y ! x 4 " 3x 3 ! 3x 2 " x

y ! x 3 " 6x 2 " 15x ! 4y ! 2 " 2x " x 3

0 x

y

1 2 3 4 5 6 7_1
_2

y=f ª(x)

f
f )

fx
f

ff #1–6 Find the local and absolute extreme values of the function on
the given interval.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

7–14 Evaluate the limit.

7. 8.

9. 10.

11. 12.

13. 14.

15–17 Sketch the graph of a function that satisfies the given 
conditions: 

15. ,

on , and 
on and 
on and 
on and 

16. , is continuous and even,
if if ,

if 

17. is odd, for ,
for , for ,
for , lim xl( f !x" ! "2x & 3f )!x" ' 0

0 ' x ' 3f )!x" & 0x & 2f #!x" & 0
0 ' x ' 2f #!x" ' 0f

x & 3f #!x" ! 1
1 ' x ' 30 ' x ' 1, f #!x" ! "1f #!x" ! 2x

ff !0" ! 0

!6, 12"!0, 6"f )!x" ' 0
!12, (",!"(, 0"f )!x" & 0

!6, 9",!"2, 1"f #!x" & 0
!9, (",!"(, "2", !1, 6"f #!x" ' 0

limx l ( f !x" ! 0,  limx l 6 f !x" ! "(,
f !0" ! 0, f #!"2" ! f #!1" ! f #!9" ! 0

lim
x l

 !,$2" "
!tan x"cos xlim

x l  1!
 % x

x " 1
"

1
ln x&

lim
x l 0!

 x2 ln xlim
x l (

 x3e"x

lim
x l (

 
e4x " 1 " 4x

x2lim
x l 0

 
e4x " 1 " 4x

x2

lim
x l 0

 
1 " cos x

x 2 ! x
lim
x l 0

 
tan ,x

ln!1 ! x"

)1, 3*f !x" ! !ln x"$x 2

)0, ,*f !x" ! x ! sin 2x

)"2, 1*f !x" ! !x 2 ! 2x"3

)"2, 2*f !x" !
3x " 4
x 2 ! 1

)"1, 1*f !x" ! xs1 " x 

)2, 4*f !x" ! x 3 " 6x 2 ! 9x ! 1
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17. If is periodic, then is periodic.

18. The most general antiderivative of is

19. If exists and is nonzero for all , then .

20. lim
x l 0

 
x
e x ! 1

f !1" " f !0"xf #!x"

F!x" ! "
1
x

! C

f !x" ! x "2

f #f13. If and are increasing on an interval , then is increasing
on .

14. If and are positive increasing functions on an interval ,
then is increasing on .

15. If is increasing and on , then is
decreasing on .

16. If is even, then is even.f #f

I
t!x" ! 1$f !x"If !x" & 0f

Ift
Itf

I
ftItf
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51. Show that the shortest distance from the point to the
straight line is

52. Find the point on the hyperbola that is closest to the
point .

53. Find the smallest possible area of an isosceles triangle that is
circumscribed about a circle of radius .

54. Find the volume of the largest circular cone that can be
inscribed in a sphere of radius .

55. In , lies on , , cm,
and cm. Where should a point be chosen on 
so that the sum is a minimum?

56. Solve Exercise 55 when cm.

57. The velocity of a wave of length in deep water is

where and are known positive constants. What is the
length of the wave that gives the minimum velocity?

58. A metal storage tank with volume is to be constructed in
the shape of a right circular cylinder surmounted by a hemi-
sphere. What dimensions will require the least amount of
metal?

59. A hockey team plays in an arena with a seating capacity of
15,000 spectators. With the ticket price set at , average
attendance at a game has been 11,000. A market survey indi-
cates that for each dollar the ticket price is lowered, average
attendance will increase by 1000. How should the owners of
the team set the ticket price to maximize their revenue from
ticket sales?

; 60. A manufacturer determines that the cost of making units of
a commodity is and
the demand function is .
(a) Graph the cost and revenue functions and use the graphs

to estimate the production level for maximum profit.
(b) Use calculus to find the production level for maximum

profit.
(c) Estimate the production level that minimizes the average

cost.

61. Use Newton’s method to find the root of the equation
in the interval correct to

six decimal places.

62. Use Newton’s method to find all roots of the equation
correct to six decimal places.

63. Use Newton’s method to find the absolute maximum value of
the function correct to eight decimal
places.

f !t" ! cos t ! t " t 2

sin x ! x 2 " 3x ! 1

)1, 2*x5 " x4 ! 3x2 " 3x " 2 ! 0

p!x" ! 48.2 " 0.03x
C!x" ! 1800 ! 25x " 0.2x 2 ! 0.001x 3

x

$12

V

CK

v ! K+ L
C

!
C
L

 

L

( CD ( ! 2

( PA ( ! ( PB ( ! ( PC (
CDP( CD ( ! 5

( AD ( ! ( BD ( ! 4CD ! ABABD0ABC

r

r

!3, 0"
xy ! 8

( Ax1 ! By1 ! C (
sA2 ! B2 

Ax ! By ! C ! 0
!x1, y1"38.

; 39. Graph in a viewing rectangle that shows all the
main aspects of this function. Estimate the inflection points.
Then use calculus to find them exactly.

40. (a) Graph the function .
(b) Explain the shape of the graph by computing the limits of

as approaches , , , and .
(c) Use the graph of to estimate the coordinates of the

inflection points.
(d) Use your CAS to compute and graph .
(e) Use the graph in part (d) to estimate the inflection points

more accurately.

41–42 Use the graphs of to estimate the 
-coordinates of the maximum and minimum points and

inflection points of .

41. ,

42.

; 43. Investigate the family of functions .
What features do the members of this family have in common?
How do they differ? For which values of is continuous
on ? For which values of does have no graph at
all? What happens as ?

; 44. Investigate the family of functions . What hap-
pens to the maximum and minimum points and the inflection
points as changes? Illustrate your conclusions by graphing
several members of the family.

45. Show that the equation has exactly one
real root.

46. Suppose that is continuous on , and
for all in . Show that .

47. By applying the Mean Value Theorem to the function
on the interval , show that

48. For what values of the constants and is a point of
inflection of the curve ?

49. Let , where is twice differentiable for all ,
for all , and is concave downward on

and concave upward on .
(a) At what numbers does have an extreme value?
(b) Discuss the concavity of .

50. Find two positive integers such that the sum of the first num-
ber and four times the second number is 1000 and the product
of the numbers is as large as possible.

t
t

!0, ("!"(, 0"
fx " 0f #!x" & 0

xft!x" ! f !x 2 "

y ! x 3 ! ax 2 ! bx ! 1
!1, 6"ba

2 ' s5 33 ' 2.0125

)32, 33*f !x" ! x 1$5

9 . f !4" . 21!0, 4"x2 . f #!x" . 5
)0, 4*, f !0" ! 1f

3x ! 2 cos x ! 5 ! 0

c

f !x" ! cxe "cx 2

C l (
fC!"(, ("

fC

f !x" ! ln!sin x ! C "

f !x" ! e"0.1x ln!x 2 " 1"

", . x . ,f !x" !
cos2 x

sx 2 ! x ! 1 

f
x

f, f #, and f )CAS

f )

f
0"0!"((xf !x"

f !x" ! 1$!1 ! e 1$x "CAS

f !x" ! e "1$x 2

f !x" ! x 2 ! 6.5 sin x,  "5 . x . 5
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64. Use the guidelines in Section 4.5 to sketch the curve
, . Use Newton’s method when 

necessary.

65–72 Find .

65.

66.

67.

68. ,

69. ,

70. ,

71. , ,

72. , ,

73–74 A particle is moving with the given data. Find the position
of the particle.

73. ,

74. , ,

; 75. (a) If , use a graph of 
to sketch a rough graph of the antiderivative of that
satisfies .

(b) Find an expression for .
(c) Graph using the expression in part (b). Compare with

your sketch in part (a).

; 76. Investigate the family of curves given by

In particular you should determine the transitional value of 
at which the number of critical numbers changes and the

transitional value at which the number of inflection points
changes. Illustrate the various possible shapes with graphs.

77. A canister is dropped from a helicopter m above the
ground. Its parachute does not open, but the canister has been
designed to withstand an impact velocity of m!s. Will it
burst?

78. In an automobile race along a straight road, car A passed 
car B twice. Prove that at some time during the race their
accelerations were equal. State the assumptions that you
make.

79. A rectangular beam will be cut from a cylindrical log of 
radius 10 inches.
(a) Show that the beam of maximal cross-sectional area is 

a square.

100

500

c

f "x# ! x 4 ! x 3 ! cx 2

F
F"x#

F"0# ! 0
fF

ff "x# ! 0.1e x ! sin x, "4 # x # 4

v"0# ! 2s"0# ! 0a"t# ! sin t ! 3 cos t

s"0# ! 1v"t# ! 2t " 1!"1 ! t 2#

f "1# ! 0f "0# ! 2f $"x# ! 2x 3 ! 3x 2 " 4x ! 5

f %"0# ! 2f "0# ! 1f $"x# ! 1 " 6x ! 48x 2

f "1# ! 3f %"u# !
u2 ! su 

u

f "0# ! 5f %"t# ! 2t " 3 sin t

f "0# ! 2f %"x# ! sinh x ! 2 cosh x

f %"x# ! sx 3 ! s3 x 2 

f %"x# ! 2e x ! sec x tan x

f %"x# ! cos x " "1 " x 2#"1!2

f

0 # x # 2&y ! x sin x
(b) Four rectangular planks will be cut from the four sections

of the log that remain after cutting the square beam. Deter-
mine the dimensions of the planks that will have maximal
cross-sectional area.

(c) Suppose that the strength of a rectangular beam is propor-
tional to the product of its width and the square of its
depth. Find the dimensions of the strongest beam that can
be cut from the cylindrical log.

80. If a projectile is fired with an initial velocity at an angle of
inclination from the horizontal, then its trajectory, neglect-
ing air resistance, is the parabola

(a) Suppose the projectile is fired from the base of a plane
that is inclined at an angle , , from the horizontal,
as shown in the figure. Show that the range of the projec-
tile, measured up the slope, is given by

(b) Determine so that is a maximum.
(c) Suppose the plane is at an angle below the horizontal.

Determine the range in this case, and determine the
angle at which the projectile should be fired to maximize .

81. Show that, for ,

82. Sketch the graph of a function such that for 
all for for , and

.lim xl'( $ f "x# ! x% ! 0
& x & ) 1f $"x# ) 0& x & * 1,x, f $"x# * 0

f %"x# ) 0f

x
1 ! x 2 ) tan"1x ) x

x * 0

¨
å

x

y

0

R

R
R

+
R,

R",# !
2v 2 cos , sin", " +#

t cos2+
 

+ * 0+

0 # , #
&

2
y ! "tan ,#x "

t
2v2 cos2,

 x 2

,
v

depth

width
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One of the most important principles of problem solving is analogy (see page 76). If you
are having trouble getting started on a problem, it is sometimes helpful to start by solving
a similar, but simpler, problem. The following example illustrates the principle. Cover up
the solution and try solving it yourself first.

EXAMPLE 1 If x, y, and are positive numbers, prove that

SOLUTION It may be difficult to get started on this problem. (Some students have tackled 
it by multiplying out the numerator, but that just creates a mess.) Let’s try to think of a
similar, simpler problem. When several variables are involved, it’s often helpful to think
of an analogous problem with fewer variables. In the present case we can reduce the
number of variables from three to one and prove the analogous inequality

In fact, if we are able to prove (1), then the desired inequality follows because

The key to proving (1) is to recognize that it is a disguised version of a minimum prob-
lem. If we let

then , so when x ! 1. Also, for and
for . Therefore the absolute minimum value of is . This means

that

for all positive values of x

and, as previously mentioned, the given inequality follows by multiplication.
The inequality in (1) could also be proved without calculus. In fact, if , we have

Because the last inequality is obviously true, the first one is true too. M

 &? "x " 1#2 - 0

 
x 2 ! 1

x
- 2 &?  x 2 ! 1 - 2x &? x 2 " 2x ! 1 - 0

x * 0

x 2 ! 1
x

- 2

f "1# ! 2fx * 1f %"x# * 0
0 ) x ) 1f %"x# ) 0f %"x# ! 0f %"x# ! 1 " "1!x 2 #

x * 0f "x# !
x 2 ! 1

x
! x !

1
x

"x 2 ! 1#"y 2 ! 1#"z2 ! 1#
xyz

! ' x 2 ! 1
x (' y 2 ! 1

y (' z 2 ! 1
z ( - 2 ! 2 ! 2 ! 8

x 2 ! 1
x

- 2 for x * 01

"x 2 ! 1#"y 2 ! 1#"z 2 ! 1#
xyz

- 8

z

P R O B L E M S  P L U S

Look Back
What have we learned from the solution to this
example?
N To solve a problem involving several variables,

it might help to solve a similar problem with
just one variable.

N When trying to prove an inequality, it might
help to think of it as a maximum or minimum
problem.



1. If a rectangle has its base on the -axis and two vertices on the curve , show that the
rectangle has the largest possible area when the two vertices are at the points of inflection of
the curve.

2. Show that for all .

3. Show that, for all positive values of and ,

4. Show that for all numbers and such that and .

5. If , , , and are constants such that

find the value of the sum .

6. Find the point on the parabola at which the tangent line cuts from the first quad-
rant the triangle with the smallest area.

7. Find the highest and lowest points on the curve .

8. Sketch the set of all points such that .

9. If is any point on the parabola , except for the origin, let be the point where
the normal line intersects the parabola again. Show that the line segment has the shortest
possible length when .

10. For what values of does the curve have inflection points?

11. Determine the values of the number for which the function has no critical number:

12. Sketch the region in the plane consisting of all points such that

13. The line intersects the parabola in points and (see the figure). Find
the point on the arc of the parabola that maximizes the area of the triangle .

14. is a square piece of paper with sides of length 1 m. A quarter-circle is drawn from to
with center . The piece of paper is folded along , with on and on , so that 

falls on the quarter-circle. Determine the maximum and minimum areas that the triangle 
can have.

15. For which positive numbers does the curve intersect the line ?

16. For what value of is the following equation true?

17. Let , where , , . . . , are real numbers and
is a positive integer. If it is given that for all , show that

& a1 ! 2a2 ! . . . ! nan & # 1

x& f "x# & # & sin x &n
ana2a1f "x# ! a1 sin x ! a2 sin 2x ! . . . ! an sin nx
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 ' x ! a
x " a(x

! e

a

y ! xy ! a xa
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18. An arc of a circle subtends a central angle as in the figure. Let be the area between
the chord and the arc . Let be the area between the tangent lines , and the
arc. Find

19. The speeds of sound in an upper layer and in a lower layer of rock and the thickness of
the upper layer can be determined by seismic exploration if the speed of sound in the lower
layer is greater than the speed in the upper layer. A dynamite charge is detonated at a point 
and the transmitted signals are recorded at a point , which is a distance from . The first
signal to arrive at travels along the surface and takes seconds. The next signal travels
from to a point , from to in the lower layer, and then to taking seconds. The third
signal is reflected off the lower layer at the midpoint of and takes seconds to reach .

(a) Express in terms of .
(b) Show that is a minimum when .
(c) Suppose that , , , and . Find .

Note: Geophysicists use this technique when studying the structure of the earth’s crust,
whether searching for oil or examining fault lines.

20. For what values of is there a straight line that intersects the curve
in four distinct points?

21. One of the problems posed by the Marquis de l’Hospital in his calculus textbook Analyse des
Infiniment Petits concerns a pulley that is attached to the ceiling of a room at a point by a
rope of length . At another point on the ceiling, at a distance from (where ), a
rope of length ! is attached and passed through the pulley at and connected to a weight .
The weight is released and comes to rest at its equilibrium position . As l’Hospital argued,
this happens when the distance is maximized. Show that when the system reaches equi-
librium, the value of is

Notice that this expression is independent of both and !.

22. Given a sphere with radius , find the height of a pyramid of minimum volume whose base is
a square and whose base and triangular faces are all tangent to the sphere. What if the base of
the pyramid is a regular -gon? (A regular -gon is a polygon with equal sides and angles.)
(Use the fact that the volume of a pyramid is , where is the area of the base.)

23. Assume that a snowball melts so that its volume decreases at a rate proportional to its surface
area. If it takes three hours for the snowball to decrease to half its original volume, how much
longer will it take for the snowball to melt completely?

24. A hemispherical bubble is placed on a spherical bubble of radius 1. A smaller hemispherical
bubble is then placed on the first one. This process is continued until chambers, including
the sphere, are formed. (The figure shows the case .) Use mathematical induction to
prove that the maximum height of any bubble tower with chambers is .1 ! sn n
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In Chapter 2 we used the tangent and velocity problems to introduce the derivative,
which is the central idea in differential calculus. In much the same way, this chapter
starts with the area and distance problems and uses them to formulate the idea of a
definite integral, which is the basic concept of integral calculus. We will see in
Chapters 6 and 8 how to use the integral to solve problems concerning volumes, lengths
of curves, population predictions, cardiac output, forces on a dam, work, consumer
surplus, and baseball, among many others.

There is a connection between integral calculus and differential calculus. The Funda-
mental Theorem of Calculus relates the integral to the derivative, and we will see in this
chapter that it greatly simplifies the solution of many problems.

To compute an area we approximate a region by rectangles 
and let the number of rectangles become large.The precise 
area is the limit of these sums of areas of rectangles.

INTEGRALS

5



AREAS AND DISTANCES

In this section we discover that in trying to find the area under a curve or the distance 
traveled by a car, we end up with the same special type of limit.

THE AREA PROBLEM

We begin by attempting to solve the area problem: Find the area of the region that lies
under the curve from to . This means that , illustrated in Figure 1, is bounded
by the graph of a continuous function [where ], the vertical lines and

, and the -axis.

In trying to solve the area problem we have to ask ourselves: What is the meaning of
the word area? This question is easy to answer for regions with straight sides. For a rect-
angle, the area is defined as the product of the length and the width. The area of a triangle
is half the base times the height. The area of a polygon is found by dividing it into tri-
angles (as in Figure 2) and adding the areas of the triangles.

However, it isn’t so easy to find the area of a region with curved sides. We all have an
intuitive idea of what the area of a region is. But part of the area problem is to make this
intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line by
slopes of secant lines and then we took the limit of these approximations. We pursue a sim-
ilar idea for areas. We first approximate the region by rectangles and then we take the
limit of the areas of these rectangles as we increase the number of rectangles. The follow-
ing example illustrates the procedure.

EXAMPLE 1 Use rectangles to estimate the area under the parabola from 0 to 1 
(the parabolic region S illustrated in Figure 3).

SOLUTION We first notice that the area of S must be somewhere between 0 and 1 because 
is contained in a square with side length 1, but we can certainly do better than that. S
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Suppose we divide S into four strips , , , and by drawing the vertical lines ,
, and as in Figure 4(a).

We can approximate each strip by a rectangle whose base is the same as the strip and
whose height is the same as the right edge of the strip [see Figure 4(b)]. In other words,
the heights of these rectangles are the values of the function at the right end-
points of the subintervals , , , and .

Each rectangle has width and the heights are , , , and . If we let be
the sum of the areas of these approximating rectangles, we get

From Figure 4(b) we see that the area A of S is less than , so

Instead of using the rectangles in Figure 4(b) we could use the smaller rectangles in
Figure 5 whose heights are the values of at the left endpoints of the subintervals. (The
leftmost rectangle has collapsed because its height is 0.) The sum of the areas of these
approximating rectangles is

We see that the area of S is larger than , so we have lower and upper estimates for A:

We can repeat this procedure with a larger number of strips. Figure 6 shows what
happens when we divide the region S into eight strips of equal width.

FIGURE 6
Approximating S with eight rectangles (a) Using left endpoints (b) Using right endpoints
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By computing the sum of the areas of the smaller rectangles and the sum of the
areas of the larger rectangles , we obtain better lower and upper estimates for A:

So one possible answer to the question is to say that the true area of S lies somewhere
between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table at the
left shows the results of similar calculations (with a computer) using n rectangles whose
heights are found with left endpoints or right endpoints . In particular, we see
by using 50 strips that the area lies between 0.3234 and 0.3434. With 1000 strips we
narrow it down even more: A lies between 0.3328335 and 0.3338335. A good estimate is
obtained by averaging these numbers: . M

From the values in the table in Example 1, it looks as if is approaching as n
increases. We confirm this in the next example.

EXAMPLE 2 For the region S in Example 1, show that the sum of the areas of the
upper approximating rectangles approaches , that is,

SOLUTION is the sum of the areas of the rectangles in Figure 7. Each rectangle 
has width and the heights are the values of the function at the points

; that is, the heights are . Thus

Here we need the formula for the sum of the squares of the first n positive integers:

Perhaps you have seen this formula before. It is proved in Example 5 in Appendix E.
Putting Formula 1 into our expression for , we get

Thus we have
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It can be shown that the lower approximating sums also approach , that is,

From Figures 8 and 9 it appears that, as n increases, both and become better and bet-
ter approximations to the area of S. Therefore, we define the area A to be the limit of the
sums of the areas of the approximating rectangles, that is,

Let’s apply the idea of Examples 1 and 2 to the more general region S of Figure 1. We
start by subdividing into strips of equal width as in Figure 10. 
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The width of the interval is , so the width of each of the n strips is

These strips divide the interval [a, b] into n subintervals

where and . The right endpoints of the subintervals are

Let’s approximate the th strip by a rectangle with width and height , which
is the value of at the right endpoint (see Figure 11). Then the area of the rectangle is

. What we think of intuitively as the area of is approximated by the sum of the
areas of these rectangles, which is

Figure 12 shows this approximation for and . Notice that this approxi-
mation appears to become better and better as the number of strips increases, that is, as

. Therefore we define the area of the region in the following way.

FIGURE 12
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DEFINITION The area A of the region S that lies under the graph of the contin-
uous function is the limit of the sum of the areas of approximating rectangles:

It can be proved that the limit in Definition 2 always exists, since we are assuming that
is continuous. It can also be shown that we get the same value if we use left endpoints:

In fact, instead of using left endpoints or right endpoints, we could take the height of the
ith rectangle to be the value of f at any number in the ith subinterval . We call
the numbers , , . . . , the sample points. Figure 13 shows approximating rectangles
when the sample points are not chosen to be endpoints. So a more general expression for the
area of S is

We often use sigma notation to write sums with many terms more compactly. For
instance,

So the expressions for area in Equations 2, 3, and 4 can be written as follows:
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We can also rewrite Formula 1 in the following way:

EXAMPLE 3 Let A be the area of the region that lies under the graph of 
between and .
(a) Using right endpoints, find an expression for A as a limit. Do not evaluate the limit.
(b) Estimate the area by taking the sample points to be midpoints and using four sub-
intervals and then ten subintervals.

SOLUTION
(a) Since and , the width of a subinterval is

So , and . The sum of the areas of the
approximating rectangles is

According to Definition 2, the area is

Using sigma notation we could write

It is difficult to evaluate this limit directly by hand, but with the aid of a computer alge-
bra system it isn’t hard (see Exercise 24). In Section 5.3 we will be able to find A more
easily using a different method.

(b) With the subintervals of equal width are , , ,
and . The midpoints of these subintervals are , , ,
and , and the sum of the areas of the four approximating rectangles (see Fig-
ure 14) is

So an estimate for the area is
A & 0.8557
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With the subintervals are , , . . . , and the midpoints
are . Thus

From Figure 15 it appears that this estimate is better than the estimate with . M

THE DISTANCE PROBLEM

Now let’s consider the distance problem: Find the distance traveled by an object during a
certain time period if the velocity of the object is known at all times. (In a sense this is the
inverse problem of the velocity problem that we discussed in Section 2.1.) If the velocity
remains constant, then the distance problem is easy to solve by means of the formula

But if the velocity varies, it’s not so easy to find the distance traveled. We investigate the
problem in the following example.

EXAMPLE 4 Suppose the odometer on our car is broken and we want to estimate the
distance driven over a 30-second time interval. We take speedometer readings every five
seconds and record them in the following table:

In order to have the time and the velocity in consistent units, let’s convert the velocity
readings to feet per second (1 mi%h ! 5280%3600 ft%s):

During the first five seconds the velocity doesn’t change very much, so we can estimate
the distance traveled during that time by assuming that the velocity is constant. If we
take the velocity during that time interval to be the initial velocity (25 ft%s), then we
obtain the approximate distance traveled during the first five seconds:

Similarly, during the second time interval the velocity is approximately constant and we
take it to be the velocity when t ! 5 s. So our estimate for the distance traveled from

to is

If we add similar estimates for the other time intervals, we obtain an estimate for the
total distance traveled:
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We could just as well have used the velocity at the end of each time period instead 
of the velocity at the beginning as our assumed constant velocity. Then our estimate
becomes

If we had wanted a more accurate estimate, we could have taken velocity readings
every two seconds, or even every second. M

Perhaps the calculations in Example 4 remind you of the sums we used earlier to esti-
mate areas. The similarity is explained when we sketch a graph of the velocity function of
the car in Figure 16 and draw rectangles whose heights are the initial velocities for each
time interval. The area of the first rectangle is , which is also our estimate
for the distance traveled in the first five seconds. In fact, the area of each rectangle can be
interpreted as a distance because the height represents velocity and the width represents
time. The sum of the areas of the rectangles in Figure 16 is , which is our ini-
tial estimate for the total distance traveled.

In general, suppose an object moves with velocity , where and
(so the object always moves in the positive direction). We take velocity readings

at times so that the velocity is approximately constant on each
subinterval. If these times are equally spaced, then the time between consecutive readings
is . During the first time interval the velocity is approximately and so
the distance traveled is approximately . Similarly, the distance traveled during the
second time interval is about and the total distance traveled during the time inter-
val is approximately

If we use the velocity at right endpoints instead of left endpoints, our estimate for the total
distance becomes

The more frequently we measure the velocity, the more accurate our estimates become, so
it seems plausible that the exact distance d traveled is the limit of such expressions:

We will see in Section 5.4 that this is indeed true.
Because Equation 5 has the same form as our expressions for area in Equations 2 and

3, it follows that the distance traveled is equal to the area under the graph of the velocity
function. In Chapters 6 and 8 we will see that other quantities of interest in the natural and
social sciences—such as the work done by a variable force or the cardiac output of the
heart—can also be interpreted as the area under a curve. So when we compute areas in this
chapter, bear in mind that they can be interpreted in a variety of practical ways.
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points. Then improve your estimate by using six rectangles.
Sketch the curve and the approximating rectangles.

(b) Repeat part (a) using left endpoints.
(c) Repeat part (a) using midpoints.
(d) From your sketches in parts (a)–(c), which appears to 

be the best estimate?

; 6. (a) Graph the function .
(b) Estimate the area under the graph of using four approx-

imating rectangles and taking the sample points to be 
(i) right endpoints and (ii) midpoints. In each case sketch
the curve and the rectangles.

(c) Improve your estimates in part (b) by using 8 rectangles.

7–8 With a programmable calculator (or a computer), it is pos-
sible to evaluate the expressions for the sums of areas of approx-
imating rectangles, even for large values of , using looping. (On
a TI use the Is command or a For-EndFor loop, on a Casio use
Isz, on an HP or in BASIC use a FOR-NEXT loop.) Compute 
the sum of the areas of approximating rectangles using equal
subintervals and right endpoints for , 30, 50, and 100.
Then guess the value of the exact area.

7. The region under from to 

8. The region under from to 

9. Some computer algebra systems have commands that will
draw approximating rectangles and evaluate the sums of their
areas, at least if is a left or right endpoint. (For instance,
in Maple use leftbox, rightbox, leftsum, and right-
sum.)
(a) If , find the left and right

sums for and .
(b) Illustrate by graphing the rectangles in part (a).
(c) Show that the exact area under lies between 0.780 

and 0.791.

10. (a) If , use the commands discussed 
in Exercise 9 to find the left and right sums for 
30, and .

(b) Illustrate by graphing the rectangles in part (a).
(c) Show that the exact area under lies between 2.50 

and 2.59.

The speed of a runner increased steadily during the first three
seconds of a race. Her speed at half-second intervals is given
in the table. Find lower and upper estimates for the distance
that she traveled during these three seconds.

11.

f

50
n ! 10,

f !x" ! ln x, 1 ! x ! 4CAS

f

50n ! 10, 30,
f !x" ! 1#!x 2 " 1", 0 ! x ! 1

xi*

CAS

##20y ! cos x

10y ! x 4

n ! 10

$
n

f
f !x" ! e%x 2

, %2 ! x ! 2

1. (a) By reading values from the given graph of , use five
rectangles to find a lower estimate and an upper estimate
for the area under the given graph of from to

. In each case sketch the rectangles that you use.
(b) Find new estimates using ten rectangles in each case.

(a) Use six rectangles to find estimates of each type for the
area under the given graph of from to .

(i) (sample points are left endpoints)
(ii) (sample points are right endpoints)

(iii) (sample points are midpoints)
(b) Is an underestimate or overestimate of the true area?
(c) Is an underestimate or overestimate of the true area?
(d) Which of the numbers , , or gives the best

estimate? Explain.

3. (a) Estimate the area under the graph of from
to using four approximating rectangles

and right endpoints. Sketch the graph and the rectangles.
Is your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

4. (a) Estimate the area under the graph of from
to using four approximating rectangles and

right endpoints. Sketch the graph and the rectangles. Is
your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

(a) Estimate the area under the graph of from
to using three rectangles and right end-x ! 2x ! %1

f !x" ! 1 " x 25.

x ! 4x ! 0
f !x" ! sx 

x ! ##2x ! 0
f !x" ! cos x

y

x0 4

4

8

y=ƒ

8 12

M6R6L6

R6

L6

M6

R6

L6

x ! 12x ! 0f
2.

y

x0 5

5 y=ƒ

10

x ! 10
x ! 0f

f

EXERCISES5.1

t (s) 0 0.5 1.0 1.5 2.0 2.5 3.0

(ft#s) 0 6.2 10.8 14.9 18.1 19.4 20.2v
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16. The velocity graph of a car accelerating from rest to a speed
of over a period of 30 seconds is shown. Estimate
the distance traveled during this period.

17–19 Use Definition 2 to find an expression for the area under
the graph of as a limit. Do not evaluate the limit.

17. ,

18. ,

19. ,

20–21 Determine a region whose area is equal to the given limit.
Do not evaluate the limit.

20.

22. (a) Use Definition 2 to find an expression for the area under
the curve from 0 to 1 as a limit.

(b) The following formula for the sum of the cubes of the
first integers is proved in Appendix E. Use it to evaluate
the limit in part (a).

23. (a) Express the area under the curve from 0 to 2 as 
a limit.

(b) Use a computer algebra system to find the sum in your
expression from part (a).

(c) Evaluate the limit in part (a).

24. Find the exact area of the region under the graph of 
from 0 to 2 by using a computer algebra system to evaluate
the sum and then the limit in Example 3(a). Compare your
answer with the estimate obtained in Example 3(b).

y ! e%xCAS

y ! x 5CAS

13 " 23 " 33 " & & & " n 3 ! $n!n " 1"
2 %2

n

y ! x 3

lim
nl'

 &
n

i!1
 

#

4n
 tan 

i#
4n

21.

lim
nl'

 &
n

i!1
 
2
n

 '5 "
2i
n (10

0 ! x ! ##2f !x" ! x cos x

3 ! x ! 10f !x" !
ln x

x

1 ! x ! 16f !x" ! s4 x 

f

40

80

√
(km/h)

t
(seconds)

0 10 20 30

120 km#h
12. Speedometer readings for a motorcycle at 12-second intervals

are given in the table.
(a) Estimate the distance traveled by the motorcycle during

this time period using the velocities at the beginning of
the time intervals.

(b) Give another estimate using the velocities at the end of
the time periods.

(c) Are your estimates in parts (a) and (b) upper and lower 
estimates? Explain.

13. Oil leaked from a tank at a rate of liters per hour. The
rate decreased as time passed and values of the rate at two-
hour time intervals are shown in the table. Find lower and
upper estimates for the total amount of oil that leaked out.

14. When we estimate distances from velocity data, it is some-
times necessary to use times that are not
equally spaced. We can still estimate distances using the time
periods . For example, on May 7, 1992, the
space shuttle Endeavour was launched on mission STS-49,
the purpose of which was to install a new perigee kick motor
in an Intelsat communications satellite. The table, provided
by NASA, gives the velocity data for the shuttle between
liftoff and the jettisoning of the solid rocket boosters. Use
these data to estimate the height above the earth’s surface of
the Endeavour, 62 seconds after liftoff.

The velocity graph of a braking car is shown. Use it to esti-
mate the distance traveled by the car while the brakes are
applied.

√

t
(seconds)

0 2

20

40

60

4 6

(ft /s)

15.

(ti ! ti % ti%1

t0, t1, t2, t3, . . .

r!t"

t (s) 0 12 24 36 48 60

(ft#s) 30 28 25 22 24 27v

0 2 4 6 8 10

(L#h) 8.7 7.6 6.8 6.2 5.7 5.3r!t"

t !h"

Event Time (s) Velocity (ft#s)

Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151
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THE DEFINITE INTEGRAL

We saw in Section 5.1 that a limit of the form

arises when we compute an area. We also saw that it arises when we try to find the dis-
tance traveled by an object. It turns out that this same type of limit occurs in a wide vari-
ety of situations even when is not necessarily a positive function. In Chapters 6 and 8 we
will see that limits of the form (1) also arise in finding lengths of curves, volumes of solids,
centers of mass, force due to water pressure, and work, as well as other quantities. We
therefore give this type of limit a special name and notation.

DEFINITION OF A DEFINITE INTEGRAL If is a function defined for ,
we divide the interval into n subintervals of equal width .
We let (! b) be the endpoints of these subintervals and we
let be any sample points in these subintervals, so lies in the ith
subinterval . Then the definite integral of f from a to b is

provided that this limit exists. If it does exist, we say that is integrable on .

The precise meaning of the limit that defines the integral is as follows:

For every number there is an integer such that

for every integer and for every choice of in .

The symbol was introduced by Leibniz and is called an integral sign. It is 
an elongated and was chosen because an integral is a limit of sums. In the notation

is called the integrand and and are called the limits of integration; 
is the lower limit and is the upper limit. For now, the symbol has no meaning 

by itself; is all one symbol. The simply indicates that the independent vari-
able is . The procedure of calculating an integral is called integration.x

dxxba  f !x" dx
dxba

baf !x"xba  f !x" dx,
S

xNOTE 1

)xi%1, xi*xi*n $ N

+ yb

a
 f !x" dx % &

n

i!1
 f !xi*" (x + ) *

N* $ 0

)a, b*f

yb

a
 f !x" dx ! lim

n l '
 &

n

i!1
 f !xi*" (x

)xi%1, xi*
x i*x1*, x2*, . . . , xn*

x0 !! a", x1, x2, . . . , xn

(x ! !b % a"#n)a, b*
a ! x ! bf2

f

lim
nl'

 &
n

i!1
 f !xi*" (x ! lim

nl'
 ) f !x1*" (x " f !x2*" (x " & & & " f !xn*" (x*1

5.2

into congruent triangles with central angle , show
that

(b) Show that . [Hint: Use Equation 3.3.2.]limn l ' An ! #r 2

An ! 1
2 nr 2 sin'2#

n (
2##nn25. Find the exact area under the cosine curve from

to , where . (Use a computer alge-
bra system both to evaluate the sum and compute the limit.)
In particular, what is the area if ?

26. (a) Let be the area of a polygon with equal sides
inscribed in a circle with radius . By dividing the polygonr

nAn

b ! ##2

0 ! b ! ##2x ! bx ! 0
y ! cos xCAS
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The definite integral is a number; it does not depend on . In fact, we
could use any letter in place of without changing the value of the integral:

The sum

that occurs in Definition 2 is called a Riemann sum after the German mathematician
Bernhard Riemann (1826–1866). So Definition 2 says that the definite integral of an inte-
grable function can be approximated to within any desired degree of accuracy by a Riemann
sum.

We know that if happens to be positive, then the Riemann sum can be interpreted as
a sum of areas of approximating rectangles (see Figure 1). By comparing Definition 2 with
the definition of area in Section 5.1, we see that the definite integral can be inter-
preted as the area under the curve from a to b. (See Figure 2.)

If takes on both positive and negative values, as in Figure 3, then the Riemann sum is
the sum of the areas of the rectangles that lie above the -axis and the negatives of the areas
of the rectangles that lie below the -axis (the areas of the gold rectangles minus the areas
of the blue rectangles). When we take the limit of such Riemann sums, we get the situa-
tion illustrated in Figure 4. A definite integral can be interpreted as a net area, that is, a
difference of areas:

where is the area of the region above the -axis and below the graph of , and is the
area of the region below the -axis and above the graph of .

Although we have defined by dividing into subintervals of
equal width, there are situations in which it is advantageous to work with subintervals 
of unequal width. For instance, in Exercise 14 in Section 5.1 NASA provided velocity data
at times that were not equally spaced, but we were still able to estimate the distance trav-
eled. And there are methods for numerical integration that take advantage of unequal
subintervals.

)a, b*xba  f !x" dxNOTE 4

fx
A2fxA1

yb

a
 f !x" dx ! A1 % A2

x
x

f

xi*0

y

xa

Îx

FIGURE 1
If ƒ˘0, the Riemann sum µ f(xi*) Îx
is the sum of areas of rectangles.

y=ƒ

0

y

xab b

FIGURE 2
If ƒ˘0, the integral j  ƒ dx is the
area under the curve y=ƒ from a to b.
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b

y ! f !x"
xba  f !x" dx

f
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n

i!1
 f !xi*" (x

NOTE 3

yb

a
 f !x" dx ! yb

a
 f !t" dt ! yb

a
 f !r" dr

x
xxba  f !x" dxNOTE 2

Bernhard Riemann received his Ph.D. under the
direction of the legendary Gauss at the University
of Göttingen and remained there to teach. Gauss,
who was not in the habit of praising other mathe-
maticians, spoke of Riemann’s “creative, active,
truly mathematical mind and gloriously fertile
originality.” The definition (2) of an integral that
we use is due to Riemann. He also made major
contributions to the theory of functions of a 
complex variable, mathematical physics, num-
ber theory, and the foundations of geometry. 
Riemann’s broad concept of space and geometry
turned out to be the right setting, 50 years later,
for Einstein’s general relativity theory. Riemann’s
health was poor throughout his life, and he died
of tuberculosis at the age of 39.

RIEMANN

FIGURE 3
µ f(xi*) Îx is an approximation to
the net area

0

y=ƒ
y

a b x

y=ƒ
y

xa b0

FIGURE 4

j  ƒ dx is the net area
a

b
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If the subinterval widths are , we have to ensure that all these widths
approach 0 in the limiting process. This happens if the largest width, , approaches
0. So in this case the definition of a definite integral becomes

We have defined the definite integral for an inegrable function, but not all func-
tions are integrable (see Exercises 67–68). The following theorem shows that the most
commonly occurring functions are in fact integrable. It is proved in more advanced courses.

THEOREM If is continuous on , or if has only a finite number of
jump discontinuities, then is integrable on ; that is, the definite integral

exists.

If is integrable on , then the limit in Definition 2 exists and gives the same value
no matter how we choose the sample points . To simplify the calculation of the integral
we often take the sample points to be right endpoints. Then and the definition of
an integral simplifies as follows.

THEOREM If is integrable on , then

where and

EXAMPLE 1 Express

as an integral on the interval .

SOLUTION Comparing the given limit with the limit in Theorem 4, we see that they will 
be identical if we choose . We are given that and .
Therefore, by Theorem 4, we have

M

Later, when we apply the definite integral to physical situations, it will be important to
recognize limits of sums as integrals, as we did in Example 1. When Leibniz chose the
notation for an integral, he chose the ingredients as reminders of the limiting process. In
general, when we write

we replace by , by x, and by dx.(xxi*xlim ,

lim
nl'

 &
n

i!1
 f !x i*" (x ! yb

a
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b ! #a ! 0f !x" ! x 3 " x sin x

)0, #*

lim
nl'

 &
n

i!1
 !xi

3 " xi sin xi" (x

xi ! a " i (x(x !
b % a

n

yb

a
 f !x" dx ! lim

n l ' 
&
n

i!1
 f !xi" (x

)a, b*f4

xi* ! xi

xi*
)a, b*f

xba  f !x" dx
)a, b*f

f)a, b*f3

NOTE 5

yb

a
 f !x" dx ! lim

max (xi l 0
  &
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 f !xi*" (xi

max (xi

(x1, (x2, . . . , (xn
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EVALUATING INTEGRALS

When we use a limit to evaluate a definite integral, we need to know how to work with
sums. The following three equations give formulas for sums of powers of positive integers.
Equation 5 may be familiar to you from a course in algebra. Equations 6 and 7 were dis-
cussed in Section 5.1 and are proved in Appendix E.

The remaining formulas are simple rules for working with sigma notation:

EXAMPLE 2
(a) Evaluate the Riemann sum for taking the sample points to be right
endpoints and a ! 0, b ! 3, and n ! 6.

(b) Evaluate .

SOLUTION
(a) With n ! 6 the interval width is

and the right endpoints are , , , , , and
. So the Riemann sum is

 ! %3.9375

 ! 1
2 !%2.875 % 5 % 5.625 % 4 " 0.625 " 9"
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 R6 ! &
6

i!1
 f !xi" (x
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 i 3 ! $n!n " 1"

2 %2

7

 &
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i!1
 i 2 !

n!n " 1"!2n " 1"
6

6

 &
n

i!1
 i !

n!n " 1"
2

5

N Formulas 8–11 are proved by writing out 
each side in expanded form. The left side of
Equation 9 is

The right side is

These are equal by the distributive property. The
other formulas are discussed in Appendix E.

c!a1 " a2 " & & & " an "

ca1 " ca2 " & & & " can
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Notice that f is not a positive function and so the Riemann sum does not represent a sum
of areas of rectangles. But it does represent the sum of the areas of the gold rectangles
(above the x-axis) minus the sum of the areas of the blue rectangles (below the x-axis) in
Figure 5.

(b) With n subintervals we have

Thus , , , , and, in general, . Since we are
using right endpoints, we can use Theorem 4:

(Equation 9 with )

(Equations 11 and 9)

(Equations 7 and 5)

This integral can’t be interpreted as an area because takes on both positive and nega-
tive values. But it can be interpreted as the difference of areas , where and 
are shown in Figure 6.

Figure 7 illustrates the calculation by showing the positive and negative terms in the
right Riemann sum for . The values in the table show the Riemann sums
approaching the exact value of the integral, , as .
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A much simpler method for evaluating the integral in Example 2 will be given in 
Section 5.3.

EXAMPLE 3
(a) Set up an expression for as a limit of sums.
(b) Use a computer algebra system to evaluate the expression.

SOLUTION
(a) Here we have , , , and

So , , , , and

From Theorem 4, we get

(b) If we ask a computer algebra system to evaluate the sum and simplify, we obtain

Now we ask the computer algebra system to evaluate the limit:

We will learn a much easier method for the evaluation of integrals in the next section. M

EXAMPLE 4 Evaluate the following integrals by interpreting each in terms of areas.

(a) (b)

SOLUTION
(a) Since , we can interpret this integral as the area under the curve

from 0 to 1. But, since , we get , which shows
that the graph of is the quarter-circle with radius 1 in Figure 9. Therefore

(In Section 7.3 we will be able to prove that the area of a circle of radius r is .)#r 2
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N Because is positive, the integral in
Example 3 represents the area shown in Figure 8.
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FIGURE 8

N A computer algebra system is able to find an
explicit expression for this sum because it is a
geometric series. The limit could be found using 
l’Hospital’s Rule.
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(b) The graph of is the line with slope 1 shown in Figure 10. We compute the
integral as the difference of the areas of the two triangles:

M

THE MIDPOINT RULE

We often choose the sample point to be the right endpoint of the th subinterval because
it is convenient for computing the limit. But if the purpose is to find an approximation to
an integral, it is usually better to choose to be the midpoint of the interval, which we
denote by . Any Riemann sum is an approximation to an integral, but if we use midpoints
we get the following approximation.

MIDPOINT RULE

where

and

EXAMPLE 5 Use the Midpoint Rule with to approximate .

SOLUTION The endpoints of the five subintervals are , , , , , and ,
so the midpoints are , , , , and . The width of the subintervals is

, so the Midpoint Rule gives 

Since for , the integral represents an area, and the approxi-
mation given by the Midpoint Rule is the sum of the areas of the rectangles shown in
Figure 11. M
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Module 5.2/7.7 shows how the
Midpoint Rule estimates improve as 
increases.

n
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At the moment we don’t know how accurate the approximation in Example 5 is, but in
Section 7.7 we will learn a method for estimating the error involved in using the Midpoint
Rule. At that time we will discuss other methods for approximating definite integrals.

If we apply the Midpoint Rule to the integral in Example 2, we get the picture in Fig-
ure 12. The approximation is much closer to the true value than the
right endpoint approximation, , shown in Figure 7.

PROPERTIES OF THE DEFINITE INTEGRAL

When we defined the definite integral , we implicitly assumed that . But the
definition as a limit of Riemann sums makes sense even if . Notice that if we reverse
a and b, then changes from to . Therefore

If , then and so

We now develop some basic properties of integrals that will help us to evaluate integrals
in a simple manner. We assume that f and t are continuous functions.

PROPERTIES OF THE INTEGRAL

1. , where c is any constant

2.

3. , where c is any constant

4.

Property 1 says that the integral of a constant function is the constant times
the length of the interval. If and , this is to be expected because is
the area of the shaded rectangle in Figure 13.
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Property 2 says that the integral of a sum is the sum of the integrals. For positive func-
tions it says that the area under is the area under plus the area under t. Figure 14
helps us understand why this is true: In view of how graphical addition works, the corre-
sponding vertical line segments have equal height.

In general, Property 2 follows from Theorem 4 and the fact that the limit of a sum is the
sum of the limits:

Property 3 can be proved in a similar manner and says that the integral of a constant
times a function is the constant times the integral of the function. In other words, a con-
stant (but only a constant) can be taken in front of an integral sign. Property 4 is proved by
writing and using Properties 2 and 3 with .

EXAMPLE 6 Use the properties of integrals to evaluate .

SOLUTION Using Properties 2 and 3 of integrals, we have

We know from Property 1 that

and we found in Example 2 in Section 5.1 that . So

M

The next property tells us how to combine integrals of the same function over adjacent
intervals:

5.

This is not easy to prove in general, but for the case where and 
Property 5 can be seen from the geometric interpretation in Figure 15: The area under

from a to c plus the area from c to b is equal to the total area from a to b.y ! f !x"

a ! c ! bf !x" " 0
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a
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EXAMPLE 7 If it is known that and , find .

SOLUTION By Property 5, we have

so M

Properties 1–5 are true whether , , or . The following properties, in
which we compare sizes of functions and sizes of integrals, are true only if 

COMPARISON PROPERTIES OF THE INTEGRAL

6. If for , then .

7. If for , then .

8. If for , then

If , then represents the area under the graph of , so the geometric
interpretation of Property 6 is simply that areas are positive. But the property can be
proved from the definition of an integral (Exercise 64). Property 7 says that a bigger func-
tion has a bigger integral. It follows from Properties 6 and 4 because 

Property 8 is illustrated by Figure 16 for the case where . If is continuous we
could take and to be the absolute minimum and maximum values of on the inter-
val . In this case Property 8 says that the area under the graph of is greater than the
area of the rectangle with height and less than the area of the rectangle with height .

PROOF OF PROPERTY 8 Since , Property 7 gives

Using Property 1 to evaluate the integrals on the left and right sides, we obtain

M

Property 8 is useful when all we want is a rough estimate of the size of an integral with-
out going to the bother of using the Midpoint Rule.

EXAMPLE 8 Use Property 8 to estimate .

SOLUTION Because is a decreasing function on , its absolute maximum
value is and its absolute minimum value is . Thus, bym ! f !1" ! e%1M ! f !0" ! 1
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Property 8,

or

Since , we can write

M

The result of Example 8 is illustrated in Figure 17. The integral is greater than the area
of the lower rectangle and less than the area of the square.
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6. The graph of is shown. Estimate with six sub-
intervals using (a) right endpoints, (b) left endpoints, and
(c) midpoints.

7. A table of values of an increasing function is shown. Use
the table to find lower and upper estimates for .

8. The table gives the values of a function obtained from an
experiment. Use them to estimate using three equal
subintervals with (a) right endpoints, (b) left endpoints, and
(c) midpoints. If the function is known to be an increasing
function, can you say whether your estimates are less than or
greater than the exact value of the integral?

x93  f !x" dx

x25
0  f !x" dx

f

x

y

0

g

1

1

x3
%3 t!x" dxt1. Evaluate the Riemann sum for , ,

with six subintervals, taking the sample points to be left end-
points. Explain, with the aid of a diagram, what the Riemann
sum represents.

2. If , , evaluate the Riemann sum
with , taking the sample points to be right endpoints.
What does the Riemann sum represent? Illustrate with a 
diagram.

3. If , , find the Riemann sum with
correct to six decimal places, taking the sample points

to be midpoints. What does the Riemann sum represent?
Illustrate with a diagram.

4. (a) Find the Riemann sum for , ,
with six terms, taking the sample points to be right
endpoints. (Give your answer correct to six decimal
places.) Explain what the Riemann sum represents with
the aid of a sketch.

(b) Repeat part (a) with midpoints as sample points.

The graph of a function is given. Estimate using
four subintervals with (a) right endpoints, (b) left endpoints,
and (c) midpoints.
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26. (a) Find an approximation to the integral 
using a Riemann sum with right endpoints and .

(b) Draw a diagram like Figure 3 to illustrate the approxi-
mation in part (a).

(c) Use Theorem 4 to evaluate .
(d) Interpret the integral in part (c) as a difference of areas

and illustrate with a diagram like Figure 4.

27. Prove that .

28. Prove that .

29–30 Express the integral as a limit of Riemann sums. Do not
evaluate the limit.

29. 30.

31–32 Express the integral as a limit of sums. Then evaluate,
using a computer algebra system to find both the sum and the
limit.

31. 32.

The graph of is shown. Evaluate each integral by inter-
preting it in terms of areas.

(a) (b)

(c) (d)

34. The graph of t consists of two straight lines and a semicircle.
Use it to evaluate each integral.

(a) (b) (c)
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y9

0
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5
 f !x" dx

y5

0
 f !x" dxy2

0
 f !x" dx

f33.

y10

2
 x 6 dxy*

0
 sin 5x dx

CAS

y10

1
 !x % 4 ln x" dxy6

2
 

x
1 # x 5 dx

yb

a
 x 2 dx !

b 3 % a 3

3

yb

a
 x dx !

b 2 % a 2

2

x40  !x 2 % 3x" dx

n ! 8
x40  !x 2 % 3x" dx9–12 Use the Midpoint Rule with the given value of to approx-

imate the integral. Round the answer to four decimal places.

10. ,

11. 12.

13. If you have a CAS that evaluates midpoint approximations 
and graphs the corresponding rectangles (use middlesum
and middlebox commands in Maple), check the answer to
Exercise 11 and illustrate with a graph. Then repeat with

and .

14. With a programmable calculator or computer (see the instruc-
tions for Exercise 7 in Section 5.1), compute the left and right
Riemann sums for the function on the interval

with . Explain why these estimates show that

Deduce that the approximation using the Midpoint Rule with
in Exercise 11 is accurate to two decimal places.

15. Use a calculator or computer to make a table of values of
right Riemann sums for the integral with 

, 10, 50, and 100. What value do these numbers appear
to be approaching?

16. Use a calculator or computer to make a table of values of 
left and right Riemann sums and for the integral 

with , 10, 50, and 100. Between what two 
numbers must the value of the integral lie? Can you make a 
similar statement for the integral ? Explain.

17–20 Express the limit as a definite integral on the given 
interval.

17.

18.

,

20. ,

21–25 Use the form of the definition of the integral given in 
Theorem 4 to evaluate the integral.

21. 22.

24.

25. y2

1
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54.

55– 60 Use Property 8 to estimate the value of the integral.

55. 56.

57. 58.

59. 60.

61– 62 Use properties of integrals, together with Exercises 27 and
28, to prove the inequality.

61. 62.

63. Prove Property 3 of integrals.

64. Prove Property 6 of integrals.

65. If is continuous on , show that

[Hint: .]

66. Use the result of Exercise 65 to show that

67. Let if is any rational number and if is
any irrational number. Show that is not integrable on .

68. Let and if . Show that is not
integrable on . [Hint: Show that the first term in the Rie-
mann sum, , can be made arbitrarily large.]

69– 70 Express the limit as a definite integral.

69. [Hint: Consider .]

70.

71. Find . Hint: Choose to be the geometric mean of
and (that is, ) and use the identity

1
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24
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*)6
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24

35–40 Evaluate the integral by interpreting it in terms of areas.

35. 36.

38.

39. 40.

41. Evaluate .

42. Given that , what is

?

43. In Example 2 in Section 5.1 we showed that . 
Use this fact and the properties of integrals to evaluate

.

44. Use the properties of integrals and the result of Example 3 to
evaluate .

45. Use the result of Example 3 to evaluate .

46. Use the result of Exercise 27 and the fact that 
(from Exercise 25 in Section 5.1), together with the properties
of integrals, to evaluate .

Write as a single integral in the form :

48. If and , find .

If and , find 
.

50. Find if

51. Suppose has absolute minimum value and absolute max-
imum value . Between what two values must 
lie? Which property of integrals allows you to make your 
conclusion?

52–54 Use the properties of integrals to verify the inequality with-
out evaluating the integrals.

52.
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1. (a) Draw the line and use geometry to find the area under this line, above the 
-axis, and between the vertical lines and .

(b) If , let be the area of the region that lies under the line between
and . Sketch this region and use geometry to find an expression for .

(c) Differentiate the area function . What do you notice?

2. (a) If , let

represents the area of a region. Sketch that region.
(b) Use the result of Exercise 28 in Section 5.2 to find an expression for .
(c) Find . What do you notice?
(d) If and h is a small positive number, then represents the area 

of a region. Describe and sketch the region.
(e) Draw a rectangle that approximates the region in part (d). By comparing the areas of

these two regions, show that

(f) Use part (e) to give an intuitive explanation for the result of part (c).

; 3. (a) Draw the graph of the function in the viewing rectangle 
by .

(b) If we define a new function by

then is the area under the graph of from 0 to [until becomes negative, at
which point becomes a difference of areas]. Use part (a) to determine the value of 

at which starts to decrease. [Unlike the integral in Problem 2, it is impossible to
evaluate the integral defining to obtain an explicit expression for .]

(c) Use the integration command on your calculator or computer to estimate , ,
, . . . , , . Then use these values to sketch a graph of .

(d) Use your graph of from part (c) to sketch the graph of using the interpretation of
as the slope of a tangent line. How does the graph of compare with the graph 

of ?

4. Suppose is a continuous function on the interval and we define a new function 
by the equation

Based on your results in Problems 1–3, conjecture an expression for .t+!x"

t!x" ! yx

a
 f !t" dt

t&a, b'f

f
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t+t
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0
 cos!t 2 " dt

t
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h

( 1 # x 2
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A!x"

A!x" ! yx

%1
 !1 # t 2 " dt

x " %1

A!x"
A!x"t ! xt ! 1

y ! 2t # 1A!x"x ) 1
t ! 3t ! 1t

y ! 2t # 1
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P R O J E C T

SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS | | | | 379

THE FUNDAMENTAL THEOREM OF CALCULUS

The Fundamental Theorem of Calculus is appropriately named because it establishes a
connection between the two branches of calculus: differential calculus and integral calcu-
lus. Differential calculus arose from the tangent problem, whereas integral calculus arose
from a seemingly unrelated problem, the area problem. Newton’s mentor at Cambridge,

5.3



Isaac Barrow (1630–1677), discovered that these two problems are actually closely 
related. In fact, he realized that differentiation and integration are inverse processes. The
Fundamental Theorem of Calculus gives the precise inverse relationship between the
derivative and the integral. It was Newton and Leibniz who exploited this relationship and
used it to develop calculus into a systematic mathematical method. In particular, they saw
that the Fundamental Theorem enabled them to compute areas and integrals very easily
without having to compute them as limits of sums as we did in Sections 5.1 and 5.2.

The first part of the Fundamental Theorem deals with functions defined by an equation
of the form

where is a continuous function on and varies between and . Observe that 
depends only on , which appears as the variable upper limit in the integral. If is a fixed
number, then the integral is a definite number. If we then let vary, the number

also varies and defines a function of denoted by .
If happens to be a positive function, then can be interpreted as the area under the

graph of from to , where can vary from to . (Think of as the “area so far” func-
tion; see Figure 1.)

EXAMPLE 1 If is the function whose graph is shown in Figure 2 and
, find the values of , , , , , and . Then sketch a

rough graph of .

SOLUTION First we notice that . From Figure 3 we see that is the
area of a triangle:

To find we add to the area of a rectangle:

We estimate that the area under from 2 to 3 is about 1.3, so
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For , is negative and so we start subtracting areas:

We use these values to sketch the graph of in Figure 4. Notice that, because is
positive for , we keep adding area for and so is increasing up to ,
where it attains a maximum value. For , decreases because is negative. M

If we take and , then, using Exercise 27 in Section 5.2, we have

Notice that , that is, . In other words, if is defined as the integral of by
Equation 1, then turns out to be an antiderivative of , at least in this case. And if we
sketch the derivative of the function shown in Figure 4 by estimating slopes of tangents,
we get a graph like that of in Figure 2. So we suspect that in Example 1 too.

To see why this might be generally true we consider any continuous function with
. Then can be interpreted as the area under the graph of from

to , as in Figure 1.
In order to compute from the definition of derivative we first observe that,

for is obtained by subtracting areas, so it is the area under the
graph of from to (the gold area in Figure 5). For small you can see from the
figure that this area is approximately equal to the area of the rectangle with height and
width :

so

Intuitively, we therefore expect that

The fact that this is true, even when is not necessarily positive, is the first part of the Fun-
damental Theorem of Calculus.

THE FUNDAMENTAL THEOREM OF CALCULUS, PART 1 If is continuous on ,
then the function defined by

is continuous on and differentiable on , and .t+!x" ! f !x"!a, b"&a, b'
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t+! ff
t

ft
ftt+ ! ft+!x" ! x

t!x" ! y x

0
 t dt !

x 2

2

a ! 0f !t" ! t

f !t"tx ) 3
x ! 3tt ! 3t ! 3

f !t"t

t!5" ! t!4" # y5

4
 f !t" dt ( 3 # !%1.3" ! 1.7

t!4" ! t!3" # y4

3
 f !t" dt ( 4.3 # !%1.3" ! 3.0

f !t"t ) 3
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FIGURE 4
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FIGURE 5

N We abbreviate the name of this theorem as
FTC1. In words, it says that the derivative of a
definite integral with respect to its upper limit is
the integrand evaluated at the upper limit.



PROOF If and are in , then

(by Property 5)

and so, for ,

For now let us assume that . Since is continuous on , the Extreme
Value Theorem says that there are numbers and in such that 
and , where and are the absolute minimum and maximum values of 
on . (See Figure 6.)

By Property 8 of integrals, we have

that is,

Since , we can divide this inequality by :

Now we use Equation 2 to replace the middle part of this inequality:

Inequality 3 can be proved in a similar manner for the case . (See Exercise 67.)
Now we let . Then and , since and lie between and .

Therefore

and

because is continuous at . We conclude, from (3) and the Squeeze Theorem, thatxf

lim
hl 0

 f !v" ! lim
vlx

 f !v" ! f !x"

lim
hl 0

 f !u" ! lim
ulx

 f !u" ! f !x"

x # hxvuvl xul xh l 0
h ! 0

f !u" (
t!x # h" % t!x"

h
( f !v"3

f !u" (
1
h

 y x#h

x
 f !t" dt ( f !v"

hh ) 0

 f !u"h ( yx#h

x
 f !t" dt ( f !v"h

 mh ( y x#h

x
 f !t" dt ( Mh

&x, x # h'
fMmf !v" ! M

f !u" ! m&x, x # h'vu
&x, x # h'fh ) 0

t!x # h" % t!x"
h

!
1
h

 y x#h

x
 f !t" dt2

h " 0

 ! y x#h

x
 f !t" dt

 ! ,y x

a
 f !t" dt # y x#h

x
 f !t" dt- % y x

a
 f !t" dt

 t!x # h" % t!x" ! y x#h

a
 f !t" dt % y x

a
 f !t" dt

!a, b"x # hx
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FIGURE 6  
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If or , then Equation 4 can be interpreted as a one-sided limit. Then Theo-
rem 2.8.4 (modified for one-sided limits) shows that is continuous on . M

Using Leibniz notation for derivatives, we can write FTC1 as

when is continuous. Roughly speaking, Equation 5 says that if we first integrate and
then differentiate the result, we get back to the original function .

EXAMPLE 2 Find the derivative of the function .

SOLUTION Since is continuous, Part 1 of the Fundamental Theorem of
Calculus gives

M

EXAMPLE 3 Although a formula of the form may seem like a strange
way of defining a function, books on physics, chemistry, and statistics are full of such
functions. For instance, the Fresnel function

is named after the French physicist Augustin Fresnel (1788–1827), who is famous for his
works in optics. This function first appeared in Fresnel’s theory of the diffraction of light
waves, but more recently it has been applied to the design of highways.

Part 1 of the Fundamental Theorem tells us how to differentiate the Fresnel function:

This means that we can apply all the methods of differential calculus to analyze (see
Exercise 61).

Figure 7 shows the graphs of and the Fresnel function
. A computer was used to graph by computing the value of this 

integral for many values of . It does indeed look as if is the area under the graph 
of from to [until , when becomes a difference of areas]. Figure 8
shows a larger part of the graph of .

If we now start with the graph of in Figure 7 and think about what its derivative
should look like, it seems reasonable that . [For instance, is increasing
when and decreasing when .] So this gives a visual confirmation of
Part 1 of the Fundamental Theorem of Calculus. M

f !x" ! 0f !x" ) 0
SS+!x" ! f !x"

S
S

S!x"x ( 1.4x0f
S!x"x

SS!x" ! xx0  f !t" dt
f !x" ! sin!*x 2)2"

S

S+!x" ! sin!*x 2)2"

S!x" ! y x

0
 sin!* t 2)2" dt

t!x" ! xxa  f !t" dt

t+!x" ! s1 # x 2 

f !t" ! s1 # t 2 

t!x" ! y x

0
 s1 # t 2  dtV

f
ff

d
dx

 y x

a
 f !t" dt ! f !x"5

&a, b't
bx ! a

t+!x" ! lim
hl 0

 
t!x # h" % t!x"

h
! f !x"4
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FIGURE 7
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EXAMPLE 4 Find .

SOLUTION Here we have to be careful to use the Chain Rule in conjunction with FTC1. 
Let . Then

(by the Chain Rule)

(by FTC1)

M

In Section 5.2 we computed integrals from the definition as a limit of Riemann sums
and we saw that this procedure is sometimes long and difficult. The second part of the 
Fundamental Theorem of Calculus, which follows easily from the first part, provides us
with a much simpler method for the evaluation of integrals.

THE FUNDAMENTAL THEOREM OF CALCULUS, PART 2 If is continuous on 
, then

where is any antiderivative of , that is, a function such that .

PROOF Let . We know from Part 1 that ; that is, is an anti-
derivative of . If is any other antiderivative of on , then we know from Corol-
lary 4.2.7 that and differ by a constant:

for . But both and are continuous on and so, by taking limits of both
sides of Equation 6 (as and ), we see that it also holds when and

.
If we put in the formula for , we get

So, using Equation 6 with and , we have

M ! yb

a
 f !t" dt

 ! t!b" ! t!a" ! t!b"

 F!b" ! F!a" ! #t!b" " C $ ! #t!a" " C $

x ! ax ! b

t!a" ! ya

a
 f !t" dt ! 0

t!x"x ! a
x ! b

x ! axl b!xl a"

#a, b$tFa # x # b

F!x" ! t!x" " C6

tF
#a, b$fFf

tt$!x" ! f !x"t!x" ! xxa  f !t" dt

F$ ! ffF

yb

a
 f !x" dx ! F!b" ! F!a"

#a, b$
f

 ! sec!x 4 " ! 4x 3

 ! sec u 
du
dx

 !
d
du

 %yu

1
 sec t dt& 

du
dx

 
d
dx

 y x 4

1
 sec t dt !

d
dx

 yu

1
 sec t dt

u ! x 4

 
d
dx

 y x 4

1
 sec t dt
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N We abbreviate this theorem as FTC2.



Part 2 of the Fundamental Theorem states that if we know an antiderivative of , then
we can evaluate simply by subtracting the values of at the endpoints of the
interval . It’s very surprising that , which was defined by a complicated pro-
cedure involving all of the values of for , can be found by knowing the val-
ues of at only two points, and .

Although the theorem may be surprising at first glance, it becomes plausible if we inter-
pret it in physical terms. If is the velocity of an object and is its position at time t,
then , so s is an antiderivative of . In Section 5.1 we considered an object that
always moves in the positive direction and made the guess that the area under the velocity
curve is equal to the distance traveled. In symbols:

That is exactly what FTC2 says in this context.

EXAMPLE 5 Evaluate the integral .

SOLUTION The function is continuous everywhere and we know that an anti-
derivative is , so Part 2 of the Fundamental Theorem gives

Notice that FTC2 says we can use any antiderivative F of f. So we may as well use
the simplest one, namely , instead of or . M

We often use the notation

So the equation of FTC2 can be written as

Other common notations are and .

EXAMPLE 6 Find the area under the parabola from 0 to 1.

SOLUTION An antiderivative of is . The required area is found using
Part 2 of the Fundamental Theorem:

M

If you compare the calculation in Example 6 with the one in Example 2 in Section 5.1,
you will see that the Fundamental Theorem gives a much shorter method.

A ! y1

0
 x 2 dx !

x 3

3 '0

1

!
13

3
!

03

3
!

1
3

AF!x" ! 1
3 x 3f !x" ! x 2

y ! x 2

#F!x"$ a
bF!x" ( a

b

F$! fwhereyb

a
 f !x" dx ! F!x"] a

b

F!x"] a

b
! F!b" ! F!a"

ex " Cex " 7F!x" ! ex

y3

1
 ex dx ! F!3" ! F!1" ! e 3 ! e

F!x" ! ex
f !x" ! ex

y3

1
 ex dxV

yb

a
 v!t" dt ! s!b" ! s!a"

vv!t" ! s$!t"
s!t"v!t"

baF!x"
a % x % bf !x"

xba  f !x" dx#a, b$
Fxba  f !x" dx

fF
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N Compare the calculation in Example 5 with the
much harder one in Example 3 in Section 5.2.

N In applying the Fundamental Theorem we use
a particular antiderivative of . It is not neces-
sary to use the most general antiderivative.

fF



EXAMPLE 7 Evaluate .

SOLUTION The given integral is an abbreviation for

An antiderivative of is and, because , we can write
. So

M

EXAMPLE 8 Find the area under the cosine curve from to , where .

SOLUTION Since an antiderivative of is , we have

In particular, taking , we have proved that the area under the cosine curve
from 0 to is . (See Figure 9.) M

When the French mathematician Gilles de Roberval first found the area under the sine
and cosine curves in 1635, this was a very challenging problem that required a great deal
of ingenuity. If we didn’t have the benefit of the Fundamental Theorem, we would have to
compute a difficult limit of sums using obscure trigonometric identities (or a computer
algebra system as in Exercise 25 in Section 5.1). It was even more difficult for Roberval
because the apparatus of limits had not been invented in 1635. But in the 1660s and 1670s,
when the Fundamental Theorem was discovered by Barrow and exploited by Newton and
Leibniz, such problems became very easy, as you can see from Example 8.

EXAMPLE 9 What is wrong with the following calculation?

|

SOLUTION To start, we notice that this calculation must be wrong because the answer is
negative but and Property 6 of integrals says that when

. The Fundamental Theorem of Calculus applies to continuous functions. It can’t
be applied here because is not continuous on . In fact, f has an infi-
nite discontinuity at , so

Mdoes not existy3

!1
 

1
x 2  dx

x ! 0
#!1, 3$f !x" ! 1)x 2

f & 0
xba  f !x" dx & 0f !x" ! 1)x 2 & 0

y3

!1
 

1
x 2  dx !

x!1

!1'3

!1

! !
1
3

! 1 ! !
4
3

sin!')2" ! 1')2
b ! ')2

A ! yb

0
 cos x dx ! sin x] 0

b ! sin b ! sin 0 ! sin b

F!x" ! sin xf !x" ! cos x

0 % b % ')2b0

 ! ln 
6
3

! ln 2

 y6

3
 
1
x

 dx ! ln x]3
6

! ln 6 ! ln 3

F!x" ! ln x
3 % x % 6F!x" ! ln ( x (f !x" ! 1)x

y6

3
 
1
x

 dx

y6

3
 
dx
x

386 | | | | CHAPTER 5 INTEGRALS

FIGURE 9  

y

0

1

x

y=cos x

area=1
π
2



DIFFERENTIATION AND INTEGRATION AS INVERSE PROCESSES

We end this section by bringing together the two parts of the Fundamental Theorem.

THE FUNDAMENTAL THEOREM OF CALCULUS Suppose is continuous on .

1. If , then .

2. , where is any antiderivative of , that is, .

We noted that Part 1 can be rewritten as

which says that if is integrated and then the result is differentiated, we arrive back at the
original function . Since , Part 2 can be rewritten as

This version says that if we take a function , first differentiate it, and then integrate the
result, we arrive back at the original function , but in the form . Taken 
together, the two parts of the Fundamental Theorem of Calculus say that differentiation
and integration are inverse processes. Each undoes what the other does.

The Fundamental Theorem of Calculus is unquestionably the most important theorem
in calculus and, indeed, it ranks as one of the great accomplishments of the human mind.
Before it was discovered, from the time of Eudoxus and Archimedes to the time of Galileo
and Fermat, problems of finding areas, volumes, and lengths of curves were so difficult
that only a genius could meet the challenge. But now, armed with the systematic method
that Newton and Leibniz fashioned out of the Fundamental Theorem, we will see in the
chapters to come that these challenging problems are accessible to all of us.

F!b" ! F!a"F
F

yb

a
 F$!x" dx ! F!b" ! F!a"

F$!x" ! f !x"f
f

d
dx

 y x

a
 f !t" dt ! f !x"

F$ ! ffFyb

a
 f !x" dx ! F!b" ! F!a"

t$!x" ! f !x"t!x" ! yx

a
 f !t" dt

#a, b$f
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(a) Evaluate for and 6.
(b) Estimate .
(c) Where does have a maximum value? Where does it have a

minimum value?
(d) Sketch a rough graph of .

Let , where is the function whose graph 
is shown.
(a) Evaluate , , , , and .
(b) On what interval is increasing?t

t!6"t!3"t!2"t!1"t!0"

ft!x" ! xx0  f !t" dt3.

t

t
t!7"

x ! 0, 1, 2, 3, 4, 5,t!x"1. Explain exactly what is meant by the statement that “differenti-
ation and integration are inverse processes.”

2. Let , where is the function whose graph 
is shown.

t

y

0

1

1 4 6

ft!x" ! xx0  f !t" dt

EXERCISES5.3
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15. 16.

18.

19–42 Evaluate the integral.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. where 

42. where 

; 43–46 What is wrong with the equation?

43.

44.

45.

46. y
�

0
 sec2x dx � tan x]0

�
� 0

y
�

��3
 sec � tan � d� � sec �]�

��3 � �3

y
2

�1
 

4

x 3  dx � �
2

x 2�2

�1

�
3

2

y
1

�2
 x�4 dx �

x�3

�3�
1

�2

� �
3

8

f �x� � �2

4 � x 2

if �2 � x � 0

if 0 � x � 2y
2

�2
 f �x� dx

f �x� � �sin x

cos x

if 0 � x � ��2

if ��2 � x � �
y

�

0
 f �x� dx

y
2

1
 
4 � u2

u3  duy
1

�1
 eu�1 du

y
1

0
 

4

t 2 � 1
 dty

s3�2

1�2
 

6

s1 � t 2  dt

y
1

0
 10 x dxy

9

1
 

1

2x
 dx

y
1

0
 cosh t dty

2

1
 �1 � 2y�2 dy

y
��4

0
 sec � tan � d�y

��4

0
 sec2t dt

y
2

0
 �y � 1��2y � 1� dyy

9

1
 
x � 1

sx 
 dx

y
1

0
 (3 � xsx ) dxy

2

0
 x�2 � x5� dx

y
2�

�
 cos � d�y

2

1
 
3

t 4  dt

y
8

1
 s3 x dxy

1

0
 x4�5 dx

y
1

0
 (1 �

1
2 u 4 �

2
5 u9) duy

4

1
 �5 � 2t � 3t 2� dt

y
5

�2
 6 dxy

2

�1
 �x 3 � 2x� dx

y � y
0

ex
  sin3t dty � y

1

1�3x
 

u 3

1 � u 2  du17.

y � y
cos x

1
 �1 � v 2�10 dvy � y

tan x

0
 st � st   dt(c) Where does have a maximum value?

(d) Sketch a rough graph of .

4. Let , where is the function whose graph is
shown.
(a) Evaluate and .
(b) Estimate , and .
(c) On what interval is increasing?
(d) Where does have a maximum value?
(e) Sketch a rough graph of .
(f) Use the graph in part (e) to sketch the graph of . 

Compare with the graph of .

5–6 Sketch the area represented by . Then find in two
ways: (a) by using Part 1 of the Fundamental Theorem and (b) by
evaluating the integral using Part 2 and then differentiating.

5. 6.

7–18 Use Part 1 of the Fundamental Theorem of Calculus to find
the derivative of the function.

7. 8.

10.

11.

12.

14. h�x� � y
x 2

0
 s1 � r 3 drh�x� � y

1�x

2
 arctan t dt13.

G�x� � y
1

x
 cos st  dt

�Hint: y
�

x
s1 � sec t  dt � �y

x

�
 s1 � sec t  dt�

F�x� � y
�

x
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t�r� � y
r

0
 sx 2 � 4  dxt�y� � y

y

2
 t 2 sin t dt9.

t�x� � y
x

3
 et 2�t dtt�x� � y

x

1
 

1

t 3 � 1
 dt

t�x� � y
x

0
 (1 � st ) dtt�x� � y

x

1
 t 2  dt

t��x�t�x�

1 t

y

1

0

f

f
t��x�

t

t

t

t�0�t��2�, t��1�
t�3�t��3�

ft�x� � x
x

�3 f �t� dt

1 5 t

y

1

0

f

t
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The sine integral function

is important in electrical engineering. [The integrand
is not defined when , but we know that

its limit is 1 when . So we define and this
makes a continuous function everywhere.]
(a) Draw the graph of .
(b) At what values of does this function have local maxi-

mum values?
(c) Find the coordinates of the first inflection point to the

right of the origin.
(d) Does this function have horizontal asymptotes?
(e) Solve the following equation correct to one decimal place:

63–64 Let , where is the function whose graph
is shown.
(a) At what values of do the local maximum and minimum 

values of occur?
(b) Where does attain its absolute maximum value?
(c) On what intervals is concave downward?
(d) Sketch the graph of .

64.

65– 66 Evaluate the limit by first recognizing the sum as a Rie-
mann sum for a function defined on .

65.

66. lim
nl)

 
1
n

 %,1
n

 ",2
n

 ",3
n

 " * * * ",n
n

 &
lim
nl)

 -
n

i!1
 
i 3

n 4

#0, 1$

y

1 t0 73 5 9

f

_0.2

0.2

0.4

y

2 t0
_1
_2

1
2

4 6 8

3

f

63.

t
t

t
t

x

ft!x" ! xx0  f !t" dt

yx

0
 
sin t

t
 dt ! 1

x
Si

f
f !0" ! 1t l 0

t ! 0f !t" ! !sin t")t

Si!x" ! y x

0
 
sin t

t
 dt

62.CAS; 47– 50 Use a graph to give a rough estimate of the area of the
region that lies beneath the given curve. Then find the exact area.

47. , 48. ,

49. , 50. ,

51–52 Evaluate the integral and interpret it as a difference of
areas. Illustrate with a sketch.

52.

53–56 Find the derivative of the function.

54.

55.

56.

57. If , where ,

find .

58. Find the interval on which the curve 
is concave upward.

59. If , is continuous, and , what is
the value of ?

60. The error function

is used in probability, statistics, and engineering.
(a) Show that .
(b) Show that the function satisfies the differ-

ential equation .

61. The Fresnel function was defined in Example 3 and
graphed in Figures 7 and 8.
(a) At what values of does this function have local maxi-

mum values?
(b) On what intervals is the function concave upward?
(c) Use a graph to solve the following equation correct to two

decimal places:

y x

0
 sin!' t 2)2" dt ! 0.2

CAS

x

S

y$ ! 2xy " 2)s'  

y ! e x2

erf!x"
xba  e!t2

 dt ! 1
2 s'  

#erf!b" ! erf!a"$

erf!x" !
2
s'  y x

0
 e!t 2

 dt

f !4"
x41  f $!x" dx ! 17f $f !1" ! 12

y ! y x

0
 

1
1 " t " t 2  dt

F +!2"

f !t" ! yt 2

1
 
s1 " u 4 

u
 duF!x" ! y x

1
 f !t" dt

y ! y5x

cos x
 cos!u 2 " du

y ! yx 3

sx 
 st sin t dt

t!x" ! y x 2

tan x
 

1
s2 " t 4 

 dt

+ Hint: y3x

2x
 f !u" du ! y0

2x
 f !u" du " y3x

0
 f !u" du'

t!x" ! y3x

2x
 
u 2 ! 1
u 2 " 1

 du53.

y5')2

')4
 sin x dxy2

!1
 x 3 dx51.

0 % x % ')3y ! sec2x0 % x % 'y ! sin x

1 % x % 6y ! x !40 % x % 27y ! s3 x 
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75. A manufacturing company owns a major piece of equipment
that depreciates at the (continuous) rate , where is the
time measured in months since its last overhaul. Because a
fixed cost is incurred each time the machine is overhauled,
the company wants to determine the optimal time (in
months) between overhauls.
(a) Explain why represents the loss in value of the

machine over the period of time since the last overhaul.
(b) Let be given by

What does represent and why would the company want
to minimize ?

(c) Show that has a minimum value at the numbers 
where .

76. A high-tech company purchases a new computing system
whose initial value is . The system will depreciate at the rate

and will accumulate maintenance costs at the rate
, where is the time measured in months. The company

wants to determine the optimal time to replace the system.
(a) Let

Show that the critical numbers of occur at the numbers 
where .

(b) Suppose that

and

Determine the length of time for the total depreciation
to equal the initial value .

(c) Determine the absolute minimum of on .
(d) Sketch the graphs of and in the same coordinate

system, and verify the result in part (a) in this case.
f " tC

!0, T $C
VD!t" ! x t0 f !s" ds

T

t , 0t!t" !
Vt 2

12,900

f !t" ! *
0

V
15

!
V

450
 t if

if

0 # t % 30

t , 30

C!t" ! f !t" " t!t"
tC

C!t" !
1
t

 yt

0
 # f !s" " t!s"$ ds

tt ! t!t"
f ! f !t"

V

C!T " ! f !T "
t ! TC

C
C

C!t" !
1
t

 +A " yt

0
 f !s" ds'

C ! C!t"
t

x t0 f !s" ds

T
A

tf ! f !t"
67. Justify (3) for the case .

68. If is continuous and and are differentiable functions, find
a formula for

69. (a) Show that for .
(b) Show that .

70. (a) Show that for .
(b) Deduce that .

71. Show that

by comparing the integrand to a simpler function.

Let

and

(a) Find an expression for similar to the one for .
(b) Sketch the graphs of and .
(c) Where is differentiable? Where is differentiable?

Find a function and a number such that

for all 

The area labeled is three times the area labeled . Express 
in terms of .

0 a
A

y=´

0 b

B

y=´
y

x

y

x

a
bAB74.

x , 06 " y x

a
 
 f !t"
t 2  dt ! 2sx 

af73.

tf
tf

f !x"t!x"

t!x" ! y x

0
 f !t" dt

0
x
2 ! x
0

if x # 0
if 0 % x % 1
if 1 # x % 2
if x , 2

f !x" !

72.

0 % y10

5
 

x 2

x 4 " x 2 " 1
 dx % 0.1

x')6
0  cos!x 2" dx & 1

2

0 % x % 1cos!x 2" & cos x

1 % x10  s1 " x 3 dx % 1.25
x & 01 % s1 " x 3 % 1 " x 3

d
dx

 yh!x"

t!x"
 f !t" dt

htf

h # 0
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INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM

We saw in Section 5.3 that the second part of the Fundamental Theorem of Calculus pro-
vides a very powerful method for evaluating the definite integral of a function, assuming
that we can find an antiderivative of the function. In this section we introduce a notation
for antiderivatives, review the formulas for antiderivatives, and use them to evaluate defi-
nite integrals. We also reformulate FTC2 in a way that makes it easier to apply to science
and engineering problems.

INDEFINITE INTEGRALS

Both parts of the Fundamental Theorem establish connections between antiderivatives and
definite integrals. Part 1 says that if is continuous, then is an antiderivative of . 
Part 2 says that can be found by evaluating , where F is an antideriv-
ative of f.

We need a convenient notation for antiderivatives that makes them easy to work with.
Because of the relation given by the Fundamental Theorem between antiderivatives and
integrals, the notation is traditionally used for an antiderivative of and is called
an indefinite integral. Thus

means

For example, we can write

So we can regard an indefinite integral as representing an entire family of functions (one
antiderivative for each value of the constant C ).

| You should distinguish carefully between definite and indefinite integrals. A definite
integral is a number, whereas an indefinite integral is a function (or
family of functions). The connection between them is given by Part 2 of the Fundamental
Theorem. If is continuous on , then

The effectiveness of the Fundamental Theorem depends on having a supply of anti-
derivatives of functions. We therefore restate the Table of Antidifferentiation Formulas
from Section 4.9, together with a few others, in the notation of indefinite integrals. Any
formula can be verified by differentiating the function on the right side and obtaining the
integrand. For instance

because
d
dx

 !tan x " C " ! sec2x y sec2x dx ! tan x " C

yb

a
 f !x" dx ! y f !x" dx]a

b

#a, b$f

x f !x" dxxba  f !x" dx

y x 2 dx !
x 3

3
" C because

d
dx

 % x 3

3
" C& ! x 2

F$!x" ! f !x"y f !x" dx ! F!x"

fx f !x" dx

F!b" ! F!a"xba  f !x" dx
fxxa f !t" dtf

5.4
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TABLE OF INDEFINITE INTEGRALS

Recall from Theorem 4.9.1 that the most general antiderivative on a given interval is
obtained by adding a constant to a particular antiderivative. We adopt the convention that
when a formula for a general indefinite integral is given, it is valid only on an inter-
val. Thus we write

with the understanding that it is valid on the interval or on the interval . This
is true despite the fact that the general antiderivative of the function , , is

EXAMPLE 1 Find the general indefinite integral

SOLUTION Using our convention and Table 1, we have

You should check this answer by differentiating it. M

! 2x 5 ! 2 tan x " C! 10 
x 5

5
! 2 tan x " C

 y !10x 4 ! 2 sec2x" dx ! 10 y x 4 dx ! 2 y sec2x dx

y !10x 4 ! 2 sec2x" dx

!
1
x

" C2 if x , 0
F!x" !

!
1
x

" C1 if x # 0

x " 0f !x" ! 1)x 2
!!), 0"!0, )"

y 1
x 2  dx ! !

1
x

" C

y cosh x dx ! sinh x " Cy sinh x dx ! cosh x " C

y 1
s1 ! x 2 

 dx ! sin!1x " Cy 1
x 2 " 1

 dx ! tan!1x " C

y csc x cot x dx ! !csc x " Cy sec x tan x dx ! sec x " C

y csc2x dx ! !cot x " Cy sec2x dx ! tan x " C

y cos x dx ! sin x " Cy sin x dx ! !cos x " C

y ax dx !
ax

ln a
" Cy ex dx ! ex " C

y 1
x

 dx ! ln( x ( " C!n " !1"y xn dx !
xn"1

n " 1
" C

y k dx ! kx " C

y # f !x" " t!x"$ dx ! y f !x" dx " y t!x" dxy cf !x" dx ! c y f !x" dx

1
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N The indefinite integral in Example 1 is graphed
in Figure 1 for several values of . The value of

is the -intercept.yC
C

4

_4

_1.5 1.5

FIGURE 1



EXAMPLE 2 Evaluate .

SOLUTION This indefinite integral isn’t immediately apparent in Table 1, so we use trigo-
nometric identities to rewrite the function before integrating:

M

EXAMPLE 3 Evaluate .

SOLUTION Using FTC2 and Table 1, we have 

Compare this calculation with Example 2(b) in Section 5.2. M

EXAMPLE 4 Find and interpret the result in terms of areas.

SOLUTION The Fundamental Theorem gives

This is the exact value of the integral. If a decimal approximation is desired, we can use
a calculator to approximate . Doing so, we get

M

EXAMPLE 5 Evaluate .

SOLUTION First we need to write the integrand in a simpler form by carrying out the 
division:

M ! 18 " 18 " 1
9 ! 2 ! 2

3 ! 1 ! 32 4
9

 ! (2 ! 9 " 2
3 ! 93)2 " 1

9 ) ! (2 ! 1 " 2
3 ! 13)2 " 1

1 )

! 2t " 2
3 t 3)2 "

1
t '1

9

 ! 2t "
t 3)2

3
2

!
t!1

!1'1

9

 y9

1
 
2t 2 " t 2st ! 1

t 2  dt ! y9

1
 !2 " t 1)2 ! t!2 " dt

y9

1
 
2t 2 " t 2st ! 1

t 2  dt

y 2

0

 %2x 3 ! 6x "
3

x 2 " 1& dx . !0.67855

tan!1 2

 ! !4 " 3 tan!1 2

 ! 1
2 !24 " ! 3!22 " " 3 tan!1 2 ! 0

 ! 1
2 x 4 ! 3x 2 " 3 tan!1x]2

0

y 2

0

 %2x 3 ! 6x "
3

x 2 " 1& dx ! 2 
x 4

4
! 6 

x 2

2
" 3 tan!1x'

0

2

y 2

0

 %2x 3 ! 6x "
3

x 2 " 1& dxV

 ! 81
4 ! 27 ! 0 " 0 ! !6.75

 ! ( 1
4 ! 34 ! 3 ! 32) ! ( 1

4 ! 04 ! 3 ! 02)

 y3

0
 !x 3 ! 6x" dx !

x 4

4
! 6 

x 2

2 '0

3

y3

0
 !x 3 ! 6x" dx

 ! y csc ( cot ( d( ! !csc ( " C

 y cos (
sin2(

 d( ! y % 1
sin (&% cos (

sin ( & d(

y cos (
sin2(

 d(V

SECTION 5.4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM | | | | 393

N Figure 2 shows the graph of the integrand in
Example 4. We know from Section 5.2 that the
value of the integral can be interpreted as the
sum of the areas labeled with a plus sign minus
the area labeled with a minus sign.
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y

2 x
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FIGURE 2



APPLICATIONS

Part 2 of the Fundamental Theorem says that if f is continuous on , then

where F is any antiderivative of f. This means that , so the equation can be rewrit-
ten as

We know that represents the rate of change of with respect to x and
is the change in y when x changes from a to b. [Note that could, for instance,

increase, then decrease, then increase again. Although might change in both directions,
represents the net change in .] So we can reformulate FTC2 in words as 

follows.

THE NET CHANGE THEOREM The integral of a rate of change is the net change: 

This principle can be applied to all of the rates of change in the natural and social sci-
ences that we discussed in Section 3.7. Here are a few instances of this idea:

N If is the volume of water in a reservoir at time t, then its derivative is
the rate at which water flows into the reservoir at time t. So

is the change in the amount of water in the reservoir between time and time .

N If is the concentration of the product of a chemical reaction at time t, then
the rate of reaction is the derivative . So

is the change in the concentration of C from time to time .

N If the mass of a rod measured from the left end to a point x is , then the 
linear density is . So

is the mass of the segment of the rod that lies between and .

N If the rate of growth of a population is , then

is the net change in population during the time period from to . (The popu-
lation increases when births happen and decreases when deaths occur. The net
change takes into account both births and deaths.)

t2t1

yt2

t1

  
dn
dt

 dt ! n!t2 " ! n!t1"

dn#dt

x ! bx ! a

yb

a
 "!x" dx ! m!b" ! m!a"

"!x" ! m#!x"
m!x"

t2t1

yt2

t1

  
d $C%

dt
 dt ! $C%!t2 " ! $C%!t1"

d $C%#dt
$C%!t"

t2t1

yt2

t1

  V#!t" dt ! V!t2 " ! V!t1"

V#!t"V!t"

yb

a
 F#!x" dx ! F!b" ! F!a"

yF!b" ! F!a"
y

yF!b" ! F!a"
y ! F!x"F#!x"

yb

a
 F#!x" dx ! F!b" ! F!a"

F# ! f

yb

a
 f !x" dx ! F!b" ! F!a"

$a, b%
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N If is the cost of producing x units of a commodity, then the marginal cost is
the derivative . So

is the increase in cost when production is increased from units to units.

N If an object moves along a straight line with position function , then its 
velocity is , so

is the net change of position, or displacement, of the particle during the time
period from to . In Section 5.1 we guessed that this was true for the case
where the object moves in the positive direction, but now we have proved that it
is always true.

N If we want to calculate the distance the object travels during that time interval,
we have to consider the intervals when (the particle moves to the right)
and also the intervals when (the particle moves to the left). In both cases
the distance is computed by integrating , the speed. Therefore

Figure 3 shows how both displacement and distance traveled can be interpreted
in terms of areas under a velocity curve.

N The acceleration of the object is , so

is the change in velocity from time to time .

EXAMPLE 6 A particle moves along a line so that its velocity at time is
(measured in meters per second).

(a) Find the displacement of the particle during the time period .
(b) Find the distance traveled during this time period.

SOLUTION
(a) By Equation 2, the displacement is

This means that the particle moved 4.5 m toward the left.

 ! & t 3

3
!

t 2

2
! 6t'

1

4

! !
9
2

 s!4" ! s!1" ! y4

1
 v!t" dt ! y4

1
 !t 2 ! t ! 6" dt

1 $ t $ 4
v!t" ! t 2 ! t ! 6

tV

t2t1

yt2

t1

 a!t" dt ! v!t2 " ! v!t1"

a!t" ! v#!t"

FIGURE 3  
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√

0 t
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√(t)

yt2

t1
( v!t" ( dt ! total distance traveled3

( v!t" (
v!t" $ 0

v!t" % 0

t2t1

yt2

t1

 v!t" dt ! s!t2 " ! s!t1"2

v!t" ! s#!t"
s!t"

x2x1

yx2

x1

 C#!x" dx ! C!x2 " ! C!x1"

C#!x"
C!x"
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(b) Note that and so on the interval 
and on . Thus, from Equation 3, the distance traveled is

M

EXAMPLE 7 Figure 4 shows the power consumption in the city of San Francisco for a
day in September (P is measured in megawatts; t is measured in hours starting at mid-
night). Estimate the energy used on that day.

SOLUTION Power is the rate of change of energy: . So, by the Net Change 
Theorem,

is the total amount of energy used that day. We approximate the value of the integral
using the Midpoint Rule with 12 subintervals and :

The energy used was approximately 15,840 megawatt-hours. M

How did we know what units to use for energy in Example 7? The integral is
defined as the limit of sums of terms of the form . Now is measured in
megawatts and is measured in hours, so their product is measured in megawatt-hours.
The same is true of the limit. In general, the unit of measurement for is the prod-
uct of the unit for and the unit for x.f !x"

xba  f !x" dx
&t

P!ti*"P!ti*" &t
x24

0  P!t" dt

 ! 15,840

' 840 ' 810 ' 690 ' 670 ' 550"!2"

 ) !440 ' 400 ' 420 ' 620 ' 790 ' 840 ' 850

 y24

0
 P!t" dt ) $P!1" ' P!3" ' P!5" ' ( ( ( ' P!21" ' P!23"% &t

&t ! 2

y24

0
 P!t" dt ! y24

0
 E#!t" dt ! E!24" ! E!0"

P!t" ! E#!t"

FIGURE 4 
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N A note on units

N To integrate the absolute value of , we use
Property 5 of integrals from Section 5.2 to split
the integral into two parts, one where 
and one where .v!t" % 0

v!t" $ 0

v!t"



32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

44.

; 45. Use a graph to estimate the -intercepts of the curve
. Then use this information to estimate the

area of the region that lies under the curve and above the 
-axis.

; 46. Repeat Exercise 45 for the curve .

47. The area of the region that lies to the right of the -axis and
to the left of the parabola (the shaded region in
the figure) is given by the integral . (Turn your
head clockwise and think of the region as lying below the
curve from to .) Find the area of the
region.

The boundaries of the shaded region are the y-axis, the line
, and the curve . Find the area of this region by

writing x as a function of y and integrating with respect to y
(as in Exercise 47).

y=$œ„x

y=1

0

y

x1

1

y ! s4 x y ! 1
48.

0

y

x1

x=2y-¥
2

y ! 2y ! 0x ! 2y ! y 2

x20  !2y ! y 2 " dy
x ! 2y ! y 2

y

y ! 2x ' 3x 4 ! 2x 6

x

y ! x ' x 2 ! x 4
x

y3)#2

0
 ( sin x ( dxy2

!1
 (x ! 2 ( x () dx43.

y2

1
 
!x ! 1"3

x 2  dxy1#s3

0
 
t 2 ! 1
t 4 ! 1

 dt

y10

!10
 

2e x

sinh x ' cosh x
 dxy64

1
 
1 ' s3 x 

sx  dx

y)#3

0
 
sin * ' sin * tan2*

sec2*
 d*y)#4

0
 
1 ' cos2*

cos2*
 d*

y)#3

)#4
 sec * tan * d*y)

0
 !4 sin * ! 3 cos *" d*

y9

1
 
3x ! 2
sx  dxy4

1
 *5

x
  dx

y5

0
 !2e x ' 4 cos x" dxy1

0
 x(s3 x ' s4 x ) dx31.1–4 Verify by differentiation that the formula is correct.

1.

3.

4.

5–18 Find the general indefinite integral.

5. 6.

7. 8.

10.

11. 12.

13. 14.

15. 16.

17. 18.

; 19–20 Find the general indefinite integral. Illustrate by graphing
several members of the family on the same screen.

19. 20.

21–44 Evaluate the integral.

21. 22.

24.

25. 26.

27. 28.

29. 30. y2

1
 
y ' 5y7

y 3  dyy!1
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 +4y 3 '

2
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 s2t  dty4

1
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EXERCISES5.4
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63. The velocity of a car was read from its speedometer at 
10-second intervals and recorded in the table. Use the
Midpoint Rule to estimate the distance traveled by the car.

64. Suppose that a volcano is erupting and readings of the rate
at which solid materials are spewed into the atmosphere

are given in the table. The time is measured in seconds and
the units for are tonnes (metric tons) per second.

(a) Give upper and lower estimates for the total quantity 
of erupted materials after 6 seconds.

(b) Use the Midpoint Rule to estimate .

65. The marginal cost of manufacturing yards of a certain 
fabric is (in dollars per
yard). Find the increase in cost if the production level is
raised from 2000 yards to 4000 yards.

66. Water flows into and out of a storage tank. A graph of the rate
of change of the volume of water in the tank, in liters per
day, is shown. If the amount of water in the tank at time

is 25,000 L, use the Midpoint Rule to estimate the
amount of water four days later.

67. Economists use a cumulative distribution called a Lorenz
curve to describe the distribution of income between house-
holds in a given country. Typically, a Lorenz curve is defined
on with endpoints and , and is continuous,
increasing, and concave upward. The points on this curve are
determined by ranking all households by income and then
computing the percentage of households whose income is less
than or equal to a given percentage of the total income of the
country. For example, the point is on the
Lorenz curve if the bottom of the households receive less
than or equal to of the total income. Absolute equality of
income distribution would occur if the bottom of the a%

b%
a%

!a#100, b#100"

!1, 1"!0, 0"$0, 1%

3

2000

_1000

r

t0 1 2 4

1000

t ! 0

r!t"

C#!x" ! 3 ! 0.01x ' 0.000006x 2
x

Q!6"

Q!6"

r!t"
t

r!t"

49. If is the rate of growth of a child in pounds per year,
what does represent?

50. The current in a wire is defined as the derivative of the
charge: . (See Example 3 in Section 3.7.) What
does represent?

If oil leaks from a tank at a rate of gallons per minute at
time , what does represent?

52. A honeybee population starts with 100 bees and increases 
at a rate of bees per week. What does 
represent?

53. In Section 4.7 we defined the marginal revenue function 
as the derivative of the revenue function , where is the
number of units sold. What does represent?

54. If is the slope of a trail at a distance of miles from the
start of the trail, what does represent?

55. If is measured in meters and is measured in newtons,
what are the units for ?

56. If the units for are feet and the units for are pounds per
foot, what are the units for ? What units does 
have?

57–58 The velocity function (in meters per second) is given 
for a particle moving along a line. Find (a) the displacement and 
(b) the distance traveled by the particle during the given time 
interval.

,

58. ,

59–60 The acceleration function (in m#s ) and the initial velocity
are given for a particle moving along a line. Find (a) the velocity
at time and (b) the distance traveled during the given time 
interval.

, ,

60. , ,

61. The linear density of a rod of length 4 m is given by
measured in kilograms per meter, where 

is measured in meters from one end of the rod. Find the
total mass of the rod.

62. Water flows from the bottom of a storage tank at a rate of
liters per minute, where . Find

the amount of water that flows from the tank during the first
10 minutes.

0 $ t $ 50r!t" ! 200 ! 4t

x
"!x" ! 9 ' 2sx 

0 $ t $ 3v!0" ! !4a!t" ! 2t ' 3

0 $ t $ 10v!0" ! 5a!t" ! t ' 459.

t

2

1 $ t $ 6v!t" ! t 2 ! 2t ! 8

0 $ t $ 3v!t" ! 3t ! 557.

x82  a!x" dxda#dx
a!x"x

x100
0  f !x" dx

f !x"x

x53  f !x" dx
xf !x"

x5000
1000  R#!x" dx

xR!x"
R#!x"

100 ' x15
0

 n#!t" dtn#!t"

x120
0  r!t" dtt

r!t"51.

xba  I!t" dt
I!t" ! Q#!t"

x10
5  w#!t" dt

w#!t"
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t (s) (mi#h) t (s) (mi#h)

0 0 60 56
10 38 70 53
20 52 80 50
30 58 90 47
40 55 100 45
50 51

vv

t 0 1 2 3 4 5 6

2 10 24 36 46 54 60r!t"



We sometimes read that the inventors of calculus were Sir Isaac Newton (1642–1727) and 
Gottfried Wilhelm Leibniz (1646–1716). But we know that the basic ideas behind integration
were investigated 2500 years ago by ancient Greeks such as Eudoxus and Archimedes, and 
methods for finding tangents were pioneered by Pierre Fermat (1601–1665), Isaac Barrow
(1630–1677), and others. Barrow––who taught at Cambridge and was a major influence on 
Newton––was the first to understand the inverse relationship between differentiation and integra-
tion. What Newton and Leibniz did was to use this relationship, in the form of the Fundamental
Theorem of Calculus, in order to develop calculus into a systematic mathematical discipline. It 
is in this sense that Newton and Leibniz are credited with the invention of calculus.

Read about the contributions of these men in one or more of the given references and write a
report on one of the following three topics. You can include biographical details, but the main
thrust of your report should be a description, in some detail, of their methods and notations. In
particular, you should consult one of the sourcebooks, which give excerpts from the original
publications of Newton and Leibniz, translated from Latin to English.

N The Role of Newton in the Development of Calculus

N The Role of Leibniz in the Development of Calculus

N The Controversy between the Followers of Newton and Leibniz over 
Priority in the Invention of Calculus
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What is the percentage of total income received by the 
bottom of the households? Find the coefficient of
inequality.

; 68. On May 7, 1992, the space shuttle Endeavour was launched
on mission STS-49, the purpose of which was to install a new
perigee kick motor in an Intelsat communications satellite.
The table gives the velocity data for the shuttle between
liftoff and the jettisoning of the solid rocket boosters.
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data by a third-degree polynomial.

(b) Use the model in part (a) to estimate the height reached
by the Endeavour, 125 seconds after liftoff.

50%
households receive of the income, in which case the
Lorenz curve would be the line . The area between the
Lorenz curve and the line measures how much the
income distribution differs from absolute equality. The 
coefficient of inequality is the ratio of the area between the
Lorenz curve and the line to the area under .

(a) Show that the coefficient of inequality is twice the area
between the Lorenz curve and the line , that is,
show that

(b) The income distribution for a certain country is repre-
sented by the Lorenz curve defined by the equation 
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Event Time (s) Velocity (ft#s)

Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445

Solid rocket booster separation 125 4151
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THE SUBSTITUTION RULE

Because of the Fundamental Theorem, it’s important to be able to find antiderivatives. But
our antidifferentiation formulas don’t tell us how to evaluate integrals such as

To find this integral we use the problem-solving strategy of introducing something extra.
Here the “something extra” is a new variable; we change from the variable x to a new vari-
able u. Suppose that we let be the quantity under the root sign in (1), . Then
the differential of is . Notice that if the in the notation for an integral were
to be interpreted as a differential, then the differential would occur in (1) and so, 
formally, without justifying our calculation, we could write

But now we can check that we have the correct answer by using the Chain Rule to differ-
entiate the final function of Equation 2: 

In general, this method works whenever we have an integral that we can write in the
form . Observe that if , then

y F#!t!x""t#!x" dx ! F!t!x"" ' C3

F# ! fx f !t!x""t#!x" dx

d
dx

 [ 2
3 !x 2 ' 1"3#2 ' C] ! 2

3 ! 3
2 !x 2 ' 1"1#2 ! 2x ! 2xsx 2 ' 1

   ! 2
3 u3#2 ' C ! 2

3 !x 2 ' 1"3#2 ' C

 y 2xs1 ' x 2  dx ! y s1 ' x 2  2x dx ! y su  du2

2x dx
dxdu ! 2x dxu

u ! 1 ' x 2u

y 2xs1 ' x 2 dx1

5.5

N Differentials were defined in Section 3.10. 
If , then

du ! f #!x" dx

u ! f !x"



because, by the Chain Rule, 

If we make the “change of variable” or “substitution” , then from Equation 3
we have 

or, writing , we get 

Thus we have proved the following rule.

THE SUBSTITUTION RULE If is a differentiable function whose range
is an interval and is continuous on , then

Notice that the Substitution Rule for integration was proved using the Chain Rule for
differentiation. Notice also that if , then , so a way to remember the
Substitution Rule is to think of and in (4) as differentials.

Thus the Substitution Rule says: It is permissible to operate with dx and du after
integral signs as if they were differentials.

EXAMPLE 1 Find .

SOLUTION We make the substitution because its differential is ,
which, apart from the constant factor 4, occurs in the integral. Thus, using 
and the Substitution Rule, we have

Notice that at the final stage we had to return to the original variable . M

The idea behind the Substitution Rule is to replace a relatively complicated integral 
by a simpler integral. This is accomplished by changing from the original variable to 
a new variable that is a function of . Thus, in Example 1, we replaced the integral

by the simpler integral .
The main challenge in using the Substitution Rule is to think of an appropriate substi-

tution. You should try to choose to be some function in the integrand whose differential
also occurs (except for a constant factor). This was the case in Example 1. If that is not

u

1
4 x cos u dux x 3 cos!x 4 ' 2" dx

xu
x

x

 ! 1
4 sin!x 4 ' 2" ' C

 ! 1
4 sin u ' C

 y x 3 cos!x 4 ' 2" dx ! y cos u ! 1
4 du ! 1

4 y cos u du

x 3 dx ! du#4
du ! 4x 3 dxu ! x 4 ' 2

y x 3 cos!x 4 ' 2" dx

dudx
du ! t#!x" dxu ! t!x"

y f !t!x""t#!x" dx ! y f !u" du

IfI
u ! t!x"4

y f !t!x""t#!x" dx ! y f !u" du

F# ! f

y F#!t!x""t#!x" dx ! F!t!x"" ' C ! F!u" ' C ! y F#!u" du

u ! t!x"

d
dx

 $F!t!x""% ! F#!t!x""t#!x"
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N Check the answer by differentiating it.



possible, try choosing to be some complicated part of the integrand (perhaps the inner
function in a composite function). Finding the right substitution is a bit of an art. It’s not
unusual to guess wrong; if your first guess doesn’t work, try another substitution.

EXAMPLE 2 Evaluate .

SOLUTION 1 Let . Then , so . Thus the Substitution Rule
gives

SOLUTION 2 Another possible substitution is . Then

so

(Or observe that so .) Therefore

M

EXAMPLE 3 Find .

SOLUTION Let . Then , so and

M

The answer to Example 3 could be checked by differentiation, but instead let’s check 
it with a graph. In Figure 1 we have used a computer to graph both the integrand

and its indefinite integral (we take the case
). Notice that decreases when is negative, increases when is positive,

and has its minimum value when . So it seems reasonable, from the graphical evi-
dence, that is an antiderivative of .

EXAMPLE 4 Calculate .

SOLUTION If we let , then , so . Therefore

My e 5x dx ! 1
5 y eu du ! 1

5 e
u ' C ! 1

5 e
5x ' C

dx ! 1
5 dudu ! 5 dxu ! 5x

y e 5x dx

ft
f !x" ! 0

f !x"f !x"t!x"C ! 0
t!x" ! ! 1

4s1 ! 4x 2 f !x" ! x#s1 ! 4x 2 

 ! ! 1
8 (2su ) ' C ! ! 1

4s1 ! 4x 2 ' C

 y x
s1 ! 4x 2 

 dx ! ! 1
8 y 1
su  du ! ! 1

8 y u!1#2 du

x dx ! ! 1
8 dudu ! !8x dxu ! 1 ! 4x 2

y x
s1 ! 4x 2 

 dxV

 !
u 3

3
' C ! 1

3 !2x ' 1"3#2 ' C

 y s2x ' 1 dx ! y u ! u du ! y u 2 du

2u du ! 2 dxu 2 ! 2x ' 1, 

dx ! s2x ' 1 du ! u dudu !
dx

s2x ' 1

u ! s2x ' 1

 ! 1
3 !2x ' 1"3#2 ' C

 !
1
2

!
u 3#2

3#2
' C ! 1

3 u 3#2 ' C

 y s2x ' 1 dx ! y su  
du
2

! 1
2 y u 1#2 du

dx ! du#2du ! 2 dxu ! 2x ' 1

y s2x ' 1 dx

u
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EXAMPLE 5 Find .

SOLUTION An appropriate substitution becomes more obvious if we factor as . Let
. Then , so . Also , so :

M

EXAMPLE 6 Calculate .

SOLUTION First we write tangent in terms of sine and cosine:

This suggests that we should substitute , since then and so
:

M

Since , the result of Example
6 can also be written as

DEFINITE INTEGRALS

When evaluating a definite integral by substitution, two methods are possible. One method
is to evaluate the indefinite integral first and then use the Fundamental Theorem. For
instance, using the result of Example 2, we have 

Another method, which is usually preferable, is to change the limits of integration when
the variable is changed.

 ! 1
3 !9"3#2 ! 1

3 !1"3#2 ! 1
3 !27 ! 1" ! 26

3

 y4

0
 s2x ' 1 dx ! y s2x ' 1 dx]0

4
! 1

3 !2x ' 1"3#2]0

4

y tan x dx ! ln ( sec x ( ' C5

!ln ( cos x ( ! ln!( cos x (!1" ! ln!1#(cos x (" ! ln ( sec x (

 ! !ln ( u ( ' C ! !ln ( cos x ( ' C

 y tan x dx ! y sin x
cos x

 dx ! !y du
u

sin x dx ! !du
du ! !sin x dxu ! cos x

y tan x dx ! y sin x
cos x

 dx

y tan x dxV

 ! 1
7 !1 ' x 2 "7#2 ! 2

5 !1 ' x 2 "5#2 ' 1
3 !1 ' x 2 "3#2 ' C

 ! 1
2 ( 2

7 u 7#2 ! 2 ( 25 u 5#2 ' 2
3 u 3#2 ) ' C

 ! 1
2 y !u 5#2 ! 2u 3#2 ' u 1#2 " du

 ! y su  !u ! 1"2 
du
2

! 1
2 y su  !u 2 ! 2u ' 1" du

 y s1 ' x 2  x 5 dx ! y s1 ' x 2  x 4 ( x dx

x 4 ! !u ! 1"2x 2 ! u ! 1x dx ! du#2du ! 2x dxu ! 1 ' x 2
x 4 ! xx 5

y s1 ' x 2  x 5 dx
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THE SUBSTITUTION RULE FOR DEFINITE INTEGRALS If is continuous on
and is continuous on the range of , then

PROOF Let be an antiderivative of . Then, by (3), is an antiderivative of
, so by Part 2 of the Fundamental Theorem, we have

But, applying FTC2 a second time, we also have

M

EXAMPLE 7 Evaluate using (6).

SOLUTION Using the substitution from Solution 1 of Example 2, we have and
. To find the new limits of integration we note that

and

Therefore

Observe that when using (6) we do not return to the variable x after integrating. We 
simply evaluate the expression in u between the appropriate values of u. M

EXAMPLE 8 Evaluate .

SOLUTION Let . Then , so . When , and u ! !2x ! 1dx ! !du!5du ! !5 dxu ! 3 ! 5x

y2

1
 

dx
"3 ! 5x#2

FIGURE 2  

y

x0

1

2

3

4

y=œ„„„„„2x+1

y

u0

1

2

3

91

œ„u
2y=

 ! 1
3 "93!2 ! 13!2 # ! 26

3

! 1
2 ! 2

3 u 3!2]1

9y4

0
 s2x " 1 dx ! y9

1
 12 su  du

when x ! 4, u ! 2"4# " 1 ! 9when x ! 0, u ! 2"0# " 1 ! 1

dx ! du!2
u ! 2x " 1

y4

0
 s2x " 1 dx

yt"b#

t"a#
 f "u# du ! F"u#]t"a#

t"b#
! F"t"b## ! F"t"a##

yb

a
 f "t"x##t#"x# dx ! F"t"x##]b

a ! F"t"b## ! F"t"a##

f "t"x##t#"x#
F"t"x##fF

yb

a
 f "t"x##t#"x# dx ! yt"b#

t"a#
 f "u# du

u ! t"x#f$a, b%
t#6
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N The geometric interpretation of Example 7 is
shown in Figure 2. The substitution 
stretches the interval by a factor of and
translates it to the right by unit. The Substitu-
tion Rule shows that the two areas are equal.

1
2$0, 4%

u ! 2x " 1

N This rule says that when using a substitution
in a definite integral, we must put everything in
terms of the new variable , not only and 
but also the limits of integration. The new limits
of integration are the values of that correspond
to and .x ! bx ! a

u

dxxu

N The integral given in Example 8 is an 
abbreviation for

y2

1
 

1
"3 ! 5x#2  dx



when , . Thus

M

EXAMPLE 9 Calculate .

SOLUTION We let because its differential occurs in the integral. When
, ; when , . Thus

M

SYMMETRY

The next theorem uses the Substitution Rule for Definite Integrals (6) to simplify the cal-
culation of integrals of functions that possess symmetry properties.

INTEGRALS OF SYMMETRIC FUNCTIONS Suppose is continuous on .

(a) If is even , then .

(b) If is odd , then .

PROOF We split the integral in two:

In the first integral on the far right side we make the substitution . Then
and when , . Therefore

!y!a

0
 f "x# dx ! !ya

0
 f "!u#"!du# ! ya

0
 f "!u# du

u ! ax ! !adu ! !dx
u ! !x

ya

!a
 f "x# dx ! y0

!a
 f "x# dx " ya

0
 f "x# dx ! !y!a

0
 f "x# dx " ya

0
 f "x# dx8

xa
!a f "x# dx ! 0$ f "!x# ! !f "x#%f

xa
!a f "x# dx ! 2 xa0  f "x# dx$ f "!x# ! f "x#%f

$!a, a%f7

FIGURE 3 

x0

y

0.5

1 e

y= ln x
x

ye

1
 
ln x

x
 dx ! y1

0
 u du !

u 2

2 &0

1

!
1
2

u ! ln e ! 1x ! eu ! ln 1 ! 0x ! 1
du ! dx!xu ! ln x

ye

1
 
ln x

x
 dxV

 !
1
5

 '!
1
7

"
1
2( !

1
14

 ! !
1
5  )!

1
u&!2

!7

!
1
5u&!2

!7

 y2

1
 

dx
"3 ! 5x#2 ! !

1
5

 y!7

!2
 
du
u 2

u ! !7x ! 2
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N Since the function in
Example 9 is positive for , the integral 
represents the area of the shaded region in 
Figure 3.

x $ 1
f "x# ! "ln x#!x



and so Equation 8 becomes

(a) If is even, then so Equation 9 gives 

(b) If is odd, then and so Equation 9 gives

M

Theorem 7 is illustrated by Figure 4. For the case where is positive and even, part (a)
says that the area under from to is twice the area from to because of
symmetry. Recall that an integral can be expressed as the area above the -axis
and below minus the area below the axis and above the curve. Thus part (b) says
the integral is because the areas cancel.

EXAMPLE 10 Since satisfies , it is even and so

M

EXAMPLE 11 Since satisfies , it is odd 
and so

My1

!1
 

tan x
1 " x 2 " x 4  dx ! 0

f "!x# ! !f "x#f "x# ! "tan x#!"1 " x 2 " x 4 #

 ! 2[1
7 x

7 " x]0

2
! 2(128

7 " 2) ! 284
7

 y2

!2
 "x 6 " 1# dx ! 2 y2

0
 "x 6 " 1# dx

f "!x# ! f "x#f "x# ! x 6 " 1

0
y ! f "x#

xxba  f "x# dx
a0a!ay ! f "x#

f

ya

!a
 f "x# dx ! !ya

0
 f "u# du " ya

0
 f "x# dx ! 0

f "!u# ! !f "u#f

ya

!a
 f "x# dx ! ya

0
 f "u# du " ya

0
 f "x# dx ! 2 ya

0
 f "x# dx

f "!u# ! f "u#f

ya

!a
 f "x# dx ! ya

0
 f "!u# du " ya

0
 f "x# dx9
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7–46 Evaluate the indefinite integral.

7. 8.

9. 10.

11. 12.

14.

15. 16.

17. 18. y sec 2% tan 2% d%y a " bx 2

s3ax " bx 3  dx

y x
x 2 " 1

 dxy sin & t dt

y e x sin"e x# dxy dx
5 ! 3x

13.

y x
"x 2 " 1#2  dxy "x " 1#s2x " x 2  dx

y "3t " 2#2.4 dty "3x ! 2#20 dx

y x 2"x 3 " 5#9 dxy x sin"x 2# dx

1–6 Evaluate the integral by making the given substitution.

1.

2.

4.

5.

6. y sec2"1!x#
x 2  dx,  u ! 1!x

y cos3% sin % d%,  u ! cos %

y dt
"1 ! 6t#4 ,  u ! 1 ! 6t

y x 2sx 3 " 1 dx, u ! x 3 " 13.

y x 3"2 " x 4#5 dx,  u ! 2 " x 4

y e!x dx, u ! !x

EXERCISES5.5

0

y

x_a a

FIGURE 4

(a) ƒ even, j    ƒ dx=2 j  ƒ dx
0

a

_a

a

0
x

_a
a

y

(b) ƒ odd, j    ƒ dx=0
_a

a



55. 56.

57. 58.

60.

61. 62.

63.

65. 66.

68.

69. 70.

; 71–72 Use a graph to give a rough estimate of the area of the
region that lies under the given curve. Then find the exact area.

71. ,

72. , 

73. Evaluate by writing it as a sum of 
two integrals and interpreting one of those integrals in terms 
of an area.

74. Evaluate by making a substitution and inter-
preting the resulting integral in terms of an area.

Which of the following areas are equal? Why?

76. A model for the basal metabolism rate, in , of a young
man is , where is the time in
hours measured from 5:00 AM. What is the total basal metab-
olism of this man, , over a 24-hour time period?x

24
0  R�t� dt

tR�t� � 85 � 0.18 cos�� t�12�
kcal�h

y=2x´

0 x

y

1

y=esin x sin 2x

0 x

y

π
2

1

y=eœ„x

0 x

y

1

75.

x
1
0  xs1 � x 4 dx

x
2

�2 �x � 3�s4 � x 2 dx

0 � x � �y � 2 sin x � sin 2x

0 � x � 1y � s2x � 1

y
T�2

0
 sin�2� t�T � �� dty

1

0
 
e z � 1

e z � z
 dz

y
1�2

0
 

sin�1x

s1 � x 2 
 dxy

e4

e
 

dx

xsln x 
67.

y
4

0
 

x

s1 � 2x  dxy
2

1
 xsx � 1 dx

y
a

0
 xsa 2 � x 2  dx64.y

a

0
 xsx 2 � a 2  dx �a � 0�

y
��2

0
 cos x sin�sin x� dxy

13

0
 

dx

s
3 �1 � 2x�2 

y
��2

���2
 
x 2 sin x

1 � x 6  dxy
2

1
 
e1�x

x 2  dx59.

y
1

0
 xe�x2

 dxy
��6

���6
 tan3� d� 

y
1�2

1�6
 csc � t cot � t dty

�

0
 sec2�t�4� dt20.

22.

23. 24.

26.

27. 28.

29. 30.

31. 32.

34.

35. 36.

37. 38.

39. 40.

41. 42.

44.

45. 46.

; 47–50 Evaluate the indefinite integral. Illustrate and check that
your answer is reasonable by graphing both the function and its
antiderivative (take ).

47. 48.

49. 50.

51–70 Evaluate the definite integral.

51. 52.

53. 54. y
s� 

0
 x cos�x 2 � dxy

1

0
 x 2�1 � 2x 3 �5 dx

y
7

0
 s4 � 3x  dxy

2

0
 �x � 1�25 dx

y tan2� sec2� d�y sin3x cos x dx

y 
sin sx 

sx  dxy x�x 2 � 1�3 dx

C � 0

y x 3
sx 2 � 1 dxy 

x

s
4 x � 2  dx

y 
x 2

s1 � x  dxy 
1 � x

1 � x 2  dx43.

y 
x

1 � x 4  dxy 
dx

s1 � x 2   sin�1x

y sin t sec2�cos t� dty sec3x tan x dx

y 
dt

cos2 ts1 � tan t y cot x dx

y 
sin x

1 � cos2x
 dxy 

sin 2x

1 � cos2x
 dx

y 
cos���x�

x 2  dxy scot x  csc2x dx33.

y 
e x

e x � 1
 dxy 

cos x

sin2x
 dx

y 
sin�ln x�

x
 dxy e tan x sec2 x dx

y 
tan�1x

1 � x 2  dxy 
z2

s
3 1 � z3  dz

y ecos t sin t dty e x
s1 � e x  dx25.

y �1 � tan ��5 sec2� d�y cos � sin6� d�

y sx  sin�1 � x 3�2� dxy 
cos st 

st 
 dt21.

y 
dx

ax � b
  �a � 0�y 

�ln x�2

x
 dx19.
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83. If is continuous on , prove that

For the case where and , draw a diagram
to interpret this equation geometrically as an equality of areas.

84. If is continuous on , prove that

For the case where , draw a diagram to interpret this
equation geometrically as an equality of areas.

If and are positive numbers, show that

86. If is continuous on , use the substitution to
show that

87. Use Exercise 86 to evaluate the integral

88. (a) If is continuous, prove that

(b) Use part (a) to evaluate and .x&!2
0  sin2x dxx&!2

0  cos2x dx

y&!2

0
 f "cos x# dx ! y&!2

0
 f "sin x# dx

f

y&

0
 

x sin x
1 " cos2x

 dx

y&

0
 x f "sin x# dx !

&

2
 y&

0
 f "sin x# dx

u ! & ! x$0, &%f

y1

0
 x a"1 ! x#b dx ! y1

0
 x b"1 ! x#a dx

ba85.

f "x# ) 0

yb

a
 f "x " c# dx ! yb"c

a"c
 f "x# dx

!f

0 * a * bf "x# ) 0

yb

a
 f "!x# dx ! y!a

!b
 f "x# dx

!f77. An oil storage tank ruptures at time and oil leaks from
the tank at a rate of liters per minute. How
much oil leaks out during the first hour?

78. A bacteria population starts with 400 bacteria and grows at a
rate of bacteria per hour. How many
bacteria will there be after three hours?

79. Breathing is cyclic and a full respiratory cycle from the 
beginning of inhalation to the end of exhalation takes about 5 s.
The maximum rate of air flow into the lungs is about 0.5 L!s.
This explains, in part, why the function has
often been used to model the rate of air flow into the lungs.
Use this model to find the volume of inhaled air in the lungs at
time .

80. Alabama Instruments Company has set up a production line to
manufacture a new calculator. The rate of production of these
calculators after weeks is

(Notice that production approaches 5000 per week as time goes
on, but the initial production is lower because of the workers’
unfamiliarity with the new techniques.) Find the number of cal-
culators produced from the beginning of the third week to the
end of the fourth week.

If is continuous and , find .

82. If is continuous and , find .y3

0
 x f "x 2 # dxy9

0
 f "x# dx ! 4f

y2

0
 f "2x# dxy4

0
 f "x# dx ! 10f81.

dx
dt

! 5000'1 !
100

"t " 10#2( calculators!week

t

t

f "t# ! 1
2 sin"2& t!5#

r"t# ! "450.268#e1.12567t

r"t# ! 100e!0.01t
t ! 0
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REVIEW

C O N C E P T  C H E C K

5

(b) If is the rate at which water flows into a reservoir, what
does represent?

5. Suppose a particle moves back and forth along a straight line
with velocity , measured in feet per second, and accelera-
tion .
(a) What is the meaning of ?

(b) What is the meaning of ?

(c) What is the meaning of ?

6. (a) Explain the meaning of the indefinite integral .
(b) What is the connection between the definite integral

and the indefinite integral ?

7. Explain exactly what is meant by the statement that “differen-
tiation and integration are inverse processes.”

8. State the Substitution Rule. In practice, how do you use it?

x f "x# dxxba  f "x# dx

x f "x# dx

x120
60  a"t# dt

x120
60 * v"t# * dt

x120
60  v"t# dt

a"t#
v"t#

x t2

t1
 r"t# dt

r"t#1. (a) Write an expression for a Riemann sum of a function .
Explain the meaning of the notation that you use.

(b) If , what is the geometric interpretation of a 
Riemann sum? Illustrate with a diagram.

(c) If takes on both positive and negative values, what is
the geometric interpretation of a Riemann sum? Illustrate
with a diagram.

2. (a) Write the definition of the definite integral of a function
from to .

(b) What is the geometric interpretation of if
?

(c) What is the geometric interpretation of if 
takes on both positive and negative values? Illustrate with a
diagram.

3. State both parts of the Fundamental Theorem of Calculus.

4. (a) State the Net Change Theorem.

f "x#xba  f "x# dx
f "x# ) 0

xba  f "x# dx
ba

f "x#

f "x# ) 0

f



Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If and are continuous on , then

2. If and are continuous on , then 

3. If is continuous on , then

4. If is continuous on , then

5. If is continuous on and , then

6. If is continuous on , then .y3

1
 f #"v# dv ! f "3# ! f "1#$1, 3%f #

yb

a
 sf "x#  dx ! +yb

a
 f "x# dx  

f "x# ) 0$a, b%f

yb

a
 x f "x# dx ! x yb

a
 f "x# dx

$a, b%f

yb

a
 5f "x# dx ! 5 yb

a
 f "x# dx

$a, b%f

yb

a
 $ f "x#t"x#% dx ! 'yb

a
 f "x# dx('yb

a
 t"x# dx(

$a, b%tf

yb

a
 $ f "x# " t"x#% dx ! yb

a
 f "x# dx " yb

a
 t"x# dx

$a, b%tf

7. If and are continuous and for , then

8. If and are differentiable and for ,
then for .

9.

10.

11.

12. represents the area under the curve 
from 0 to 2.

13. All continuous functions have derivatives.

14. All continuous functions have antiderivatives.

15. If is continuous on , then

d
dx 'yb

a
 f "x# dx( ! f "x#

$a, b%f

y ! x ! x 3x20  "x ! x 3# dx

y1

!2
 

1
x 4  dx ! !

3
8

y5

!5
 "ax 2 " bx " c# dx ! 2 y5

0
 "ax 2 " c# dx

y1

!1
 'x 5 ! 6x 9 "

sin x
"1 " x 4 #2( dx ! 0

a * x * bf #"x# ) t#"x#
a * x * bf "x# ) t"x#tf

yb

a
 f "x# dx ) yb

a
 t"x# dx

a ' x ' bf "x# ) t"x#tf

T R U E - F A L S E  Q U I Z

1. Use the given graph of to find the Riemann sum with six
subintervals. Take the sample points to be (a) left endpoints and
(b) midpoints. In each case draw a diagram and explain what
the Riemann sum represents.

2. (a) Evaluate the Riemann sum for

with four subintervals, taking the sample points to be right
endpoints. Explain, with the aid of a diagram, what the 
Riemann sum represents.

0 ' x ' 2f "x# ! x 2 ! x

2 x

y

2

0 6

y=ƒ

f (b) Use the definition of a definite integral (with right end-
points) to calculate the value of the integral

(c) Use the Fundamental Theorem to check your answer to
part (b).

(d) Draw a diagram to explain the geometric meaning of the
integral in part (b).

3. Evaluate

by interpreting it in terms of areas.

4. Express

as a definite integral on the interval and then evaluate 
the integral.

$0, &%

lim
n l +

 ,
n

i!1
 sin xi ,x

y1

0
 (x " s1 ! x 2 ) dx

y2

0
 "x 2 ! x# dx
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29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

; 39–40 Evaluate the indefinite integral. Illustrate and check that
your answer is reasonable by graphing both the function and its
antiderivative (take ).

39. 40.

; 41. Use a graph to give a rough estimate of the area of the region
that lies under the curve . Then find the
exact area.

; 42. Graph the function and use the graph to
guess the value of the integral . Then evaluate the
integral to confirm your guess.

43–48 Find the derivative of the function.

43. 44.

45. 46.

47. 48.

49–50 Use Property 8 of integrals to estimate the value of the
integral.

49. 50.

51–54 Use the properties of integrals to verify the inequality.

51. 52.

53. 54.

55. Use the Midpoint Rule with to approximate
.x30  sin"x 3# dx

n ! 6

y1

0
 x sin!1x dx ' &!4y1

0
 e x cos x dx ' e ! 1

y&!2

&!4
 
sin x

x
 dx '

s2 

2y1

0
 x 2 cos x dx '

1
3

y5

3
 

1
x " 1

 dxy3

1
 sx 2 " 3  dx

y ! y3x"1

2x
 sin"t 4 # dty ! yx

sx 
 
e t

t
 dt

t"x# ! ysin x

1
 
1 ! t 2

1 " t 4  dtt"x# ! yx4

0
 cos"t 2# dt

F"x# ! y1

x
 st " sin t  dtF"x# ! yx

0
 

t 2

1 " t 3  dt

x2&
0  f "x# dx

f "x# ! cos2x sin3x

y ! xsx , 0 ' x ' 4

y x 3

sx 2 " 1
 dxy cos x

s1 " sin x  dx

C ! 0

y4

0
 * sx ! 1 * dxy3

0
 * x 2 ! 4 * dx

y&!4

0
 "1 " tan t#3 sec2t dty sec % tan %

1 " sec %
 d% 

y sinh"1 " 4x# dxy x 3

1 " x 4  dx

y x
s1 ! x 4 

 dxy tan x ln"cos x# dx

y cos"ln x#
x

 dxy esx 

sx  dx5. If and , find .

6. (a) Write as a limit of Riemann sums, 
taking the sample points to be right endpoints. Use a 
computer algebra system to evaluate the sum and to com-
pute the limit.

(b) Use the Fundamental Theorem to check your answer to
part (a).

7. The following figure shows the graphs of , and 
. Identify each graph, and explain your choices.

8. Evaluate:

(a) (b)

(c)

9–38 Evaluate the integral, if it exists.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. y sin x cos"cos x# dxy sin &t cos &t dt

y csc2 x
1 " cot x

 dxy x " 2
sx 2 " 4x  dx

y10

1
 

x
x 2 ! 4

 dxy '1 ! x
x (2

dx

y1

0
 

e x

1 " e 2x  dxy&!4

!&!4
 

t 4 tan t
2 " cos t

 dt

y1

!1
 

sin x
1 " x 2  dxy1

0
 v2 cos"v3# dv

y1

0
 sin"3&t# dty5

1
 

dt
"t ! 4#2

y2

0
 y 2s1 " y 3  dyy1

0
 y"y2 " 1#5 dy

y1

0
 (s4 u " 1#2 duy9

1
 
su ! 2u2

u
 du

y1

0
 "1 ! x#9 dxy1

0
 "1 ! x 9 # dx

yT

0
 "x 4 ! 8x " 7# dxy2

1
 "8x 3 " 3x 2 # dx

d
dx

 yx

0
 earctan t dt

d
dx

 y1

0
 earctan x dxy1

0
 

d
dx

 "earctan x# dx

y

x
a

b

c

xx0  f "t# dt
f, f #

x51  "x " 2x 5 # dxCAS

x64  f "x# dxx40  f "x# dx ! 7x60  f "x# dx ! 10

410 | | | | CHAPTER 5 INTEGRALS



(b) On what intervals is concave upward?
(c) Use a graph to solve the following equation correct to two

decimal places:

(d) Plot the graphs of and on the same screen. How are
these graphs related?

; 63. Estimate the value of the number c such that the area under
the curve between and is equal to 1.

64. Suppose that the temperature in a long, thin rod placed along
the -axis is initially if and 0 if . It
can be shown that if the heat diffusivity of the rod is , then
the temperature of the rod at the point at time is

To find the temperature distribution that results from an initial
hot spot concentrated at the origin, we need to compute

Use l’Hospital’s Rule to find this limit.

65. If is a continuous function such that

for all , find an explicit formula for .

66. Suppose h is a function such that , ,
, , , , and is contin-

uous everywhere. Evaluate .

67. If is continuous on , show that

68. Find .

69. If is continuous on , prove that

70. Evaluate

71. Suppose is continuous, , , , and
. Find the value of the integral .x10  f !1"y# dyx10  f "x# dx ! 1

3

f #"x# $ 0f "1# ! 1f "0# ! 0f

lim
nl+

 
1
n

 )'1
n(9

" '2
n(9

" '3
n(9

" - - - " 'n
n(9&

y1

0
 f "x# dx ! y1

0
 f "1 ! x# dx

$0, 1%f

lim
h l 0

 
1
h

 y2"h

2
 s1 " t 3  dt

2 yb

a
 f "x# f #"x# dx ! $ f "b#%2 ! $ f "a#%2

$a, b%f #

x21  h."u# du
h .h."2# ! 13h#"2# ! 5h"2# ! 6h."1# ! 3

h#"1# ! 2h"1# ! !2

f "x#x

y x

0
 f "t# dt ! xe 2x " y x

0
 e !tf "t# dt

f

lim
al 0

 T"x, t#

T"x, t# !
C

as4&kt  ya

0
 e !"x!u#2!"4kt# du

tx
k

* x * $ a* x * ' aC!"2a#x

x ! 1x ! 0y ! sinh cx

SCCAS

y x

0
 cos( 1

2& t 2) dt ! 0.7

CAS
C56. A particle moves along a line with velocity function

, where is measured in meters per second. 
Find (a) the displacement and (b) the distance traveled by 
the particle during the time interval .

57. Let be the rate at which the world’s oil is consumed,
where is measured in years starting at on January 1,
2000, and is measured in barrels per year. What does

represent?

58. A radar gun was used to record the speed of a runner at the
times given in the table. Use the Midpoint Rule to estimate
the distance the runner covered during those 5 seconds.

59. A population of honeybees increased at a rate of bees per
week, where the graph of r is as shown. Use the Midpoint
Rule with six subintervals to estimate the increase in the bee
population during the first 24 weeks.

60. Let

Evaluate by interpreting the integral as a
difference of areas.

61. If is continuous and , evaluate
.

62. The Fresnel function was introduced 
in Section 5.3. Fresnel also used the function

in his theory of the diffraction of light waves.
(a) On what intervals is increasing?C

C"x# ! yx

0
 cos( 1

2 & t 2) dt

S"x# ! xx0  sin( 1
2& t 2) dt

x&!2
0  f "2 sin %# cos % d%

x20  f "x# dx ! 6f

x1
!3 f "x# dx

f "x# ! -!x ! 1
!s1 ! x 2 

if !3 ' x ' 0
if 0 ' x ' 1

r

0 2420161284
(weeks)

t

4000

8000

12000

r"t#

x80  r"t# dt
r"t#

t ! 0t
r"t#

$0, 5%

vv"t# ! t 2 ! t
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0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22
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Before you look at the solution of the following example, cover it up and first try to solve
the problem yourself.

EXAMPLE 1 Evaluate .

SOLUTION Let’s start by having a preliminary look at the ingredients of the function. What
happens to the first factor, , when approaches ? The numerator approaches 
and the denominator approaches , so we have

and

The second factor approaches , which is . It’s not clear what happens to the
function as a whole. (One factor is becoming large while the other is becoming small.)
So how do we proceed?

One of the principles of problem solving is recognizing something familiar. Is there a
part of the function that reminds us of something we’ve seen before? Well, the integral

has as its upper limit of integration and that type of integral occurs in Part 1 of the
Fundamental Theorem of Calculus:

This suggests that differentiation might be involved.
Once we start thinking about differentiation, the denominator reminds us of

something else that should be familiar: One of the forms of the definition of the deriva-
tive in Chapter 2 is

and with this becomes

So what is the function in our situation? Notice that if we define

then . What about the factor in the numerator? That’s just a red herring, so
let’s factor it out and put together the calculation:

(FTC1)

M ! sin 3

! 3 
sin 3

3
 ! 3F#"3#

 ! 3 lim 
xl3

 
F"x# ! F"3#

x ! 3

 lim
xl3

 ' x
x ! 3

 yx

3
 
sin t

t
 dt( ! lim

xl3
 x ! lim

xl3
 
yx

3
 
sin t

t
 dt

x ! 3

xF"3# ! 0

F"x# ! yx

3
 
sin t

t
 dt

F

F#"3# ! lim
xl3

 
F"x# ! F"3#

x ! 3

a ! 3

F#"a# ! lim
xl a

 
F"x# ! F"a#

x ! a

"x ! 3#

d
dx

 y x

a
 f "t# dt ! f "x#

x

yx

3
 
sin t

t
 dt

0x33  "sin t#!t dt

xl 3!as
x

x ! 3
l !+xl 3"as

x
x ! 3

l +

0
33xx!"x ! 3#

lim
xl3

 ' x
x ! 3

 yx

3
 
sin t

t
 dt(

P R O B L E M S  P L U S

N The principles of problem solving are 
discussed on page 76.

N Another approach is to use l’Hospital’s Rule.
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1. If , where is a continuous function, find .

2. Find the minimum value of the area of the region under the curve from to
, for all .

3. If is a differentiable function such that is never and for all , find .

; 4. (a) Graph several members of the family of functions for and look
at the regions enclosed by these curves and the -axis. Make a conjecture about how the areas
of these regions are related.

(b) Prove your conjecture in part (a).
(c) Take another look at the graphs in part (a) and use them to sketch the curve traced out by the

vertices (highest points) of the family of functions. Can you guess what kind of curve this is?
(d) Find an equation of the curve you sketched in part (c).

5. If , where , find .

6. If , find .

7. Evaluate .

8. The figure shows two regions in the first quadrant: is the area under the curve 
from to , and is the area of the triangle with vertices , , and . Find .

9. Find the interval for which the value of the integral is a maximum.

10. Use an integral to estimate the sum .

11. (a) Evaluate , where is a positive integer.

(b) Evaluate , where and are real numbers with .

12. Find .

13. Suppose the coefficients of the cubic polynomial satisfy the equation

Show that the equation has a root between 0 and 1. Can you generalize this result for an
-degree polynomial?

14. A circular disk of radius is used in an evaporator and is rotated in a vertical plane. If it is to be
partially submerged in the liquid so as to maximize the exposed wetted area of the disk, show that
the center of the disk should be positioned at a height above the surface of the liquid.

15. Prove that if is continuous, then .

16. The figure shows a region consisting of all points inside a square that are closer to the center than
to the sides of the square. Find the area of the region.

17. Evaluate .

18. For any number , we let be the smaller of the two numbers and . Then
we define . Find the maximum and minimum values of if .!2 ' c ' 2t"c#t"c# ! x10  fc"x# dx

"x ! c ! 2#2"x ! c#2fc"x#c

lim
nl+

 ' 1
sn sn " 1

"
1

sn sn " 2 " - - - "
1

sn sn " n (

yx

0
 f "u#"x ! u# du ! yx

0
 'yu

0
 f "t# dt( duf

r!s1 " & 2 

r

nth
P"x# ! 0

a "
b
2

"
c
3

"
d
4

! 0

P"x# ! a " bx " cx 2 " dx 3

d 2

dx 2  yx

0
 'ysin t

1
 s1 " u4  du(dt

0 ' a * bbaxba  .x/ dx

nxn0  .x/ dx

,
10000

i!1
 si 

xba  "2 " x ! x 2 # dx$a, b%

lim
t l

 

0"
 A"t#!B"t#"t, 0#POB"t#t0

y ! sin"x 2 #A"t#

lim
x l 0

 
1
x

 yx

0
 "1 ! tan 2t#1! t dt

f #"x#f "x# ! xx0  x 2 sin"t 2 # dt

f #"&!2#t"x# ! ycos x

0
 $1 " sin"t 2 #% dtf "x# ! yt"x#

0
 

1
s1 " t 3 

 dt

x
c $ 0f "x# ! "2cx ! x 2 #!c 3

fxxx0 f "t# dt ! $ f "x#%20f "x#f

a $ 0x ! a " 1.5
x ! ay ! x " 1!x

f "4#fx sin &x ! y x2

0
 f "t# dt

PROBLEMS

P R O B L E M S  P L U S
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In this chapter we explore some of the applications of the definite integral by using it 

to compute areas between curves, volumes of solids, and the work done by a varying

force. The common theme is the following general method, which is similar to the one

we used to find areas under curves: We break up a quantity into a large number of

small parts. We next approximate each small part by a quantity of the form and

thus approximate by a Riemann sum. Then we take the limit and express as an

integral. Finally we evaluate the integral using the Fundamental Theorem of Calculus 

or the Midpoint Rule.

QQ

f �xi*� �x

Q

The volume of a sphere is 
the limit of sums of volumes 

of approximating cylinders.

APPLICATIONS OF
INTEGRATION

6
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AREAS BETWEEN CURVES

In Chapter 5 we defined and calculated areas of regions that lie under the graphs of 
functions. Here we use integrals to find areas of regions that lie between the graphs of two
functions.

Consider the region that lies between two curves and and be-
tween the vertical lines and , where and are continuous functions and

for all in . (See Figure 1.)
Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal

width and then we approximate the ith strip by a rectangle with base and height
. (See Figure 2. If we like, we could take all of the sample points to be right

endpoints, in which case .) The Riemann sum

is therefore an approximation to what we intuitively think of as the area of S.

This approximation appears to become better and better as . Therefore we define
the area of the region as the limiting value of the sum of the areas of these approxi-
mating rectangles.

We recognize the limit in (1) as the definite integral of . Therefore we have the fol-
lowing formula for area.

The area A of the region bounded by the curves , and the
lines , , where and are continuous and for all in , is

Notice that in the special case where , is the region under the graph of 
and our general definition of area (1) reduces to our previous definition (Definition 2 in
Section 5.1).

fSt�x� � 0

A � y
b

a
 � f �x� � t�x�� dx

�a, b�xf �x� � t�x�tfx � bx � a
y � f �x�, y � t�x�2

f � t

A � lim
n l �

 �
n

i�1
 � f �xi*� � t�xi*�� �x1

SA
n l �

(a) Typical rectangle

x

y

b0 a

f(x i
*)

f(x i
*)-g(x i

*)

_g(x i
*)

x i
*

Îx

(b) Approximating rectangles

x

y

b0 a

FIGURE 2

�
n

i�1
 � f �xi*� � t�xi*�� �x

xi* � xi

f �xi*� � t�xi*�
�x

�a, b�xf �x� � t�x�
tfx � bx � a

y � t�x�y � f �x�S
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In the case where both and are positive, you can see from Figure 3 why (2) is true:

EXAMPLE 1 Find the area of the region bounded above by , bounded below by
, and bounded on the sides by x � 0 and x � 1.

SOLUTION The region is shown in Figure 4. The upper boundary curve is and the
lower boundary curve is . So we use the area formula (2) with , ,

and :

M

In Figure 4 we drew a typical approximating rectangle with width as a reminder of
the procedure by which the area is defined in (1). In general, when we set up an integral
for an area, it’s helpful to sketch the region to identify the top curve , the bottom curve

, and a typical approximating rectangle as in Figure 5. Then the area of a typical rect-
angle is and the equation

summarizes the procedure of adding (in a limiting sense) the areas of all the typical 
rectangles.

Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in Figure 3
the right-hand boundary reduces to a point. In the next example both of the side bound-
aries reduce to a point, so the first step is to find a and b.

EXAMPLE 2 Find the area of the region enclosed by the parabolas and
.

SOLUTION We first find the points of intersection of the parabolas by solving their equa-
tions simultaneously. This gives , or . Thus ,
so or 1. The points of intersection are and .

We see from Figure 6 that the top and bottom boundaries are

and

The area of a typical rectangle is

and the region lies between and . So the total area is

M � 2� x 2

2
�

x 3

3 �0

1

 A � y
1

0
 �2x � 2x 2 � dx � 2 y

1

0
 �x � x 2 � dx

x � 1x � 0

�yT � yB� �x � �2x � x 2 � x 2 � �x

yB � x 2yT � 2x � x 2

�1, 1��0, 0�x � 0
2x�x � 1� � 02x 2 � 2x � 0x 2 � 2x � x 2

y � 2x � x 2
y � x 2V

A � lim
n l �

 �
n

i�1
 �yT � yB� �x � y

b

a
 �yT � yB� dx

�yT � yB� �x
yB

yT

�x

 � e �
1
2 � 1 � e � 1.5

 A � y
1

0
 �ex � x� dx � ex �

1
2 x 2]1

0

b � 1a � 0, 
t�x� � xf �x� � exy � x

y � ex

y � x
y � ex

 � y
b

a
 f �x� dx � y

b

a
 t�x� dx � y

b

a
 � f �x� � t�x�� dx

 A � �area under y � f �x�� � �area under y � t�x��

tf
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Sometimes it’s difficult, or even impossible, to find the points of intersection of two
curves exactly. As shown in the following example, we can use a graphing calculator or
computer to find approximate values for the intersection points and then proceed as before.

EXAMPLE 3 Find the approximate area of the region bounded by the curves
and 

SOLUTION If we were to try to find the exact intersection points, we would have to solve
the equation

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), so
instead we use a graphing device to draw the graphs of the two curves in Figure 7. One
intersection point is the origin. We zoom in toward the other point of intersection and
find that . (If greater accuracy is required, we could use Newton’s method or a
rootfinder, if available on our graphing device.) Thus an approximation to the area
between the curves is

To integrate the first term we use the subsitution . Then , and
when . So

M

EXAMPLE 4 Figure 8 shows velocity curves for two cars, A and B, that start side by side
and move along the same road. What does the area between the curves represent? Use
the Midpoint Rule to estimate it.

SOLUTION We know from Section 5.4 that the area under the velocity curve A represents
the distance traveled by car A during the first 16 seconds. Similarly, the area under curve
B is the distance traveled by car B during that time period. So the area between these
curves, which is the difference of the areas under the curves, is the distance between the
cars after 16 seconds. We read the velocities from the graph and convert them to feet per
second .�1 mi	h � 5280

3600 ft	s�

 
 0.785

 � s2.39 � 1 �
�1.18�5

5
�

�1.18�2

2

 � su ]1

2.39
� � x 5

5
�

x 2

2 �0

1.18

 A 
 1
2 y

2.39

1
 

du

su � y
1.18

0
 �x 4 � x� dx
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We use the Midpoint Rule with intervals, so that . The midpoints of the
intervals are , , , and . We estimate the distance between the
cars after 16 seconds as follows:

M

If we are asked to find the area between the curves and where
for some values of but for other values of , then we split the

given region into several regions , , . . . with areas , , . . . as shown in Figure 9.
We then define the area of the region to be the sum of the areas of the smaller regions 

, , . . . , that is, . Since

we have the following expression for A.

The area between the curves and and between and
is

When evaluating the integral in (3), however, we must still split it into integrals corre-
sponding to , , . . . .

EXAMPLE 5 Find the area of the region bounded by the curves , ,
, and .

SOLUTION The points of intersection occur when , that is, when 
(since ). The region is sketched in Figure 10. Observe that 
when but when . Therefore the required 
area is

In this particular example we could have saved some work by noticing that the region
is symmetric about and so
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Some regions are best treated by regarding x as a function of y. If a region is bounded
by curves with equations , , , and , where and are contin-
uous and for (see Figure 11), then its area is

If we write for the right boundary and for the left boundary, then, as Figure 12
illustrates, we have

Here a typical approximating rectangle has dimensions and .

EXAMPLE 6 Find the area enclosed by the line and the parabola
.

SOLUTION By solving the two equations we find that the points of intersection are
and . We solve the equation of the parabola for x and notice from

Figure 13 that the left and right boundary curves are

We must integrate between the appropriate -values, and . Thus

M

We could have found the area in Example 6 by integrating with respect to x instead of
y, but the calculation is much more involved. It would have meant splitting the region in
two and computing the areas labeled and in Figure 14. The method we used in
Example 6 is much easier.
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,

22. ,

23. , , ,

24. , ,

25.

26.

27. , , ,

28. , , ,

29–30 Use calculus to find the area of the triangle with the given
vertices.

, ,

30. , ,

31–32 Evaluate the integral and interpret it as the area of a
region. Sketch the region.

31.

32.

33–34 Use the Midpoint Rule with to approximate the
area of the region bounded by the given curves.

33. , ,

34. , ,

; 35–38 Use a graph to find approximate -coordinates of the points
of intersection of the given curves. Then find (approximately) the
area of the region bounded by the curves.

35. ,

36.

37. ,

38. , y � x 10y � x cos x

y � x 3 � 3x � 4y � 3x 2 � 2x
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x � y 2 � 1x � 1 � y 221.1–4 Find the area of the shaded region.

1. 2.

4.

5–28 Sketch the region enclosed by the given curves. Decide
whether to integrate with respect to x or y. Draw a typical approx-
imating rectangle and label its height and width. Then find the
area of the region.

5.

6.

7. ,

8.
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12. ,

,
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(c) Which car is ahead after two minutes? Explain.
(d) Estimate the time at which the cars are again side by side.

46. The figure shows graphs of the marginal revenue function 
and the marginal cost function for a manufacturer. [Recall
from Section 4.7 that and represent the revenue and
cost when units are manufactured. Assume that and are
measured in thousands of dollars.] What is the meaning of the
area of the shaded region? Use the Midpoint Rule to estimate
the value of this quantity.

; 47. The curve with equation is called Tschirn-
hausen’s cubic. If you graph this curve you will see that part
of the curve forms a loop. Find the area enclosed by the loop.

48. Find the area of the region bounded by the parabola ,
the tangent line to this parabola at , and the -axis.

49. Find the number such that the line divides the region
bounded by the curves and into two regions
with equal area.

50. (a) Find the number such that the line bisects the
area under the curve ,

(b) Find the number such that the line bisects the
area in part (a).

Find the values of such that the area of the region bounded
by the parabolas and is 576.

52. Suppose that . For what value of is the area of
the region enclosed by the curves , ,
and equal to the area of the region enclosed by the
curves , , and ?

For what values of do the line and the curve
enclose a region? Find the area of the region.y � x	�x 2 � 1�

y � mxm53.

y � 0x � �y � cos�x � c�
x � 0

y � cos�x � c�y � cos x
c0 � c � �	2

y � c 2 � x 2y � x 2 � c 2
c51.

y � bb
1 � x � 4.y � 1	x 2

x � aa

y � 4y � x 2
y � bb

x�1, 1�
y � x 2

y 2 � x 2�x � 3�

Cª(x)
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x0 10050

1

2
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Rª(x)

CRx
C�x�R�x�
C�

R�

0

A

B

 21

√

t (min)

39. Use a computer algebra system to find the exact area
enclosed by the curves and .

40. Sketch the region in the -plane defined by the inequalities
, and find its area.

41. Racing cars driven by Chris and Kelly are side by side at the
start of a race. The table shows the velocities of each car (in
miles per hour) during the first ten seconds of the race. Use
the Midpoint Rule to estimate how much farther Kelly travels
than Chris does during the first ten seconds.

42. The widths (in meters) of a kidney-shaped swimming pool
were measured at 2-meter intervals as indicated in the figure.
Use the Midpoint Rule to estimate the area of the pool.

43. A cross-section of an airplane wing is shown. Measurements
of the height of the wing, in centimeters, at 20-centimeter
intervals are , , , , , , , , ,

, and . Use the Midpoint Rule to estimate the area of
the wing’s cross-section.

44. If the birth rate of a population is people
per year and the death rate is people per
year, find the area between these curves for . What
does this area represent?

Two cars, A and B, start side by side and accelerate from rest.
The figure shows the graphs of their velocity functions.
(a) Which car is ahead after one minute? Explain.
(b) What is the meaning of the area of the shaded region?

45.
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VOLUMES

In trying to find the volume of a solid we face the same type of problem as in finding areas.
We have an intuitive idea of what volume means, but we must make this idea precise by
using calculus to give an exact definition of volume.

We start with a simple type of solid called a cylinder (or, more precisely, a right cylin-
der). As illustrated in Figure 1(a), a cylinder is bounded by a plane region , called the
base, and a congruent region in a parallel plane. The cylinder consists of all points on
line segments that are perpendicular to the base and join to . If the area of the base is

and the height of the cylinder (the distance from to ) is , then the volume of the
cylinder is defined as

In particular, if the base is a circle with radius , then the cylinder is a circular cylinder with
volume [see Figure 1(b)], and if the base is a rectangle with length and width

, then the cylinder is a rectangular box (also called a rectangular parallelepiped ) with
volume [see Figure 1(c)].

For a solid S that isn’t a cylinder we first “cut” S into pieces and approximate each piece
by a cylinder. We estimate the volume of S by adding the volumes of the cylinders. We
arrive at the exact volume of S through a limiting process in which the number of pieces
becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The cross-
sectional area will vary as increases from to .

FIGURE 2
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Let’s divide S into n “slabs” of equal width by using the planes , , . . . to slice
the solid. (Think of slicing a loaf of bread.) If we choose sample points in , we
can approximate the th slab (the part of that lies between the planes and ) by
a cylinder with base area and “height” . (See Figure 3.)

FIGURE 3
The volume of this cylinder is , so an approximation to our intuitive concep-

tion of the volume of the th slab is 

Adding the volumes of these slabs, we get an approximation to the total volume (that is,
what we think of intuitively as the volume):

This approximation appears to become better and better as . (Think of the slices as
becoming thinner and thinner.) Therefore, we define the volume as the limit of these sums
as . But we recognize the limit of Riemann sums as a definite integral and so we
have the following definition.

DEFINITION OF VOLUME Let be a solid that lies between and . If the
cross-sectional area of in the plane , through x and perpendicular to the x-axis,
is , where is a continuous function, then the volume of is

When we use the volume formula , it is important to remember that 
is the area of a moving cross-section obtained by slicing through perpendicular to

the -axis.
Notice that, for a cylinder, the cross-sectional area is constant: for all . So our

definition of volume gives ; this agrees with the formula 

EXAMPLE 1 Show that the volume of a sphere of radius is .

SOLUTION If we place the sphere so that its center is at the origin (see Figure 4), then the
plane intersects the sphere in a circle whose radius (from the Pythagorean Theorem) Px
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FIGURE 4
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is . So the cross-sectional area is

Using the definition of volume with and , we have

(The integrand is even.)

M

Figure 5 illustrates the definition of volume when the solid is a sphere with radius 
. From the result of Example 1, we know that the volume of the sphere is

. Here the slabs are circular cylinders, or disks, and the three parts of Fig-
ure 5 show the geometric interpretations of the Riemann sums

when n � 5, 10, and 20 if we choose the sample points to be the midpoints . Notice
that as we increase the number of approximating cylinders, the corresponding Riemann
sums become closer to the true volume.

EXAMPLE 2 Find the volume of the solid obtained by rotating about the x-axis the
region under the curve from 0 to 1. Illustrate the definition of volume by sketch-
ing a typical approximating cylinder.

SOLUTION The region is shown in Figure 6(a). If we rotate about the x-axis, we get the
solid shown in Figure 6(b). When we slice through the point x, we get a disk with radius

. The area of this cross-section is

and the volume of the approximating cylinder (a disk with thickness ) is

A�x� �x � �x �x

�x

A�x� � � (sx )2 � �x

sx 

y � sx 

V

 (a) Using 5 disks, VÅ4.2726  (b) Using 10 disks, VÅ4.2097  (c) Using 20 disks, VÅ4.1940

FIGURE 5 Approximating the volume of a sphere with radius 1 
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Visual 6.2A shows an animation 
of Figure 5.
TEC



The solid lies between and , so its volume is

M

EXAMPLE 3 Find the volume of the solid obtained by rotating the region bounded by
, , and about the -axis.

SOLUTION The region is shown in Figure 7(a) and the resulting solid is shown in
Figure 7(b). Because the region is rotated about the y-axis, it makes sense to slice the
solid perpendicular to the y-axis and therefore to integrate with respect to y. If we slice
at height y, we get a circular disk with radius x, where . So the area of a cross-
section through y is

and the volume of the approximating cylinder pictured in Figure 7(b) is

Since the solid lies between y � 0 and y � 8, its volume is
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N Did we get a reasonable answer in 
Example 2? As a check on our work, let’s 
replace the given region by a square with base

and height . If we rotate this square, 
we get a cylinder with radius , height , and
volume . We computed that the
given solid has half this volume. That seems
about right.

� � 12 � 1 � �
11

1�0, 1�



EXAMPLE 4 The region enclosed by the curves and is rotated about the 
-axis. Find the volume of the resulting solid.

SOLUTION The curves and intersect at the points and . The region
between them, the solid of rotation, and a cross-section perpendicular to the -axis are
shown in Figure 8. A cross-section in the plane has the shape of a washer (an annular
ring) with inner radius and outer radius , so we find the cross-sectional area by sub-
tracting the area of the inner circle from the area of the outer circle:

Therefore we have

M

EXAMPLE 5 Find the volume of the solid obtained by rotating the region in Example 4
about the line .

SOLUTION The solid and a cross-section are shown in Figure 9. Again the cross-section is 
a washer, but this time the inner radius is and the outer radius is . 
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Visual 6.2B shows how solids of 
revolution are formed.
TEC



The cross-sectional area is

and so the volume of is

M

The solids in Examples 1–5 are all called solids of revolution because they are obtained
by revolving a region about a line. In general, we calculate the volume of a solid of revo-
lution by using the basic defining formula

and we find the cross-sectional area or in one of the following ways:

N If the cross-section is a disk (as in Examples 1–3), we find the radius of the
disk (in terms of x or y) and use

N If the cross-section is a washer (as in Examples 4 and 5), we find the inner
radius and outer radius from a sketch (as in Figures 8, 9, and 10) and
compute the area of the washer by subtracting the area of the inner disk from
the area of the outer disk:

The next example gives a further illustration of the procedure.
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EXAMPLE 6 Find the volume of the solid obtained by rotating the region in Example 4
about the line .

SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner radius
and outer radius , so the cross-sectional area is

The volume is

M

We now find the volumes of three solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cross-
sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

SOLUTION Let’s take the circle to be . The solid, its base, and a typical cross-
section at a distance from the origin are shown in Figure 13.

FIGURE 13
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FIGURE 12
Computer-generated picture
of the solid in Example 7
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Visual 6.2C shows how the solid 
in Figure 12 is generated.
TEC



Since lies on the circle, we have and so the base of the triangle
is . Since the triangle is equilateral, we see from Figure 13(c) that its 
height is . The cross-sectional area is therefore

and the volume of the solid is

M

EXAMPLE 8 Find the volume of a pyramid whose base is a square with side and
whose height is .

SOLUTION We place the origin at the vertex of the pyramid and the -axis along its cen-
tral axis as in Figure 14. Any plane that passes through and is perpendicular to the 
-axis intersects the pyramid in a square with side of length , say. We can express in

terms of by observing from the similar triangles in Figure 15 that

and so . [Another method is to observe that the line has slope and
so its equation is .] Thus the cross-sectional area is

The pyramid lies between and , so its volume is

M

We didn’t need to place the vertex of the pyramid at the origin in Example 8.
We did so merely to make the equations simple. If, instead, we had placed the center of the
base at the origin and the vertex on the positive -axis, as in Figure 16, you can verify that y
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we would have obtained the integral

EXAMPLE 9 A wedge is cut out of a circular cylinder of radius 4 by two planes. One
plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle
of 30 along a diameter of the cylinder. Find the volume of the wedge.

SOLUTION If we place the -axis along the diameter where the planes meet, then the 
base of the solid is a semicircle with equation , . A cross-
section perpendicular to the -axis at a distance from the origin is a triangle ,
as shown in Figure 17, whose base is and whose height is

. Thus the cross-sectional area is

and the volume is

For another method see Exercise 64. M
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10. , , ; about the -axis

, ; about 

12. , , ; about 

13. , ; about 

14. , , , ; about 

15. , ; about 

16. , ; about 

17. , ; about 

18. , , , ; about x � 1x � 4x � 2y � 0y � x
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y � 1y � 3y � 1 � sec x

y � 2x � 2y � 1y � e�x

y � 1y � sx y � x11.

yy � 0x � 2y � 1
4 x 21–18 Find the volume of the solid obtained by rotating the region

bounded by the given curves about the specified line. Sketch the
region, the solid, and a typical disk or washer.

1. , , , ; about the -axis

2. , ; about the -axis

3. , , , ; about the -axis

4. , , , ; about the -axis

5. , , ; about the -axis

6. , , , ; about the -axis

, , ; about the -axis

8. , ; about the -axis

, ; about the -axisyx � 2yy 2 � x9.

xy � 5 � x 2y � 1
4 x 2

xx � 0y � xy � x 37.

yx � 0y � 2y � 1y � ln x

yy � 9x � 0x � 2sy 

xx � 4x � 2y � 0y � s25 � x 2 

xy � 0x � 2x � 1y � 1
x

xy � 0y � 1 � x 2

xx � 2x � 1y � 0y � 2 �
1
2 x
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44.

45. A CAT scan produces equally spaced cross-sectional views of
a human organ that provide information about the organ other-
wise obtained only by surgery. Suppose that a CAT scan of a
human liver shows cross-sections spaced 1.5 cm apart. The
liver is 15 cm long and the cross-sectional areas, in square
centimeters, are 0, 18, 58, 79, 94, 106, 117, 128, 63, 39, and
0. Use the Midpoint Rule to estimate the volume of the liver.

46. A log 10 m long is cut at 1-meter intervals and its cross-
sectional areas (at a distance from the end of the log) are
listed in the table. Use the Midpoint Rule with to esti-
mate the volume of the log.

47. (a) If the region shown in the figure is rotated about the 
-axis to form a solid, use the Midpoint Rule with 

to estimate the volume of the solid.

(b) Estimate the volume if the region is rotated about the 
-axis. Again use the Midpoint Rule with .

48. (a) A model for the shape of a bird’s egg is obtained by 
rotating about the -axis the region under the graph of 

Use a CAS to find the volume of such an egg.
(b) For a Red-throated Loon, , , ,

and . Graph and find the volume of an egg of
this species.

49–61 Find the volume of the described solid .

A right circular cone with height and base radius 

50. A frustum of a right circular cone with height , lower base
radius , and top radius 

R

h

r

rR
h

rh49.

S

fd � 0.54
c � 0.1b � 0.04a � �0.06

f �x� � �ax 3 � bx 2 � cx � d�s1 � x 2 

x
CAS

n � 4y

0 4

4

102 86

2

y

x

n � 4x

n � 5
xA

� y
�
2

0
 ��1 � cos x�2 � 12 � dx� y

1

0
 �y 4 � y 8 � dy43.19–30 Refer to the figure and find the volume generated by 

rotating the given region about the specified line.

19. about 20. about 

21. about 22. about 

23. about 24. about 

25. about 26. about 

27. about 28. about 

29. about 30. about 

31–36 Set up, but do not evaluate, an integral for the volume of
the solid obtained by rotating the region bounded by the given
curves about the specified line.

31.

32. , ; about 

33. , , ; about 

34. , , ; about 

35. , ; about 

36. , , ; about 

; 37–38 Use a graph to find approximate -coordinates of the
points of intersection of the given curves. Then use your calcula-
tor to find (approximately) the volume of the solid obtained by
rotating about the -axis the region bounded by these curves.

37. ,

38.

39–40 Use a computer algebra system to find the exact volume
of the solid obtained by rotating the region bounded by the given
curves about the specified line.

39. , , ;

40. , ;

41–44 Each integral represents the volume of a solid. Describe
the solid.

41. 42. � y
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x (m) A ( ) x (m) A ( )

0 0.68 6 0.53
1 0.65 7 0.55
2 0.64 8 0.52
3 0.61 9 0.50
4 0.58 10 0.48
5 0.59

m2m2
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62. The base of is a circular disk with radius . Parallel cross-
sections perpendicular to the base are isosceles triangles with
height and unequal side in the base.
(a) Set up an integral for the volume of .
(b) By interpreting the integral as an area, find the volume of .

(a) Set up an integral for the volume of a solid torus (the
donut-shaped solid shown in the figure) with radii and .

(b) By interpreting the integral as an area, find the volume of
the torus.

64. Solve Example 9 taking cross-sections to be parallel to the line
of intersection of the two planes.

65. (a) Cavalieri’s Principle states that if a family of parallel planes
gives equal cross-sectional areas for two solids and ,
then the volumes of and are equal. Prove this principle.

(b) Use Cavalieri’s Principle to find the volume of the oblique
cylinder shown in the figure.

66. Find the volume common to two circular cylinders, each with
radius , if the axes of the cylinders intersect at right angles.

Find the volume common to two spheres, each with radius , if
the center of each sphere lies on the surface of the other sphere.

68. A bowl is shaped like a hemisphere with diameter 30 cm. A
ball with diameter 10 cm is placed in the bowl and water is
poured into the bowl to a depth of centimeters. Find the vol-
ume of water in the bowl.

69. A hole of radius is bored through a cylinder of radius 
at right angles to the axis of the cylinder. Set up, but do not
evaluate, an integral for the volume cut out.

R 	 rr

h

r67.

r

h

r

S2S1

S2S1

r
R

Rr
63.

S
S

h

rSA cap of a sphere with radius and height 

52. A frustum of a pyramid with square base of side , square top
of side , and height 

What happens if ? What happens if ?

53. A pyramid with height and rectangular base with dimensions
and 

54. A pyramid with height and base an equilateral triangle with
side (a tetrahedron)

55. A tetrahedron with three mutually perpendicular faces and
three mutually perpendicular edges with lengths 3 cm,
4 cm, and 5 cm

56. The base of is a circular disk with radius . Parallel cross-
sections perpendicular to the base are squares.

The base of is an elliptical region with boundary curve
. Cross-sections perpendicular to the -axis 

are isosceles right triangles with hypotenuse in the base.

58. The base of is the triangular region with vertices ,
, and . Cross-sections perpendicular to the -axis 

are equilateral triangles.

59. The base of is the same base as in Exercise 58, but cross-
sections perpendicular to the -axis are squares.

60. The base of is the region enclosed by the parabola
and the -axis. Cross-sections perpendicular to the

-axis are squares.

61. The base of is the same base as in Exercise 60, but cross-
sections perpendicular to the -axis are isosceles triangles with
height equal to the base.

x
S

y
xy � 1 � x 2
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constant. Show that the radius of each end of the barrel is
, where .

(b) Show that the volume enclosed by the barrel is

72. Suppose that a region has area and lies above the -axis.
When is rotated about the -axis, it sweeps out a solid with
volume . When is rotated about the line (where 
is a positive number), it sweeps out a solid with volume .
Express in terms of , , and .AkV1V2

V2

ky � �k�V1

x�
xA�

V � 1
3 �h(2R2 � r 2 �

2
5 d 2 )

d � ch 2
4r � R � d
70. A hole of radius is bored through the center of a sphere of

radius . Find the volume of the remaining portion of the
sphere.

71. Some of the pioneers of calculus, such as Kepler and Newton,
were inspired by the problem of finding the volumes of wine
barrels. (In fact Kepler published a book Stereometria doliorum
in 1715 devoted to methods for finding the volumes of barrels.)
They often approximated the shape of the sides by parabolas.
(a) A barrel with height and maximum radius is con-

structed by rotating about the -axis the parabola
, , where is a positive c�h
2 � x � h
2y � R � cx 2

x
Rh

R 	 r
r

VOLUMES BY CYLINDRICAL SHELLS

Some volume problems are very difficult to handle by the methods of the preceding sec-
tion. For instance, let’s consider the problem of finding the volume of the solid obtained
by rotating about the -axis the region bounded by and . (See Figure 1.)
If we slice perpendicular to the y-axis, we get a washer. But to compute the inner radius
and the outer radius of the washer, we would have to solve the cubic equation

for x in terms of y; that’s not easy.
Fortunately, there is a method, called the method of cylindrical shells, that is easier to

use in such a case. Figure 2 shows a cylindrical shell with inner radius , outer radius ,
and height . Its volume is calculated by subtracting the volume of the inner cylinder
from the volume of the outer cylinder:

If we let (the thickness of the shell) and (the average radius
of the shell), then this formula for the volume of a cylindrical shell becomes

and it can be remembered as

Now let be the solid obtained by rotating about the -axis the region bounded by
[where ], and , where . (See Figure 3.)  
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We divide the interval into n subintervals of equal width and let be
the midpoint of the ith subinterval. If the rectangle with base and height is
rotated about the y-axis, then the result is a cylindrical shell with average radius , height

, and thickness (see Figure 4), so by Formula 1 its volume is

Therefore an approximation to the volume of is given by the sum of the volumes of
these shells:

This approximation appears to become better as . But, from the definition of an inte-
gral, we know that

Thus the following appears plausible:

The volume of the solid in Figure 3, obtained by rotating about the y-axis the
region under the curve from a to b, is

The argument using cylindrical shells makes Formula 2 seem reasonable, but later we
will be able to prove it (see Exercise 67 in Section 7.1).

The best way to remember Formula 2 is to think of a typical shell, cut and flattened as
in Figure 5, with radius x, circumference , height , and thickness or :

This type of reasoning will be helpful in other situations, such as when we rotate about
lines other than the y-axis.

EXAMPLE 1 Find the volume of the solid obtained by rotating about the -axis the region
bounded by and .

SOLUTION From the sketch in Figure 6 we see that a typical shell has radius x, circumfer-
ence , and height . So, by the shell method, the volume isf �x� � 2x 2 � x 32�x

y � 0y � 2x 2 � x 3
y
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It can be verified that the shell method gives the same answer as slicing. M

Comparing the solution of Example 1 with the remarks at the beginning of this
section, we see that the method of cylindrical shells is much easier than the washer method
for this problem. We did not have to find the coordinates of the local maximum and we did
not have to solve the equation of the curve for in terms of . However, in other examples
the methods of the preceding section may be easier.

EXAMPLE 2 Find the volume of the solid obtained by rotating about the -axis the
region between and .

SOLUTION The region and a typical shell are shown in Figure 8. We see that the shell has
radius x, circumference , and height . So the volume is

M

As the following example shows, the shell method works just as well if we rotate about
the x-axis. We simply have to draw a diagram to identify the radius and height of a shell.

EXAMPLE 3 Use cylindrical shells to find the volume of the solid obtained by rotating
about the -axis the region under the curve from 0 to 1.

SOLUTION This problem was solved using disks in Example 2 in Section 6.2. To use shells
we relabel the curve (in the figure in that example) as in Figure 9. For
rotation about the x-axis we see that a typical shell has radius y, circumference , and
height . So the volume is

In this problem the disk method was simpler. M
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FIGURE 6
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picture of the solid whose volume we computed
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EXAMPLE 4 Find the volume of the solid obtained by rotating the region bounded by
and about the line .

SOLUTION Figure 10 shows the region and a cylindrical shell formed by rotation about the
line . It has radius , circumference , and height .

The volume of the given solid is

M � 2�� x 4

4
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2
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4. , ,

6. ,

7. ,

8. Let be the volume of the solid obtained by rotating about the
-axis the region bounded by and . Find both

by slicing and by cylindrical shells. In both cases draw a dia-
gram to explain your method.

9–14 Use the method of cylindrical shells to find the volume of the
solid obtained by rotating the region bounded by the given curves
about the -axis. Sketch the region and a typical shell.

9.

10.

11. , ,

12. ,

,

14.

15–20 Use the method of cylindrical shells to find the volume gen-
erated by rotating the region bounded by the given curves about the
specified axis. Sketch the region and a typical shell.

15. , ; about x � 2y � 0, x � 1y � x 4

x � y � 3, x � 4 � �y � 1�2

x � 2x � 1 � �y � 2�213.

x � 0x � 4y 2 � y 3

x � 0y � 8y � x 3

x � sy , x � 0, y � 1

x � 1 � y 2, x � 0, y � 1, y � 2

x

Vy � x 2y � sx y
V

y � x 2 � 4x � 7y � 4�x � 2�2

x � y � 3y � 3 � 2x � x 2

y � e�x2
, y � 0, x � 0, x � 15.

x � 1y � 0y � x 21. Let be the solid obtained by rotating the region shown in 
the figure about the -axis. Explain why it is awkward to use
slicing to find the volume of . Sketch a typical approxi-
mating shell. What are its circumference and height? Use shells
to find .

2. Let be the solid obtained by rotating the region shown in the
figure about the -axis. Sketch a typical cylindrical shell and
find its circumference and height. Use shells to find the volume
of . Do you think this method is preferable to slicing? Explain.

3–7 Use the method of cylindrical shells to find the volume gener-
ated by rotating the region bounded by the given curves about the 
-axis. Sketch the region and a typical shell.

3. , , , x � 2x � 1y � 0y � 1
x

y

0 x

y

œ„π

y=sin{≈}

S

y
S

0 x

y

1

y=x(x-1)@

V

SV
y

S
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; 33–34 Use a graph to estimate the -coordinates of the points of
intersection of the given curves. Then use this information and
your calculator to estimate the volume of the solid obtained by
rotating about the -axis the region enclosed by these curves.

33. ,

34. ,

35–36 Use a computer algebra system to find the exact volume
of the solid obtained by rotating the region bounded by the given
curves about the specified line.

35. , , ; about 

36. , , ; about 

37– 42 The region bounded by the given curves is rotated about
the specified axis. Find the volume of the resulting solid by any
method.

37. , ; about the -axis

38. , ; about the -axis

39. , ; about 

40. , ; about 

; about the -axis

42. , ; about 

43–45 Use cylindrical shells to find the volume of the solid.

43. A sphere of radius 

44. The solid torus of Exercise 63 in Section 6.2

A right circular cone with height and base radius 

46. Suppose you make napkin rings by drilling holes with differ-
ent diameters through two wooden balls (which also have dif-
ferent diameters). You discover that both napkin rings have
the same height , as shown in the figure.
(a) Guess which ring has more wood in it.
(b) Check your guess: Use cylindrical shells to compute the

volume of a napkin ring created by drilling a hole with
radius through the center of a sphere of radius and
express the answer in terms of .

h

h
Rr

h

rh45.

r

y � 1x � 4x � �y � 3�2

yx 2 � �y � 1�2 � 141.

x � 2x � 0x � 1 � y 4

x � �1y � x � �4
x�y � 5

xy � 0y � �x 2 � 6x � 8

yy � 0y � �x 2 � 6x � 8

x � �10 � x � �y � 0y � x 3 sin x

x � �
20 � x � �y � sin4 xy � sin2 x

CAS

y � �x 4 � 4x � 1y � x 3 � x � 1

y � sx � 1y � e x

y

x16. , ; about 

, ; about 

18. , ; about 

19. , , ; about 

20.

21–26 Set up, but do not evaluate, an integral for the volume 
of the solid obtained by rotating the region bounded by the given
curves about the specified axis.

21.

22. , ; about 

23. , ; about 

24. about 

about 

26. about 

27. Use the Midpoint Rule with to estimate the volume
obtained by rotating about the -axis the region under the
curve , .

28. If the region shown in the figure is rotated about the -axis to
form a solid, use the Midpoint Rule with to estimate
the volume of the solid.

29–32 Each integral represents the volume of a solid. Describe
the solid.

30.

31.

32. y
�
4

0
 2� �� � x��cos x � sin x� dx

y
1

0
 2� �3 � y��1 � y2� dy

2� y
2

0
 

y

1 � y 2  dy

y
3

0
 2�x 5 dx29.

0 x

y

1

1

2

3

4

5

2 3 4 5 6 7 8 9 10 11 12

n � 5
y

0 � x � 1y � s1 � x 3 
y

n � 5

y � 5x 2 � y 2 � 7, x � 4;

y � 4x � ssin y , 0 � y � �, x � 0;25.

x � 2y � 1
�1 � x 2 �, y � 0, x � 0, x � 2;

x � �1y � sin��x
2�y � x 4

x � 7y � 4x � x 2y � x

y � ln x, y � 0, x � 2; about the y-axis

y � x 2, x � y 2; about y � �1

y � 1x � 1y � 0y � x 3

x � 1y � 2 � x 2y � x 2

x � 1y � 3y � 4x � x 217.

x � �1y � 0, x � 1y � sx 
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WORK

The term work is used in everyday language to mean the total amount of effort required to
perform a task. In physics it has a technical meaning that depends on the idea of a force.
Intuitively, you can think of a force as describing a push or pull on an object—for example,
a horizontal push of a book across a table or the downward pull of the earth’s gravity on a
ball. In general, if an object moves along a straight line with position function , then
the force F on the object (in the same direction) is defined by Newton’s Second Law of
Motion as the product of its mass and its acceleration:

In the SI metric system, the mass is measured in kilograms (kg), the displacement in
meters (m), the time in seconds (s), and the force in newtons ( ). Thus a force
of 1 N acting on a mass of 1 kg produces an acceleration of 1 m
s . In the US Customary
system, the fundamental unit is chosen to be the unit of force, which is the pound.

In the case of constant acceleration, the force is also constant and the work done is
defined to be the product of the force and the distance that the object moves:

If is measured in newtons and in meters, then the unit for is a newton-meter, which
is called a joule (J). If is measured in pounds and in feet, then the unit for is a foot-
pound (ft-lb), which is about 1.36 J.

EXAMPLE 1
(a) How much work is done in lifting a 1.2-kg book off the floor to put it on a desk that
is 0.7 m high? Use the fact that the acceleration due to gravity is m
s .
(b) How much work is done in lifting a 20-lb weight 6 ft off the ground?

SOLUTION
(a) The force exerted is equal and opposite to that exerted by gravity, so Equation 1
gives

and then Equation 2 gives the work done as

(b) Here the force is given as lb, so the work done is

Notice that in part (b), unlike part (a), we did not have to multiply by because we
were given the weight (which is a force) and not the mass of the object. M

Equation 2 defines work as long as the force is constant, but what happens if the force
is variable? Let’s suppose that the object moves along the -axis in the positive direction,
from to , and at each point between and a force acts on the object,
where is a continuous function. We divide the interval into n subintervals with end-
points and equal width . We choose a sample point in the th sub-
interval . Then the force at that point is . If is large, then is small, and �xnf �xi*��xi�1, xi�

ixi*�xx0, x1, . . . , xn

�a, b�f
f �x�baxx � bx � a

x

t

W � Fd � 20 � 6 � 120 ft-lb

F � 20

W � Fd � �11.76��0.7� � 8.2 J

F � mt � �1.2��9.8� � 11.76 N

2
t � 9.8

V

WdF
WdF

work � force 	 distanceW � Fd2

dF
F

2
N � kg
m
s2

F � m 
d 2s

dt 21

m

s�t�

6.4
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since is continuous, the values of don’t change very much over the interval .
In other words, is almost constant on the interval and so the work that is done in mov-
ing the particle from to is approximately given by Equation 2:

Thus we can approximate the total work by

It seems that this approximation becomes better as we make larger. Therefore we define
the work done in moving the object from a to b as the limit of this quantity as .
Since the right side of (3) is a Riemann sum, we recognize its limit as being a definite inte-
gral and so

EXAMPLE 2 When a particle is located a distance feet from the origin, a force of
pounds acts on it. How much work is done in moving it from to ?

SOLUTION

The work done is ft-lb. M

In the next example we use a law from physics: Hooke’s Law states that the force
required to maintain a spring stretched units beyond its natural length is proportional 
to :

where is a positive constant (called the spring constant). Hooke’s Law holds provided
that is not too large (see Figure 1).

EXAMPLE 3 A force of 40 N is required to hold a spring that has been stretched from
its natural length of 10 cm to a length of 15 cm. How much work is done in stretching
the spring from 15 cm to 18 cm?

SOLUTION According to Hooke’s Law, the force required to hold the spring stretched 
meters beyond its natural length is . When the spring is stretched from 10 cm

to 15 cm, the amount stretched is cm m. This means that , so

Thus and the work done in stretching the spring from 15 cm to 18 cm is

M � 400��0.08�2 � �0.05�2� � 1.56 J

 W � y
0.08

0.05
 800x dx � 800 

x 2

2 	0.05

0.08

f �x� � 800x

k � 40
0.05 � 8000.05k � 40

f �0.05� � 40� 0.055
f �x� � kxx

V

x
k

f �x� � kx

x
x

16 2
3

W � y
3

1
 �x 2 � 2x� dx �

x 3

3
� x 2	

1

3

�
50

3

x � 3x � 1x 2 � 2x
x

W � lim
n l �

 �
n

i�1
 f �xi*� �x � y

b

a
 f �x� dx4

n l �
n

W � �
n

i�1
 f �xi*� �x3

Wi � f �xi*� �x

xixi�1

Wif
�xi�1, xi�ff
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FIGURE 1  
Hooke’s Law

x0frictionless
surface

x0 x

ƒ=kx

(a) Natural position of spring

(b) Stretched position of spring



EXAMPLE 4 A 200-lb cable is 100 ft long and hangs vertically from the top of a tall
building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an argu-
ment similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the -axis pointing downward as
in Figure 2. We divide the cable into small parts with length . If is a point in the

such interval, then all points in the interval are lifted by approximately the same
amount, namely . The cable weighs 2 pounds per foot, so the weight of the part is

. Thus the work done on the part, in foot-pounds, is 

We get the total work done by adding all these approximations and letting the number
of parts become large (so ):

M

EXAMPLE 5 A tank has the shape of an inverted circular cone with height 10 m and base
radius 4 m. It is filled with water to a height of 8 m. Find the work required to empty 
the tank by pumping all of the water to the top of the tank. (The density of water is
1000 kg
m .)

SOLUTION Let’s measure depths from the top of the tank by introducing a vertical coordi-
nate line as in Figure 3. The water extends from a depth of 2 m to a depth of 10 m and
so we divide the interval into n subintervals with endpoints and
choose in the th subinterval. This divides the water into layers. The th layer is
approximated by a circular cylinder with radius and height . We can compute 
from similar triangles, using Figure 4, as follows:

Thus an approximation to the volume of the th layer of water is

and so its mass is

The force required to raise this layer must overcome the force of gravity and so

Each particle in the layer must travel a distance of approximately . The work done to
raise this layer to the top is approximately the product of the force and the distance :

Wi � Fi xi* � 1570�xi*�10 � xi*�2 �x

xi*Fi

Wixi*

 � 1570� �10 � xi*�2 �x

 Fi � mit � �9.8�160� �10 � xi*�2 �x

 � 1000 �
4�

25
 �10 � xi*�2 �x � 160� �10 � xi*�2 �x

 mi � density 	 volume

Vi � �ri
2 �x �

4�

25
 �10 � xi*�2 �x

i

ri � 2
5 �10 � xi*�

ri

10 � xi*
�

4

10

ri�xri

inixi*
x0, x1, . . . , xn�2, 10�

3

 � x 2]100

0 � 10,000 ft-lb

 W � lim
nl�

 �
n

i�1
 2xi*�x � y

100

0
 2x dx

�x l 0

distanceforce

�2�x�       xi*   � 2xi* �x

ith2�x
ithxi*

ith
xi*�x

x

V
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N If we had placed the origin at the bottom of
the cable and the -axis upward, we would have
gotten

which gives the same answer.

W � y
100

0
 2�100 � x� dx

x

0

100

x*
i

x

Îx

FIGURE 2  

FIGURE 3

4

10

10-xi
*

FIGURE 4

0

x

2 m

4 m

10 m

xi
*

ri

Îx

ri



To find the total work done in emptying the entire tank, we add the contributions of each
of the layers and then take the limit as :

M � 1570� ( 2048
3 ) � 3.4 	 106 J

 � 1570� y
10

2
 �100x � 20x 2 � x 3 � dx � 1570��50x 2 �

20x 3

3
�

x 4

4 	2

10

 W � lim
n l �

 �
n

i�1
 1570�xi*�10 � xi*�2 �x � y

10

2
 1570�x�10 � x�2 dx

n l �n
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Suppose that 2 J of work is needed to stretch a spring from its
natural length of 30 cm to a length of 42 cm.
(a) How much work is needed to stretch the spring from 35 cm

to 40 cm?
(b) How far beyond its natural length will a force of 30 N keep

the spring stretched?

10. If the work required to stretch a spring 1 ft beyond its natural
length is 12 ft-lb, how much work is needed to stretch it 9 in.
beyond its natural length?

11. A spring has natural length 20 cm. Compare the work 
done in stretching the spring from 20 cm to 30 cm with the
work done in stretching it from 30 cm to 40 cm. How are

and related?

12. If 6 J of work is needed to stretch a spring from 10 cm to
12 cm and another 10 J is needed to stretch it from 12 cm 
to 14 cm, what is the natural length of the spring?

13–20 Show how to approximate the required work by a Riemann
sum. Then express the work as an integral and evaluate it.

A heavy rope, 50 ft long, weighs and hangs over the
edge of a building 120 ft high. 
(a) How much work is done in pulling the rope to the top of

the building?
(b) How much work is done in pulling half the rope to the top

of the building?

14. A chain lying on the ground is 10 m long and its mass is 
80 kg.  How much work is required to raise one end of the
chain to a height of 6 m?

15. A cable that weighs is used to lift 800 lb of coal up a
mine shaft 500 ft deep. Find the work done.

16. A bucket that weighs 4 lb and a rope of negligible weight are
used to draw water from a well that is 80 ft deep. The bucket 
is filled with 40 lb of water and is pulled up at a rate of ,
but water leaks out of a hole in the bucket at a rate of .
Find the work done in pulling the bucket to the top of the well.

A leaky 10-kg bucket is lifted from the ground to a height of
12 m at a constant speed with a rope that weighs . 
Initially the bucket contains 36 kg of water, but the water 

0.8 kg
m
17.

0.2 lb
s
2 ft
s

2 lb
ft

0.5 lb
ft13.

W1W2

W2

W1

9.1. How much work is done in lifting a 40-kg sandbag to a height
of 1.5 m?

2. Find the work done if a constant force of 100 lb is used to pull
a cart a distance of 200 ft.

3. A particle is moved along the -axis by a force that measures
pounds at a point feet from the origin. Find the

work done in moving the particle from the origin to a distance
of 9 ft.

4. When a particle is located a distance meters from the origin,
a force of newtons acts on it. How much work is
done in moving the particle from to ? Interpret
your answer by considering the work done from to

and from to .

5. Shown is the graph of a force function (in newtons) that
increases to its maximum value and then remains constant.
How much work is done by the force in moving an object a
distance of 8 m?

6. The table shows values of a force function , where is
measured in meters and in newtons. Use the Midpoint
Rule to estimate the work done by the force in moving an
object from to .

A force of 10 lb is required to hold a spring stretched 4 in.
beyond its natural length. How much work is done in stretching
it from its natural length to 6 in. beyond its natural length?

8. A spring has a natural length of 20 cm. If a 25-N force is
required to keep it stretched to a length of 30 cm, how much
work is required to stretch it from 20 cm to 25 cm?

7.

x � 20x � 4

f �x�
xf �x�

0 x (m)

F

10

1

20

30

2 3 4 5 6 7 8

(N)

x � 2x � 1.5x � 1.5
x � 1

x � 2x � 1
cos��x
3�

x

x10
�1 � x�2
x

EXERCISES6.4

x 4 6 8 10 12 14 16 18 20

5 5.8 7.0 8.8 9.6 8.2 6.7 5.2 4.1f �x�



26. Solve Exercise 22 if the tank is half full of oil that has a den-
sity of .

When gas expands in a cylinder with radius , the pressure at
any given time is a function of the volume: . The
force exerted by the gas on the piston (see the figure) is the
product of the pressure and the area: . Show that the
work done by the gas when the volume expands from volume

to volume is

28. In a steam engine the pressure and volume of steam satisfy
the equation , where is a constant. (This is true for
adiabatic expansion, that is, expansion in which there is no heat
transfer between the cylinder and its surroundings.) Use Exer-
cise 27 to calculate the work done by the engine during a cycle
when the steam starts at a pressure of 160 lb
in and a volume
of 100 in and expands to a volume of 800 in .

29. Newton’s Law of Gravitation states that two bodies with
masses and attract each other with a force

where is the distance between the bodies and is the gravi-
tational constant. If one of the bodies is fixed, find the work
needed to move the other from to .

30. Use Newton’s Law of Gravitation to compute the work
required to launch a 1000-kg satellite vertically to an orbit
1000 km high. You may assume that the earth’s mass is

kg and is concentrated at its center. Take the
radius of the earth to be m and

.G � 6.67 	 10�11 N
m2
kg2
6.37 	 106

5.98 	 1024

r � br � a

Gr

F � G 
m1m2

r 2

m2m1

33

2

kPV 1.4 � k
VP

x
piston head

W � y
V2

V1

 P dV

V2V1

F � �r 2P

P � P�V �
r27.

900 kg
m3
leaks at a constant rate and finishes draining just as the bucket
reaches the 12 m level. How much work is done?

18. A 10-ft chain weighs 25 lb and hangs from a ceiling. Find the
work done in lifting the lower end of the chain to the ceiling
so that it’s level with the upper end.

An aquarium 2 m long, 1 m wide, and 1 m deep is full of
water. Find the work needed to pump half of the water out 
of the aquarium. (Use the fact that the density of water is

.)

20. A circular swimming pool has a diameter of 24 ft, the sides
are 5 ft high, and the depth of the water is 4 ft. How much
work is required to pump all of the water out over the side?
(Use the fact that water weighs .)

21–24 A tank is full of water. Find the work required to pump
the water out of the spout. In Exercises 23 and 24 use the fact that
water weighs 62.5 lb
ft .

21. 22.

23. 24.

; 25. Suppose that for the tank in Exercise 21 the pump breaks
down after J of work has been done. What is the
depth of the water remaining in the tank?

4.7 	 105

10 ft

12 ft

6 ft

6 ft

frustum of a cone

3 ft

8 ft

3 m

1 m

2 m

3 m

8 m

3 m

3

62.5 lb
ft3

1000 kg
m3

19.
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AVERAGE VALUE OF A FUNCTION

It is easy to calculate the average value of finitely many numbers , , . . . , :

But how do we compute the average temperature during a day if infinitely many tempera-
ture readings are possible? Figure 1 shows the graph of a temperature function , where

is measured in hours and in C, and a guess at the average temperature, .
In general, let’s try to compute the average value of a function , . 

We start by dividing the interval into equal subintervals, each with length
. Then we choose points , . . . , in successive subintervals and cal-xn*x 1*�x � �b � a�
n

n�a, b�
a � x � by � f �x�

Tave�Tt
T�t�

yave �
 y1 � y2 � 
 
 
 � yn

n

yny2y1

6.5

0 t

T

Tave

5

10

15

12

6

18 24

FIGURE 1



culate the average of the numbers , . . . , :

(For example, if represents a temperature function and , this means that we take
temperature readings every hour and then average them.) Since , we can
write and the average value becomes

If we let increase, we would be computing the average value of a large number of closely
spaced values. (For example, we would be averaging temperature readings taken every
minute or even every second.) The limiting value is

by the definition of a definite integral.
Therefore we define the average value of f on the interval as

EXAMPLE 1 Find the average value of the function on the interval .

SOLUTION With and we have

M

If is the temperature at time , we might wonder if there is a specific time when the
temperature is the same as the average temperature. For the temperature function graphed
in Figure 1, we see that there are two such times––just before noon and just before mid-
night. In general, is there a number at which the value of a function is exactly equal to
the average value of the function, that is, ? The following theorem says that this
is true for continuous functions.

THE MEAN VALUE THEOREM FOR INTEGRALS If is continuous on , then there
exists a number in such that

that is, y
b

a
 f �x� dx � f �c��b � a�

f �c� � fave �
1

b � a
 y

b

a
 f �x� dx

�a, b�c
�a, b�f

f �c� � fave

fc

tT�t�

�
1

3
 �x �

x 3

3 	
2

�1

� 2fave �
1

b � a
 y

b

a
 f �x� dx �

1

2 � ��1�
 y

2

�1
 �1 � x 2 � dx

b � 2a � �1

��1, 2�f �x� � 1 � x 2V

fave �
1

b � a
 y

b

a
 f �x� dx

�a, b�

lim
n l �

 
1

b � a
 �

n

i�1
 f �x i*� �x �

1

b � a
 y

b

a
 f �x� dx

n

 �
1

b � a
 �

n

i�1
 f �xi*� �x

 
 f �x1*� � 
 
 
 � f �xn*�

b � a

�x

�
1

b � a
 � f �x1*� �x � 
 
 
 � f �xn*� �x�

n � �b � a�
�x
�x � �b � a�
n

n � 24f

 f �x1*� � 
 
 
 � f �xn*�
n

f �xn*�f �x1*�
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N For a positive function, we can think of this
definition as saying

area

width
� average height



The Mean Value Theorem for Integrals is a consequence of the Mean Value Theorem
for derivatives and the Fundamental Theorem of Calculus. The proof is outlined in Exer-
cise 23.

The geometric interpretation of the Mean Value Theorem for Integrals is that, for posi-
tive functions , there is a number such that the rectangle with base and height 
has the same area as the region under the graph of from to . (See Figure 2 and the
more picturesque interpretation in the margin note.)

EXAMPLE 2 Since is continuous on the interval , the Mean
Value Theorem for Integrals says there is a number in such that

In this particular case we can find explicitly. From Example 1 we know that ,
so the value of c satisfies

Therefore

So in this case there happen to be two numbers in the interval that work
in the Mean Value Theorem for Integrals. M

Examples 1 and 2 are illustrated by Figure 3.

EXAMPLE 3 Show that the average velocity of a car over a time interval is the
same as the average of its velocities during the trip.

SOLUTION If is the displacement of the car at time , then, by definition, the average
velocity of the car over the interval is 

On the other hand, the average value of the velocity function on the interval is

(by the Net Change Theorem)

M �
s�t2 � � s�t1�

t2 � t1
� average velocity

 �
1

t2 � t1
 �s�t2 � � s�t1��

 vave �
1

t2 � t1
 y

t2

t1

 v�t� dt �
1

t2 � t1
 y

t2

t1

 s��t� dt

�s

�t
�

s�t2 � � s�t1�
t2 � t1

ts�t�

�t1, t2 �V

��1, 2�c � �1

c 2 � 1so1 � c 2 � 2

f �c� � fave � 2

fave � 2c

y
2

�1
 �1 � x 2 � dx � f �c��2 � ��1��

��1, 2�c
��1, 2�f �x� � 1 � x 2V

FIGURE 2  0 x
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N You can always chop off the top of a (two-
dimensional) mountain at a certain height and 
use it to fill in the valleys so that the mountaintop
becomes completely flat.

0 1 2_1

(_1, 2)

(2, 5)
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fave=2
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In a certain city the temperature (in F) hours after 9 AM

was modeled by the function

Find the average temperature during the period from 9 AM

to 9 PM.

18. (a) A cup of coffee has temperature 95 C and takes 30 min-
utes to cool to 61 C in a room with temperature 20 C.
Use Newton’s Law of Cooling (Section 3.8) to show that
the temperature of the coffee after minutes is

where .
(b) What is the average temperature of the coffee during the

first half hour?

19. The linear density in a rod 8 m long is ,
where is measured in meters from one end of the rod. Find
the average density of the rod.

20. If a freely falling body starts from rest, then its displacement
is given by . Let the velocity after a time be .
Show that if we compute the average of the velocities with
respect to we get , but if we compute the average
of the velocities with respect to we get .

21. Use the result of Exercise 79 in Section 5.5 to compute the
average volume of inhaled air in the lungs in one respiratory
cycle.

22. The velocity of blood that flows in a blood vessel with
radius and length at a distance from the central axis is

where is the pressure difference between the ends of the
vessel and is the viscosity of the blood (see Example 7 in
Section 3.7). Find the average velocity (with respect to )
over the interval . Compare the average velocity
with the maximum velocity.

Prove the Mean Value Theorem for Integrals by applying the
Mean Value Theorem for derivatives (see Section 4.2) to the
function .

24. If denotes the average value of on the interval
and , show that

fave �a, b� �
c � a

b � a
  fave �a, c� �

b � c

b � a
  fave �c, b�

a � c � b�a, b�
ffave �a, b�

F�x� � x
x
a f �t� dt

23.

0 � r � R
r

	
P

v�r� �
P

4	l
 �R2 � r 2 �

rlR
v

vave � 2
3 vTs

vave � 1
2 vTt

vTTs � 1
2 tt 2

x
kg�m12�sx � 1

k � 0.02

T�t� � 20 � 75e�kt

t







T�t� � 50 � 14 sin 
�t

12

t
17.1–8 Find the average value of the function on the given interval.

1. 2.

3. 4.

5.

6.

8.

9–12
(a) Find the average value of on the given interval.
(b) Find such that .
(c) Sketch the graph of and a rectangle whose area is the same

as the area under the graph of .

,

10. ,

; 11. ,

; 12. ,

If is continuous and , show that takes on
the value 4 at least once on the interval .

14. Find the numbers such that the average value of
on the interval is equal to 3.

15. The table gives values of a continuous function. Use the Mid-
point Rule to estimate the average value of on .

16. The velocity graph of an accelerating car is shown.
(a) Estimate the average velocity of the car during the first

12 seconds.
(b) At what time was the instantaneous velocity equal to the

average velocity?

4 t (seconds)

20

0 8 12

40

60

√
(km/h)

�20, 50�f

�0, b�f �x� � 2 � 6x � 3x 2
b

�1, 3�
fx

3
1  f �x� dx � 8f13.

�0, 2�f �x� � 2x��1 � x 2�2

�0, ��f �x� � 2 sin x � sin 2x

�0, 4�f �x� � sx 

�2, 5�f �x� � �x � 3�29.

f
f

fave � f �c�c
f

h�u� � �3 � 2u��1,  ��1, 1�

h�x� � cos4x sin x, �0, ��7.

f ��� � sec2���2�,  �0, ��2�

f �t� � te�t 2
, �0, 5�

t�x� � x 2
s1 � x 3 , �0, 2�t�x� � s

3 x , �1, 8�

f �x� � sin 4x, ���, ��f �x� � 4x � x 2, �0, 4�

EXERCISES6.5
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42 38 31 29 35 48 60f �x�



A movie theater has a screen that is positioned 10 ft off the floor and is 25 ft high. The first row
of seats is placed 9 ft from the screen and the rows are set 3 ft apart. The floor of the seating area
is inclined at an angle of above the horizontal and the distance up the incline that you sit
is . The theater has 21 rows of seats, so . Suppose you decide that the best place to
sit is in the row where the angle subtended by the screen at your eyes is a maximum. Let’s also
suppose that your eyes are 4 ft above the floor, as shown in the figure. (In Exercise 70 in Sec-
tion 4.7 we looked at a simpler version of this problem, where the floor is horizontal, but this
project involves a more complicated situation and requires technology.)

1. Show that

where

and

2. Use a graph of as a function of to estimate the value of that maximizes . In which row
should you sit? What is the viewing angle in this row?

3. Use your computer algebra system to differentiate and find a numerical value for the root
of the equation . Does this value confirm your result in Problem 2?

4. Use the graph of to estimate the average value of on the interval . Then use
your CAS to compute the average value. Compare with the maximum and minimum values
of .�

0 � x � 60��

d��dx � 0
�

�
�xx�

 b 2 � �9 � x cos 
�2 � �x sin 
 � 6�2

 a 2 � �9 � x cos 
�2 � �31 � x sin 
�2

� � arccos�a 2 � b 2 � 625

2ab 	

�
0 � x � 60x


 � 20


WHERE TO SIT AT THE MOVIESCASA P P L I E D
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REVIEW

C O N C E P T  C H E C K

6

(b) If is a solid of revolution, how do you find the cross-
sectional areas?

4. (a) What is the volume of a cylindrical shell?
(b) Explain how to use cylindrical shells to find the volume of

a solid of revolution.
(c) Why might you want to use the shell method instead of

slicing?

5. Suppose that you push a book across a 6-meter-long table by
exerting a force at each point from to . What
does represent? If is measured in newtons, what
are the units for the integral?

6. (a) What is the average value of a function on an 
interval ?

(b) What does the Mean Value Theorem for Integrals say?
What is its geometric interpretation?

�a, b�
f

f �x�x
6

0  f �x� dx
x � 6x � 0f �x�

S1. (a) Draw two typical curves and , where
for . Show how to approximate the

area between these curves by a Riemann sum and sketch
the corresponding approximating rectangles. Then write an
expression for the exact area.

(b) Explain how the situation changes if the curves have 
equations and , where 
for .

2. Suppose that Sue runs faster than Kathy throughout a 
1500-meter race. What is the physical meaning of the area
between their velocity curves for the first minute of the race?

3. (a) Suppose is a solid with known cross-sectional areas.
Explain how to approximate the volume of by a Riemann
sum. Then write an expression for the exact volume.

S
S

c � y � d
f �y� � t�y�x � t�y�x � f �y�

a � x � bf �x� � t�x�
y � t�x�y � f �x�

1–6 Find the area of the region bounded by the given curves.

1.

2. y � 1�x,  y � x 2,  y � 0,  x � e

y � x 2, y � 4x � x 2

3.

4. ,

5. , y � x 2 � 2xy � sin��x�2�

x � y 2 � 3yx � y � 0

y � 1 � 2x 2,  y � 
 x 

E X E R C I S E S
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the base are isosceles right triangles with hypotenuse lying
along the base.

24. The base of a solid is the region bounded by the parabolas
and . Find the volume of the solid if the

cross-sections perpendicular to the -axis are squares with
one side lying along the base.

25. The height of a monument is 20 m. A horizontal cross-section
at a distance meters from the top is an equilateral triangle
with side meters. Find the volume of the monument.

26. (a) The base of a solid is a square with vertices located at
, and . Each cross-section per-

pendicular to the -axis is a semicircle. Find the volume
of the solid.

(b) Show that by cutting the solid of part (a), we can rearrange
it to form a cone. Thus compute its volume more simply.

27. A force of 30 N is required to maintain a spring stretched
from its natural length of 12 cm to a length of 15 cm. How
much work is done in stretching the spring from 12 cm
to 20 cm?

28. A 1600-lb elevator is suspended by a 200-ft cable that weighs
10 lb�ft. How much work is required to raise the elevator
from the basement to the third floor, a distance of 30 ft?

29. A tank full of water has the shape of a paraboloid of revolu-
tion as shown in the figure; that is, its shape is obtained by
rotating a parabola about a vertical axis.
(a) If its height is 4 ft and the radius at the top is 4 ft, find the

work required to pump the water out of the tank.

; (b) After 4000 ft-lb of work has been done, what is the depth
of the water remaining in the tank?

30. Find the average value of the function on the
interval .

31. If is a continuous function, what is the limit as of
the average value of on the interval ?

32. Let be the region bounded by , , and ,
where . Let be the region bounded by ,

, and .
(a) Is there a value of such that and have the same

area?
(b) Is there a value of such that sweeps out the same 

volume when rotated about the -axis and the -axis?
(c) Is there a value of such that and sweep out the

same volume when rotated about the -axis?
(d) Is there a value of such that and sweep out the

same volume when rotated about the -axis?y
�2�1b
x
�2�1b

yx
�1b

�2�1b
y � b 2x � 0

y � x 2�2b � 0
x � by � 0y � x 2�1

�x, x � h�f
h l 0f

�0, 10�
f �t� � t sin�t2�

4 ft

4 ft

x
�0, �1��1, 0�, �0, 1�, ��1, 0�

1
4 x

x

x
y � 2 � x 2y � x 2

6. , ,

7–11 Find the volume of the solid obtained by rotating the region
bounded by the given curves about the specified axis.

7. , ;

8. , ;

9. , ;

10. , ;

11. , (where , );
about the -axis

12–14 Set up, but do not evaluate, an integral for the volume of
the solid obtained by rotating the region bounded by the given
curves about the specified axis.

12. , , ; about the -axis

13. , , ; about 

14. , ; about 

15. Find the volumes of the solids obtained by rotating the region
bounded by the curves and about the following
lines.
(a) The -axis (b) The -axis (c)

16. Let be the region in the first quadrant bounded by the curves
and . Calculate the following quantities.

(a) The area of 
(b) The volume obtained by rotating about the -axis
(c) The volume obtained by rotating about the -axis

17. Let be the region bounded by the curves 
, and . Use the Midpoint Rule with to esti-

mate the following quantities.
(a) The area of 
(b) The volume obtained by rotating about the -axis

; 18. Let be the region bounded by the curves and
. Estimate the following quantities.

(a) The -coordinates of the points of intersection of the curves
(b) The area of 
(c) The volume generated when is rotated about the -axis
(d) The volume generated when is rotated about the -axis

19–22 Each integral represents the volume of a solid. Describe
the solid.

19. 20.

21. 22.

23. The base of a solid is a circular disk with radius 3. Find the
volume of the solid if parallel cross-sections perpendicular to

y
4

0
 2� �6 � y��4y � y 2� dyy

�

0
 � �2 � sin x�2 dx

y
��2

0
 2� cos2x dx y

��2

0
 2�x cos x dx

y�
x�

�
x

y � x 6 � x � 1
y � 1 � x 2�

x�
�

n � 4y � 0x � 1
y � tan�x 2 �,�

y�
x�

�
y � 2x � x 2y � x 3

�

y � 2yx

y � x 2y � x

y � 2y � x 2y � sx 

x � ��2y � 1
4
 x 
 � ��2y � cos2 x

yx � ��3y � xy � tan x

y
h � 0a � 0x � a � hx 2 � y 2 � a2

about y � �1y � 9 � x 2y � x 2 � 1

about x � �1x � 9 � y 2x � 0

about the y-axisy � x � 3x � 1 � y 2

about the x-axisy � x 2y � 2x

x � 2y � x 2y � sx 
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1. (a) Find a positive continuous function such that the area under the graph of from 0 to 
is for all .

(b) A solid is generated by rotating about the -axis the region under the curve ,
where is a positive function and . The volume generated by the part of the curve
from to is for all . Find the function .

2. There is a line through the origin that divides the region bounded by the parabola 
and the -axis into two regions with equal area. What is the slope of that line?

3. The figure shows a horizontal line intersecting the curve . Find the num-
ber c such that the areas of the shaded regions are equal.

4. A cylindrical glass of radius and height is filled with water and then tilted until the water
remaining in the glass exactly covers its base. 
(a) Determine a way to “slice” the water into parallel rectangular cross-sections and then 

set up a definite integral for the volume of the water in the glass.
(b) Determine a way to “slice” the water into parallel cross-sections that are trapezoids and

then set up a definite integral for the volume of the water.
(c) Find the volume of water in the glass by evaluating one of the integrals in part (a) or

part (b).
(d) Find the volume of the water in the glass from purely geometric considerations.
(e) Suppose the glass is tilted until the water exactly covers half the base. In what direction

can you “slice” the water into triangular cross-sections? Rectangular cross-sections?
Cross-sections that are segments of circles? Find the volume of water in the glass.

5. (a) Show that the volume of a segment of height of a sphere of radius is

(b) Show that if a sphere of radius 1 is sliced by a plane at a distance from the center 
in such a way that the volume of one segment is twice the volume of the other, then 

is a solution of the equation

where . Use Newton’s method to find accurate to four decimal places.
(c) Using the formula for the volume of a segment of a sphere, it can be shown that the 

depth to which a floating sphere of radius sinks in water is a root of the equation

where is the specific gravity of the sphere. Suppose a wooden sphere of radius 0.5 m has
specific gravity 0.75. Calculate, to four-decimal-place accuracy, the depth to which the
sphere will sink.

s

x 3 � 3rx 2 � 4r 3s � 0

rx

x0 � x � 1

3x 3 � 9x � 2 � 0

x

x

V � 1
3 �h 2�3r � h�

rh

r

L L

r

Lr

y � 8x � 27x 3y � c

x
y � x � x 2

fb � 0b 2x � bx � 0
x � 0f

y � f �x�x
t � 0A�t� � t 3

tff
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(d) A hemispherical bowl has radius 5 inches and water is running into the bowl at the rate of
.

(i) How fast is the water level in the bowl rising at the instant the water is 3 inches deep?
(ii) At a certain instant, the water is 4 inches deep. How long will it take to fill the bowl?

6. Archimedes’ Principle states that the buoyant force on an object partially or fully submerged
in a fluid is equal to the weight of the fluid that the object displaces. Thus, for an object of
density floating partly submerged in a fluid of density , the buoyant force is given by

, where is the acceleration due to gravity and is the area of a typi-
cal cross-section of the object. The weight of the object is given by 

(a) Show that the percentage of the volume of the object above the surface of the liquid is

(b) The density of ice is and the density of seawater is . What percent-
age of the volume of an iceberg is above water?

(c) An ice cube floats in a glass filled to the brim with water. Does the water overflow when
the ice melts?

(d) A sphere of radius 0.4 m and having negligible weight is floating in a large freshwater
lake. How much work is required to completely submerge the sphere? The density of the
water is .

7. Water in an open bowl evaporates at a rate proportional to the area of the surface of the water.
(This means that the rate of decrease of the volume is proportional to the area of the surface.)
Show that the depth of the water decreases at a constant rate, regardless of the shape of the
bowl.

8. A sphere of radius 1 overlaps a smaller sphere of radius in such a way that their intersection
is a circle of radius . (In other words, they intersect in a great circle of the small sphere.) 
Find so that the volume inside the small sphere and outside the large sphere is as large as
possible.

9. The figure shows a curve with the property that, for every point on the middle curve
, the areas and are equal. Find an equation for .

10. A paper drinking cup filled with water has the shape of a cone with height and semivertical
angle (see the figure). A ball is placed carefully in the cup, thereby displacing some of the
water and making it overflow. What is the radius of the ball that causes the greatest volume of
water to spill out of the cup?

�
h

CBAy � 2x 2
PC

r
r

r

1000 kg�m3

1030 kg�m3917 kg�m3

100 
� f � � 0

� f

W � � 0 t y
L�h

�h
 A�y� dy

A�y�tF � � f t x0
�h

 A�y� dy
� f� 0

0.2 in3�s
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F IGURE FOR PROBLEM 6
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11. A clepsydra, or water clock, is a glass container with a small hole in the bottom through
which water can flow. The “clock” is calibrated for measuring time by placing markings on
the container corresponding to water levels at equally spaced times. Let be continu-
ous on the interval and assume that the container is formed by rotating the graph of 
about the -axis. Let denote the volume of water and the height of the water level at time .
(a) Determine as a function of .
(b) Show that

(c) Suppose that is the area of the hole in the bottom of the container. It follows from 
Torricelli’s Law that the rate of change of the volume of the water is given by

where is a negative constant. Determine a formula for the function such that is a
constant . What is the advantage in having ?

12. A cylindrical container of radius and height is partially filled with a liquid whose volume
is . If the container is rotated about its axis of symmetry with constant angular speed , then
the container will induce a rotational motion in the liquid around the same axis. Eventually,
the liquid will be rotating at the same angular speed as the container. The surface of the liquid
will be convex, as indicated in the figure, because the centrifugal force on the liquid particles
increases with the distance from the axis of the container. It can be shown that the surface of
the liquid is a paraboloid of revolution generated by rotating the parabola

about the -axis, where is the acceleration due to gravity.
(a) Determine as a function of .
(b) At what angular speed will the surface of the liquid touch the bottom? At what speed will

it spill over the top?
(c) Suppose the radius of the container is 2 ft, the height is 7 ft, and the container and liquid

are rotating at the same constant angular speed. The surface of the liquid is 5 ft below the
top of the tank at the central axis and 4 ft below the top of the tank 1 ft out from the cen-
tral axis.
(i) Determine the angular speed of the container and the volume of the fluid.

(ii) How far below the top of the tank is the liquid at the wall of the container?

13. Suppose the graph of a cubic polynomial intersects the parabola when , ,
and , where . If the two regions between the curves have the same area, how
is related to ?ab

0 � a � bx � b
x � ax � 0y � x 2

�h
ty

y � h �
�2x 2

2t

�V
Lr

x

y

x=f(y)

h

b

dh�dt � CC
dh�dtfk

dV

dt
� kAsh 

A

dV

dt
� � � f �h��2 

dh

dt

hV
thVy

f�0, b�
x � f �y�
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14. Suppose we are planning to make a taco from a round tortilla with diameter 8 inches by bend-
ing the tortilla so that it is shaped as if it is partially wrapped around a circular cylinder. We
will fill the tortilla to the edge (but no more) with meat, cheese, and other ingredients. Our
problem is to decide how to curve the tortilla in order to maximize the volume of food it can
hold.
(a) We start by placing a circular cylinder of radius along a diameter of the tortilla and

folding the tortilla around the cylinder. Let represent the distance from the center of the
tortilla to a point on the diameter (see the figure). Show that the cross-sectional area of
the filled taco in the plane through perpendicular to the axis of the cylinder is

and write an expression for the volume of the filled taco.
(b) Determine (approximately) the value of that maximizes the volume of the taco. (Use a

graphical approach with your CAS.)

15. If the tangent at a point on the curve intersects the curve again at , let be the 
area of the region bounded by the curve and the line segment . Let be the area of the
region defined in the same way starting with instead of . What is the relationship between

and ?BA
PQ

BPQ
AQy � x 3P

P

x

r

A�x� � rs16 � x 2 �
1
2 r 2 sin�2

r
 s16 � x 2 
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P
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r

CAS
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Because of the Fundamental Theorem of Calculus, we can integrate a function if we know
an antiderivative, that is, an indefinite integral. We summarize here the most important
integrals that we have learned so far.

In this chapter we develop techniques for using these basic integration formulas to obtain
indefinite integrals of more complicated functions. We learned the most important method of
integration, the Substitution Rule, in Section 5.5. The other general technique, integration by
parts, is presented in Section 7.1. Then we learn methods that are special to particular classes
of functions, such as trigonometric functions and rational functions.

Integration is not as straightforward as differentiation; there are no rules that absolutely
guarantee obtaining an indefinite integral of a function. Therefore we discuss a strategy for
integration in Section 7.5.

y 
1

sa 2 � x 2 
 dx � sin�1� x

a� � Cy 
1

x 2 � a 2  dx �
1

a
 tan�1� x

a� � C

y cot x dx � ln � sin x � � Cy tan x dx � ln � sec x � � C

y cosh x dx � sinh x � Cy sinh x dx � cosh x � C

y csc x cot x dx � �csc x � Cy sec x tan x dx � sec x � C

y csc2x dx � �cot x � Cy sec2x dx � tan x � C

y cos x dx � sin x � Cy sin x dx � �cos x � C

y ax dx �
ax

ln a
� Cy ex dx � ex � C

y 
1

x
 dx � ln � x � � C�n � �1�y xn dx �

xn�1

n � 1
� C

Simpson’s Rule estimates
integrals by approximating

graphs with parabolas.
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INTEGRATION BY PARTS

Every differentiation rule has a corresponding integration rule. For instance, the Substi-
tution Rule for integration corresponds to the Chain Rule for differentiation. The rule that
corresponds to the Product Rule for differentiation is called the rule for integration by
parts.

The Product Rule states that if and are differentiable functions, then

In the notation for indefinite integrals this equation becomes

or

We can rearrange this equation as

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-
ber in the following notation. Let and . Then the differentials are

and , so, by the Substitution Rule, the formula for integration
by parts becomes

EXAMPLE 1 Find .

SOLUTION USING FORMULA 1 Suppose we choose and . Then 
and . (For we can choose any antiderivative of .) Thus, using Formula
1, we have

It’s wise to check the answer by differentiating it. If we do so, we get , as 
expected.

x sin x

 � �x cos x � sin x � C

 � �x cos x � y cos x dx

 � x��cos x� � y ��cos x� dx

 y x sin x dx � f �x�t�x� � y t�x�f ��x� dx

t�tt�x� � �cos x
f ��x� � 1t��x� � sin xf �x� � x

y x sin x dx

y u dv � uv � y v du2

dv � t��x� dxdu � f ��x� dx
v � t�x�u � f �x�

y f �x�t��x� dx � f �x�t�x� � y t�x�f ��x� dx1

 y f �x�t��x� dx � y t�x�f ��x� dx � f �x�t�x�

y � f �x�t��x� � t�x�f ��x�� dx � f �x�t�x�

d

dx
 � f �x�t�x�� � f �x�t��x� � t�x�f ��x�

tf

7.1
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SOLUTION USING FORMULA 2 Let

Then

and so

M

Our aim in using integration by parts is to obtain a simpler integral than the one
we started with. Thus in Example 1 we started with and expressed it in terms
of the simpler integral . If we had instead chosen and , then

and , so integration by parts gives

Although this is true, is a more difficult integral than the one we started with.
In general, when deciding on a choice for and , we usually try to choose to
be a function that becomes simpler when differentiated (or at least not more complicated)
as long as can be readily integrated to give .

EXAMPLE 2 Evaluate .

SOLUTION Here we don’t have much choice for and . Let

Then

Integrating by parts, we get

Integration by parts is effective in this example because the derivative of the function
is simpler than . Mff �x� � ln x

 � x ln x � x � C

 � x ln x � y dx

 y ln x dx � x ln x � y x 
dx

x

 du �
1

x
 dx v � x

 u � ln x dv � dx

dvu

y ln x dxV

vdv � t��x� dx

u � f �x�dvu
x x 2 cos x dx

y x sin x dx � �sin x� 
x 2

2
�

1

2
 y x 2 cos x dx

v � x 2	2du � cos x dx
dv � x dxu � sin xx cos x dx

x x sin x dx
NOTE

 � �x cos x � sin x � C

 � �x cos x � y cos x dx

 y x sin x dx � y x  sin x dx � x ��cos x� � y ��cos x� dx

 v � �cos x du � dx

 dv � sin x dx u � x
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u d√ u √ √ du

N It is helpful to use the pattern:

 v � � du � �

 dv � � u � �

N It’s customary to write as .x dxx 1 dx

N Check the answer by differentiating it.



EXAMPLE 3 Find .

SOLUTION Notice that becomes simpler when differentiated (whereas is unchanged
when differentiated or integrated), so we choose

Then

Integration by parts gives

The integral that we obtained, , is simpler than the original integral but is still not
obvious. Therefore, we use integration by parts a second time, this time with and

. Then , , and

Putting this in Equation 3, we get

M

EXAMPLE 4 Evaluate .

SOLUTION Neither nor becomes simpler when differentiated, but we try choosing
and anyway. Then and , so integration by

parts gives

The integral that we have obtained, , is no simpler than the original one, but
at least it’s no more difficult. Having had success in the preceding example integrating
by parts twice, we persevere and integrate by parts again. This time we use and

. Then , , and

At first glance, it appears as if we have accomplished nothing because we have arrived at
, which is where we started. However, if we put the expression for 

from Equation 5 into Equation 4 we get

y ex sin x dx � �ex cos x � ex sin x � y ex sin x dx

x ex cos x dxx ex sin x dx

y ex cos x dx � ex sin x � y ex sin x dx5

v � sin xdu � ex dxdv � cos x dx
u � ex

x ex cos x dx

y ex sin x dx � �ex cos x � y ex cos x dx4

v � �cos xdu � ex dxdv � sin x dxu � ex
sin xex

y ex sin x dxV

where C1 � �2C � t 2et � 2tet � 2et � C1

 � t 2et � 2�tet � et � C �

 y t 2et dt � t 2et � 2 y tet dt

� tet � et � C y tet dt � tet � y et dt

v � etdu � dtdv � et dt
u � t

x tet dt

y t 2et dt � t 2et � 2 y tet dt3

  du � 2t dt v � et

 u � t 2  dv � et dt

ett 2

y t 2et dtV
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N An easier method, using complex numbers, is
given in Exercise 50 in Appendix H.



This can be regarded as an equation to be solved for the unknown integral. Adding
to both sides, we obtain

Dividing by 2 and adding the constant of integration, we get

M

If we combine the formula for integration by parts with Part 2 of the Fundamental
Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both sides of
Formula 1 between and , assuming and are continuous, and using the Fundamental
Theorem, we obtain

EXAMPLE 5 Calculate .

SOLUTION Let

Then

So Formula 6 gives

To evaluate this integral we use the substitution (since has another meaning
in this example). Then , so . When , ; when ,

; so

Therefore My
1

0
 tan�1x dx �

�

4
� y

1

0
 

x

1 � x 2  dx �
�

4
�

ln 2

2

 � 1
2 �ln 2 � ln 1� � 1

2 ln 2

 y
1

0
 

x

1 � x 2  dx � 1
2 y

2

1
 
dt

t
� 1

2 ln � t �]1

2

t � 2
x � 1t � 1x � 0x dx � 1

2 dtdt � 2x dx
ut � 1 � x 2

 �
�

4
� y

1

0
 

x

1 � x 2  dx

 � 1 � tan�1 1 � 0 � tan�1 0 � y
1

0
 

x

1 � x 2  dx

 y
1

0
 tan�1x dx � x tan�1x]0

1
� y

1

0
 

x

1 � x 2  dx

 du �
dx

1 � x 2  v � x

 u � tan�1x  dv � dx

y
1

0
 tan�1x dx

y
b

a
 f �x�t��x� dx � f �x�t�x�]a

b
� y

b

a

 
t�x�f ��x� dx6

t�f �ba

y ex sin x dx � 1
2 ex�sin x � cos x� � C

2 y ex sin x dx � �ex cos x � ex sin x

x ex sin x dx
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N Since for , the integral in
Example 5 can be interpreted as the area of the
region shown in Figure 2.

x � 0tan�1x � 0

y

0

x1

y=tan–!x

FIGURE 2

N Figure 1 illustrates Example 4 by show-
ing the graphs of and

. As a visual check
on our work, notice that when has 
a maximum or minimum.

Ff �x� � 0
F�x� � 1

2 e x�sin x � cos x�
f �x� � e x sin x

_3

_4

12

6

F

f

FIGURE 1



EXAMPLE 6 Prove the reduction formula

where is an integer.

SOLUTION Let

Then

so integration by parts gives

Since , we have

As in Example 4, we solve this equation for the desired integral by taking the last term
on the right side to the left side. Thus we have

or M

The reduction formula (7) is useful because by using it repeatedly we could eventually
express in terms of (if is odd) or (if is even).nx �sin x�0 dx � x dxnx sin x dxx sinnx dx

 y sinnx dx � �
1

n
 cos x sinn�1x �

n � 1

n
 y sinn�2x dx

 n y sinnx dx � �cos x sinn�1x � �n � 1� y sinn�2x dx

y sinnx dx � �cos x sinn�1x � �n � 1� y sinn�2x dx � �n � 1� y sinnx dx

cos2x � 1 � sin2x

y sinnx dx � �cos x sinn�1x � �n � 1� y sinn�2x cos2x dx 

 v � �cos x du � �n � 1� sinn�2x cos x dx

 dv � sin x dx u � sinn�1x

n � 2

y sinnx dx � �
1

n
cos x sinn�1x �

n � 1

n
 y sinn�2x dx7
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N Equation 7 is called a reduction formula
because the exponent has been reduced to

and .n � 2n � 1
n

11. 12.

13. 14.

16.

18.

19.

21. 22.

23. 24. y
�

0
 x 3 cos x dxy

2

1
 
ln x

x 2  dx

y
9

4
 
ln y

sy  dyy
1

0
 t cosh t dt

y
1

0
 �x 2 � 1�e�x dx20.y

�

0
 t sin 3t dt

y e�� cos 2� d�y e 2� sin 3� d�17.

y t sinh mt dty �ln x�2 dx15.

y s 2s dsy t sec2 2t dt

y p5 ln p dpy arctan 4t dt1–2 Evaluate the integral using integration by parts with the 
indicated choices of and .

1. ; ,

2. ; ,

3–32 Evaluate the integral.

4.

5. 6.

7. 8.

9. 10. y sin�1x dxy ln�2x � 1� dx

y x 2 cos mx dxy x 2 sin �x dx

y t sin 2t dty rer�2 dr

y xe�x dxy x cos 5x dx3.

dv � cos � d�u � �y � cos � d�

dv � x 2 dxu � ln xy x 2 ln x dx

dvu

EXERCISES7.1



(b) Use part (a) to evaluate and .
(c) Use part (a) to show that, for odd powers of sine,

46. Prove that, for even powers of sine,

47–50 Use integration by parts to prove the reduction formula.

48.

49.

50.

51. Use Exercise 47 to find .

52. Use Exercise 48 to find .

53–54 Find the area of the region bounded by the given curves.

53. , ,

54.

; 55–56 Use a graph to find approximate -coordinates of the
points of intersection of the given curves. Then find (approxi-
mately) the area of the region bounded by the curves.

55. ,

56. ,

57–60 Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves
about the specified axis.

, , ; about the -axis

58. , , ; about the -axis

59. , , , ; about 

60. , , ; about the -axisxy � �x � 0y � e x

x � 1x � 0x � �1y � 0y � e�x

yx � 1y � e�xy � e x

y0 � x � 1y � 0y � cos��x	2�57.

y � 1
2 xy � arctan 3x

y � �x � 2�2y � x sin x

x

y � x ln xy � 5 ln x,

x � 5y � 0y � xe�0.4x

x x 4e x dx

x �ln x�3 dx

�n � 1�y secnx dx �
tan x secn�2x

n � 1
�

n � 2

n � 1
 y secn�2x dx

�n � 1�tann x dx �
tann�1 x

n � 1
� y tann�2 x dx

y x ne x dx � x ne x � n y x n�1e x dx

y �ln x�n dx � x �ln x�n � n y �ln x�n�1 dx47.

y
�	2

0
 sin2nx dx �

1 � 3 � 5 � 	 	 	 � �2n � 1�
2 � 4 � 6 � 	 	 	 � 2n

 
�

2

y
�	2

0
 sin2n�1x dx �

2 � 4 � 6 � 	 	 	 � 2n

3 � 5 � 7 � 	 	 	 � �2n � 1�

x
�	2
0  sin5x dxx

�	2
0  sin3x dx25. 26.

27. 28.

29. 30.

31. 32.

33–38 First make a substitution and then use integration by parts
to evaluate the integral.

33. 34.

36.

37. 38.

; 39–42 Evaluate the indefinite integral. Illustrate, and check that
your answer is reasonable, by graphing both the function and its
antiderivative (take ).

39. 40.

41. 42.

43. (a) Use the reduction formula in Example 6 to show that

(b) Use part (a) and the reduction formula to evaluate
.

44. (a) Prove the reduction formula

(b) Use part (a) to evaluate .
(c) Use parts (a) and (b) to evaluate .

45. (a) Use the reduction formula in Example 6 to show that

where is an integer.n � 2

y
�	2

0
 sinnx dx �

n � 1

n
 y

�	2

0
 sinn�2x dx

x cos4x dx
x cos2x dx

y cosnx dx �
1

n
 cosn�1x sin x �

n � 1

n
 y cosn�2x dx

x sin4x dx

y sin2x dx �
x

2
�

sin 2x

4
� C

y x 2 sin 2x dxy x 3
s1 � x 2  dx

y x 3	2 ln x dxy �2x � 3�e x dx

C � 0

y sin�ln x� dxy x ln�1 � x� dx

y
�

0
 e cos t sin 2t dty

s� 

s�	2
 � 3 cos�� 2 � d�35.

y t 3e�t2

 dty cos sx  dx

y
t

0
 e s sin�t � s� dsy

2

1
 x 4�ln x�2 dx

y
1

0
 

r 3

s4 � r 2 
 dry cos x ln�sin x� dx

y
2

1
 
�ln x�2

x 3  dxy
1	2

0
 cos�1x dx

y
s3

1
 arctan�1	x� dxy

1

0
 

y

e2y  dy
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parts on the resulting integral to prove that

68. Let .

(a) Show that .
(b) Use Exercise 46 to show that 

(c) Use parts (a) and (b) to show that

and deduce that .
(d) Use part (c) and Exercises 45 and 46 to show that

This formula is usually written as an infinite product:

and is called the Wallis product.
(e) We construct rectangles as follows. Start with a square of

area 1 and attach rectangles of area 1 alternately beside or
on top of the previous rectangle (see the figure). Find the
limit of the ratios of width to height of these rectangles.

�

2
�

2

1
�

2

3
�

4

3
�

4

5
�

6

5
�

6

7
� 	 	 	

lim
n l 


 
2

1
�

2

3
�

4

3
�

4

5
�

6

5
�

6

7
� 	 	 	 �

2n

2n � 1
�

2n

2n � 1
�

�

2

limn l 
 I2n�1	I2n � 1

2n � 1

2n � 2
�

I2n�1

I2n
� 1

I2n�2

I2n
�

2n � 1

2n � 2

I2n�2 � I2n�1 � I2n

In � x
�	2
0  sinnx dx

y

0 xa b

c

d

x=a

x=b

y=ƒx=g(y)

V � y
b

a
 2�x f �x� dx

61. Find the average value of on the interval .

62. A rocket accelerates by burning its onboard fuel, so its mass
decreases with time. Suppose the initial mass of the rocket at
liftoff (including its fuel) is , the fuel is consumed at rate ,
and the exhaust gases are ejected with constant velocity 
(relative to the rocket). A model for the velocity of the rocket
at time is given by the equation

where is the acceleration due to gravity and is not too 
large. If , kg, kg	s, and

, find the height of the rocket one minute 
after liftoff.

A particle that moves along a straight line has velocity
meters per second after seconds. How far will 

it travel during the first seconds?

64. If and and are continuous, show that

65. Suppose that , , , , and
is continuous. Find the value of .

(a) Use integration by parts to show that

(b) If and are inverse functions and is continuous,
prove that

[Hint: Use part (a) and make the substitution .]
(c) In the case where and are positive functions and 

, draw a diagram to give a geometric interpre-
tation of part (b).

(d) Use part (b) to evaluate .

67. We arrived at Formula 6.3.2, , by using
cylindrical shells, but now we can use integration by parts to
prove it using the slicing method of Section 6.2, at least for
the case where is one-to-one and therefore has an inverse
function . Use the figure to show that

Make the substitution and then use integration by y � f �x�

V � �b 2d � �a 2c � y
d

c
 � �t�y��2 dy

t

f

V � x
b
a  2�x f �x� dx

x
e
1 ln x dx

b � a � 0
tf

y � f �x�

y
b

a
 f �x� dx � bf �b� � af �a� � y

f �b�

f �a�
 t�y� dy

f �tf

y f �x� dx � x f �x� � y x f ��x� dx

66.

x
4
1  x f ��x� dxf �

f ��4� � 3f ��1� � 5f �4� � 7f �1� � 2

y
a

0
 f �x�t ��x� dx � f �a�t��a� � f ��a�t�a� � y

a

0
 f ��x�t�x� dx

t �f �f �0� � t�0� � 0

t
tv�t� � t 2e�t

63.

ve � 3000 m	s
r � 160m � 30,000t � 9.8 m	s2

tt

v�t� � �tt � ve ln 
m � rt

m

t

ve

rm

�1, 3�f �x� � x 2 ln x



TRIGONOMETRIC INTEGRALS

In this section we use trigonometric identities to integrate certain combinations of trigo-
nometric functions. We start with powers of sine and cosine.

EXAMPLE 1 Evaluate .

SOLUTION Simply substituting isn’t helpful, since then . In order
to integrate powers of cosine, we would need an extra factor. Similarly, a power of
sine would require an extra factor. Thus here we can separate one cosine factor and
convert the remaining factor to an expression involving sine using the identity

:

We can then evaluate the integral by substituting , so and

M

In general, we try to write an integrand involving powers of sine and cosine in a form
where we have only one sine factor (and the remainder of the expression in terms of
cosine) or only one cosine factor (and the remainder of the expression in terms of sine).
The identity enables us to convert back and forth between even powers
of sine and cosine.

EXAMPLE 2 Find .

SOLUTION We could convert to , but we would be left with an expression in
terms of with no extra factor. Instead, we separate a single sine factor and
rewrite the remaining factor in terms of :

Substituting , we have and so

M � �
1
3 cos3x �

2
5 cos5x �

1
7 cos7x � C

 � ��u 3

3
� 2 

u 5

5
�

u 7

7 � � C

 � y �1 � u 2 �2u 2 ��du� � �y �u 2 � 2u 4 � u 6 � du

 � y �1 � cos2x�2 cos2x sin x dx

 y sin5x cos2x dx � y �sin2x�2 cos2x sin x dx

du � �sin x dxu � cos x

sin5x cos2x � �sin2x�2 cos2x sin x � �1 � cos2x�2 cos2x sin x

cos xsin4x
cos xsin x

1 � sin2xcos2x

y sin5x cos2x dxV

sin2x � cos2x � 1

 � sin x �
1
3 sin3x � C

 � y �1 � u 2 � du � u �
1
3 u 3 � C

 y cos3x dx � y cos2x � cos x dx � y �1 � sin2x� cos x dx

du � cos x dxu � sin x

cos3x � cos2x � cos x � �1 � sin2x� cos x 

sin2x � cos2x � 1
cos2x

cos x
sin x

du � �sin x dxu � cos x

y cos3x dx

7.2
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N Figure 1 shows the graphs of the integrand
in Example 2 and its indefinite inte-

gral (with ). Which is which?C � 0
sin5x cos2x

FIGURE 1

_π

_0.2

0.2

π



In the preceding examples, an odd power of sine or cosine enabled us to separate a 
single factor and convert the remaining even power. If the integrand contains even powers
of both sine and cosine, this strategy fails. In this case, we can take advantage of the fol-
lowing half-angle identities (see Equations 17b and 17a in Appendix D):

and

EXAMPLE 3 Evaluate .

SOLUTION If we write , the integral is no simpler to evaluate. Using the
half-angle formula for , however, we have

Notice that we mentally made the substitution when integrating . Another
method for evaluating this integral was given in Exercise 43 in Section 7.1. M

EXAMPLE 4 Find .

SOLUTION We could evaluate this integral using the reduction formula for 
(Equation 7.1.7) together with Example 3 (as in Exercise 43 in Section 7.1), but a better
method is to write and use a half-angle formula:

Since occurs, we must use another half-angle formula

This gives

M

To summarize, we list guidelines to follow when evaluating integrals of the form
, where and are integers.n � 0m � 0x sinmx cosnx dx

 � 1
4 ( 3

2 x � sin 2x �
1
8 sin 4x) � C

 � 1
4 y ( 3

2 � 2 cos 2x �
1
2 cos 4x) dx

 y sin4x dx � 1
4 y �1 � 2 cos 2x �

1
2 �1 � cos 4x�� dx

cos2 2x � 1
2 �1 � cos 4x�

cos2 2x

 � 1
4 y �1 � 2 cos 2x � cos2 2x� dx

 � y �1 � cos 2x

2 �2

 dx

 y sin4x dx � y �sin2x�2 dx

sin4x � �sin2x�2

x sinnx dx

y sin4x dx

cos 2xu � 2x

 � 1
2 (� �

1
2 sin 2�) �

1
2 (0 �

1
2 sin 0) � 1

2 �

 y
�

0
 sin2x dx � 1

2 y
�

0
 �1 � cos 2x� dx � [ 1

2 (x �
1
2 sin 2x)]0 

�

sin2x
sin2x � 1 � cos2x

y
�

0
 sin2x dxV

cos2x � 1
2 �1 � cos 2x�sin2x � 1

2 �1 � cos 2x�
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N Example 3 shows that the area of the region
shown in Figure 2 is .�	2

FIGURE 2

0

_0.5

1.5

π

y=sin@ x



STRATEGY FOR EVALUATING 

(a) If the power of cosine is odd , save one cosine factor and use
to express the remaining factors in terms of sine:

Then substitute .

(b) If the power of sine is odd , save one sine factor and use
to express the remaining factors in terms of cosine:

Then substitute . [Note that if the powers of both sine and cosine are
odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities

It is sometimes helpful to use the identity

We can use a similar strategy to evaluate integrals of the form . Since
, we can separate a factor and convert the remaining (even)

power of secant to an expression involving tangent using the identity .
Or, since , we can separate a factor and convert the
remaining (even) power of tangent to secant.

EXAMPLE 5 Evaluate .

SOLUTION If we separate one factor, we can express the remaining factor in
terms of tangent using the identity . We can then evaluate the integral
by substituting so that :

M � 1
7 tan7x �

1
9 tan9x � C

 �
u 7

7
�

u 9

9
� C

 � y u 6�1 � u 2 � du � y �u 6 � u 8 � du

 � y tan6x �1 � tan2x� sec2x dx

 y tan6x sec4x dx � y tan6x sec2x sec2x dx

du � sec2x dxu � tan x
sec2x � 1 � tan2x

sec2xsec2x

y tan6x sec4x dxV

sec x tan x�d�dx� sec x � sec x tan x
sec2x � 1 � tan2x

sec2x�d�dx� tan x � sec2x
x tanmx secnx dx

sin x cos x � 1
2 sin 2x

cos2x � 1
2 �1 � cos 2x�sin2x � 1

2 �1 � cos 2x�

u � cos x

 � y �1 � cos2x�k cosnx sin x dx

 y sin2k�1x cosnx dx � y �sin2x�k cosnx sin x dx

sin2x � 1 � cos2x
�m � 2k � 1�

u � sin x

 � y sinmx �1 � sin2x�k cos x dx

 y sinmx cos2k�1x dx � y sinmx �cos2x�k cos x dx

cos2x � 1 � sin2x
�n � 2k � 1�

y sin mx cos nx dx
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EXAMPLE 6 Find .

SOLUTION If we separate a factor, as in the preceding example, we are left with 
a factor, which isn’t easily converted to tangent. However, if we separate a

factor, we can convert the remaining power of tangent to an expression
involving only secant using the identity . We can then evaluate the
integral by substituting , so :

M

The preceding examples demonstrate strategies for evaluating integrals of the form
for two cases, which we summarize here.

STRATEGY FOR EVALUATING 

(a) If the power of secant is even , save a factor of and use
to express the remaining factors in terms of :

Then substitute .

(b) If the power of tangent is odd , save a factor of and
use to express the remaining factors in terms of :

Then substitute .

For other cases, the guidelines are not as clear-cut. We may need to use identities, inte-
gration by parts, and occasionally a little ingenuity. We will sometimes need to be able to 

u � sec x

 � y �sec2x � 1�k secn�1x sec x tan x dx

 y tan2k�1x secnx dx � y �tan2x�k secn�1x sec x tan x dx

sec xtan2x � sec2x � 1
sec x tan x�m � 2k � 1�

u � tan x

 � y tanmx �1 � tan2x�k�1 sec2x dx

 y tanmx sec2kx dx � y tanmx �sec2x�k�1 sec2x dx

tan xsec2x � 1 � tan2x
sec2x�n � 2k, k � 2�

y tanmx secnx dx

x tanmx secnx dx

   � 1
11 sec11� �

2
9 sec9� �

1
7 sec7� � C

 �
u 11

11
� 2 

u 9

9
�

u 7

7
� C

 � y �u 10 � 2u 8 � u 6 � du

 � y �u 2 � 1�2u 6 du

 � y �sec2� � 1�2 sec6� sec � tan � d�

 y tan5� sec7� d� � y tan4� sec6� sec � tan � d�

du � sec � tan � d�u � sec �
tan2� � sec2� � 1

sec � tan �
sec5�

sec2�

y tan5� sec7� d�
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integrate by using the formula established in (5.5.5):

We will also need the indefinite integral of secant:

We could verify Formula 1 by differentiating the right side, or as follows. First we multi-
ply numerator and denominator by :

If we substitute , then , so the integral
becomes . Thus we have

EXAMPLE 7 Find .

SOLUTION Here only occurs, so we use to rewrite a factor in
terms of :

In the first integral we mentally substituted so that . M

If an even power of tangent appears with an odd power of secant, it is helpful to express
the integrand completely in terms of . Powers of may require integration by
parts, as shown in the following example.

EXAMPLE 8 Find .

SOLUTION Here we integrate by parts with

 du � sec x tan x dx v � tan x

 u � sec x  dv � sec2x dx

y sec3x dx

sec xsec x

du � sec2x dxu � tan x

 �
tan2x

2
� ln � sec x � � C

 � y tan x sec2x dx � y tan x dx

� y tan x �sec2x � 1� dx y tan3x dx � y tan x tan2x dx

sec2x
tan2xtan2x � sec2x � 1tan x

y tan3x dx

y sec x dx � ln � sec x � tan x � � C

x �1�u� du � ln � u � � C
du � �sec x tan x � sec2x� dxu � sec x � tan x

  � y 
sec2x � sec x tan x

sec x � tan x
 dx

 y sec x dx � y sec x 
sec x � tan x

sec x � tan x
 dx

sec x � tan x

y sec x dx � ln � sec x � tan x � � C1

y tan x dx � ln � sec x � � C

tan x
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Then

Using Formula 1 and solving for the required integral, we get

M

Integrals such as the one in the preceding example may seem very special but they
occur frequently in applications of integration, as we will see in Chapter 8. Integrals of 
the form can be found by similar methods because of the identity

.
Finally, we can make use of another set of trigonometric identities:

To evaluate the integrals (a) , (b) , or
(c) , use the corresponding identity:

(a)

(b)

(c)

EXAMPLE 9 Evaluate .

SOLUTION This integral could be evaluated using integration by parts, but it’s easier to use
the identity in Equation 2(a) as follows:

M � 1
2 (cos x �

1
9 cos 9x� � C

 � 1
2 y ��sin x � sin 9x� dx

 y sin 4x cos 5x dx � y 12 �sin��x� � sin 9x� dx

y sin 4x cos 5x dx

 cos A cos B � 1
2 �cos�A � B� � cos�A � B��

 sin A sin B � 1
2 �cos�A � B� � cos�A � B��

 sin A cos B � 1
2 �sin�A � B� � sin�A � B��

x cos mx cos nx dx
x sin mx sin nx dxx sin mx cos nx dx2

1 � cot2x � csc2x
x cotmx cscnx dx

y sec3x dx � 1
2 (sec x tan x � ln � sec x � tan x �) � C

 � sec x tan x � y sec3x dx � y sec x dx

 � sec x tan x � y sec x �sec2x � 1� dx

 y sec3x dx � sec x tan x � y sec x tan2x dx
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N These product identities are discussed in
Appendix D.

9. 10.

11. 12.

14.

15. 16. y cos � cos5�sin �� d�y 
cos5�

ssin �  d�

y
�

0
 sin2 t cos4 t dty

��2

0
 sin2x cos2x dx13.

y x cos2x dxy �1 � cos ��2 d�

y
�

0
 cos6� d�y

�

0
 sin4�3t� dt

1–49 Evaluate the integral.

1. 2.

4.

5. 6.

8. y
��2

0
 sin2�2�� d�y

��2

0
 cos2� d�7.

y 
sin3(sx )

sx  dxy sin2��x� cos5��x� dx

y
��2

0
 cos5x dxy

3��4

��2
 sin5x cos3x dx3.

y sin6x cos3x dxy sin3x cos2x dx

EXERCISES7.2



53. 54.

Find the average value of the function on
the interval .

56. Evaluate by four methods:
(a) the substitution 
(b) the substitution 
(c) the identity 
(d) integration by parts

Explain the different appearances of the answers.

57–58 Find the area of the region bounded by the given curves.

57.

58. , ,

; 59–60 Use a graph of the integrand to guess the value of the
integral. Then use the methods of this section to prove that your
guess is correct.

59. 60.

61–64 Find the volume obtained by rotating the region bounded
by the given curves about the specified axis.

, , ; about the -axis

62. , , ; about the -axis

63. , , ; about 

64. , , ; about 

65. A particle moves on a straight line with velocity function
. Find its position function 

if 

66. Household electricity is supplied in the form of alternating 
current that varies from V to V with a frequency 
of 60 cycles per second (Hz). The voltage is thus given by 
the equation

where is the time in seconds. Voltmeters read the RMS
(root-mean-square) voltage, which is the square root of the
average value of over one cycle.
(a) Calculate the RMS voltage of household current.
(b) Many electric stoves require an RMS voltage of 220 V.

Find the corresponding amplitude needed for the volt-
age .E�t� � A sin�120�t�

A

�E�t��2

t

E�t� � 155 sin�120� t�

�155155

f �0� � 0.
s � f �t�v�t� � sin �t cos2�t

y � �10 	 x 	 ��3y � cos xy � sec x

y � 10 	 x 	 ��4y � cos xy � sin x

x0 	 x 	 �y � 0y � sin2 x

x��2 	 x 	 �y � 0y � sin x61.

y
2

0
 sin 2�x cos 5�x dxy

2�

0
 cos3x dx

��4 	 x 	 5��4y � cos3 xy � sin3 x

���4 	 x 	 ��4y � cos2 x,y � sin2 x,

sin 2x � 2 sin x cos x
u � sin x
u � cos x

x sin x cos x dx

���, ��
f �x� � sin2x cos3x55.

y sec4 
x

2
 dxy sin 3x sin 6x dx17. 18.

19. 20.

21. 22.

24.

25. 26.

27. 28.

30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

44.

45. 46.

47. 48.

49.

50. If , express the value of

in terms of .

; 51–54 Evaluate the indefinite integral. Illustrate, and check that
your answer is reasonable, by graphing both the integrand and its
antiderivative (taking .

51. 52. y sin3 x cos4 x dxy x sin2�x 2� dx

C � 0�

Ix
��4
0  tan8x sec x dx

x
��4
0  tan6x sec x dx � I

y t sec2�t 2� tan4�t 2� dt

y 
dx

cos x � 1y 
1 � tan2x

sec2x
 dx

y 
cos x � sin x

sin 2x
 dxy sin 5� sin � d�

y cos �x cos 4�x dxy sin 8x cos 5x dx43.

y
��3

��6
 csc3x dxy csc x dx

y csc 4x cot 6x dxy cot 3� csc3� d�

y
��2

��4
 cot3x dxy

��2

��6
 cot2x dx

y 
sin 


cos3 

 d
y x sec x tan x dx

y tan2x sec x dxy 
tan3�

cos4�
 d�

y tan6�ay� dyy tan5x dx

y
��3

0
 tan5x sec6x dxy tan3x sec x dx29.

y tan3�2x� sec5�2x� dxy
��3

0
 tan5x sec4x dx

y
��4

0
 sec4� tan4� d�y sec6t dt

y �tan2 x � tan4 x� dxy tan2x dx23.

y
��2

0
 sec4�t�2� dty sec2x tan x dx

y cos2x sin 2x dxy 
cos x � sin 2x

sin x
 dx

y cot5� sin4� d�y cos2x tan3x dx
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70. A finite Fourier series is given by the sum

Show that the th coefficient is given by the formula

am �
1

�
 y

�

��
 f �x� sin mx dx

amm

 � a1 sin x � a2 sin 2x � � � � � aN sin Nx

 f �x� � �
N

n�1
 an sin nx

67–69 Prove the formula, where and are positive integers.

67.

68.

69. y
�

��
 cos mx cos nx dx � 	0

�

if m � n

if m � n

y
�

��
 sin mx sin nx dx � 	0

�

if m � n

if m � n

y
�

��
 sin mx cos nx dx � 0

nm

TRIGONOMETRIC SUBSTITUTION

In finding the area of a circle or an ellipse, an integral of the form arises,
where . If it were , the substitution would be effective

but, as it stands, is more difficult. If we change the variable from to by
the substitution , then the identity allows us to get rid of the
root sign because

Notice the difference between the substitution (in which the new variable is
a function of the old one) and the substitution (the old variable is a function of
the new one).

In general we can make a substitution of the form by using the Substitution
Rule in reverse. To make our calculations simpler, we assume that has an inverse func-
tion; that is, is one-to-one. In this case, if we replace by and by in the Substitution
Rule (Equation 5.5.4), we obtain

This kind of substitution is called inverse substitution.
We can make the inverse substitution provided that it defines a one-to-one

function. This can be accomplished by restricting to lie in the interval .
In the following table we list trigonometric substitutions that are effective for the given

radical expressions because of the specified trigonometric identities. In each case the restric-
tion on is imposed to ensure that the function that defines the substitution is one-to-one.
(These are the same intervals used in Section 1.6 in defining the inverse functions.)

TABLE OF TRIGONOMETRIC SUBSTITUTIONS

�

����2, ��2��
x � a sin �

y f �x� dx � y f �t�t��t��t� dt

txxut

t

x � t�t�

x � a sin �
u � a 2 � x 2

sa 2 � x 2 � sa 2 � a 2 sin2�  � sa 2�1 � sin2�� � sa 2 cos2�  � a � cos � �

1 � sin2� � cos2�x � a sin �
�xx sa 2 � x 2  dx

u � a 2 � x 2
x xsa 2 � x 2  dxa 
 0

x sa 2 � x 2  dx

7.3

Expression Substitution Identity

sec2� � 1 � tan2�x � a sec �, 0 	 � �
�

2
or � 	 � �

3�

2
sx 2 � a 2 

1 � tan2� � sec2�x � a tan �, �
�

2
� � �

�

2
sa 2 � x 2 

1 � sin2� � cos2�x � a sin �, �
�

2
	 � 	

�

2
sa 2 � x 2 



EXAMPLE 1 Evaluate .

SOLUTION Let , where . Then and

(Note that because .) Thus the Inverse Substitution Rule
gives

Since this is an indefinite integral, we must return to the original variable . This can be
done either by using trigonometric identities to express in terms of or 
by drawing a diagram, as in Figure 1, where is interpreted as an angle of a right tri-
angle. Since , we label the opposite side and the hypotenuse as having lengths
and . Then the Pythagorean Theorem gives the length of the adjacent side as ,
so we can simply read the value of from the figure:

(Although in the diagram, this expression for is valid even when .)
Since , we have and so

M

EXAMPLE 2 Find the area enclosed by the ellipse

SOLUTION Solving the equation of the ellipse for , we get

Because the ellipse is symmetric with respect to both axes, the total area is four times
the area in the first quadrant (see Figure 2). The part of the ellipse in the first quadrant is
given by the function

and so 1
4 A � y

a

0
 
b

a
 sa 2 � x 2  dx

0 	 x 	 ay �
b

a
 sa 2 � x 2 

A

y � �
b

a
 sa 2 � x 2 or

 y 2

b 2 � 1 �
x 2

a 2 �
a 2 � x 2

a 2

y

x 2

a 2 �
 y 2

b 2 � 1

V

y 
s9 � x 2 

x 2
 dx � �

s9 � x 2 

x
� sin�1
 x

3� � C

� � sin�1�x�3�sin � � x�3
� � 0cot �� 
 0

cot � �
s9 � x 2 

x

cot �
s9 � x 2 3

xsin � � x�3
�

sin � � x�3cot �
x

 � �cot � � � � C

 � y �csc2� � 1� d�

 � y 
cos2�

sin2�
 d� � y cot2� d�

 y 
s9 � x 2 

x 2  dx � y 
3 cos �

9 sin2�
 3 cos � d�

���2 	 � 	 ��2cos � � 0

s9 � x 2 � s9 � 9 sin2�  � s9 cos2�  � 3 � cos � � � 3 cos �

dx � 3 cos � d����2 	 � 	 ��2x � 3 sin �

y 
s9 � x 2 

x 2  dxV
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To evaluate this integral we substitute . Then . To change 
the limits of integration we note that when , , so ; when ,

, so . Also

since . Therefore

We have shown that the area of an ellipse with semiaxes and is . In particular,
taking , we have proved the famous formula that the area of a circle with
radius is . M

Since the integral in Example 2 was a definite integral, we changed the limits
of integration and did not have to convert back to the original variable .

EXAMPLE 3 Find .

SOLUTION Let . Then and

Thus we have

To evaluate this trigonometric integral we put everything in terms of and :

Therefore, making the substitution , we have

We use Figure 3 to determine that and so

My 
dx

x 2
sx 2 � 4 

� �
sx 2 � 4 

4x
� C

csc � � sx 2 � 4 �x

 � �
csc �

4
� C

 �
1

4
 
�

1

u� � C � �
1

4 sin �
� C

 y 
dx

x 2
sx 2 � 4 

�
1

4
 y 

cos �

sin2�
 d� �

1

4
 y 

du

u 2

u � sin �

sec �

tan2�
�

1

cos �
�

cos2�

sin2�
�

cos �

sin2�

cos �sin �

y 
dx

x 2
sx 2 � 4 

� y 
2 sec2� d�

4 tan2� � 2 sec �
�

1

4
 y 

sec �

tan2�
 d�

sx 2 � 4 � s4�tan 2� � 1� � s4 sec 2� � 2 � sec � � � 2 sec �

dx � 2 sec2� d�x � 2 tan �, ���2 � � � ��2

y 
1

x 2
sx 2 � 4 

 dxV

x
NOTE

�r 2r
a � b � r

�abba

 � 2ab[� �
1
2 sin 2�]0

��2
� 2ab
�

2
� 0 � 0� � �ab

 � 4ab y
��2

0
 cos2� d� � 4ab y

��2

0
 12 �1 � cos 2�� d�

 A � 4 
b

a
 y

a

0
 sa 2 � x 2  dx � 4 

b

a
 y

��2

0
 a cos � � a cos � d�

0 	 � 	 ��2

sa 2 � x 2 � sa 2 � a 2 sin2� � sa 2 cos2� � a � cos � � � a cos �

� � ��2sin � � 1
x � a� � 0sin � � 0x � 0

dx � a cos � d�x � a sin �
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EXAMPLE 4 Find .

SOLUTION It would be possible to use the trigonometric substitution here (as in
Example 3). But the direct substitution is simpler, because then 
and

M

Example 4 illustrates the fact that even when trigonometric substitutions are
possible, they may not give the easiest solution. You should look for a simpler method first.

EXAMPLE 5 Evaluate , where .

SOLUTION 1 We let , where or . Then
and

Therefore

The triangle in Figure 4 gives , so we have

Writing , we have

SOLUTION 2 For the hyperbolic substitution can also be used. Using the
identity , we have

Since , we obtain

Since , we have and

y 
dx

sx 2 � a 2 
� cosh�1
 x

a� � C2

t � cosh�1�x�a�cosh t � x�a

y 
dx

sx 2 � a 2 
� y 

a sinh t dt

a sinh t
� y dt � t � C

dx � a sinh t dt

sx 2 � a 2 � sa 2 �cosh2 t � 1� � sa 2 sinh2 t � a sinh t

cosh2y � sinh2y � 1
x � a cosh tx 
 0

y 
dx

sx 2 � a 2 
� ln � x � sx 2 � a 2 � � C11

C1 � C � ln a

 � ln � x � sx 2 � a 2 � � ln a � C

 y 
dx

sx 2 � a 2 
� ln � x

a
�

sx 2 � a 2 

a � � C

tan � � sx 2 � a 2 �a

 � y sec � d� � ln � sec � � tan � � � C

 y 
dx

sx 2 � a 2 
� y 

a sec � tan �

a tan �
 d�

sx 2 � a 2 � sa 2�sec2� � 1� � sa 2 tan2� � a � tan � � � a tan �

dx � a sec � tan � d�
� � � � 3��20 � � � ��2x � a sec �

a 
 0y 
dx

sx 2 � a 2 

NOTE

y 
x

sx 2 � 4 
 dx �

1

2
 y 

du

su � su � C � sx 2 � 4 � C

du � 2x dxu � x 2 � 4
x � 2 tan �

y 
x

sx 2 � 4 
 dx
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Although Formulas 1 and 2 look quite different, they are actually equivalent by
Formula 3.11.4. M

As Example 5 illustrates, hyperbolic substitutions can be used in place of trigo-
nometric substitutions and sometimes they lead to simpler answers. But we usually use
trigonometric substitutions because trigonometric identities are more familiar than hyper-
bolic identities.

EXAMPLE 6 Find .

SOLUTION First we note that so trigonometric substitution 
is appropriate. Although is not quite one of the expressions in the table of
trigonometric substitutions, it becomes one of them if we make the preliminary substitu-
tion . When we combine this with the tangent substitution, we have ,
which gives and

When , , so ; when , , so .

Now we substitute so that . When , ; when
. Therefore

M

EXAMPLE 7 Evaluate .

SOLUTION We can transform the integrand into a function for which trigonometric substitu-
tion is appropriate by first completing the square under the root sign:

This suggests that we make the substitution . Then and , so

y 
x

s3 � 2x � x 2 
 dx � y 

u � 1

s4 � u 2 
 du

x � u � 1du � dxu � x � 1

 � 4 � �x � 1�2

 3 � 2x � x 2 � 3 � �x 2 � 2x� � 3 � 1 � �x 2 � 2x � 1�

y 
x

s3 � 2x � x 2 
 dx

 � 3
16 
u �

1

u�1

1�2

� 3
16 [( 1

2 � 2) � �1 � 1�] � 3
32

 y
3 s3�2

0
 

x 3

�4x 2 � 9�3�2  dx � �
3
16 y

1�2

1
 
1 � u 2

u 2  du � 3
16 y

1�2

1
 �1 � u�2 � du

� � ��3, u � 1
2

u � 1� � 0du � �sin � d�u � cos �

 � 3
16 y

��3

0
 
1 � cos2�

cos2�
 sin � d�

 � 3
16 y

��3

0
 
tan3�

sec �
 d� � 3

16 y
��3

0
 
sin3�

cos2�
 d�

 y
3 s3�2

0
 

x 3

�4x 2 � 9�3�2  dx � y
��3

0
 

27
8 tan3�

 27 sec3�
 3

2 sec2� d�

� � ��3tan � � s3 x � 3s3 �2� � 0tan � � 0x � 0

s4x 2 � 9 � s9 tan2� � 9 � 3 sec �

dx � 3
2 sec2� d�

x � 3
2 tan �u � 2x

s4x 2 � 9 

�4x 2 � 9�3�2 � �s4x 2 � 9 )3

y
3 s3�2

0
 

x 3

�4x 2 � 9�3�2  dx

NOTE
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We now substitute , giving and , so

M � �s3 � 2x � x 2 � sin�1� x � 1

2 � � C

 � �s4 � u 2 � sin�1�u

2� � C

 � �2 cos � � � � C

 � y �2 sin � � 1� d�

 y 
x

s3 � 2x � x 2 
 dx � y 

2 sin � � 1

2 cos �
 2 cos � d�

s4 � u 2 � 2 cos �du � 2 cos � d�u � 2 sin �
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N Figure 5 shows the graphs of the integrand 
in Example 7 and its indefinite integral (with

). Which is which?C � 0

_4

_5

3

2

FIGURE 5  

21.

23. 24.

25. 26.

27. 28.

29. 30.

(a) Use trigonometric substitution to show that

(b) Use the hyperbolic substitution to show that

These formulas are connected by Formula 3.11.3.

32. Evaluate

(a) by trigonometric substitution.
(b) by the hyperbolic substitution .

33. Find the average value of , .

34. Find the area of the region bounded by the hyperbola
and the line .x � 39x 2 � 4y 2 � 36

1 � x � 7f �x� � sx 2 � 1�x

x � a sinh t

y 
x 2

�x 2 � a 2 �3�2  dx

y 
dx

sx 2 � a 2 
� sinh�1� x

a� � C

x � a sinh t

y 
dx

sx 2 � a 2 
� ln(x � sx 2 � a 2 ) � C

31.

y
��2

0
 

cos t

s1 � sin2t  dty xs1 � x 4  dx

y 
x 2 � 1

�x 2 � 2x � 2�2  dxy sx 2 � 2x dx

y 
x 2

�3 � 4x � 4x 2�3�2  dxy 
x

sx 2 � x � 1
 dx

y 
dt

st 2 � 6t � 13 y s5 � 4x � x 2  dx

y
1

0
 sx 2 � 1 dx22.y

0.6

0
 

x 2

s9 � 25x 2  dx
1–3 Evaluate the integral using the indicated trigonometric sub-
stitution. Sketch and label the associated right triangle.

1. ;

2. ;

;

4–30 Evaluate the integral.

4.

5. 6.

8.

9. 10.

11. 12.

14.

15. 16.

18.

19. 20. y 
t

s25 � t 2  dty 
s1 � x 2 

x
 dx

y 
dx

��ax�2 � b 2 �3�2y 
x

sx 2 � 7 
 dx17.

y
2�3

s2�3
 

dx

x 5
s9x 2 � 1

 y
a

0
 x 2

sa 2 � x 2  dx

y 
du

us5 � u 2 y 
sx 2 � 9

x 3  dx13.

y
1

0
 xsx 2 � 4  dxy s1 � 4x 2 dx

y 
t 5

st 2 � 2  dty 
dx

sx 2 � 16 

y 
x 3

sx 2 � 100  dxy 
1

x 2
s25 � x 2 

 dx7.

y
2

1
 
sx 2 � 1

x
 dxy

2

s2
 

1

t 3
st 2 � 1

 dt

y
2 s3

0
 

x 3

s16 � x 2  
 dx

x � 3 tan �y 
x 3

sx 2 � 9 
 dx3.

x � 3 sin �y x 3
s9 � x 2  dx

x � 3 sec �y 
1

x 2
sx 2 � 9 

 dx

EXERCISES7.3
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39. (a) Use trigonometric substitution to verify that

(b) Use the figure to give trigonometric interpretations of
both terms on the right side of the equation in part (a).

40. The parabola divides the disk into two
parts. Find the areas of both parts.

41. Find the area of the crescent-shaped region (called a lune)
bounded by arcs of circles with radii and . (See the figure.)

42. A water storage tank has the shape of a cylinder with diam-
eter 10 ft. It is mounted so that the circular cross-sections 
are vertical. If the depth of the water is 7 ft, what percentage
of the total capacity is being used?

43. A torus is generated by rotating the circle
about the -axis. Find the volume

enclosed by the torus.
xx 2 � �y � R�2 � r 2

R

r

Rr

x 2 � y 2 � 8y � 1
2x 2

¨

¨

y=œ„„„„„a@-t@

t0

y

a

x

y
x

0
 sa 2 � t 2  dt � 1

2 a 2 sin�1�x�a� �
1
2 x sa 2 � x 2 

35. Prove the formula for the area of a sector of 
a circle with radius and central angle . [Hint: Assume

and place the center of the circle at the origin
so it has the equation . Then is the sum of the
area of the triangle and the area of the region in
the figure.] 

; 36. Evaluate the integral

Graph the integrand and its indefinite integral on the same
screen and check that your answer is reasonable. 

; 37. Use a graph to approximate the roots of the equation
. Then approximate the area bounded by

the curve and the line . 

38. A charged rod of length produces an electric field at point
given by

where is the charge density per unit length on the rod and
is the free space permittivity (see the figure). Evaluate the

integral to determine an expression for the electric field .

0 x

y

L

P (a, b)

E�P�
�0

�

E�P� � y
L�a

�a
 

�b

4��0�x 2 � b 2 �3�2  dx

P�a, b�
L

y � 2 � xy � x 2
s4 � x 2 

x 2
s4 � x 2 � 2 � x

y 
dx

x 4
sx 2 � 2 

O x

y

RQ

¨

P

PQRPOQ
Ax 2 � y 2 � r 2

0 	 � 	 ��2
�r

A � 1
2 r 2�

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

In this section we show how to integrate any rational function (a ratio of polynomials) by
expressing it as a sum of simpler fractions, called partial fractions, that we already know
how to integrate. To illustrate the method, observe that by taking the fractions 
and to a common denominator we obtain

If we now reverse the procedure, we see how to integrate the function on the right side of 

2

x � 1
�

1

x � 2
�

2�x � 2� � �x � 1�
�x � 1��x � 2�

�
x � 5

x 2 � x � 2

1��x � 2�
2��x � 1�

7.4



this equation:

To see how the method of partial fractions works in general, let’s consider a rational
function

where and are polynomials. It’s possible to express as a sum of simpler fractions
provided that the degree of is less than the degree of . Such a rational function is called
proper. Recall that if

where , then the degree of is and we write .
If is improper, that is, , then we must take the preliminary step 

of dividing into (by long division) until a remainder is obtained such that
. The division statement is

where and are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that is

required.

EXAMPLE 1 Find .

SOLUTION Since the degree of the numerator is greater than the degree of the denominator,
we first perform the long division. This enables us to write

M

The next step is to factor the denominator as far as possible. It can be shown that
any polynomial can be factored as a product of linear factors (of the form ) 
and irreducible quadratic factors (of the form , where ). For
instance, if , we could factor it as

The third step is to express the proper rational function (from Equation 1) as
a sum of partial fractions of the form

Ax � B

�ax 2 � bx � c� jor
A

�ax � b�i

R�x��Q�x�

Q�x� � �x 2 � 4��x 2 � 4� � �x � 2��x � 2��x 2 � 4�

Q�x� � x 4 � 16
b 2 � 4ac 	 0ax 2 � bx � c

ax � bQ
Q�x�

 �
x 3

3
�

x 2

2
� 2x �  2 ln 	 x � 1 	 � C

 y 
x 3 � x

x � 1
 dx � y �x 2 � x � 2 �

2

x � 1� dx

y 
x 3 � x

x � 1
 dxV

RS

f �x� �
P�x�
Q�x�

� S�x� �
R�x�
Q�x�

1

deg�R� 	 deg�Q�
R�x�PQ

deg�P� 
 deg�Q�f
deg�P� � nnPan � 0

P�x� � anxn � an�1xn�1 � � � � � a1x � a0

QP
fQP

f �x� �
P�x�
Q�x�

 � 2 ln 	 x � 1 	 � ln 	 x � 2 	 � C

 y 
x � 5

x 2 � x � 2
 dx � y � 2

x � 1
�

1

x � 2� dx
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A theorem in algebra guarantees that it is always possible to do this. We explain the details
for the four cases that occur.

CASE I N The denominator Q(x) is a product of distinct linear factors.

This means that we can write

where no factor is repeated (and no factor is a constant multiple of another). In this case
the partial fraction theorem states that there exist constants such that

These constants can be determined as in the following example.

EXAMPLE 2 Evaluate .

SOLUTION Since the degree of the numerator is less than the degree of the denominator, we
don’t need to divide. We factor the denominator as

Since the denominator has three distinct linear factors, the partial fraction decomposition
of the integrand (2) has the form

To determine the values of , , and , we multiply both sides of this equation by the
product of the denominators, , obtaining

Expanding the right side of Equation 4 and writing it in the standard form for polyno-
mials, we get

The polynomials in Equation 5 are identical, so their coefficients must be equal. The
coefficient of on the right side, , must equal the coefficient of on the
left side—namely, 1. Likewise, the coefficients of are equal and the constant terms are
equal. This gives the following system of equations for , , and :

 �2A �  2B �  2C � �1

 3A �  2B �  C � 2

 2A �  B �  2C � 1

CBA
x

x 22A � B � 2Cx 2

x 2 � 2x � 1 � �2A � B � 2C �x 2 � �3A � 2B � C �x � 2A5

x 2 � 2x � 1 � A�2x � 1��x � 2� � Bx�x � 2� � Cx�2x � 1�4

x�2x � 1��x � 2�
CBA

x 2 � 2x � 1

x�2x � 1��x � 2�
�

A

x
�

B

2x � 1
�

C

x � 2
3

2x 3 � 3x 2 � 2x � x�2x 2 � 3x � 2� � x�2x � 1��x � 2�

y 
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
 dxV

R�x�
Q�x�

�
A1

a1x � b1
�

A2

a2x � b2
� � � � �

Ak

akx � bk

2

A1, A2, . . . , Ak

Q�x� � �a1x � b1 ��a2x � b2 � � � � �ak x � bk�
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N Another method for finding , , and 
is given in the note after this example.

CBA



Solving, we get , , and , and so

In integrating the middle term we have made the mental substitution , which
gives and . M

We can use an alternative method to find the coefficients , , and in 
Example 2. Equation 4 is an identity; it is true for every value of . Let’s choose values of

that simplify the equation. If we put in Equation 4, then the second and third terms
on the right side vanish and the equation then becomes , or . Likewise,

gives and gives , so and . (You may object
that Equation 3 is not valid for , , or , so why should Equation 4 be valid for those
values? In fact, Equation 4 is true for all values of , even , , and . See Exercise 69
for the reason.)

EXAMPLE 3 Find , where .

SOLUTION The method of partial fractions gives

and therefore

Using the method of the preceding note, we put in this equation and get
, so . If we put , we get , so .

Thus

Since , we can write the integral as

See Exercises 55–56 for ways of using Formula 6. M

CASE 11 N Q(x) is a product of linear factors, some of which are repeated.

Suppose the first linear factor is repeated times; that is, occurs in
the factorization of . Then instead of the single term in Equation 2, we A1��a1x � b1�Q�x�

�a1x � b1�rr�a1x � b1�

y 
dx

x 2 � a 2 �
1

2a
 ln 
 x � a

x � a 
 � C6

ln x � ln y � ln�x�y�

 �
1

2a
 (ln 	 x � a 	 � ln 	 x � a 	) � C

 y 
dx

x 2 � a 2 �
1

2a
 y � 1

x � a
�

1

x � a� dx

B � �1��2a�B��2a� � 1x � �aA � 1��2a�A�2a� � 1
x � a

A�x � a� � B�x � a� � 1

1

x 2 � a 2 �
1

�x � a��x � a�
�

A

x � a
�

B

x � a

a � 0y 
dx

x 2 � a 2

�21
2x � 0x

�21
2x � 0

C � �
1
10B � 1

510C � �1x � �25B�4 � 1
4x � 1

2

A � 1
2�2A � �1

x � 0x
x

CBANOTE

dx � du�2du � 2 dx
u � 2x � 1

 � 1
2 ln 	 x 	 �

1
10 ln 	 2x � 1 	 �

1
10 ln 	 x � 2 	 � K

 y 
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
 dx � y �1

2
 
1

x
�

1

5
 

1

2x � 1
�

1

10
 

1

x � 2� dx

C � �
1
10B � 1

5A � 1
2
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N We could check our work by taking the terms
to a common denominator and adding them.

N Figure 1 shows the graphs of the integrand 
in Example 2 and its indefinite integral (with

). Which is which?K � 0

FIGURE 1

_3

_2

2

3



would use

By way of illustration, we could write

but we prefer to work out in detail a simpler example.

EXAMPLE 4 Find .

SOLUTION The first step is to divide. The result of long division is

The second step is to factor the denominator . Since ,
we know that is a factor and we obtain

Since the linear factor occurs twice, the partial fraction decomposition is

Multiplying by the least common denominator, , we get

Now we equate coefficients:

Solving, we obtain , , and , so

M �
x 2

2
� x �

2

x � 1
� ln 
 x � 1

x � 1 
 � K

 �
x 2

2
� x � ln 	 x � 1 	 �

2

x � 1
� ln 	 x � 1 	 � K

 y 
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx � y �x � 1 �

1

x � 1
�

2

�x � 1�2 �
1

x � 1� dx

C � �1B � 2A � 1

 �A �  B �  C � 0

 A �  B �  2C � 4

 A �  B �  C � 0

 � �A � C �x 2 � �B � 2C �x � ��A � B � C �

 4x � A�x � 1��x � 1� � B�x � 1� � C�x � 1�28

�x � 1�2�x � 1�

4x

�x � 1�2�x � 1�
�

A

x � 1
�

B

�x � 1�2 �
C

x � 1

x � 1

 � �x � 1�2�x � 1�

 x 3 � x 2 � x � 1 � �x � 1��x 2 � 1� � �x � 1��x � 1��x � 1�

x � 1
Q�1� � 0Q�x� � x 3 � x 2 � x � 1

x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
� x � 1 �

4x

x 3 � x 2 � x � 1

y 
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx

x 3 � x � 1

x 2�x � 1�3 �
A

x
�

B

x 2 �
C

x � 1
�

D

�x � 1�2 �
E

�x � 1�3

A1

a1x � b1
�

A2

�a1x � b1�2 � � � � �
Ar

�a1x � b1�r7
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N Another method for finding the coefficients:
Put in (8): .
Put : .
Put : .A � B � C � 1x � 0

C � �1x � �1
B � 2x � 1



CASE III N Q(x) contains irreducible quadratic factors, none of which is repeated.

If has the factor , where , then, in addition to the partial
fractions in Equations 2 and 7, the expression for will have a term of the form

where and are constants to be determined. For instance, the function given by
has a partial fraction decomposition of the form

The term given in (9) can be integrated by completing the square and using the formula

EXAMPLE 5 Evaluate .

SOLUTION Since can’t be factored further, we write

Multiplying by , we have

Equating coefficients, we obtain

Thus , , and and so

In order to integrate the second term we split it into two parts:

We make the substitution in the first of these integrals so that .
We evaluate the second integral by means of Formula 10 with :

M � ln 	 x 	 �
1
2 ln�x 2 � 4� �

1
2 tan�1�x�2� � K

 y 
2x 2 � x � 4

x�x 2 � 4�
 dx � y 

1

x
 dx � y 

x

x 2 � 4
 dx � y 

1

x 2 � 4
 dx

a � 2
du � 2x dxu � x 2 � 4

y 
x � 1

x 2 � 4
 dx � y 

x

x 2 � 4
 dx � y 

1

x 2 � 4
 dx

y 
2x 2 � x � 4

x 3 � 4x
 dx � y �1

x
�

x � 1

x 2 � 4� dx

C � �1B � 1A � 1

4A � 4C � �1A � B � 2

 � �A � B�x 2 � Cx � 4A

 2x 2 � x � 4 � A�x 2 � 4� � �Bx � C �x

x�x 2 � 4�

2x 2 � x � 4

x�x 2 � 4�
�

A

x
�

Bx � C

x 2 � 4

x 3 � 4x � x�x 2 � 4�

y 
2x 2 � x � 4

x 3 � 4x
 dxV

y 
dx

x 2 � a 2 �
1

a
 tan�1� x

a� � C10

x

�x � 2��x 2 � 1��x 2 � 4�
�

A

x � 2
�

Bx � C

x 2 � 1
�

Dx � E

x 2 � 4

f �x� � x���x � 2��x 2 � 1��x 2 � 4��
BA

Ax � B

ax 2 � bx � c
9

R�x��Q�x�
b 2 � 4ac 	 0ax 2 � bx � cQ�x�
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EXAMPLE 6 Evaluate .

SOLUTION Since the degree of the numerator is not less than the degree of the denominator,
we first divide and obtain

Notice that the quadratic is irreducible because its discriminant is
. This means it can’t be factored, so we don’t need to use the 

partial fraction technique.
To integrate the given function we complete the square in the denominator:

This suggests that we make the substitution . Then, and
, so

M

Example 6 illustrates the general procedure for integrating a partial fraction of
the form

We complete the square in the denominator and then make a substitution that brings the
integral into the form

Then the first integral is a logarithm and the second is expressed in terms of .

CASE IV N Q(x) contains a repeated irreducible quadratic factor.

If has the factor , where , then instead of the single
partial fraction (9), the sum

A1x � B1

ax 2 � bx � c
�

A2x � B2

�ax 2 � bx � c�2 � � � � �
Ar x � Br

�ax 2 � bx � c�r11

b 2 � 4ac 	 0�ax 2 � bx � c�rQ�x�

tan�1

y 
Cu � D

u2 � a2  du � C y 
u

u2 � a 2  du � D y 
1

u2 � a2  du 

where b 2 � 4ac 	 0
Ax � B

ax 2 � bx � c

NOTE

 � x �
1
8 ln�4x 2 � 4x � 3� �

1

4s2 
 tan�1�2x � 1

s2 � � C

 � x �
1
8 ln�u2 � 2� �

1

4
�

1

s2 
 tan�1� u

s2 � � C

 � x �
1
4 y 

u

u2 � 2
 du �

1
4 y 

1

u2 � 2
 du

 � x �
1
2 y 

1
2 �u � 1� � 1

u2 � 2
 du � x �

1
4 y 

u � 1

u2 � 2
 du

 y 
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx � y �1 �

x � 1

4x 2 � 4x � 3� dx

x � 1
2 �u � 1�

du � 2 dxu � 2x � 1

4x 2 � 4x � 3 � �2x � 1�2 � 2

b 2 � 4ac � �32 	 0
4x 2 � 4x � 3

4x 2 � 3x � 2

4x 2 � 4x � 3
� 1 �

x � 1

4x 2 � 4x � 3

y 
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx
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occurs in the partial fraction decomposition of . Each of the terms in (11) can be
integrated by first completing the square.

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

SOLUTION

M

EXAMPLE 8 Evaluate .

SOLUTION The form of the partial fraction decomposition is

Multiplying by , we have

If we equate coefficients, we get the system

which has the solution , , , , and . Thus

M

We note that sometimes partial fractions can be avoided when integrating a rational func-
tion. For instance, although the integral

y 
x 2 � 1

x�x 2 � 3�
 dx

 � ln 	 x 	 �
1
2 ln�x 2 � 1� � tan�1x �

1

2�x 2 � 1�
� K

 � y 
dx

x
� y 

x

x 2 � 1
 dx � y 

dx

x 2 � 1
� y 

x dx

�x 2 � 1�2

 y 
1 � x � 2x 2 � x 3

x�x 2 � 1�2  dx � y �1

x
�

x � 1

x 2 � 1
�

x

�x 2 � 1�2� dx

E � 0D � 1C � �1B � �1A � 1

A � 1C � E � �12A � B � D � 2C � �1A � B � 0

 � �A � B�x 4 � Cx 3 � �2A � B � D�x 2 � �C � E�x � A

 � A�x 4 � 2x 2 � 1� � B�x 4 � x 2 � � C�x 3 � x� � Dx 2 � Ex

 �x 3 � 2x 2 � x � 1 � A�x 2 � 1�2 � �Bx � C �x�x 2 � 1� � �Dx � E�x

x�x 2 � 1�2

1 � x � 2x 2 � x 3

x�x 2 � 1�2 �
A

x
�

Bx � C

x 2 � 1
�

Dx � E

�x 2 � 1�2

y 
1 � x � 2x 2 � x 3

x�x 2 � 1�2  dx

� 
A

x
�

B

x � 1
�

Cx � D

x 2 � x � 1
�

Ex � F

x 2 � 1
�

Gx � H

�x 2 � 1�2 �
Ix � J

�x 2 � 1�3

x 3 � x 2 � 1

x�x � 1��x 2 � x � 1��x 2 � 1�3

x 3 � x 2 � 1

x�x � 1��x 2 � x � 1��x 2 � 1�3

R�x��Q�x�
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N It would be extremely tedious to work out by
hand the numerical values of the coefficients in
Example 7. Most computer algebra systems,
however, can find the numerical values very
quickly. For instance, the Maple command

or the Mathematica command

gives the following values:

I � �
1
2 , J � 1

2

E � 15
8 , F � �

1
8 , G � H � 3

4 ,

 A � �1,  B � 1
8 , C � D � �1,

Apart[f]

convert�f, parfrac, x�

N In the second and fourth terms we made the
mental substitution .u � x 2 � 1



could be evaluated by the method of Case III, it’s much easier to observe that if
, then and so

RATIONALIZING SUBSTITUTIONS

Some nonrational functions can be changed into rational functions by means of appropri-
ate substitutions. In particular, when an integrand contains an expression of the form 

, then the substitution may be effective. Other instances appear in the
exercises.

EXAMPLE 9 Evaluate .

SOLUTION Let . Then , so and . 
Therefore

We can evaluate this integral either by factoring as and using
partial fractions or by using Formula 6 with :

M � 2sx � 4 � 2 ln 
 sx � 4 � 2

sx � 4 � 2 
 � C

 � 2u � 8 �
1

2 � 2
 ln 
 u � 2

u � 2 
 � C

 y 
sx � 4 

x
 dx � 2 y du � 8 y 

du

u 2 � 4

a � 2
�u � 2��u � 2�u 2 � 4

 � 2 y �1 �
4

u 2 � 4� du

 y 
sx � 4 

x
 dx � y 

u

u 2 � 4
 2u du � 2 y 

u 2

u 2 � 4
 du

dx � 2u dux � u 2 � 4u 2 � x � 4u � sx � 4 

y 
sx � 4 

x
 dx

u � s
n

t�x�s
n

t�x�

y 
x 2 � 1

x�x 2 � 3�
 dx � 1

3 ln 	 x 3 � 3x 	 � C

du � �3x 2 � 3� dxu � x�x 2 � 3� � x 3 � 3x
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(a) (b)

6. (a) (b)

7–38 Evaluate the integral.

7. 8.

9. 10. y 
1

�t � 4��t � 1�
 dty 

x � 9

�x � 5��x � 2�
 dx

y 
r 2

r � 4
 dry 

x

x � 6
 dx

1

x 6 � x 3

x 4

�x 3 � x��x 2 � x � 3�

t 4 � t 2 � 1

�t 2 � 1��t 2 � 4�2

x 4

x 4 � 1
5.

1–6 Write out the form of the partial fraction decomposition of the
function (as in Example 7). Do not determine the numerical values
of the coefficients.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)
2x � 1

�x � 1�3�x 2 � 4�2

x 3

x 2 � 4x � 3

1

�x 2 � 9�2

x 4 � 1

x 5 � 4x 3

x 2

x 2 � x � 2

x

x 2 � x � 2

1

x 3 � 2x 2 � x

2x

�x � 3��3x � 1�

EXERCISES7.4



482 | | | | CHAPTER 7 TECHNIQUES OF INTEGRATION

48.

49.

50.

51–52 Use integration by parts, together with the techniques of this
section, to evaluate the integral.

51. 52.

; 53. Use a graph of to decide whether
is positive or negative. Use the graph to give a rough

estimate of the value of the integral and then use partial fractions
to find the exact value.

; 54. Graph both and an antiderivative on the
same screen.

55–56 Evaluate the integral by completing the square and using
Formula 6.

56.

57. The German mathematician Karl Weierstrass (1815–1897)
noticed that the substitution will convert any
rational function of and into an ordinary rational
function of .
(a) If , , sketch a right triangle or use

trigonometric identities to show that

(b) Show that

(c) Show that

58–61 Use the substitution in Exercise 57 to transform the inte-
grand into a rational function of and then evaluate the integral.

58.

59. 60. y
��2

��3
 

1

1 � sin x � cos x
 dxy 

1

3 sin x � 4 cos x
 dx

y 
dx

3 � 5 sin x

t

dx �
2

1 � t 2  dt

cos x �
1 � t 2

1 � t 2 and sin x �
2t

1 � t 2

cos� x

2� �
1

s1 � t 2 
and sin� x

2� �
t

s1 � t 2 

�� � x � �t � tan�x�2�
t

cos xsin x
t � tan�x�2�

y 
2x � 1

4x 2 � 12x � 7
 dxy 

dx

x 2 � 2x
55.

y � 1��x 3 � 2x 2 �

x
2
0  f �x� dx

f �x� � 1��x 2 � 2x � 3�

y x tan�1x dxy ln�x 2 � x � 2� dx

y 
e x

�e x � 2��e 2x � 1�
 dx

y 
sec 2 t

tan2 t � 3 tan t � 2
 dt

y 
cos x

sin2x � sin x
 dx

y 
e 2x

e 2x � 3e x � 2
 dx47.12.

13. 14.

15. 16.

18.

19. 20.

21. 22.

23. 24.

26.

27. 28.

30.

32.

33. 34.

35. 36.

37. 38.

39–50 Make a substitution to express the integrand as a rational
function and then evaluate the integral.

39. 40.

41. 42.

44.

45. [Hint: Substitute .]

46. y 
s1 � sx  

x
 dx

u � 6
sx 

y 
1

sx � s
3 x  dx

y
3

1�3
 

sx 

x 2 � x
 dxy 

x 3

s
3 x 2 � 1

 dx43.

y
1

0
 

1

1 � s
3 x  dxy

16

9
 

sx 

x � 4
 dx

y 
dx

2sx � 3 � xy 
1

xsx � 1
 dx

y 
x 3 � 2x 2 � 3x � 2

�x 2 � 2x � 2�2  dxy 
x 2 � 3x � 7

�x 2 � 4x � 6�2  dx

y 
x 4 � 3x 2 � 1

x 5 � 5x 3 � 5x
 dxy 

dx

x�x 2 � 4�2

y 
x 3

x 3 � 1
 dxy

1

0
 

x 3 � 2x

x 4 � 4x 2 � 3
 dx

y
1

0
 

x

x 2 � 4x � 13
 dxy 

1

x 3 � 1
 dx31.

y 
3x 2 � x � 4

x 4 � 3x 2 � 2
 dxy 

x � 4

x 2 � 2x � 5
 dx29.

y 
x 2 � 2x � 1

�x � 1�2�x 2 � 1�
 dxy 

x 3 � x 2 � 2x � 1

�x 2 � 1��x 2 � 2�
 dx

y 
x 2 � x � 1

�x 2 � 1�2  dxy 
10

�x � 1��x 2 � 9�
 dx25.

y 
x 2 � x � 6

x 3 � 3x
 dxy 

5x 2 � 3x � 2

x 3 � 2x 2  dx

y 
ds

s 2�s � 1�2y 
x 3 � 4

x 2 � 4
 dx

y 
x 2 � 5x � 16

�2x � 1��x � 2�2  dxy 
1

�x � 5�2�x � 1�
 dx

y 
x 2 � 2x � 1

x 3 � x
 dxy

2

1
 

4y 2 � 7y � 12

y�y � 2��y � 3�
 dy17.

y
1

0
 
x 3 � 4x � 10

x 2 � x � 6
 dxy

4

3
 
x 3 � 2x 2 � 4

x 3 � 2x 2  dx

y 
1

�x � a��x � b�
 dxy 

ax

x 2 � bx
 dx

y
1

0
 

x � 1

x 2 � 3x � 2
 dxy

3

2
 

1

x 2 � 1
 dx11.
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67. (a) Use a computer algebra system to find the partial fraction
decomposition of the function

(b) Use part (a) to find (by hand) and compare with
the result of using the CAS to integrate directly. Com-
ment on any discrepancy.

68. (a) Find the partial fraction decomposition of the function

(b) Use part (a) to find and graph and its indefinite
integral on the same screen.

(c) Use the graph of to discover the main features of the
graph of .

69. Suppose that , and are polynomials and

for all except when . Prove that for 
all . [Hint: Use continuity.]

70. If is a quadratic function such that and

is a rational function, find the value of .f ��0�

y 
 f �x�

x 2�x � 1�3  dx

f �0� � 1f

x
F�x� � G�x�Q�x� � 0x

F�x�
Q�x�

�
G�x�
Q�x�

QF, G

x f �x� dx
f

fx f �x� dx

f �x� �
12x 5 � 7x 3 � 13x 2 � 8

100x 6 � 80x 5 � 116x 4 � 80x 3 � 41x 2 � 20x � 4

CAS

f
x f �x� dx

f �x� �
4x 3 � 27x 2 � 5x � 32

30x 5 � 13x 4 � 50x 3 � 286x 2 � 299x � 70

CAS61.

62–63 Find the area of the region under the given curve from 
1 to 2.

62. 63.

64. Find the volume of the resulting solid if the region under the
curve from to is rotated
about (a) the -axis and (b) the -axis.

65. One method of slowing the growth of an insect population
without using pesticides is to introduce into the population 
a number of sterile males that mate with fertile females 
but produce no offspring. If represents the number of
female insects in a population, the number of sterile males
introduced each generation, and the population’s natural
growth rate, then the female population is related to time by

Suppose an insect population with 10,000 females grows at a
rate of and 900 sterile males are added. Evaluate the
integral to give an equation relating the female population to
time. (Note that the resulting equation can’t be solved explic-
itly for .)

66. Factor as a difference of squares by first adding and
subtracting the same quantity. Use this factorization to evalu-
ate .x 1��x 4 � 1� dx

x 4 � 1

P

r � 0.10

t � y 
P � S

P��r � 1�P � S�
 dP

t
r

S
P

yx
x � 1x � 0y � 1��x 2 � 3x � 2�

y �
x 2 � 1

3x � x 2y �
1

x 3 � x

y
��2

0
 

sin 2x

2 � cos x
 dx

STRATEGY FOR INTEGRATION

As we have seen, integration is more challenging than differentiation. In finding the deriv-
ative of a function it is obvious which differentiation formula we should apply. But it may
not be obvious which technique we should use to integrate a given function.

Until now individual techniques have been applied in each section. For instance, we
usually used substitution in Exercises 5.5, integration by parts in Exercises 7.1, and partial
fractions in Exercises 7.4. But in this section we present a collection of miscellaneous inte-
grals in random order and the main challenge is to recognize which technique or formula
to use. No hard and fast rules can be given as to which method applies in a given situation,
but we give some advice on strategy that you may find useful.

A prerequisite for strategy selection is a knowledge of the basic integration formulas.
In the following table we have collected the integrals from our previous list together with
several additional formulas that we have learned in this chapter. Most of them should be
memorized. It is useful to know them all, but the ones marked with an asterisk need not be 

7.5



memorized since they are easily derived. Formula 19 can be avoided by using partial frac-
tions, and trigonometric substitutions can be used in place of Formula 20.

TABLE OF INTEGRATION FORMULAS Constants of integration have been omitted.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

*19. *20.

Once you are armed with these basic integration formulas, if you don’t immediately see
how to attack a given integral, you might try the following four-step strategy.

1. Simplify the Integrand if Possible Sometimes the use of algebraic manipula-
tion or trigonometric identities will simplify the integrand and make the method of
integration obvious. Here are some examples:

 � y �1 � 2 sin x cos x� dx

 y �sin x � cos x�2 dx � y �sin2x � 2 sin x cos x � cos2x� dx

 � y sin � cos � d� � 1
2 y sin 2� d�

 y 
tan �

sec2�
 d� � y 

sin �

cos �
 cos2� d�

y sx  (1 � sx ) dx � y (sx � x) dx

y 
dx

sx 2 � a2 
� ln 	 x � sx 2 � a2 	y 

dx

x 2 � a2 �
1

2a
 ln 
 x � a

x � a 

y 

dx

sa 2 � x 2 
� sin�1� x

a�y 
dx

x 2 � a 2 �
1

a
 tan�1� x

a�
y cosh x dx � sinh xy sinh x dx � cosh x

y cot x dx � ln 	 sin x 	y tan x dx � ln 	 sec x 	

y csc x dx � ln 	 csc x � cot x 	y sec x dx � ln 	 sec x � tan x 	

y csc x cot x dx � �csc xy sec x tan x dx � sec x

y csc2x dx � �cot xy sec2x dx � tan x

y cos x dx � sin xy sin x dx � �cos x

y ax dx �
ax

ln ay ex dx � ex

y 
1

x
 dx � ln 	 x 	�n � �1�y xn dx �

xn�1

n � 1
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2. Look for an Obvious Substitution Try to find some function in the
integrand whose differential also occurs, apart from a constant fac-
tor. For instance, in the integral

we notice that if , then . Therefore we use the substitu-
tion instead of the method of partial fractions.

3. Classify the Integrand According to Its Form If Steps 1 and 2 have not led
to the solution, then we take a look at the form of the integrand .
(a) Trigonometric functions. If is a product of powers of and ,

of and , or of and , then we use the substitutions recom-
mended in Section 7.2.

(b) Rational functions. If is a rational function, we use the procedure of Sec-
tion 7.4 involving partial fractions.

(c) Integration by parts. If is a product of a power of (or a polynomial) and
a transcendental function (such as a trigonometric, exponential, or logarithmic
function), then we try integration by parts, choosing and according to the
advice given in Section 7.1. If you look at the functions in Exercises 7.1, you
will see that most of them are the type just described.

(d) Radicals. Particular kinds of substitutions are recommended when certain
radicals appear.
(i) If occurs, we use a trigonometric substitution according to

the table in Section 7.3.
(ii) If occurs, we use the rationalizing substitution .

More generally, this sometimes works for .

4. Try Again If the first three steps have not produced the answer, remember that
there are basically only two methods of integration: substitution and parts.
(a) Try substitution. Even if no substitution is obvious (Step 2), some inspiration

or ingenuity (or even desperation) may suggest an appropriate substitution.
(b) Try parts. Although integration by parts is used most of the time on products

of the form described in Step 3(c), it is sometimes effective on single func-
tions. Looking at Section 7.1, we see that it works on , , and ,
and these are all inverse functions.

(c) Manipulate the integrand. Algebraic manipulations (perhaps rationalizing the
denominator or using trigonometric identities) may be useful in transforming
the integral into an easier form. These manipulations may be more substantial
than in Step 1 and may involve some ingenuity. Here is an example:

(d) Relate the problem to previous problems. When you have built up some expe-
rience in integration, you may be able to use a method on a given integral that
is similar to a method you have already used on a previous integral. Or you
may even be able to express the given integral in terms of a previous one. For 

 � y 
1 � cos x

sin2x
 dx � y �csc2x �

cos x

sin2x� dx

 y 
dx

1 � cos x
� y 

1

1 � cos x
�

1 � cos x

1 � cos x
 dx � y 

1 � cos x

1 � cos2x
 dx

ln xsin�1xtan�1x

s
n

t�x� 
u � s

n ax � b 
s
n ax � b 

s�x 2 � a 2 

dvu

xf �x�

f

csc xcot xsec xtan x
cos xsin xf �x�

f �x�

u � x 2 � 1
du � 2x dxu � x 2 � 1

y 
x

x 2 � 1
 dx

du � t��x� dx
u � t�x�
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instance, is a challenging integral, but if we make use of the iden-
tity , we can write

and if has previously been evaluated (see Example 8 in Section 7.2),
then that calculation can be used in the present problem.

(e) Use several methods. Sometimes two or three methods are required to evalu-
ate an integral. The evaluation could involve several successive substitutions 
of different types, or it might combine integration by parts with one or more
substitutions.

In the following examples we indicate a method of attack but do not fully work out the
integral.

EXAMPLE 1

In Step 1 we rewrite the integral:

The integral is now of the form with odd, so we can use the advice in
Section 7.2.

Alternatively, if in Step 1 we had written

then we could have continued as follows with the substitution :

M

EXAMPLE 2

According to (ii) in Step 3(d), we substitute . Then , so and

The integrand is now a product of and the transcendental function so it can be inte-
grated by parts. M

euu

y esx  dx � 2 y ueu du

dx � 2u dux � u 2u � sx 

y esx  dxV

 � y 
u 2 � 1

u 6  du � y �u�4 � u�6 � du

 y 
sin3x

cos6x
 dx � y 

1 � cos2x

cos6x
 sin x dx � y 

1 � u 2

u 6  ��du�

u � cos x

y 
tan3x

cos3x
 dx � y 

sin3x

cos3x
 

1

cos3x
 dx � y 

sin3x

cos6x
 dx

mx tanmx secnx dx

y 
tan3x

cos3x
 dx � y tan3x sec3x dx

y 
tan3x

cos3x
 dx

x sec3x dx

y tan2x sec x dx � y sec3x dx � y sec x dx

tan2x � sec2x � 1
x tan2x sec x dx
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EXAMPLE 3

No algebraic simplification or substitution is obvious, so Steps 1 and 2 don’t apply here.
The integrand is a rational function so we apply the procedure of Section 7.4, remember-
ing that the first step is to divide. M

EXAMPLE 4

Here Step 2 is all that is needed. We substitute because its differential is
, which occurs in the integral. M

EXAMPLE 5

Although the rationalizing substitution

works here [(ii) in Step 3(d)], it leads to a very complicated rational function. An easier
method is to do some algebraic manipulation [either as Step 1 or as Step 4(c)]. Multiply-
ing numerator and denominator by , we have

M

CAN WE INTEGRATE ALL CONTINUOUS FUNCTIONS?

The question arises: Will our strategy for integration enable us to find the integral of every
continuous function? For example, can we use it to evaluate ? The answer is No, at
least not in terms of the functions that we are familiar with.

The functions that we have been dealing with in this book are called elementary func-
tions. These are the polynomials, rational functions, power functions , exponential
functions , logarithmic functions, trigonometric and inverse trigonometric functions,
hyperbolic and inverse hyperbolic functions, and all functions that can be obtained from
these by the five operations of addition, subtraction, multiplication, division, and compo-
sition. For instance, the function

is an elementary function.
If is an elementary function, then is an elementary function but need not

be an elementary function. Consider . Since is continuous, its integral exists,
and if we define the function by

F�x� � y
x

0
 et 2

 dt

F
ff �x� � ex2

x f �x� dxf �f

f �x� � � x 2 � 1

x 3 � 2x � 1
� ln�cosh x� � xe sin 2x

�a x �
�xa �

x ex2

 dx

 � sin�1x � s1 � x 2 � C

 � y
1

s1 � x 2 
 dx � y

x

s1 � x 2 
 dx

 y�1 � x

1 � x
  dx � y

1 � x

s1 � x 2 
 dx

s1 � x 

u � �1 � x

1 � x
 

y �1 � x

1 � x
  dxV

du � dx�x
u � ln x

y 
dx

xsln x 
V

y 
x 5 � 1

x 3 � 3x 2 � 10x
 dx

SECTION 7.5 STRATEGY FOR INTEGRATION | | | | 487



then we know from Part 1 of the Fundamental Theorem of Calculus that

Thus, has an antiderivative , but it has been proved that is not an elemen-
tary function. This means that no matter how hard we try, we will never succeed in evalu-
ating in terms of the functions we know. (In Chapter 11, however, we will see how
to express as an infinite series.) The same can be said of the following integrals:

In fact, the majority of elementary functions don’t have elementary antiderivatives. You
may be assured, though, that the integrals in the following exercises are all elementary
functions.

 y sx 3 � 1 dx y 
1

ln x
 dx  y 

sin x

x
 dx

 y 
ex

x
 dx  y sin�x 2 � dx y cos�ex� dx

x ex2

 dx
x ex2

 dx

FFf �x� � ex2

F��x� � ex2
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25. 26.

27. 28.

29. 30.

32.

33. 34.

35. 36.

37. 38.

39. 40.

42.

43. 44.

46.

47. 48. y 
x

x 4 � a 4  dxy x 3�x � 1��4 dx

y 
1 � sin x

1 � sin x
 dxy x 5e �x3

dx45.

y s1 � e x  dxy e x
s1 � e x  dx

y 
tan�1 x

x 2  dxy � tan2� d�41.

y 
1

s4y 2 � 4y � 3 
 dyy 

sec � tan �

sec2� � sec �
 d�

y
��4

0
 tan5� sec3� d� y

��4

0
 cos2� tan2� d�

y sin 4x cos 3x dxy
1

�1
 x 8 sin x dx

y
��2

��4
 
1 � 4 cot x

4 � cot x
 dxy s3 � 2x � x 2  dx

y 
s2x � 1

2x � 3
 dxy �1 � x

1 � x
  dx31.

y
2

�2
 	 x 2 � 4x 	 dxy

5

0
 
3w � 1

w � 2
 dw

y sin sat  dty 
dx

1 � e x

y 
3x 2 � 2

x 3 � 2x � 8
 dxy 

3x 2 � 2

x 2 � 2x � 8
 dx

1–80 Evaluate the integral.

1. 2.

3. 4.

5. 6.

8.

9. 10.

11. 12.

13. 14.

15. 16.

18.

19. 20.

21. 22.

24. y ln�x 2 � 1� dxy
1

0
 (1 � sx )8 dx23.

y 
ln x

xs1 � �ln x�2  dxy arctan sx  dx

y e 2 dxy e x�e x
dx

y 
e2 t

1 � e4 t  dty x sin2x dx17.

y
s2�2

0
 

x 2

s1 � x 2 
 dxy 

dx

�1 � x 2�3�2

y 
x 3

s1 � x 2
  dxy sin3� cos5� d�

y 
x

x 4 � x 2 � 1
 dxy 

x � 1

x 2 � 4x � 5
 dx

y
4

0
 

x � 1

x 2 � 4x � 5
 dxy

3

1
 r 4 ln r dr

y x csc x cot x dxy
1

�1
 

e arctan y

1 � y 2  dy7.

y 
x

s3 � x 4 
 dxy

2

0
 

2t

�t � 3�2  dt

y tan3� d�y 
sin x � sec x

tan x
 dx

y 
sin3x

cos x
 dxy cos x �1 � sin2x� dx
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67. 68.

70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. The functions and don’t have elementary
antiderivatives, but does. Evaluate

.x �2x 2 � 1�e x2

 dx
y � �2x 2 � 1�e x2

y � x 2e x2

y � e x2

y 
sin x cos x

sin4 x � cos4 x
 dxy x sin2 x cos x dx

y 
sec x cos 2x

sin x � sec x
 dxy 

sx 

1 � x 3  dx

y �x 2 � bx� sin 2x dxy 
xe x

s1 � e x  dx

y 
dx

sx (2 � sx )4y 
1

�x � 2��x 2 � 4�
 dx

y 
4 x � 10 x

2 x  dxy 
x � arcsin x

s1 � x 2  dx

y 
ln�x � 1�

x 2  dxy 
e 2x

1 � e x  dx69.

y 
1

1 � 2e x � e�x  dxy
s3

1
 
s1 � x 2

 

x 2  dx
50.

51. 52.

53. 54.

55. 56.

58.

59. 60.

62.

63. 64.

65. 66. y
3

2
 

u 3 � 1

u 3 � u 2  duy 
1

sx � 1 � sx  dx

y
��3

��4
 

ln�tan x�
sin x cos x

 dxy 
sin 2x

1 � cos4 x
 dx

y 
1

x � s
3 x  dxy sx esx 

 dx61.

y 
dx

x 2
s4x 2 � 1y cos x cos3�sin x� dx

y 
x ln x

sx 2 � 1
 dxy xs

3 x � c  dx57.

y 
dx

sx � xsx y 
dx

x � xsx 

y �x � sin x�2 dxy x 2 sinh mx dx

y 
dx

x �x 4 � 1�y 
1

xs4x 2 � 1
 dx

y 
1

x 2
s4x � 1

 dxy 
1

xs4x � 1
 dx49.

INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS

In this section we describe how to use tables and computer algebra systems to integrate
functions that have elementary antiderivatives. You should bear in mind, though, that even
the most powerful computer algebra systems can’t find explicit formulas for the antideriv-
atives of functions like or the other functions described at the end of Section 7.5.

TABLES OF INTEGRALS

Tables of indefinite integrals are very useful when we are confronted by an integral that is
difficult to evaluate by hand and we don’t have access to a computer algebra system. A rel-
atively brief table of 120 integrals, categorized by form, is provided on the Reference Pages
at the back of the book. More extensive tables are available in CRC Standard Mathe-
matical Tables and Formulae, 31st ed. by Daniel Zwillinger (Boca Raton, FL: CRC 
Press, 2002) (709 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series, and
Products, 6e (San Diego: Academic Press, 2000), which contains hundreds of pages of
integrals. It should be remembered, however, that integrals do not often occur in exactly
the form listed in a table. Usually we need to use substitution or algebraic manipulation to
transform a given integral into one of the forms in the table.

EXAMPLE 1 The region bounded by the curves , and is rotated
about the -axis. Find the volume of the resulting solid.

SOLUTION Using the method of cylindrical shells, we see that the volume is

V � y
1

0
 2�x arctan x dx

y
x � 1y � arctan x, y � 0

ex2

7.6



In the section of the Table of Integrals titled Inverse Trigonometric Forms we locate
Formula 92:

Thus the volume is

M

EXAMPLE 2 Use the Table of Integrals to find .

SOLUTION If we look at the section of the table titled Forms involving , we see
that the closest entry is number 34:

This is not exactly what we have, but we will be able to use it if we first make the substi-
tution :

Then we use Formula 34 with (so ):

M

EXAMPLE 3 Use the Table of Integrals to find .

SOLUTION If we look in the section called Trigonometric Forms, we see that none of 
the entries explicitly includes a factor. However, we can use the reduction formula 
in entry 84 with :

We now need to evaluate . We can use the reduction formula in entry 85
with , followed by entry 82:

 � x 2 sin x � 2�sin x � x cos x� � K

 y x 2 cos x dx � x 2 sin x � 2 y x sin x dx

n � 2
x x 2 cos x dx

y x 3 sin x dx � �x 3 cos x � 3 y x 2 cos x dx

n � 3
u 3

y x 3 sin x dx

 � �
x

8
 s5 � 4x 2 �

5

16
 sin�1� 2x

s5 � � C

 y 
x 2

s5 � 4x 2 
 dx �

1

8
 y 

u 2

s5 � u 2 
 du �

1

8
 ��

u

2
 s5 � u 2 �

5

2
 sin�1 

u

s5 � � C

a � s5 a 2 � 5

y 
x 2

s5 � 4x 2 
 dx � y 

�u�2�2

s5 � u 2 
 
du

2
�

1

8
 y 

u 2

s5 � u 2 
 du 

u � 2x

y 
u 2

sa 2 � u 2 
 du � �

u

2
 sa 2 � u 2 �

a 2

2
 sin�1�u

a� � C

sa 2 � u 2 

y 
x 2

s5 � 4x 2 
 dxV

 � � �2���4� � 1� � 1
2 � 2 � �

 � � [�x 2 � 1� tan�1x � x]0

1
� � �2 tan�1 1 � 1�

 V � 2� y
1

0
 x tan�1x dx � 2�� x 2 � 1

2
tan�1x �

x

2
0

1

y u tan�1u du �
u 2 � 1

2
 tan�1u �

u

2
� C
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N The Table of Integrals appears on Reference
Pages 6–10 at the back of the book.

85.

� u n sin u � n y u n�1 sin u du

y u n cos u du



Combining these calculations, we get

where . M

EXAMPLE 4 Use the Table of Integrals to find .

SOLUTION Since the table gives forms involving , , and , but
not , we first complete the square:

If we make the substitution (so ), the integrand will involve the
pattern :

The first integral is evaluated using the substitution :

For the second integral we use Formula 21 with :

Thus

M

COMPUTER ALGEBRA SYSTEMS

We have seen that the use of tables involves matching the form of the given integrand with
the forms of the integrands in the tables. Computers are particularly good at matching pat-
terns. And just as we used substitutions in conjunction with tables, a CAS can perform sub-
stitutions that transform a given integral into one that occurs in its stored formulas. So it
isn’t surprising that computer algebra systems excel at integration. That doesn’t mean that
integration by hand is an obsolete skill. We will see that a hand computation sometimes
produces an indefinite integral in a form that is more convenient than a machine answer.

To begin, let’s see what happens when we ask a machine to integrate the relatively 
simple function . Using the substitution , an easy calculation
by hand gives

y 
1

3x � 2
 dx � 1

3 ln 	 3x � 2 	 � C

u � 3x � 2y � 1��3x � 2�

� 1
3�x 2 � 2x � 4�3�2 �

x � 1

2
 sx 2 � 2x � 4 �

3
2 ln(x � 1 � sx 2 � 2x � 4 ) � C

y xsx 2 � 2x � 4  dx

y su 2 � 3  du �
u

2
 su 2 � 3 �

3
2 ln(u � su 2 � 3 )

a � s3 

y usu 2 � 3  du � 1
2 y st  dt � 1

2 � 2
3 t 3�2 � 1

3 �u 2 � 3�3�2

t � u 2 � 3

 � y usu 2 � 3  du � y su 2 � 3  du

 y xsx 2 � 2x � 4  dx � y �u � 1� su 2 � 3  du

sa 2 � u 2 

x � u � 1u � x � 1

x 2 � 2x � 4 � �x � 1�2 � 3

sax 2 � bx � c 

sx 2 � a 2 
sa 2 � x 2 

sa 2 � x 2 

y xsx 2 � 2x � 4  dxV

C � 3K

y x 3 sin x dx � �x 3 cos x � 3x 2 sin x � 6x cos x � 6 sin x � C
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21.

�
a 2

2
 ln(u � sa 2 � u 2 ) � C

y sa 2 � u 2  du �
u

2
 sa 2 � u 2 



whereas Derive, Mathematica, and Maple all return the answer

The first thing to notice is that computer algebra systems omit the constant of integra-
tion. In other words, they produce a particular antiderivative, not the most general one.
Therefore, when making use of a machine integration, we might have to add a constant.
Second, the absolute value signs are omitted in the machine answer. That is fine if our
problem is concerned only with values of greater than . But if we are interested in other
values of , then we need to insert the absolute value symbol.

In the next example we reconsider the integral of Example 4, but this time we ask a
machine for the answer.

EXAMPLE 5 Use a computer algebra system to find .

SOLUTION Maple responds with the answer

This looks different from the answer we found in Example 4, but it is equivalent because
the third term can be rewritten using the identity

Thus

The resulting extra term can be absorbed into the constant of integration.
Mathematica gives the answer

Mathematica combined the first two terms of Example 4 (and the Maple result) into a
single term by factoring.

Derive gives the answer

The first term is like the first term in the Mathematica answer, and the second term is
identical to the last term in Example 4. M

EXAMPLE 6 Use a CAS to evaluate .

SOLUTION Maple and Mathematica give the same answer:

1
18 x

18 �
5
2 x

16 � 50x 14 �
1750

3  x 12 � 4375x 10 � 21875x 8 �
218750

3  x 6 � 156250x 4 �
390625

2  x 2

y x�x 2 � 5�8 dx

1
6 sx 2 � 2x � 4  �2x 2 � x � 5� �

3
2 ln(sx 2 � 2x � 4 � x � 1)

�5

6
�

x

6
�

x 2

3 � sx 2 � 2x � 4 �
3

2
 arcsinh�1 � x

s3 �
�

3
2 ln(1�s3 )

 � ln 
1

s3 � ln(x � 1 � sx 2 � 2x � 4 )

 � ln 
1

s3  [1 � x � s�1 � x�2 � 3 ]

 arcsinh 
s3 

3
 �1 � x� � ln�s3 

3
 �1 � x� � s|

1
3 �1 � x�2 � 1�

arcsinh x � ln(x � sx 2 � 1)

1
3 �x 2 � 2x � 4�3�2 �

1
4 �2x � 2�sx 2 � 2x � 4 �

3

2
 arcsinh 

s3 

3
 �1 � x�

y xsx 2 � 2x � 4  dx

x

2
3x

1
3 ln�3x � 2�
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It’s clear that both systems must have expanded by the Binomial Theorem and
then integrated each term.

If we integrate by hand instead, using the substitution , we get

For most purposes, this is a more convenient form of the answer. M

EXAMPLE 7 Use a CAS to find .

SOLUTION In Example 2 in Section 7.2 we found that

Derive and Maple report the answer

whereas Mathematica produces

We suspect that there are trigonometric identities which show these three answers are
equivalent. Indeed, if we ask Derive, Maple, and Mathematica to simplify their expres-
sions using trigonometric identities, they ultimately produce the same form of the answer
as in Equation 1. M

�
5
64 cos x �

1
192 cos 3x �

3
320 cos 5x �

1
448 cos 7x

�
1
7 sin4x cos3x �

4
35 sin2x cos3x �

8
105 cos3x

y sin5x cos2x dx � �
1
3 cos3x �

2
5 cos5x �

1
7 cos7x � C1

y sin5x cos2x dx

y x�x 2 � 5�8 dx � 1
18 �x 2 � 5�9 � C

u � x 2 � 5

�x 2 � 5�8
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N Derive and the TI-89/92 also give this answer.

11. 12.

13. 14.

15. 16.

18.

20.

21. 22.

23. 24.

25. y
1

0
 x 4e�x dx26.y 

s4 � �ln x�2
 

x
 dx

y sin6 2x dxy sec5x dx

y
2

0
 x 3

s4x 2 � x 4  dxy 
e x

3 � e2x  dx

y 
sin 2�

s5 � sin �   d�y sin2x cos x ln�sin x� dx19.

y 
dx

2x 3 � 3x 2y ys6 � 4y � 4y2  dy17.

y x sin�x 2� cos�3x 2� dxy e 2x arctan�e x� dx

y sin�1
sx  dxy 

tan3�1�z�
z 2  dz

y x 2 csch�x 3 � 1� dxy
0

�1
 t 2e�t dt1–4 Use the indicated entry in the Table of Integrals on the 

Reference Pages to evaluate the integral.

1. ; entry 33 2. ; entry 55

3. ; entry 71 4. ; entry 98

5–30 Use the Table of Integrals on Reference Pages 6–10 to evalu-
ate the integral.

5. 6.

7. 8.

9. y 
s2y 2 � 3 

y 2  dy10.y 
dx

x 2
s4x 2 � 9 

y 
ln(1 � sx )

sx  dxy tan3��x� dx

y
3

2
 

1

x 2
s4x 2 � 7 

 dxy
1

0
 2x cos�1x dx

y e 2� sin 3� d�y sec3��x� dx

y 
3x

s3 � 2x  dxy 
s7 � 2x 2 

x 2
 dx

EXERCISES7.6



43. (a) Use the table of integrals to evaluate ,
where

What is the domain of and ?
(b) Use a CAS to evaluate . What is the domain of the

function that the CAS produces? Is there a discrepancy
between this domain and the domain of the function 
that you found in part (a)?

44. Computer algebra systems sometimes need a helping hand
from human beings. Try to evaluate

with a computer algebra system. If it doesn’t return an
answer, make a substitution that changes the integral into one
that the CAS can evaluate.

45–48 Use a CAS to find an antiderivative of such 
that . Graph and and locate approximately the 
-coordinates of the extreme points and inflection points of .

45.

46.

47. ,

48. f �x� �
x 3 � x

x 6 � 1

0 � x � �f �x� � sin4x cos6x

f �x� � xe�x sin x, �5 � x � 5

f �x� �
x 2 � 1

x 4 � x 2 � 1

Fx
FfF�0� � 0

fFCAS

y �1 � ln x� s1 � �x ln x�2  dx

CAS

F
F

F�x�
Ff

f �x� �
1

xs1 � x 2
 

F�x� � x f �x� dxCAS28.

30.

31. Find the volume of the solid obtained when the region under
the curve , , is rotated about the 
-axis.

32. The region under the curve from 0 to is
rotated about the -axis. Find the volume of the resulting
solid.

Verify Formula 53 in the Table of Integrals (a) by differentia-
tion and (b) by using the substitution .

34. Verify Formula 31 (a) by differentiation and (b) by substi-
tuting .

35–42 Use a computer algebra system to evaluate the integral.
Compare the answer with the result of using tables. If the answers
are not the same, show that they are equivalent.

35. 36.

37. 38.

39. 40.

41. 42. y 
1

s1 � s
3 x  

 dxy tan5x dx

y sin4x dxy xs1 � 2x dx

y 
dx

e x�3e x � 2�y x 2
sx 2 � 4  dx

y  csc5x dxy sec4x dx

CAS

u � a sin �

t � a � bu
33.

x
��4y � tan2x

y
0 � x � 2y � xs4 � x 2 

y 
sec2� tan2�

s9 � tan2�   d�y 
x 4 dx

sx 10 � 2 
29.

y e t sin��t � 3� dty se 2x � 1 dx27.
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In this project a computer algebra system is used to investigate indefinite integrals of families of
functions. By observing the patterns that occur in the integrals of several members of the family,
you will first guess, and then prove, a general formula for the integral of any member of the
family.

1. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii)

(iii) (iv)

(b) Based on the pattern of your responses in part (a), guess the value of the integral

if . What if ?
(c) Check your guess by asking your CAS to evaluate the integral in part (b). Then prove it

using partial fractions.

a � ba � b

y 
1

�x � a��x � b�
 dx

y 
1

�x � 2�2  dxy 
1

�x � 2��x � 5�
 dx

y 
1

�x � 1��x � 5�
 dxy 

1

�x � 2��x � 3�
 dx

PATTERNS IN INTEGRALSCASD I S C O V E R Y
P R O J E C T



2. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii) (iii)

(b) Based on the pattern of your responses in part (a), guess the value of the integral

(c) Check your guess with a CAS. Then prove it using the techniques of Section 7.2. For
what values of and is it valid?

3. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii) (iii)

(iv) (v)

(b) Based on the pattern of your responses in part (a), guess the value of

(c) Use integration by parts to prove the conjecture that you made in part (b). For what
values of is it valid?

4. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii) (iii)

(iv) (v)

(b) Based on the pattern of your responses in part (a), guess the value of . Then 
use your CAS to check your guess.

(c) Based on the patterns in parts (a) and (b), make a conjecture as to the value of the 
integral

when is a positive integer.
(d) Use mathematical induction to prove the conjecture you made in part (c).

n

y x ne x dx

x x 6e x dx

y x 5e x dxy x 4e x dx

y x 3e x dxy x 2e x dxy xe x dx

n

y x n ln x dx

y x7 ln x dxy x 3 ln x dx

y x 2 ln x dxy x ln x dxy ln x dx

ba

y sin ax cos bx dx

y sin 8x cos 3x dxy sin 3x cos 7x dxy sin x cos 2x dx
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APPROXIMATE INTEGRATION

There are two situations in which it is impossible to find the exact value of a definite 
integral.

The first situation arises from the fact that in order to evaluate using the
Fundamental Theorem of Calculus we need to know an antiderivative of . Sometimes,
however, it is difficult, or even impossible, to find an antiderivative (see Section 7.5). For
example, it is impossible to evaluate the following integrals exactly:

y
1

�1
 s1 � x 3  dxy

1

0
 ex2 

dx

f
x

b
a  f �x� dx

7.7



The second situation arises when the function is determined from a scientific experi-
ment through instrument readings or collected data. There may be no formula for the func-
tion (see Example 5).

In both cases we need to find approximate values of definite integrals. We already know
one such method. Recall that the definite integral is defined as a limit of Riemann sums,
so any Riemann sum could be used as an approximation to the integral: If we divide 
into subintervals of equal length , then we have

where is any point in the th subinterval . If is chosen to be the left endpoint
of the interval, then and we have

If , then the integral represents an area and (1) represents an approximation of this
area by the rectangles shown in Figure 1(a). If we choose to be the right endpoint, then

and we have

[See Figure 1(b).] The approximations and defined by Equations 1 and 2 are called
the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where is chosen to be the midpoint of
the subinterval . Figure 1(c) shows the midpoint approximation , which appears
to be better than either or .

MIDPOINT RULE

and

Another approximation, called the Trapezoidal Rule, results from averaging the approx-
imations in Equations 1 and 2:

 �
�x

2
 	 f �x0 � � 2 f �x1� � 2 f �x2 � � 	 	 	 � 2 f �xn�1� � f �xn �


 �
�x

2
 [( f �x0 � � f �x1�) � ( f �x1� � f �x2 �) � 	 	 	 � ( f �xn�1� � f �xn �)]

 y
b

a
 f �x� dx �

1

2  ��
n

i�1
 f �xi�1 � �x � �

n

i�1
 f �xi� �x� �

�x

2
 ��

n

i�1
 ( f �xi�1 � � f �xi�)�

 xi � 1
2 �xi�1 � xi � � midpoint of 	xi�1, xi


 �x �
b � a

n
where

y
b

a
 f �x� dx � Mn � �x 	 f �x1� � f �x2 � � 	 	 	 � f �xn �


RnLn

Mn	xi�1, xi

xix i*

RnLn

y
b

a
 f �x� dx � Rn � �

n

i�1
 f �xi � �x2

x i* � xi

x i*
f �x� 
 0

y
b

a
 f �x� dx � Ln � �

n

i�1
 f �xi�1� �x1

x i* � xi�1

x i*	xi�1, xi
ix i*

y
b

a
 f �x� dx � �

n

i�1
 f �xi*� �x

�x � �b � a��nn
	a, b
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(a) Left endpoint approximation
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(b) Right endpoint approximation
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(c) Midpoint approximation

y

0

FIGURE 1



TRAPEZOIDAL RULE

where and .

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates
the case . The area of the trapezoid that lies above the th subinterval is

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal
Rule.

EXAMPLE 1 Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with to
approximate the integral .

SOLUTION
(a) With , and , we have , and so the Trape-
zoidal Rule gives

This approximation is illustrated in Figure 3.

(b) The midpoints of the five subintervals are , , , , and , so the Midpoint
Rule gives

This approximation is illustrated in Figure 4. M

In Example 1 we deliberately chose an integral whose value can be computed explicitly
so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the Funda-
mental Theorem of Calculus,

The error in using an approximation is defined to be the amount that needs to be added to
the approximation to make it exact. From the values in Example 1 we see that the errors
in the Trapezoidal and Midpoint Rule approximations for are 

EM � 0.001239andET � �0.002488

n � 5

y
2

1
 
1

x
 dx � ln x]1

2
� ln 2 � 0.693147 . . .

 � 0.691908

 �
1

5
 � 1

1.1
�

1

1.3
�

1

1.5
�

1

1.7
�

1

1.9�
 y

2

1
 
1

x
 dx � �x 	 f �1.1� � f �1.3� � f �1.5� � f �1.7� � f �1.9�


1.91.71.51.31.1

 � 0.695635

 � 0.1�1

1
�

2

1.2
�

2

1.4
�

2

1.6
�

2

1.8
�

1

2�
 y

2

1
 
1

x
 dx � T5 �

0.2

2
 	 f �1� � 2 f �1.2� � 2 f �1.4� � 2 f �1.6� � 2 f �1.8� � f �2�


�x � �2 � 1��5 � 0.2b � 2n � 5, a � 1

x
2
1  �1�x� dx

n � 5

�x �  f �xi�1� � f �xi�
2 � �

�x

2
 	 f �xi�1� � f �xi �


if �x� 
 0

xi � a � i �x�x � �b � a��n

y
b

a
 f �x� dx � Tn �

�x

2
 	 f �x0 � � 2 f �x1� � 2 f �x2 � � 	 	 	 � 2 f �xn�1� � f �xn �
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FIGURE 3
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Trapezoidal approximation
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In general, we have

The following tables show the results of calculations similar to those in Example 1, but
for , and and for the left and right endpoint approximations as well as the
Trapezoidal and Midpoint Rules.

We can make several observations from these tables:

1. In all of the methods we get more accurate approximations when we increase the
value of . (But very large values of result in so many arithmetic operations that
we have to beware of accumulated round-off error.)

2. The errors in the left and right endpoint approximations are opposite in sign and
appear to decrease by a factor of about 2 when we double the value of .

3. The Trapezoidal and Midpoint Rules are much more accurate than the endpoint
approximations.

4. The errors in the Trapezoidal and Midpoint Rules are opposite in sign and appear
to decrease by a factor of about 4 when we double the value of .

5. The size of the error in the Midpoint Rule is about half the size of the error in the
Trapezoidal Rule.

Figure 5 shows why we can usually expect the Midpoint Rule to be more accurate than
the Trapezoidal Rule. The area of a typical rectangle in the Midpoint Rule is the same as
the area of the trapezoid whose upper side is tangent to the graph at . The area of
this trapezoid is closer to the area under the graph than is the area of the trapezoid 
used in the Trapezoidal Rule. [The midpoint error (shaded red) is smaller than the trape-
zoidal error (shaded blue).]

FIGURE 5
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n

5 0.745635 0.645635 0.695635 0.691908
10 0.718771 0.668771 0.693771 0.692835
20 0.705803 0.680803 0.693303 0.693069

MnTnRnLn

n

5 �0.052488 0.047512 �0.002488 0.001239
10 �0.025624 0.024376 �0.000624 0.000312
20 �0.012656 0.012344 �0.000156 0.000078

EMETEREL

Approximations to y
2

1
 
1

x
 dx

Corresponding errors

N It turns out that these observations are true 
in most cases.

Module 5.2/7.7 allows you to 
compare approximation methods.
TEC



These observations are corroborated in the following error estimates, which are proved
in books on numerical analysis. Notice that Observation 4 corresponds to the in each
denominator because . The fact that the estimates depend on the size of the
second derivative is not surprising if you look at Figure 5, because measures how
much the graph is curved. [Recall that measures how fast the slope of 
changes.]

ERROR BOUNDS Suppose for . If and are the
errors in the Trapezoidal and Midpoint Rules, then

Let’s apply this error estimate to the Trapezoidal Rule approximation in Example 1. If
, then and . Since , we have , so

Therefore, taking , and in the error estimate (3), we see that

Comparing this error estimate of with the actual error of about , we see
that it can happen that the actual error is substantially less than the upper bound for the
error given by (3).

EXAMPLE 2 How large should we take in order to guarantee that the Trapezoidal
and Midpoint Rule approximations for are accurate to within ?

SOLUTION We saw in the preceding calculation that for , so we can
take , , and in (3). Accuracy to within means that the size of
the error should be less than . Therefore we choose so that

Solving the inequality for , we get

or

Thus will ensure the desired accuracy.n � 41

 n �
1

s0.0006 � 40.8

 n2 �
2

12�0.0001�

n

2�1�3

12n2 � 0.0001

n0.0001
0.0001b � 2a � 1K � 2

1 � x � 2
 f 
�x� 
 � 2

0.0001x
2
1  �1�x� dx

nV

0.0024880.006667


 ET 
 �
2�2 � 1�3

12�5�2 �
1

150
� 0.006667

n � 5K � 2, a � 1, b � 2


 f 
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x 3 � �
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1�x � 11 � x � 2f 
�x� � 2�x 3f ��x� � �1�x 2f �x� � 1�x


 EM 
 �
K�b � a�3

24n2and
 ET 
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K�b � a�3

12n2

EMETa � x � b
 f 
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 � K3

y � f �x�f 
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N It’s quite possible that a lower value for 
would suffice, but is the smallest value for
which the error bound formula can guarantee us
accuracy to within .0.0001

41
n

N can be any number larger than all the 
values of , but smaller values of 
give better error bounds.

K
 f 
�x� 

K



For the same accuracy with the Midpoint Rule we choose so that

which gives M

EXAMPLE 3
(a) Use the Midpoint Rule with to approximate the integral .
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Since , and , the Midpoint Rule gives

Figure 6 illustrates this approximation.

(b) Since , we have and . Also, since
, we have and so

Taking , , , and in the error estimate (3), we see that an upper
bound for the error is

M

SIMPSON’S RULE

Another rule for approximate integration results from using parabolas instead of straight
line segments to approximate a curve. As before, we divide into subintervals of
equal length , but this time we assume that is an even number. Then
on each consecutive pair of intervals we approximate the curve by a parabola
as shown in Figure 7. If , then is the point on the curve lying above .
A typical parabola passes through three consecutive points , and .
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0

y

x1

FIGURE 6

y=ex2

N Error estimates give upper bounds for 
the error. They are theoretical, worst-case 
scenarios. The actual error in this case turns 
out to be about .0.0023



To simplify our calculations, we first consider the case where , and
. (See Figure 8.) We know that the equation of the parabola through , and 

is of the form and so the area under the parabola from to
is

But, since the parabola passes through , , and , we have

and therefore

Thus we can rewrite the area under the parabola as

Now, by shifting this parabola horizontally we do not change the area under it. This means
that the area under the parabola through , and from to in Figure 7
is still

Similarly, the area under the parabola through from to is

If we compute the areas under all the parabolas in this manner and add the results, we get

Although we have derived this approximation for the case in which , it is a rea-
sonable approximation for any continuous function and is called Simpson’s Rule after
the English mathematician Thomas Simpson (1710–1761). Note the pattern of coeffi-
cients: .1, 4, 2, 4, 2, 4, 2, . . . , 4, 2, 4, 1

f
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N Here we have used Theorem 5.5.7. 
Notice that is even and is odd.BxAx 2 � C



SIMPSON’S RULE

where is even and .

EXAMPLE 4 Use Simpson’s Rule with to approximate .

SOLUTION Putting , and in Simpson’s Rule, we obtain

M

Notice that, in Example 4, Simpson’s Rule gives us a much better approximation
to the true value of the integral than does the

Trapezoidal Rule or the Midpoint Rule . It turns out
(see Exercise 48) that the approximations in Simpson’s Rule are weighted averages of
those in the Trapezoidal and Midpoint Rules:

(Recall that and usually have opposite signs and is about half the size of .)
In many applications of calculus we need to evaluate an integral even if no explicit for-

mula is known for y as a function of x. A function may be given graphically or as a table
of values of collected data. If there is evidence that the values are not changing rapidly,
then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approximate value
for , the integral of y with respect to x. 

EXAMPLE 5 Figure 9 shows data traffic on the link from the United States to SWITCH,
the Swiss academic and research network, on February 10, 1998. is the data through-
put, measured in megabits per second . Use Simpson’s Rule to estimate the total
amount of data transmitted on the link up to noon on that day.
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Thomas Simpson was a weaver who taught 
himself mathematics and went on to become one
of the best English mathematicians of the 18th
century. What we call Simpson’s Rule was 
actually known to Cavalieri and Gregory in the
17th century, but Simpson popularized it in his
best-selling calculus textbook, A New Treatise 
of Fluxions.

SIMPSON



SOLUTION Because we want the units to be consistent and is measured in megabits 
per second, we convert the units for from hours to seconds. If we let be the 
amount of data (in megabits) transmitted by time , where is measured in seconds, then

. So, by the Net Change Theorem (see Section 5.4), the total amount of data
transmitted by noon (when ) is

We estimate the values of at hourly intervals from the graph and compile them in
the table.

Then we use Simpson’s Rule with and to estimate the integral:

Thus the total amount of data transmitted up to noon is about 144,000 megabits, or 
144 gigabits. M

The table in the margin shows how Simpson’s Rule compares with the Midpoint Rule
for the integral , whose true value is about 0.69314718. The second table shows
how the error in Simpson’s Rule decreases by a factor of about 16 when is doubled.
(In Exercises 27 and 28 you are asked to verify this for two additional integrals.) That is
consistent with the appearance of in the denominator of the following error estimate for
Simpson’s Rule. It is similar to the estimates given in (3) for the Trapezoidal and Midpoint
Rules, but it uses the fourth derivative of .

ERROR BOUND FOR SIMPSON’S RULE Suppose that for
. If is the error involved in using Simpson’s Rule, then

� ES � �
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180n 4
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n 4
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0 0 3.2 7 25,200 1.3
1 3,600 2.7 8 28,800 2.8
2 7,200 1.9 9 32,400 5.7
3 10,800 1.7 10 36,000 7.1
4 14,400 1.3 11 39,600 7.7
5 18,000 1.0 12 43,200 7.9
6 21,600 1.1

D�t�t �seconds�t �hours�D�t�t �seconds�t �hours�

4 0.69121989 0.69315453
8 0.69266055 0.69314765

16 0.69302521 0.69314721

SnMnn

4 0.00192729
8 0.00048663

16 0.00012197 �0.00000003
�0.00000047
�0.00000735

ESEMn



EXAMPLE 6 How large should we take in order to guarantee that the Simpson’s Rule
approximation for is accurate to within ?

SOLUTION If , then . Since , we have and so

Therefore we can take in (4). Thus, for an error less than , we should
choose so that

This gives

or

Therefore ( must be even) gives the desired accuracy. (Compare this with 
Example 2, where we obtained for the Trapezoidal Rule and for the
Midpoint Rule.) M

EXAMPLE 7
(a) Use Simpson’s Rule with to approximate the integral .
(b) Estimate the error involved in this approximation.

SOLUTION
(a) If , then and Simpson’s Rule gives 

(b) The fourth derivative of is

and so, since , we have

Therefore, putting , and in (4), we see that the error is at
most

(Compare this with Example 3.) Thus, correct to three decimal places, we have
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N Many calculators and computer algebra sys-
tems have a built-in algorithm that computes an
approximation of a definite integral. Some of
these machines use Simpson’s Rule; others use
more sophisticated techniques such as adaptive
numerical integration. This means that if a func-
tion fluctuates much more on a certain part of
the interval than it does elsewhere, then that
part gets divided into more subintervals. This
strategy reduces the number of calculations
required to achieve a prescribed accuracy.

N Figure 10 illustrates the calculation in
Example 7. Notice that the parabolic arcs are 
so close to the graph of that they are
practically indistinguishable from it.

y � ex2

0

y

x
1

y=ex2

FIGURE 10



SECTION 7.7 APPROXIMATE INTEGRATION | | | | 505

(Round your answers to six decimal places.) Compare your
results to the actual value to determine the error in each 
approximation.

5. , 6. ,

7–18 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and
(c) Simpson’s Rule to approximate the given integral with the
specified value of . (Round your answers to six decimal places.)

7. , 8. ,

9. , 10. ,

11. , 12. ,

13. , 14. ,

15. , 16. ,

17. , 18. ,

19. (a) Find the approximations and for the integral
.

(b) Estimate the errors in the approximations of part (a).
(c) How large do we have to choose so that the approxima-

tions and to the integral in part (a) are accurate to
within ?

20. (a) Find the approximations and for .
(b) Estimate the errors in the approximations of part (a).
(c) How large do we have to choose so that the approxima-

tions and to the integral in part (a) are accurate to
within ?

21. (a) Find the approximations , , and for 
and the corresponding errors , , and .

(b) Compare the actual errors in part (a) with the error esti-
mates given by (3) and (4).

(c) How large do we have to choose so that the approxima-
tions , , and to the integral in part (a) are accurate
to within ?

22. How large should be to guarantee that the Simpson’s Rule
approximation to is accurate to within ?

23. The trouble with the error estimates is that it is often very 
difficult to compute four derivatives and obtain a good upper
bound for by hand. But computer algebra systems � f �4��x� �K

CAS
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dx
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0.00001
SnMnTn
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ESEMET
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0
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0
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0
 x 2 sin x dx

Let , where is the function whose graph is
shown.
(a) Use the graph to find .
(b) Are these underestimates or overestimates of ?
(c) Use the graph to find . How does it compare with ?
(d) For any value of , list the numbers and 

in increasing order.

2. The left, right, Trapezoidal, and Midpoint Rule approxi-
mations were used to estimate , where is the 
function whose graph is shown. The estimates were 0.7811,
0.8675, 0.8632, and 0.9540, and the same number of sub-
intervals were used in each case.
(a) Which rule produced which estimate?
(b) Between which two approximations does the true value of

lie?

; Estimate using (a) the Trapezoidal Rule and
(b) the Midpoint Rule, each with . From a graph of the
integrand, decide whether your answers are underestimates or
overestimates. What can you conclude about the true value of
the integral?

; Draw the graph of in the viewing rectangle
by and let .

(a) Use the graph to decide whether , and under-
estimate or overestimate .

(b) For any value of , list the numbers and 
in increasing order.

(c) Compute . From the graph, which do
you think gives the best estimate of ?

5–6 Use (a) the Midpoint Rule and (b) Simpson’s Rule to
approximate the given integral with the specified value of . n

I
L5, R5, M5, and T5

I
Ln, Rn, Mn, Tn,n

I
T2L2, R2, M2

I � x
1
0  f �x� dx	0, 0.5
	0, 1


f �x� � sin( 1
2 x 2)4.

n � 4
x

1
0  cos�x 2 � dx3.

y

x0

1

2

y=ƒ

x
2

0  f �x� dx

fx
2

0  f �x� dx

f

x

1

y

2

3

10 2 3 4

ILn, Rn, Mn, Tn,n
IT2

I
L2, R2, and M2

fI � x
4
0  f �x� dx1.

EXERCISES7.7



figure. Use Simpson’s Rule to estimate the area of the pool.

31. (a) Use the Midpoint Rule and the given data to estimate the
value of the integral .

(b) If it is known that for all , estimate the
error involved in the approximation in part (a).

32. A radar gun was used to record the speed of a runner during
the first 5 seconds of a race (see the table). Use Simpson’s 
Rule to estimate the distance the runner covered during those
5 seconds.

The graph of the acceleration of a car measured in 
is shown. Use Simpson’s Rule to estimate the increase in the
velocity of the car during the 6-second time interval.

34. Water leaked from a tank at a rate of liters per hour, where
the graph of is as shown. Use Simpson’s Rule to estimate the
total amount of water that leaked out during the first 6 hours.

r

0 642

2

4

t (seconds)

r
r�t�

a

0 642

4

8

12

t (seconds)

ft�s2a�t�33.

x�4 � f 
�x� � 1

x
3.2

0  f �x� dx

6.2

5.0

7.2
6.8

5.6 4.8
4.8

have no problem computing and graphing it, so we can
easily find a value for from a machine graph. This exercise
deals with approximations to the integral ,
where .
(a) Use a graph to get a good upper bound for .
(b) Use to approximate .
(c) Use part (a) to estimate the error in part (b).
(d) Use the built-in numerical integration capability of your

CAS to approximate .
(e) How does the actual error compare with the error esti-

mate in part (c)?
(f) Use a graph to get a good upper bound for .
(g) Use to approximate .
(h) Use part (f) to estimate the error in part (g).
(i) How does the actual error compare with the error esti-

mate in part (h)?
( j) How large should be to guarantee that the size of the

error in using is less than ?

24. Repeat Exercise 23 for the integral .

25–26 Find the approximations , and for ,
and . Then compute the corresponding errors , and

. (Round your answers to six decimal places. You may wish to
use the sum command on a computer algebra system.) What
observations can you make? In particular, what happens to the
errors when is doubled?

25. 26.

27–28 Find the approximations , , and for and .
Then compute the corresponding errors , and . (Round
your answers to six decimal places. You may wish to use the sum
command on a computer algebra system.) What observations can
you make? In particular, what happens to the errors when is 
doubled?

27. 28.

29. Estimate the area under the graph in the figure by using
(a) the Trapezoidal Rule, (b) the Midpoint Rule, and
(c) Simpson’s Rule, each with .

30. The widths (in meters) of a kidney-shaped swimming pool
were measured at 2-meter intervals as indicated in the 
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x x

0.0 6.8 2.0 7.6
0.4 6.5 2.4 8.4
0.8 6.3 2.8 8.8
1.2 6.4 3.2 9.0
1.6 6.9

f �x�f �x�

t (s) (m�s) t (s) (m�s)

0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22

vv



39. The region bounded by the curves , , ,
and is rotated about the -axis. Use Simpson’s Rule
with to estimate the volume of the resulting solid.

40. The figure shows a pendulum with length that makes a
maximum angle with the vertical. Using Newton’s 
Second Law, it can be shown that the period (the time 
for one complete swing) is given by

where and is the acceleration due to gravity. 
If m and , use Simpson’s Rule with to
find the period.

41. The intensity of light with wavelength traveling through 
a diffraction grating with slits at an angle is given by

, where and is the 
distance between adjacent slits. A helium-neon laser with
wavelength is emitting a narrow band 
of light, given by , through a grating with
10,000 slits spaced apart. Use the Midpoint Rule 
with to estimate the total light intensity 
emerging from the grating.

42. Use the Trapezoidal Rule with to approximate
. Compare your result to the actual value. 

Can you explain the discrepancy?

43. Sketch the graph of a continuous function on for which
the Trapezoidal Rule with is more accurate than the
Midpoint Rule.

44. Sketch the graph of a continuous function on for which
the right endpoint approximation with is more accurate
than Simpson’s Rule.

If is a positive function and for , show
that

46. Show that if is a polynomial of degree 3 or lower, then 
Simpson’s Rule gives the exact value of .

47. Show that .

48. Show that .1
3 Tn �

2
3 Mn � S2n

1
2 �Tn � Mn � � T2n

x
b
a
 f �x� dx

f

Tn 
 y
b

a
 f �x� dx 
 Mn

a � x � bf 
�x� 
 0f45.

n � 2
	0, 2


n � 2
	0, 2


x
20

0  cos��x� dx
n � 10

x
10�6

�10�6 I��� d�n � 10
10�4 m

�10�6 
 � 
 10�6
� � 632.8 � 10�9 m

dk � ��Nd sin ����I��� � N 2 sin2k�k 2
�N

�

¨¸

n � 10�0 � 42�L � 1
tk � sin( 1

2 �0 )

T � 4�L

t

  y
��2

0
 

dx

s1 � k 2 sin2x  

T
�0

LCAS

n � 8
xx � 5

x � 1y � 0y � e�1�xThe table (supplied by San Diego Gas and Electric) gives the
power consumption in megawatts in San Diego County
from midnight to 6:00 AM on December 8, 1999. Use Simp-
son’s Rule to estimate the energy used during that time
period. (Use the fact that power is the derivative of energy.)

36. Shown is the graph of traffic on an Internet service pro-
vider’s T1 data line from midnight to 8:00 AM. is the data
throughput, measured in megabits per second. Use Simpson’s
Rule to estimate the total amount of data transmitted during
that time period.

37. If the region shown in the figure is rotated about the -axis to
form a solid, use Simpson’s Rule with to estimate the
volume of the solid.

38. The table shows values of a force function , where is
measured in meters and in newtons. Use Simpson’s Rule
to estimate the work done by the force in moving an object a
distance of 18 m.
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0 4
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102 86
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y

0

0.4

4 6

0.8

2 8

D

t (hours)

D

P
35.
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t P t P

0:00 1814 3:30 1611
0:30 1735 4:00 1621
1:00 1686 4:30 1666
1:30 1646 5:00 1745
2:00 1637 5:30 1886
2:30 1609 6:00 2052
3:00 1604

x 0 3 6 9 12 15 18

9.8 9.1 8.5 8.0 7.7 7.5 7.4f �x�



IMPROPER INTEGRALS

In defining a definite integral we dealt with a function defined on a finite inter-
val and we assumed that does not have an infinite discontinuity (see Section 5.2).
In this section we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where has an infinite discontinuity in . In either case
the integral is called an improper integral. One of the most important applications of this
idea, probability distributions, will be studied in Section 8.5.

TYPE 1: INFINITE INTERVALS

Consider the infinite region that lies under the curve , above the -axis, and to
the right of the line . You might think that, since is infinite in extent, its area must
be infinite, but let’s take a closer look. The area of the part of that lies to the left of the
line (shaded in Figure 1) is

Notice that no matter how large is chosen.

We also observe that

The area of the shaded region approaches as (see Figure 2), so we say that the area
of the infinite region is equal to and we write

Using this example as a guide, we define the integral of (not necessarily a positive
function) over an infinite interval as the limit of integrals over finite intervals.
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DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 1

(a) If exists for every number , then

provided this limit exists (as a finite number).

(b) If exists for every number , then

provided this limit exists (as a finite number).

The improper integrals and are called convergent if the
corresponding limit exists and divergent if the limit does not exist.

(c) If both and are convergent, then we define

In part (c) any real number can be used (see Exercise 74).

Any of the improper integrals in Definition 1 can be interpreted as an area provided that
is a positive function. For instance, in case (a) if and the integral 

is convergent, then we define the area of the region in
Figure 3 to be

This is appropriate because is the limit as of the area under the graph of
from to .

EXAMPLE 1 Determine whether the integral is convergent or divergent.

SOLUTION According to part (a) of Definition 1, we have

The limit does not exist as a finite number and so the improper integral is
divergent. M
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Let’s compare the result of Example 1 with the example given at the beginning of this 
section:

Geometrically, this says that although the curves and look very similar
for , the region under to the right of (the shaded region in Figure 4)
has finite area whereas the corresponding region under (in Figure 5) has infinite
area. Note that both and approach as but approaches faster than

. The values of 1�x don’t decrease fast enough for its integral to have a finite value.

EXAMPLE 2 Evaluate .

SOLUTION Using part (b) of Definition 1, we have

We integrate by parts with , so that , :

We know that as , and by l’Hospital’s Rule we have

Therefore

M

EXAMPLE 3 Evaluate .

SOLUTION It’s convenient to choose in Definition 1(c):

We must now evaluate the integrals on the right side separately:
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Since both of these integrals are convergent, the given integral is convergent and

Since , the given improper integral can be interpreted as the area of 
the infinite region that lies under the curve and above the -axis (see
Figure 6). M

EXAMPLE 4 For what values of is the integral

convergent?

SOLUTION We know from Example 1 that if , then the integral is divergent, so let’s
assume that . Then

If , then , so as , and . Therefore

and so the integral converges. But if , then and so

and the integral diverges. M

We summarize the result of Example 4 for future reference:

TYPE 2: DISCONTINUOUS INTEGRANDS

Suppose that is a positive continuous function defined on a finite interval but has
a vertical asymptote at . Let be the unbounded region under the graph of and above 
the -axis between and . (For Type 1 integrals, the regions extended indefinitely in a bax
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horizontal direction. Here the region is infinite in a vertical direction.) The area of the part
of between and (the shaded region in Figure 7) is

If it happens that approaches a definite number as , then we say that the
area of the region is and we write

We use this equation to define an improper integral of Type 2 even when is not a posi-
tive function, no matter what type of discontinuity has at .

DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 2

(a) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

(b) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

The improper integral is called convergent if the corresponding limit
exists and divergent if the limit does not exist.

(c) If has a discontinuity at , where , and both and
are convergent, then we define

EXAMPLE 5 Find .

SOLUTION We note first that the given integral is improper because 
has the vertical asymptote . Since the infinite discontinuity occurs at the left end-
point of , we use part (b) of Definition 3:

Thus the given improper integral is convergent and, since the integrand is positive, we
can interpret the value of the integral as the area of the shaded region in Figure 10. M
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EXAMPLE 6 Determine whether converges or diverges.

SOLUTION Note that the given integral is improper because . Using
part (a) of Definition 3 and Formula 14 from the Table of Integrals, we have

because and as . Thus the given improper integral is
divergent. M

EXAMPLE 7 Evaluate if possible.

SOLUTION Observe that the line is a vertical asymptote of the integrand. Since it
occurs in the middle of the interval , we must use part (c) of Definition 3 with

:

where

because as . Thus is divergent. This implies that
is divergent. [We do not need to evaluate .] M

| WARNING If we had not noticed the asymptote in Example 7 and had instead 
confused the integral with an ordinary integral, then we might have made the following
erroneous calculation:

This is wrong because the integral is improper and must be calculated in terms of limits.
From now on, whenever you meet the symbol you must decide, by looking

at the function on , whether it is an ordinary definite integral or an improper 
integral.

EXAMPLE 8 Evaluate .

SOLUTION We know that the function has a vertical asymptote at 0 since
. Thus the given integral is improper and we have

y
1

0
 ln x dx � lim

t l
 

0�
 y

1

t
 ln x dx

lim x l 0� ln x � ��
f �x� � ln x

y
1

0
 ln x dx

�a, b�f
x

b
a  f �x� dx

y
3

0
 

dx

x � 1
� ln � x � 1 �]3

0 � ln 2 � ln 1 � ln 2

x � 1

x
3
1  dx��x � 1�x

3
0  dx��x � 1�

x
1
0  dx��x � 1�t l 1�1 � t l 0�

 � lim
t l

 

1�
 ln�1 � t� � ��

 � lim
t l

 

1�
 (ln � t � 1 � � ln � �1 �)

 y
1

0
 

dx

x � 1
� lim

t l
 

1�
 y

t

0
 

dx

x � 1
� lim

t l
 

1�
 ln � x � 1 �]0

t

y
3

0
 

dx

x � 1
� y

1

0
 

dx

x � 1
� y

3

1
 

dx

x � 1

c � 1
�0, 3�

x � 1

y
3

0
 

dx

x � 1

t l ���2��tan t l �sec t l �

  � lim
t l

 

���2��
 �ln�sec t � tan t� � ln 1� � �

� lim
t l

 

���2��
 ln � sec x � tan x �]0

t
 y

��2

0
 sec x dx � lim

t l
 

���2��
 y

t

0
 sec x dx

lim x l���2�� sec x � �

y
��2

0
 sec x dxV

SECTION 7.8 IMPROPER INTEGRALS | | | | 513



Now we integrate by parts with , , , and :

To find the limit of the first term we use l’Hospital’s Rule:

Therefore

Figure 11 shows the geometric interpretation of this result. The area of the shaded region
above and below the -axis is . M

A COMPARISON TEST FOR IMPROPER INTEGRALS

Sometimes it is impossible to find the exact value of an improper integral and yet it 
is important to know whether it is convergent or divergent. In such cases the following the-
orem is useful. Although we state it for Type 1 integrals, a similar theorem is true for
Type 2 integrals.

COMPARISON THEOREM Suppose that and are continuous functions with
for .

(a) If is convergent, then is convergent.

(b) If is divergent, then is divergent.

We omit the proof of the Comparison Theorem, but Figure 12 makes it seem plausible.
If the area under the top curve is finite, then so is the area under the bottom curve

. And if the area under is infinite, then so is the area under .
[Note that the reverse is not necessarily true: If is convergent, may 
or may not be convergent, and if is divergent, may or may not be
divergent.]

EXAMPLE 9 Show that is convergent.

SOLUTION We can’t evaluate the integral directly because the antiderivative of is not an
elementary function (as explained in Section 7.5). We write

and observe that the first integral on the right-hand side is just an ordinary definite inte-
gral. In the second integral we use the fact that for we have , so 
and therefore . (See Figure 13.) The integral of is easy to evaluate:
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Thus, taking and in the Comparison Theorem, we see that
is convergent. It follows that is convergent. M

In Example 9 we showed that is convergent without computing its value. In
Exercise 70 we indicate how to show that its value is approximately 0.8862. In probabil-
ity theory it is important to know the exact value of this improper integral, as we will see
in Section 8.5; using the methods of multivariable calculus it can be shown that the exact
value is . Table 1 illustrates the definition of an improper integral by showing how
the (computer-generated) values of approach as t becomes large. In fact,
these values converge quite quickly because very rapidly as .

EXAMPLE 10 The integral is divergent by the Comparison Theorem

because

and is divergent by Example 1 [or by (2) with ]. M

Table 2 illustrates the divergence of the integral in Example 10. It appears that the 
values are not approaching any fixed number.
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TABLE 1

t

1 0.7468241328
2 0.8820813908
3 0.8862073483
4 0.8862269118
5 0.8862269255
6 0.8862269255
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 dx

TABLE 2

t

2 0.8636306042
5 1.8276735512

10 2.5219648704
100 4.8245541204

1000 7.1271392134
10000 9.4297243064

x
t

1 ��1 � e�x ��x� dx

8.

9. 10.

11. 12.

14.

15. 16.

17. 18.

19. 20.

22.

23. 24.

25. 26.

27. 28. y
3

2
 

1

s3 � x  dxy
1

0
 

3

x 5  dx

y
�

0
 
x arctan x

�1 � x 2�2  dxy
�

e

1

x�ln x�3  dx

y
�

0
 

e x

e 2x � 3
 dxy

�

��
 

x 2

9 � x 6  dx

y
�

��
 x 3e�x4

 dxy
�

1
 
ln x

x
 dx21.

y
6

�� 
re r�3 dry

�

0
 se�5s ds

y
�

0
 

dz

z 2 � 3z � 2y
�

1
 

x � 1

x 2 � 2x
 dx

y
�

��
 cos � t dty

�

2�
 sin 
 d


y
�

1
 
e�sx 

sx  dxy
�

��
 xe�x2 dx13.

y
�
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x

1 � x 2  dx

y
�1

��
 e�2 t dty

�

4
 e�y�2 dy

y
�

0
 

x

�x 2 � 2�2  dxy
�1

��
 

1

s2 � w  dw7.
Explain why each of the following integrals is improper.

(a) (b)

(c) (d)

2. Which of the following integrals are improper? Why?

(a) (b)

(c) (d)

3. Find the area under the curve from to 
and evaluate it for , , and . Then find the total
area under this curve for .

; 4. (a) Graph the functions and in the
viewing rectangles by and by .

(b) Find the areas under the graphs of and from 
to and evaluate for , , , , ,
and .

(c) Find the total area under each curve for , if it exists.

5–40 Determine whether each integral is convergent or divergent.
Evaluate those that are convergent.

5. 6. y
0

��
 

1

2x � 5
 dxy

�

1
 

1

�3x � 1�2  dx

x � 1
1020

1010106104100t � 10x � t
x � 1tf

�0, 1��0, 100��0, 1��0, 10�
t�x� � 1�x 0.9f �x� � 1�x 1.1

x � 1
1000100t � 10

x � tx � 1y � 1�x 3

y
2

1
 ln�x � 1� dxy

�

��
 

sin x

1 � x 2  dx

y
1

0
 

1

2x � 1
 dxy

2

1
 

1

2x � 1
 dx

y
0

��
 

1

x 2 � 5
 dxy

2

0
 

x

x 2 � 5x � 6
 dx

y
��2

0
 sec x dxy

�

1
 x 4e�x4

 dx

1.
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51. 52.

53. 54.

55. The integral

is improper for two reasons: The interval is infinite and
the integrand has an infinite discontinuity at 0. Evaluate it by
expressing it as a sum of improper integrals of Type 2 and
Type 1 as follows:

56. Evaluate

by the same method as in Exercise 55.

57–59 Find the values of for which the integral converges and
evaluate the integral for those values of .

58.

59.

60. (a) Evaluate the integral for , , , and .

(b) Guess the value of when is an arbitrary posi-
tive integer.

(c) Prove your guess using mathematical induction.

(a) Show that is divergent.
(b) Show that

This shows that we can’t define

62. The average speed of molecules in an ideal gas is

where is the molecular weight of the gas, is the gas con-
stant, is the gas temperature, and is the molecular speed.
Show that

v � �8RT

�M
  

vT
RM

v �
4

s�   	 M

2RT
3�2

 y
�

0
 v 3e�Mv2��2RT � dv

y
�

��
 f �x� dx � lim

t l �
 y

t

�t
 f �x� dx

lim
t l �

 y
t

�t
 x dx � 0

x
�

��
 x dx61.

nx
�

0  x ne�x dx

321n � 0x
�

0  x ne�x dx

y
1

0
 x p ln x dx

y
�

e
 

1

x �ln x� p  dxy
1

0
 

1

x p  dx57.

p
p

y
�

2
 

1

xsx 2 � 4 
 dx

� y
1

0
 

1

sx  �1 � x�
 dx � y

�

1
 

1

sx  �1 � x�
 dxy

�

0
 

1

sx  �1 � x�
 dx

�0, ��

y
�

0
 

1

sx  �1 � x�
 dx

y
�

0
 
sin2 x

sx  dxy
1

0
 
sec 2 x

xsx
   dx

y
�

0
 
arctan x

2 � e x  dxy
�

1
 

x � 1

sx 4 � x  dx30.

32.

33. 34.

35. 36.

37. 38.

39. 40.

41–46 Sketch the region and find its area (if the area is finite).

41.

42.

;

; 44.

; 45.

; 46.

; 47. (a) If , use your calculator or computer to
make a table of approximate values of for 

, 5, 10, 100, 1000, and 10,000. Does it appear that
is convergent?

(b) Use the Comparison Theorem with to show
that is convergent.

(c) Illustrate part (b) by graphing and on the same screen
for . Use your graph to explain intuitively
why is convergent.

; 48. (a) If , use your calculator or computer to
make a table of approximate values of for ,
10, 100, 1000, and 10,000. Does it appear that 
is convergent or divergent?

(b) Use the Comparison Theorem with to show
that is divergent.

(c) Illustrate part (b) by graphing and on the same screen
for . Use your graph to explain intuitively
why is divergent.

49–54 Use the Comparison Theorem to determine whether the
integral is convergent or divergent.

50. y
�

1
 
2 � e�x

x
 dxy

�

0
 

x

x 3 � 1
 dx49.

x
�

2  t�x� dx
2 � x � 20

tf
x

�

2  t�x� dx
f �x� � 1�sx 

x
�

2  t�x� dx
t � 5x

t
2 t�x� dx

t�x� � 1�(sx � 1)

x
�

1  t�x� dx
1 � x � 10

tf
x

�

1  t�x� dx
f �x� � 1�x 2

x
�

1  t�x� dx
t � 2

x
t

1 t�x� dx
t�x� � �sin2x��x 2

S � {�x, y� � �2 � x � 0, 0 � y � 1�sx � 2 }

S � ��x, y� � 0 � x � ��2, 0 � y � sec2x�

S � ��x, y� � x � 0, 0 � y � x��x 2 � 9��

S � ��x, y� � 0 � y � 2��x 2 � 9��43.

S � ��x, y� � x � �2, 0 � y � e�x�2 �

S � ��x, y� � x � 1, 0 � y � e x �

y
1

0
 
ln x

sx  dxy
2

0
 z 2 ln z dz

y
1

0
 
e1�x

x 3  dxy
0

�1
 
e1�x

x 3  dx

y
�

��2
 csc x dxy

3

0
 

dx

x 2 � 6x � 5

y
1

0
 

1

4y � 1
 dyy

33

0
 �x � 1��1�5 dx

y
1

0
 

dx

s1 � x 2 y
3

�2
 

1

x 4  dx31.

y
8

6
 

4

�x � 6�3  dxy
14

�2
 

dx

s
4 x � 2 

29.
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70. Estimate the numerical value of by writing it as
the sum of and . Approximate the first inte-
gral by using Simpson’s Rule with and show that the
second integral is smaller than , which is less than
0.0000001.

71. If is continuous for , the Laplace transform of is
the function defined by

and the domain of is the set consisting of all numbers for
which the integral converges. Find the Laplace transforms of
the following functions.
(a) (b) (c)

72. Show that if for , where and are
constants, then the Laplace transform exists for .

73. Suppose that and for ,
where is continuous. If the Laplace transform of is

and the Laplace transform of is , show that

74. If is convergent and and are real numbers,
show that

75. Show that .

76. Show that by interpreting the 
integrals as areas.

77. Find the value of the constant for which the integral

converges. Evaluate the integral for this value of .

78. Find the value of the constant for which the integral

converges. Evaluate the integral for this value of .

79. Suppose is continuous on and . Is it
possible that is convergent?

80. Show that if and , then the following inte-
gral is convergent.

y
�

0
 

x a

1 � x b  dx

b 	 a � 1a 	 �1

x
�

0  f �x� dx
limx l

 

� f �x� � 1�0, ��f

C

y
�

0
 	 x

x 2 � 1
�

C

3x � 1
 dx

C

C

y
�

0
 	 1

sx 2 � 4 
�

C

x � 2
 dx

C

x
�

0  e�x 2 

dx � x
1
0  s�ln y  dy

x
�

0  x 2e�x 2 dx � 1
2 x

�

0  e�x 2 dx

y
a

��
 f �x� dx � y

�

a
 f �x� dx � y

b

��
 f �x� dx � y

�

b
 f �x� dx

bax
�

��
 f �x� dx

s 	 aG�s� � sF�s� � f �0�

G�s�f ��t�F�s�
f �t�f �

t � 00 � f ��t� � Ke at0 � f �t� � Me at

s 	 aF�s�
aMt � 00 � f �t� � Me at

f �t� � tf �t� � e tf �t� � 1

sF

F�s� � y
�

0
 f �t�e�st dt

F
ft � 0f �t�

x
�

4  e�4x dx
n � 8

x
�

4  e�x2 dxx
4
0  e�x2 dx

x
�

0  e�x2 dx
63. We know from Example 1 that the region

has infinite area. Show 
that by rotating about the -axis we obtain a solid with 
finite volume.

64. Use the information and data in Exercises 29 and 30 of Sec-
tion 6.4 to find the work required to propel a 1000-kg satellite
out of the earth’s gravitational field.

65. Find the escape velocity that is needed to propel a rocket 
of mass out of the gravitational field of a planet with mass 

and radius . Use Newton’s Law of Gravitation (see Exer-
cise 29 in Section 6.4) and the fact that the initial kinetic
energy of supplies the needed work.

66. Astronomers use a technique called stellar stereography to
determine the density of stars in a star cluster from the
observed (two-dimensional) density that can be analyzed
from a photograph. Suppose that in a spherical cluster of
radius the density of stars depends only on the distance 
from the center of the cluster. If the perceived star density is
given by , where is the observed planar distance from
the center of the cluster, and is the actual density, it can
be shown that

If the actual density of stars in a cluster is ,
find the perceived density .

67. A manufacturer of lightbulbs wants to produce bulbs that last
about 700 hours but, of course, some bulbs burn out faster
than others. Let be the fraction of the company’s bulbs
that burn out before hours, so always lies between 0
and 1.
(a) Make a rough sketch of what you think the graph of 

might look like.
(b) What is the meaning of the derivative ?
(c) What is the value of ? Why?

68. As we saw in Section 3.8, a radioactive substance decays
exponentially: The mass at time is , where

is the initial mass and is a negative constant. The mean
life of an atom in the substance is

For the radioactive carbon isotope, , used in radiocarbon
dating, the value of is . Find the mean life of a 

atom.

Determine how large the number has to be so that

y
�

a
 

1

x 2 � 1
 dx � 0.001

a69.

14C
�0.000121k

14C

M � �k y
�

0
 te kt dt

M
km�0�

m�t� � m�0�e ktt

x
�

0  r�t� dt
r�t� � F��t�

F

F�t�t
F�t�

y�s�
x �r� � 1

2 �R � r�2

y�s� � y
R

s
 

2r

sr 2 � s 2 
 x �r� dr

x �r�
sy�s�

rR

1
2 mv 2

0

RM
m

v0

x�
� � ��x, y� � x � 1, 0 � y � 1�x�
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Note: Additional practice in techniques of integration is provided
in Exercises 7.5.

1–40 Evaluate the integral.

1. 2.

3. 4. y
4

1
 

dt

�2t � 1�3y
��2

0
 

cos 


1 � sin 

 d


y
5

0
 ye�0.6y dyy

5

0
 

x

x � 10
 dx

5. 6.

7. 8.

9. 10. y
1

0
 
sarctan x 

1 � x 2  dxy
4

1
 x 3�2 ln x dx

y 
dx

se x � 1y 
sin�ln t�

t
 dt

y 
1

y 2 � 4y � 12
 dyy

��2

0
 sin3 
 cos2
 d
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REVIEW

C O N C E P T  C H E C K

7

5. State the rules for approximating the definite integral 
with the Midpoint Rule, the Trapezoidal Rule, and Simpson’s
Rule. Which would you expect to give the best estimate? How
do you approximate the error for each rule?

6. Define the following improper integrals.

(a) (b) (c)

7. Define the improper integral for each of the follow-
ing cases.
(a) has an infinite discontinuity at .
(b) has an infinite discontinuity at .
(c) has an infinite discontinuity at , where .

8. State the Comparison Theorem for improper integrals.

a � c � bcf
bf
af

x
b
a
 f �x� dx

y
�

��
 f �x� dxy

b

��
 f �x� dxy

�

a
 f �x� dx

x
b
a  f �x� dx1. State the rule for integration by parts. In practice, how do you

use it?

2. How do you evaluate if is odd? What if is
odd? What if and are both even?

3. If the expression occurs in an integral, what sub-
stitution might you try? What if occurs? What if

occurs?

4. What is the form of the partial fraction expansion of a rational
function if the degree of is less than the degree of

and has only distinct linear factors? What if a linear
factor is repeated? What if has an irreducible quadratic
factor (not repeated)? What if the quadratic factor is repeated?

Q�x�
Q�x�Q

PP�x��Q�x�

sx 2 � a 2 

sa 2 � x 2 

sa 2 � x 2 

nm
nmx sinmx cosnx dx

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. can be put in the form .

2. can be put in the form .

3. can be put in the form .

4. can be put in the form .

5.

6. is convergent.

7. If is continuous, then .x
�

��
 f �x� dx � lim t l � x t

�t
 f �x� dxf

y
�

1
 

1

xs2
 dx

y
4

0
 

x

x 2 � 1
 dx � 1

2 ln 15

A

x
�

B

x 2 � 4

x 2 � 4

x �x 2 � 4�

A

x 2 �
B

x � 4

x 2 � 4

x 2�x � 4�

A

x
�

B

x � 2
�

C

x � 2

x 2 � 4

x �x 2 � 4�

A

x � 2
�

B

x � 2

x �x 2 � 4�
x 2 � 4

8. The Midpoint Rule is always more accurate than the
Trapezoidal Rule.

9. (a) Every elementary function has an elementary derivative.
(b) Every elementary function has an elementary anti-

derivative.

10. If is continuous on and is convergent, then
is convergent.

11. If is a continuous, decreasing function on and
, then is convergent.

12. If and are both convergent, then
is convergent.

13. If and are both divergent, then
is divergent.

14. If and diverges, then also
diverges.

x
�

0  f �x� dxx
�

0  t�x� dxf �x� � t�x�

x
�

a  � f �x� � t�x�� dx

x
�

a  t�x� dxx
�

a  f �x� dx

x
�

a  � f �x� � t�x�� dx

x
�

a  t�x� dxx
�
a  f �x� dx

x
�

1  f �x� dxlimx l � f �x� � 0
�1, ��f

x
�

0  f �x� dx
x

�

1  f �x� dx�0, ��f
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49. 50.

; 51–52 Evaluate the indefinite integral. Illustrate and check that
your answer is reasonable by graphing both the function and its
antiderivative (take ).

51. 52.

; 53. Graph the function and use the graph to
guess the value of the integral . Then evaluate the
integral to confirm your guess.

54. (a) How would you evaluate by hand? (Don’t
actually carry out the integration.)

(b) How would you evaluate using tables? 
(Don’t actually do it.)

(c) Use a CAS to evaluate .
(d) Graph the integrand and the indefinite integral on the

same screen.

55–58 Use the Table of Integrals on the Reference Pages to 
evaluate the integral.

55. 56.

57. 58.

59. Verify Formula 33 in the Table of Integrals (a) by differentia-
tion and (b) by using a trigonometric substitution.

60. Verify Formula 62 in the Table of Integrals.

61. Is it possible to find a number such that is 
convergent?

62. For what values of is convergent? Evaluate
the integral for those values of .

63–64 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule,
and (c) Simpson’s Rule with to approximate the given
integral. Round your answers to six decimal places.

63. 64.

65. Estimate the errors involved in Exercise 63, parts (a) and (b).
How large should be in each case to guarantee an error of
less than 0.00001?

66. Use Simpson’s Rule with to estimate the area under
the curve from to .x � 4x � 1y � e x�x

n � 6

n

y
4

1
sx  cos x dx y

4

2
 

1

ln x
 dx

n � 10

a
x

�

0  e ax cos x dxa

x
�

0  x n dxn

y 
cot x

s1 � 2 sin x  dxy cos x s4 � sin2 x  dx

y csc5t dty s4x 2 � 4x � 3  dx

x x 5e�2x dx

x x 5e�2x dx

x x 5e�2x dxCAS

x
2�

0  f �x� dx
f �x� � cos2x sin3x

y 
x 3

sx 2 � 1
 dxy ln�x 2 � 2x � 2� dx

C � 0

y
�

1
 
tan�1x

x 2  dxy
�

��
 

dx

4x 2 � 4x � 5
11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41–50 Evaluate the integral or show that it is divergent.

41. 42.

43. 44.

45. 46.

47. 48. y
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y
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x 2

�x � 2�3  dxy �cos x � sin x�2 cos 2x dx

y 
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1
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x 2
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y
��4

0
 
x sin x
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 dxy

ln 10
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e x
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 x 5 sec x dx
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s
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s
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 dxy
��2

0
 cos3x sin 2x dx

y x sin x cos x dxy 
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 dx
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9x 2 � 6x � 5
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71. Use the Comparison Theorem to determine whether the 
integral 

is convergent or divergent.

72. Find the area of the region bounded by the hyperbola
and the line .

73. Find the area bounded by the curves and 
between and .

74. Find the area of the region bounded by the curves
, , and .

75. The region under the curve , is
rotated about the -axis. Find the volume of the resulting solid.

76. The region in Exercise 75 is rotated about the -axis. Find the
volume of the resulting solid.

77. If is continuous on and , show that

78. We can extend our definition of average value of a continuous
function to an infinite interval by defining the average value
of on the interval to be

(a) Find the average value of on the interval .
(b) If and is divergent, show that the

average value of on the interval is , if
this limit exists.

(c) If is convergent, what is the average value of 
on the interval ?

(d) Find the average value of on the interval .

79. Use the substitution to show that

80. The magnitude of the repulsive force between two point
charges with the same sign, one of size 1 and the other of size
, is

where is the distance between the charges and is a con-
stant. The potential at a point due to the charge is
defined to be the work expended in bringing a unit charge to

from infinity along the straight line that joins and . Find
a formula for .V

PqP

qPV
�0r

F �
q

4��0r 2

q

y
�

0
 

ln x

1 � x 2  dx � 0

u � 1�x

�0, ��y � sin x
�a, ��

fx
�

a  f �x� dx

lim x l � f �x��a, ��f
x

�

a  f �x� dxf �x� � 0
�0, ��y � tan�1x

lim
t l �

 
1

t � a
 y

t

a
 f �x� dx

�a, ��f

y
�

0
 f ��x� dx � �f �0�

lim x l � f �x� � 0�0, ��f �

y

x
y � cos2x, 0 � x � ��2

x � 1y � 1�(2 � sx )y � 1�(2 � sx )

x � �x � 0
y � cos2xy � cos x

y � 3y 2 � x 2 � 1

y
�

1
 

x 3

x 5 � 2
 dx

67. The speedometer reading ( ) on a car was observed at 
1-minute intervals and recorded in the chart. Use Simpson’s
Rule to estimate the distance traveled by the car.

68. A population of honeybees increased at a rate of bees per
week, where the graph of is as shown. Use Simpson’s Rule
with six subintervals to estimate the increase in the bee popu-
lation during the first 24 weeks.

69. (a) If , use a graph to find an upper bound 
for .

(b) Use Simpson’s Rule with to approximate 
and use part (a) to estimate the error.

(c) How large should be to guarantee that the size of the
error in using is less than ?

70. Suppose you are asked to estimate the volume of a football.
You measure and find that a football is 28 cm long. You use a
piece of string and measure the circumference at its widest
point to be 53 cm. The circumference 7 cm from each end is
45 cm. Use Simpson’s Rule to make your estimate.

28 cm

0.00001Sn

n
x

�

0  f �x� dx
n � 10

� f �4��x��
f �x� � sin�sin x�CAS

r

0 2420161284
(weeks)

t

4000

8000

12000

r
r�t�

v
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t (min) (mi�h) t (min) (mi�h)

0 40 6 56
1 42 7 57
2 45 8 57
3 49 9 55
4 52 10 56
5 54

vv
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EXAMPLE 1
(a) Prove that if is a continuous function, then

(b) Use part (a) to show that

for all positive numbers .

SOLUTION
(a) At first sight, the given equation may appear somewhat baffling. How is it possible
to connect the left side to the right side? Connections can often be made through one of
the principles of problem solving: introduce something extra. Here the extra ingredient is
a new variable. We often think of introducing a new variable when we use the Substitu-
tion Rule to integrate a specific function. But that technique is still useful in the present
circumstance in which we have a general function .

Once we think of making a substitution, the form of the right side suggests that it
should be . Then . When , ; when , . So 

But this integral on the right side is just another way of writing . So the given
equation is proved.

(b) If we let the given integral be and apply part (a) with , we get

A well-known trigonometric identity tells us that and
, so we get

Notice that the two expressions for are very similar. In fact, the integrands have the
same denominator. This suggests that we should add the two expressions. If we do so,
we get

Therefore, . MI � ��4

2I � y
��2

0
 
sinnx � cosnx

sinnx � cosnx
 dx � y

��2

0
 1 dx �

�

2

I

I � y
��2

0
 

cosnx

cosnx � sinnx
 dx

cos���2 � x� � sin x
sin���2 � x� � cos x

I � y
��2

0
 

sinnx

sinnx � cosnx
 dx � y

��2

0
 

sinn���2 � x�
sinn���2 � x� � cosn���2 � x�

 dx

a � ��2I

x
a
0  f �x� dx

 y
a

0
 f �a � x� dx � �y

0

a
 f �u� du � y

a

0
 f �u� du

u � 0x � au � ax � 0du � �dxu � a � x

f

n

 y
��2

0
 

sinnx

sinnx � cosnx
 dx �

�

4

y
a

0
 f �x� dx � y

a

0
 f �a � x� dx

f

P R O B L E M S  P L U S

N The principles of problem solving are
discussed on page 76.

N Cover up the solution to the example and try it
yourself first.

N The computer graphs in Figure 1 make it 
seem plausible that all of the integrals in the
example have the same value. The graph of each
integrand is labeled with the corresponding
value of .n

1

0

1
24

3

π
2

FIGURE 1
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; 1. Three mathematics students have ordered a 14-inch pizza. Instead of slicing it in the tradi-
tional way, they decide to slice it by parallel cuts, as shown in the figure. Being mathematics
majors, they are able to determine where to slice so that each gets the same amount of pizza.
Where are the cuts made?

2. Evaluate .

The straightforward approach would be to start with partial fractions, but that would be brutal.
Try a substitution.

3. Evaluate .

4. The centers of two disks with radius 1 are one unit apart. Find the area of the union of the two
disks.

5. An ellipse is cut out of a circle with radius . The major axis of the ellipse coincides with a
diameter of the circle and the minor axis has length . Prove that the area of the remaining
part of the circle is the same as the area of an ellipse with semiaxes and .

6. A man initially standing at the point walks along a pier pulling a rowboat by a rope of
length . The man keeps the rope straight and taut. The path followed by the boat is a curve
called a tractrix and it has the property that the rope is always tangent to the curve (see the
figure). 
(a) Show that if the path followed by the boat is the graph of the function , then

(b) Determine the function .

7. A function is defined by

Find the minimum value of .

8. If is a positive integer, prove that

9. Show that

Hint: Start by showing that if denotes the integral, then

Ik�1 �
2k � 2

2k � 3
 Ik

In

y
1

0
 �1 � x 2 �n dx �

22n�n!�2

�2n � 1�!

y
1

0
 �ln x�n dx � ��1�n n! 

n

f

0 � x � 2�f �x� � y
�

0
 cos t cos�x � t� dt

f

y � f �x�

f ��x� �
dy

dx
�

�sL 2 � x 2 

x

y � f �x�

L
O

a � ba
2b

a

y
1

0
 (s3 1 � x7 � s

7 1 � x 3
  ) dx

y 
1

x 7 � x
 dx

PROBLEMS

P R O B L E M S  P L U S

FIGURE FOR PROBLEM 1

14 in

y

xO

(L, 0)

(x, y)Lpi
er

FIGURE FOR PROBLEM 6
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; 10. Suppose that is a positive function such that is continuous. 
(a) How is the graph of related to the graph of ? What happens 

as ?
(b) Make a guess as to the value of the limit

based on graphs of the integrand.
(c) Using integration by parts, confirm the guess that you made in part (b). [Use the fact that,

since is continuous, there is a constant such that for .]

11. If , find .

; 12. Graph and use the graph to estimate the value of such that is a
maximum. Then find the exact value of that maximizes this integral.

13. The circle with radius 1 shown in the figure touches the curve twice. Find the area
of the region that lies between the two curves.

14. A rocket is fired straight up, burning fuel at the constant rate of kilograms per second. Let
be the velocity of the rocket at time and suppose that the velocity of the exhaust

gas is constant. Let be the mass of the rocket at time and note that decreases as
the fuel burns. If we neglect air resistance, it follows from Newton’s Second Law that

where the force . Thus

Let be the mass of the rocket without fuel, the initial mass of the fuel, and
. Then, until the fuel runs out at time , the mass is .

(a) Substitute into Equation 1 and solve the resulting equation for . Use the
initial condition to evaluate the constant.

(b) Determine the velocity of the rocket at time . This is called the burnout velocity.
(c) Determine the height of the rocket at the burnout time.
(d) Find the height of the rocket at any time .

15. Use integration by parts to show that, for all ,

16. Suppose , is continuous on and for all . Show that
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MtM � M�t�
utv � v�t�

b
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x
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0
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We looked at some applications of integrals in Chapter 6: areas, volumes, work, and

average values. Here we explore some of the many other geometric applications of

integration—the length of a curve, the area of a surface—as well as quantities of

interest in physics, engineering, biology, economics, and statistics. For instance, we will

investigate the center of gravity of a plate, the force exerted by water pressure on a dam,

the flow of blood from the human heart, and the average time spent on hold during a

customer support telephone call.

The length of a curve 
is the limit of lengths of 

inscribed polygons.

FURTHER 
APPLICATIONS 
OF INTEGRATION

8



ARC LENGTH

What do we mean by the length of a curve? We might think of fitting a piece of string to
the curve in Figure 1 and then measuring the string against a ruler. But that might be 
difficult to do with much accuracy if we have a complicated curve. We need a precise 
definition for the length of an arc of a curve, in the same spirit as the definitions we devel-
oped for the concepts of area and volume.

If the curve is a polygon, we can easily find its length; we just add the lengths of the
line segments that form the polygon. (We can use the distance formula to find the distance
between the endpoints of each segment.) We are going to define the length of a general
curve by first approximating it by a polygon and then taking a limit as the number of seg-
ments of the polygon is increased. This process is familiar for the case of a circle, where
the circumference is the limit of lengths of inscribed polygons (see Figure 2).

Now suppose that a curve is defined by the equation , where f is continuous
and . We obtain a polygonal approximation to by dividing the interval 
into n subintervals with endpoints and equal width . If , then 
the point lies on and the polygon with vertices , , . . . , , illustrated in
Figure 3, is an approximation to .

The length L of is approximately the length of this polygon and the approximation
gets better as we let n increase. (See Figure 4, where the arc of the curve between and

has been magnified and approximations with successively smaller values of are
shown.) Therefore we define the length of the curve with equation ,

, as the limit of the lengths of these inscribed polygons (if the limit exists):

Notice that the procedure for defining arc length is very similar to the procedure we
used for defining area and volume: We divided the curve into a large number of small parts.
We then found the approximate lengths of the small parts and added them. Finally, we took
the limit as .

The definition of arc length given by Equation 1 is not very convenient for compu-
tational purposes, but we can derive an integral formula for in the case where has a 
continuous derivative. [Such a function is called smooth because a small change in 
produces a small change in .]

If we let , then

� Pi�1Pi � � s�xi � xi�1 �2 � �yi � yi�1 �2 � s��x�2 � ��yi�2 

�yi � yi � yi�1

f ��x�
xf

fL

n l �

L � lim
n l �

 �
n

i�1
 � Pi�1Pi �1

a � x � b
y � f �x�CL

�xPi

Pi�1

C

FIGURE 3
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8.1

525

FIGURE 1 

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

FIGURE 4

FIGURE 2

Visual 8.1 shows an animation 
of Figure 2.
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By applying the Mean Value Theorem to on the interval , we find that there is a
number between and such that

that is,

Thus we have

(since )

Therefore, by Definition 1,

We recognize this expression as being equal to

by the definition of a definite integral. This integral exists because the function
is continuous. Thus we have proved the following theorem:

THE ARC LENGTH FORMULA If is continuous on , then the length of
the curve , , is

If we use Leibniz notation for derivatives, we can write the arc length formula as 
follows:

EXAMPLE 1 Find the length of the arc of the semicubical parabola between the
points and . (See Figure 5.)

SOLUTION For the top half of the curve we have

and so the arc length formula gives

If we substitute , then . When , ; when , .u � 10x � 4u � 13
4x � 1du � 9

4 dxu � 1 �
9
4 x

L � y
4

1
 �1 � 	dy

dx
2 

 dx � y
4

1
 s1 � 9

4 x  dx

dy

dx
� 3

2 x 1�2y � x 3�2

�4, 8��1, 1�
y 2 � x 3

L � y
b

a
 �1 � 	dy

dx
2 

 dx3

L � y
b

a
 s1 � � f ��x��2  dx

a � x � by � f �x�
�a, b�f �2

t�x� � s1 � � f ��x��2 

y
b

a
 s1 � � f ��x��2  dx

� lim
n l �

 �
n

i�1
 s1 � � f ��xi*�� 2  �xL � lim

n l �
 �

n

i�1
 � Pi�1Pi �

�x � 0� s1 � � f ��xi*��2  �x� s1 � [ f ��xi*��2  s��x�2 

� s��x�2 � � f ��xi*� �x�2  � Pi�1Pi � � s��x�2 � ��yi�2 

 �yi � f ��xi*� �x

 f �xi� � f �xi�1 � � f ��xi*��xi � xi�1 �

xixi�1xi*
�xi�1, xi�f
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Therefore

M

If a curve has the equation , , and is continuous, then by inter-
changing the roles of and in Formula 2 or Equation 3, we obtain the following formula
for its length:

EXAMPLE 2 Find the length of the arc of the parabola from to .

SOLUTION Since , we have , and Formula 4 gives

We make the trigonometric substitution , which gives and
. When , , so ; when ,

, so , say. Thus

(from Example 8 in Section 7.2)

(We could have used Formula 21 in the Table of Integrals.) Since , we have
, so and

M

0 x

y

1

1

x=¥

FIGURE 6
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N As a check on our answer to Example 1, notice
from Figure 5 that the arc length ought to be
slightly larger than the distance from to

, which is

According to our calculation in Example 1, we
have

Sure enough, this is a bit greater than the length
of the line segment.

L � 1
27 (80s10 � 13s13 ) � 7.633705

s58 � 7.615773

�4, 8�
�1, 1�

N Figure 6 shows the arc of the parabola whose
length is computed in Example 2, together with
polygonal approximations having and

line segments, respectively. For 
the approximate length is , the diago-
nal of a square. The table shows the approxima-
tions that we get by dividing into 
equal subintervals. Notice that each time we
double the number of sides of the polygon, we
get closer to the exact length, which is

L �
s5 

2
�

ln(s5 � 2)
4

� 1.478943

n�0, 1�Ln

L1 � s2 

n � 1n � 2
n � 1

n

1 1.414
2 1.445
4 1.464
8 1.472

16 1.476
32 1.478
64 1.479

Ln



Because of the presence of the square root sign in Formulas 2 and 4, the calculation of
an arc length often leads to an integral that is very difficult or even impossible to evaluate
explicitly. Thus we sometimes have to be content with finding an approximation to the
length of a curve, as in the following example.

EXAMPLE 3
(a) Set up an integral for the length of the arc of the hyperbola from the
point to the point .
(b) Use Simpson’s Rule with to estimate the arc length.

SOLUTION
(a) We have

and so the arc length is

(b) Using Simpson’s Rule (see Section 7.7) with , , , , and
, we have

M

THE ARC LENGTH FUNCTION

We will find it useful to have a function that measures the arc length of a curve from a par-
ticular starting point to any other point on the curve. Thus if a smooth curve has the
equation , , let be the distance along from the initial point

to the point . Then is a function, called the arc length function, and,
by Formula 2,

(We have replaced the variable of integration by so that does not have two meanings.)
We can use Part 1 of the Fundamental Theorem of Calculus to differentiate Equation 5
(since the integrand is continuous):

ds

dx
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N Checking the value of the definite integral
with a more accurate approximation produced by
a computer algebra system, we see that the
approximation using Simpson’s Rule is accurate
to four decimal places.



Equation 6 shows that the rate of change of with respect to is always at least 1 and is
equal to 1 when , the slope of the curve, is 0. The differential of arc length is

and this equation is sometimes written in the symmetric form

The geometric interpretation of Equation 8 is shown in Figure 7. It can be used as a
mnemonic device for remembering both of the Formulas 3 and 4. If we write , then
from Equation 8 either we can solve to get (7), which gives (3), or we can solve to get

which gives (4).

EXAMPLE 4 Find the arc length function for the curve taking 
as the starting point.

SOLUTION If , then

Thus the arc length function is given by

For instance, the arc length along the curve from to is

Ms�3� � 32 �
1
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8
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15. ,

16.

17. ,

18. , ,

; 19–20 Find the length of the arc of the curve from point to
point .

19. , ,

20. , ,

; 21–22 Graph the curve and visually estimate its length. Then find
its exact length.

21. ,

22. ,

23–26 Use Simpson’s Rule with to estimate the arc
length of the curve. Compare your answer with the value of the
integral produced by your calculator.

23. ,

24. ,

25. ,

26. , 1 � x � 3y � x ln x

0 � x � ��3y � sec x

1 � y � 2x � y � sy 

0 � x � 5y � xe�x

n � 10

1
2 � x � 1y �

x 3

6
�

1

2x

1 � x � 3y � 2
3 �x 2 � 1�3�2

Q�8, 8�P�1, 5�x 2 � �y � 4�3

Q(1, 1
2)P(�1, 1

2)y � 1
2 x 2

Q
P

a � 0a � x � by � ln	 e x � 1

e x � 1

0 � x � 1y � e x

y � sx � x 2 � sin�1(sx )

0 � x �
1
2y � ln�1 � x 2�1. Use the arc length formula (3) to find the length of the curve

, . Check your answer by noting that
the curve is a line segment and calculating its length by the
distance formula.

2. Use the arc length formula to find the length of the curve
, . Check your answer by noting that

the curve is part of a circle.

3–6 Set up, but do not evaluate, an integral for the length of the
curve.

3. ,

4. ,

5. ,

6.

7–18 Find the length of the curve.

,

8. , ,

9. ,

10. ,

,

12. ,

,

14. , 0 � x � 1y � 3 �
1
2 cosh 2x

0 � x � ��4y � ln�sec x�13.

0 � x � ��3y � ln�cos x�

1 � y � 9x � 1
3 sy  �y � 3�11.

1 � y � 2x �
y 4

8
�

1

4y 2

1 � x � 2y �
x 5

6
�

1

10x 3

y � 00 � x � 2y 2 � 4�x � 4�3

0 � x � 1y � 1 � 6x 3�27.

x 2

a 2 �
 y 2

b 2 � 1

1 � y � 4x � y � y 3

0 � x � 1y � xe�x2

0 � x � 2�y � cos x

0 � x � 1y � s2 � x 2 

�1 � x � 3y � 2x � 5

EXERCISES8.1

N Figure 8 shows the interpretation of the arc
length function in Example 4. Figure 9 shows the
graph of this arc length function. Why is 
negative when is less than ?1x

s�x�
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the distance traveled by the prey from the time it is dropped
until the time it hits the ground. Express your answer correct
to the nearest tenth of a meter.

38. The Gateway Arch in St. Louis (see the photo on page 256)
was constructed using the equation

for the central curve of the arch, where and are measured
in meters and . Set up an integral for the length
of the arch and use your calculator to estimate the length 
correct to the nearest meter.

A manufacturer of corrugated metal roofing wants to produce
panels that are 28 in. wide and 2 in. thick by processing flat
sheets of metal as shown in the figure. The profile of the roof-
ing takes the shape of a sine wave. Verify that the sine curve
has equation and find the width of a flat
metal sheet that is needed to make a 28-inch panel. (Use your
calculator to evaluate the integral correct to four significant
digits.)

40. (a) The figure shows a telephone wire hanging between 
two poles at and . It takes the shape of a
catenary with equation . Find the
length of the wire.

; (b) Suppose two telephone poles are 50 ft apart and the
length of the wire between the poles is 51 ft. If the lowest
point of the wire must be 20 ft above the ground, how
high up on each pole should the wire be attached?

41. Find the length of the curve

; The curves with equations , , , , . . . , are
called fat circles. Graph the curves with , , , , and

to see why. Set up an integral for the length of the fat
circle with . Without attempting to evaluate this inte-
gral, state the value of .limk l � L 2k

n � 2k
L2k10

864n � 2
86n � 4x n � y n � 142.

1 � x � 4y � x
x

1  st 3 � 1 dt

y

0 x_b b

y � c � a cosh�x�a�
x � bx � �b

28 in
2 inw

wy � sin��x�7�

39.

� x � � 91.20
yx

y � 211.49 � 20.96 cosh 0.03291765x

; 27. (a) Graph the curve , .
(b) Compute the lengths of inscribed polygons with , ,

and sides. (Divide the interval into equal subintervals.)
Illustrate by sketching these polygons (as in Figure 6).

(c) Set up an integral for the length of the curve.
(d) Use your calculator to find the length of the curve to four

decimal places. Compare with the approximations in
part (b).

; 28. Repeat Exercise 27 for the curve

29. Use either a computer algebra system or a table of integrals to
find the exact length of the arc of the curve that lies
between the points and .

30. Use either a computer algebra system or a table of integrals to
find the exact length of the arc of the curve that lies
between the points and . If your CAS has trouble
evaluating the integral, make a substitution that changes the
integral into one that the CAS can evaluate.

Sketch the curve with equation and use sym-
metry to find its length.

32. (a) Sketch the curve .
(b) Use Formulas 3 and 4 to set up two integrals for the arc

length from to . Observe that one of these is 
an improper integral and evaluate both of them.

(c) Find the length of the arc of this curve from 
to .

Find the arc length function for the curve with
starting point .

; 34. (a) Graph the curve , .
(b) Find the arc length function for this curve with starting

point .
(c) Graph the arc length function.

35. Find the arc length function for the curve
with starting point .

36. A steady wind blows a kite due west. The kite’s height above
ground from horizontal position to is given
by . Find the distance traveled by the
kite.

37. A hawk flying at at an altitude of 180 m accidentally
drops its prey. The parabolic trajectory of the falling prey is
described by the equation

until it hits the ground, where is its height above the ground
and is the horizontal distance traveled in meters. Calculatex

y

y � 180 �
x 2

45

15 m�s

y � 150 �
1
40 �x � 50�2

x � 80 ftx � 0

�0, 1�y � sin�1 x � s1 � x 2 

P0(1, 7
12 )

x � 0y � 1
3 x 3 � 1��4x�

P0�1, 2�
y � 2x 3�233.

�8, 4�
��1, 1�

�1, 1��0, 0�

y 3 � x 2

x 2�3 � y 2�3 � 131.

�1, 1��0, 0�
y � x 4�3

CAS

�2, ln 2��1, 0�
y � ln x

CAS

0 � x � 2�y � x � sin x

4
2n � 1

0 � x � 4y � x s3 4 � x 



The curves shown are all examples of graphs of continuous functions that have the following
properties.

1.

2.

3. The area under the graph of from 0 to 1 is equal to 1.

The lengths of these curves, however, are different.

Try to discover formulas for two functions that satisfy the given conditions 1, 2, and 3. (Your
graphs might be similar to the ones shown or could look quite different.) Then calculate the arc
length of each graph. The winning entry will be the one with the smallest arc length.

LÅ3.249

x

y

0 1

1

LÅ2.919

x

y

0 1

1

LÅ3.152

x

y

0 1

1

LÅ3.213

x

y

0 1

1

L

f

f �x� 
 0 for 0 � x � 1

f �0� � 0 and f �1� � 0

f

ARC LENGTH CONTESTD I S C O V E R Y
P R O J E C T
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AREA OF A SURFACE OF REVOLUTION

A surface of revolution is formed when a curve is rotated about a line. Such a surface is
the lateral boundary of a solid of revolution of the type discussed in Sections 6.2 and 6.3.

We want to define the area of a surface of revolution in such a way that it corresponds
to our intuition. If the surface area is , we can imagine that painting the surface would
require the same amount of paint as does a flat region with area .

Let’s start with some simple surfaces. The lateral surface area of a circular cylinder with
radius and height is taken to be because we can imagine cutting the cylin-
der and unrolling it (as in Figure 1) to obtain a rectangle with dimensions and .

Likewise, we can take a circular cone with base radius and slant height , cut it along
the dashed line in Figure 2, and flatten it to form a sector of a circle with radius and cen-
tral angle . We know that, in general, the area of a sector of a circle with radius

and angle is (see Exercise 35 in Section 7.3) and so in this case the area is

Therefore we define the lateral surface area of a cone to be .A � �rl

A � 1
2 l 2
 � 1

2 l 2	2�r

l 
 � �rl

1
2 l 2

l


 � 2�r�l
l

lr
h2�r

A � 2�rhhr

A
A

8.2

h

2πr

FIGURE 1  

h

r

cut



What about more complicated surfaces of revolution? If we follow the strategy we used
with arc length, we can approximate the original curve by a polygon. When this polygon
is rotated about an axis, it creates a simpler surface whose surface area approximates the
actual surface area. By taking a limit, we can determine the exact surface area.

The approximating surface, then, consists of a number of bands, each formed by rotat-
ing a line segment about an axis. To find the surface area, each of these bands can be 
considered a portion of a circular cone, as shown in Figure 3. The area of the band (or frus-
tum of a cone) with slant height and upper and lower radii and is found by sub-
tracting the areas of two cones:

From similar triangles we have

which gives

or

Putting this in Equation 1, we get

or

where is the average radius of the band.
Now we apply this formula to our strategy. Consider the surface shown in Figure 4,

which is obtained by rotating the curve , , about the -axis, where is
positive and has a continuous derivative. In order to define its surface area, we divide the
interval into n subintervals with endpoints and equal width , as we
did in determining arc length. If , then the point lies on the curve. The
part of the surface between and is approximated by taking the line segment 
and rotating it about the -axis. The result is a band with slant height and aver-
age radius so, by Formula 2, its surface area is

2� 
 yi�1 � yi

2
 � Pi�1Pi �

r � 1
2 �yi�1 � yi �

l � � Pi�1Pi �x
Pi�1Pixixi�1

Pi�xi, yi �yi � f �xi�
�xx0, x1, . . . , xn�a, b�

fxa � x � by � f �x�

r � 1
2 �r1 � r2 �

A � 2�rl2

A � � �r1l � r2l�

�r2 � r1�l1 � r1lr2l1 � r1l1 � r1l

l1

r1
�

l1 � l

r2

A � �r2�l1 � l� � �r1l1 � � ��r2 � r1�l1 � r2l�1

r2r1l

l¨

2πr

FIGURE 2 

l

r
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As in the proof of Theorem 8.1.2, we have

where is some number in . When is small, we have and
also , since is continuous. Therefore

and so an approximation to what we think of as the area of the complete surface of revo-
lution is

This approximation appears to become better as and, recognizing (3) as a Riemann
sum for the function , we have

Therefore, in the case where is positive and has a continuous derivative, we define the
surface area of the surface obtained by rotating the curve , , about 
the -axis as

With the Leibniz notation for derivatives, this formula becomes

If the curve is described as , , then the formula for surface area
becomes

and both Formulas 5 and 6 can be summarized symbolically, using the notation for arc
length given in Section 8.1, as

S � y 2�y ds7

S � y
d

c
 2�y�1 � �dx

dy�2 

 dy6

c � y � dx � t�y�

S � y
b

a
 2�y�1 � �dy

dx�2 

 dx5

S � y
b

a
 2� f �x� s1 � � f ��x��2  dx4

x
a � x � by � f �x�

f

lim
n l �

 	
n

i�1
 2� f �xi*� s1 � � f ��xi*��2  �x � y

b

a
 2� f �x� s1 � � f ��x��2  dx

t�x� � 2� f �x� s1 � � f ��x��2 

n l �

	
n

i�1
 2� f �xi*� s1 � � f ��xi*��2  �x3

2� 
 yi�1 � yi

2
 
 Pi�1Pi 
 � 2� f �xi*� s1 � � f ��xi*��2  �x

fyi�1 � f �xi�1� � f �xi*�
yi � f �xi� � f �xi*��x�xi�1, xi�xi*


 Pi�1Pi 
 � s1 � � f ��xi*��2
 

 �x
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For rotation about the -axis, the surface area formula becomes

where, as before, we can use either

or

These formulas can be remembered by thinking of or as the circumference of a
circle traced out by the point on the curve as it is rotated about the -axis or -axis,
respectively (see Figure 5).

EXAMPLE 1 The curve , , is an arc of the circle .
Find the area of the surface obtained by rotating this arc about the -axis. (The surface is
a portion of a sphere of radius 2. See Figure 6.)

SOLUTION We have

and so, by Formula 5, the surface area is

M � 4� y
1

�1
 1 dx � 4� �2� � 8�

 � 2� y
1

�1
 s4 � x 2  

2

s4 � x 2 
 dx

 � 2� y
1

�1
 s4 � x 2  �1 �

x 2

4 � x 2
  dx

 S � y
1

�1
 2�y �1 � �dy

dx�2 

 dx

dy

dx
� 1

2 �4 � x 2 ��1�2��2x� �
�x

s4 � x 2 

x
x 2 � y 2 � 4�1 � x � 1y � s4 � x 2 V

FIGURE 5 (a) Rotation about x-axis: S=j 2πy ds

(x, y)

y

circumference=2πy

x0

y

(b) Rotation about y-axis: S=j 2πx ds

(x, y)
x

circumference=2πx

x0

y

yx�x, y�
2�x2�y

ds � �1 � �dx

dy�2 

 dyds � �1 � �dy

dx�2 

 dx

S � y 2�x ds8

y
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N Figure 6 shows the portion of the sphere
whose surface area is computed in Example 1.

1 x

y

FIGURE 6



EXAMPLE 2 The arc of the parabola from to is rotated about the 
-axis. Find the area of the resulting surface.

SOLUTION 1 Using

and

we have, from Formula 8,

Substituting , we have . Remembering to change the limits of
integration, we have

SOLUTION 2 Using

and

we have

(where )

(as in Solution 1) M

EXAMPLE 3 Find the area of the surface generated by rotating the curve ,
, about the -axis.

SOLUTION Using Formula 5 with

and
dy

dx
� exy � ex

x0 � x � 1
y � exV

 �
�

6
 (17s17 � 5s5 )

u � 1 � 4y �
�

4
 y

17

5
 su  du

 � 2� y
4

1
 sy  �1 �

1

4y
  dy � � y

4

1
 s4y � 1  dy

 S � y 2�x ds � y
4

1
 2�x �1 � �dx

dy�2 

 dy

dx

dy
�

1

2sy x � sy 

 �
�

6
 (17s17 � 5s5 )

 S �
�

4
 y

17

5
 su  du �

�

4
 [ 2

3 u 3�2]5

17

du � 8x dxu � 1 � 4x 2

 � 2� y
2

1
 x s1 � 4x 2  dx

 � y
2

1
 2�x �1 � �dy

dx�2 

 dx

 S � y 2�x ds

dy

dx
� 2xy � x 2

y
�2, 4��1, 1�y � x 2V
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(2, 4)

y=≈

x0

y

1 2

FIGURE 7

N Figure 7 shows the surface of revolution
whose area is computed in Example 2.

N As a check on our answer to Example 2, 
notice from Figure 7 that the surface area 
should be close to that of a circular cylinder with
the same height and radius halfway between 
the upper and lower radius of the surface:

. We computed that 
the surface area was

which seems reasonable. Alternatively, the sur-
face area should be slightly larger than the area
of a frustum of a cone with the same top and
bottom edges. From Equation 2, this is

.2� �1.5�(s10 ) � 29.80

�

6
 (17s17 � 5s5 ) � 30.85

2� �1.5��3� � 28.27

N Another method: Use Formula 6 with 
.x � ln y



we have

(where )

(where and )

(by Example 8 in Section 7.2)

Since , we have and

MS � � [es1 � e 2 � ln(e � s1 � e 2 ) � s2 � ln(s2 � 1)]
sec2	 � 1 � tan2	 � 1 � e 2tan 	 � e

 � � [sec 	 tan 	 � ln�sec 	 � tan 	� � s2 � ln(s2 � 1)]
 � 2� � 1

2 [sec 
 tan 
 � ln 
 sec 
 � tan 
 
]��4

	

	 � tan�1eu � tan 
 � 2� y
	

��4
 sec3
 d


u � e x � 2� y
e

1
 s1 � u2  du

 S � y
1

0
 2�y �1 � �dy

dx�2 

 dx � 2� y
1

0
 ex

s1 � e 2x  dx
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17–20 Use Simpson’s Rule with to approximate the area
of the surface obtained by rotating the curve about the -axis.
Compare your answer with the value of the integral produced by
your calculator.

17. , 18. ,

19. , 20. ,

21–22 Use either a CAS or a table of integrals to find the exact
area of the surface obtained by rotating the given curve about the 
-axis.

21. , 22. ,

23–24 Use a CAS to find the exact area of the surface obtained
by rotating the curve about the -axis. If your CAS has trouble
evaluating the integral, express the surface area as an integral in
the other variable.

23. , 24. ,

If the region is rotated 
about the -axis, the volume of the resulting solid is finite
(see Exercise 63 in Section 7.8). Show that the surface area is
infinite. (The surface is shown in the figure and is known as 
Gabriel’s horn.)

0 1

1
x

y=

y

x

x
� � 
�x, y� 
 x � 1, 0 � y � 1�x�25.

0 � x � 1y � ln�x � 1�0 � y � 1y � x 3

y
CAS

0 � x � 3y � sx 2 � 1 1 � x � 2y � 1�x

x

CAS

0 � x � 1y � e�x2

0 � x � ��3y � sec x

1 � x � 2y � x � sx 1 � x � 3y � ln x

x
n � 101–4 Set up, but do not evaluate, an integral for the area of the

surface obtained by rotating the curve about (a) the -axis and
(b) the -axis.

, 2. ,

3. , 4.

5–12 Find the area of the surface obtained by rotating the curve
about the -axis.

,

6. ,

7. ,

8. ,

9. ,

10. ,

,

12. ,

13–16 The given curve is rotated about the -axis. Find the area
of the resulting surface.

13. ,

14. ,

,

16. , 1 � x � 2y � 1
4x 2 �

1
2 ln x

0 � y � a�2x � sa 2 � y 2 15.

0 � x � 1y � 1 � x 2

1 � y � 2y � s
3 x 

y

1 � y � 2x � 1 � 2y 2

1 � y � 2x � 1
3 �y 2 � 2�3�211.

1
2 � x � 1y �

x 3

6
�

1

2x

0 � x � 1y � sin �x

0 � x � ay � c � a cosh�x�a�

1 � x � 5y � s1 � 4x  

2 � x � 69x � y 2 � 18

0 � x � 2y � x 35.

x

x � sy � y 2 0 � x � 1y � tan�1 x

1 � x � 3y � xe�x0 � x � 1y � x 41.

y
x

EXERCISES8.2

N Or use Formula 21 in the Table of Integrals.



32. Use the result of Exercise 31 to set up an integral to find the
area of the surface generated by rotating the curve ,

, about the line . Then use a CAS to evaluate
the integral.

33. Find the area of the surface obtained by rotating the circle
about the line .

34. Show that the surface area of a zone of a sphere that lies
between two parallel planes is , where is the diam-
eter of the sphere and is the distance between the planes.
(Notice that depends only on the distance between the
planes and not on their location, provided that both planes
intersect the sphere.)

35. Formula 4 is valid only when . Show that when 
is not necessarily positive, the formula for surface area

becomes

36. Let be the length of the curve , , where 
is positive and has a continuous derivative. Let be the

surface area generated by rotating the curve about the -axis.
If is a positive constant, define and let 
be the corresponding surface area generated by the curve

, . Express in terms of and .LSfSta � x � by � t�x�

Stt�x� � f �x� � cc
x

Sff
a � x � by � f �x�L

S � y
b

a
 2� 
 f �x� 
s1 � � f ��x��2  dx

f �x�
f �x� � 0

S
h

dS � �dh

y � rx 2 � y 2 � r 2

y � 40 � x � 4
y � sx 

CAS26. If the infinite curve , , is rotated about the 
-axis, find the area of the resulting surface.

27. (a) If , find the area of the surface generated by rotating
the loop of the curve about the -axis.

(b) Find the surface area if the loop is rotated about the 
-axis.

28. A group of engineers is building a parabolic satellite dish
whose shape will be formed by rotating the curve 
about the -axis. If the dish is to have a 10-ft diameter and a
maximum depth of 2 ft, find the value of and the surface
area of the dish.

29. (a) The ellipse

is rotated about the -axis to form a surface called an
ellipsoid, or prolate spheroid. Find the surface area of this
ellipsoid.

(b) If the ellipse in part (a) is rotated about its minor axis (the
-axis), the resulting ellipsoid is called an oblate spheroid.

Find the surface area of this ellipsoid.

30. Find the surface area of the torus in Exercise 63 in 
Section 6.2.

If the curve , , is rotated about the
horizontal line , where , find a formula for the
area of the resulting surface.

f �x� � cy � c
a � x � by � f �x�31.

y

x

a � b
x 2

a 2 �
 y 2

b 2 � 1

a
y

y � ax 2

y

x3ay 2 � x�a � x�2
a � 0

x
x � 0y � e�x
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We know how to find the volume of a solid of revolution obtained by rotating a region about a
horizontal or vertical line (see Section 6.2). We also know how to find the surface area of a sur-
face of revolution if we rotate a curve about a horizontal or vertical line (see Section 8.2). But
what if we rotate about a slanted line, that is, a line that is neither horizontal nor vertical? In this
project you are asked to discover formulas for the volume of a solid of revolution and for the 
area of a surface of revolution when the axis of rotation is a slanted line.

Let be the arc of the curve between the points and and let 
be the region bounded by , by the line (which lies entirely below ), and by the
perpendiculars to the line from and .

P

0 x

y

qp

�

C

Q

y=ƒ

y=mx+b

Îu

QP
Cy � mx � bC

�Q�q, f �q��P�p, f �p��y � f �x�C

ROTATING ON A SLANTD I S C O V E R Y
P R O J E C T



1. Show that the area of is

[Hint: This formula can be verified by subtracting areas, but it will be helpful throughout the
project to derive it by first approximating the area using rectangles perpendicular to the line,
as shown in the figure. Use the figure to help express in terms of .]

2. Find the area of the region shown in the figure at the left.

3. Find a formula similar to the one in Problem 1 for the volume of the solid obtained by 
rotating about the line .

4. Find the volume of the solid obtained by rotating the region of Problem 2 about the 
line .

5. Find a formula for the area of the surface obtained by rotating about the line .

6. Use a computer algebra system to find the exact area of the surface obtained by rotating the
curve , , about the line . Then approximate your result to three
decimal places.

y � 1
2 x0 � x � 4y � sx 

CAS

y � mx � bC

y � x � 2

y � mx � b�

y=mx+b

Îu

å

tangent to C
at { x i, f(xi)}

xi ∫

?

Îx

?

�x�u

1

1 � m 2  y
q

p
 � f �x� � mx � b��1 � mf ��x�� dx

�
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y

x0

(2π, 2π)

y=x+sin x

y=x-2

APPLICATIONS TO PHYSICS AND ENGINEERING

Among the many applications of integral calculus to physics and engineering, we consider
two here: force due to water pressure and centers of mass. As with our previous applica-
tions to geometry (areas, volumes, and lengths) and to work, our strategy is to break up the
physical quantity into a large number of small parts, approximate each small part, add the
results, take the limit, and then evaluate the resulting integral.

HYDROSTATIC FORCE AND PRESSURE

Deep-sea divers realize that water pressure increases as they dive deeper. This is because
the weight of the water above them increases.

In general, suppose that a thin horizontal plate with area square meters is submerged
in a fluid of density kilograms per cubic meter at a depth meters below the surface of
the fluid as in Figure 1. The fluid directly above the plate has volume , so its mass
is . The force exerted by the fluid on the plate is therefore

F � mt � 
tAd

m � 
V � 
Ad
V � Ad

d

A

8.3

surface of fluid

FIGURE 1



where is the acceleration due to gravity. The pressure on the plate is defined to be the
force per unit area:

The SI unit for measuring pressure is newtons per square meter, which is called a pascal
(abbreviation: 1 N�m Pa). Since this is a small unit, the kilopascal (kPa) is often
used. For instance, because the density of water is , the pressure at the
bottom of a swimming pool 2 m deep is

An important principle of fluid pressure is the experimentally verified fact that at any
point in a liquid the pressure is the same in all directions. (A diver feels the same pressure
on nose and both ears.) Thus the pressure in any direction at a depth in a fluid with mass
density is given by

This helps us determine the hydrostatic force against a vertical plate or wall or dam in a
fluid. This is not a straightforward problem because the pressure is not constant but
increases as the depth increases.

EXAMPLE 1 A dam has the shape of the trapezoid shown in Figure 2. The height is
20 m, and the width is 50 m at the top and 30 m at the bottom. Find the force on the dam
due to hydrostatic pressure if the water level is 4 m from the top of the dam.

SOLUTION We choose a vertical -axis with origin at the surface of the water as in 
Figure 3(a). The depth of the water is 16 m, so we divide the interval into sub-
intervals of equal length with endpoints and we choose . The hori-
zontal strip of the dam is approximated by a rectangle with height and width ,
where, from similar triangles in Figure 3(b),

or

and so

If is the area of the strip, then

If is small, then the pressure on the strip is almost constant and we can use
Equation 1 to write

The hydrostatic force acting on the strip is the product of the pressure and the 
area:

Fi � Pi Ai � 1000txi*�46 � xi*� �x

ithFi

Pi � 1000txi*

ithPi�x

Ai � wi �x � �46 � xi*� �x

ithAi

wi � 2�15 � a� � 2(15 � 8 �
1
2 xi*) � 46 � xi*

a �
16 � xi*

2
� 8 �

xi*

2

a

16 � xi*
�

10

20

wi�x
ithxi* � �xi�1, xi�xi

�0, 16�
x

V

P � 
td � �d1



d

 � 19,600 Pa � 19.6 kPa

 P � 
td � 1000 kg�m3 � 9.8 m�s2 � 2 m


 � 1000 kg�m3

2 � 1

P �
F

A
� 
td

Pt
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50 m

20 m

30 m

FIGURE 2

FIGURE 3
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N When using US Customary units, we write
, where is the weight

density (as opposed to , which is the mass
density ). For instance, the weight density of
water is .� � 62.5 lb�ft3



� � 
tP � 
td � �d



Adding these forces and taking the limit as , we obtain the total hydrostatic force
on the dam:

M

EXAMPLE 2 Find the hydrostatic force on one end of a cylindrical drum with radius 3 ft
if the drum is submerged in water 10 ft deep.

SOLUTION In this example it is convenient to choose the axes as in Figure 4 so that the 
origin is placed at the center of the drum. Then the circle has a simple equation,

. As in Example 1 we divide the circular region into horizontal strips of
equal width. From the equation of the circle, we see that the length of the strip is

and so its area is

The pressure on this strip is approximately

and so the force on the strip is approximately

The total force is obtained by adding the forces on all the strips and taking the limit:

The second integral is 0 because the integrand is an odd function (see Theorem 5.5.7).
The first integral can be evaluated using the trigonometric substitution , but
it’s simpler to observe that it is the area of a semicircular disk with radius 3. Thus

M �
7875�

2
� 12,370 lb

 F � 875 y
3

�3
 s9 � y 2  dy � 875 � 1

2 � �3�2

y � 3 sin 


 � 125 � 7 y
3

�3
 s9 � y 2  dy � 125 y

3

�3
 ys9 � y 2  dy

 � 125 y
3

�3
 �7 � y� s9 � y 2  dy

 F � lim
n l �

 	
n

i�1
 62.5�7 � yi*�2s9 � �yi*�2  �y

�di Ai � 62.5�7 � yi*�2s9 � �yi*�2  �y

�di � 62.5�7 � yi*�

Ai � 2s9 � �yi*�2  �y

2s9 � �yi*�2 
ith

x 2 � y 2 � 9

 � 4.43 � 107 N

 � 9800�23x 2 �
x 3

3 �0

16

 � 1000�9.8� y
16

0
 �46x � x 2 � dx

 � y
16

0
 1000tx�46 � x� dx

 F � lim
n l �

 	
n

i�1
 1000txi*�46 � xi*� �x

n l �
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MOMENTS AND CENTERS OF MASS

Our main objective here is to find the point on which a thin plate of any given shape bal-
ances horizontally as in Figure 5. This point is called the center of mass (or center of grav-
ity) of the plate.

We first consider the simpler situation illustrated in Figure 6, where two masses and
are attached to a rod of negligible mass on opposite sides of a fulcrum and at distances
and from the fulcrum. The rod will balance if

This is an experimental fact discovered by Archimedes and called the Law of the Lever.
(Think of a lighter person balancing a heavier one on a seesaw by sitting farther away from
the center.)

Now suppose that the rod lies along the -axis with at and at and the center
of mass at . If we compare Figures 6 and 7, we see that and and
so Equation 2 gives

The numbers and are called the moments of the masses and (with respect
to the origin), and Equation 3 says that the center of mass is obtained by adding the
moments of the masses and dividing by the total mass .

In general, if we have a system of particles with masses , . . . , located at the
points , . . . , on the -axis, it can be shown similarly that the center of mass of the
system is located at

where is the total mass of the system, and the sum of the individual moments

is called the moment of the system about the origin. Then Equation 4 could be rewritten
as , which says that if the total mass were considered as being concentrated at the
center of mass , then its moment would be the same as the moment of the system.x

mx � M

M � 	
n

i�1
 mixi

m � � mi

x �
	
n

i�1
 mixi

	
n

i�1
 mi

�
	
n

i�1
 mixi

m
4

xxnx2,x1

mnm2,m1n

0

⁄ –x ¤

¤-x–m¡ m™
x

–x-⁄

FIGURE 7

m � m1 � m2

x
m2m1m2x2m1x1

 x �
m1x1 � m2x2

m1 � m2
3

 m1x � m2x � m1x1 � m2x2

 m1�x � x1� � m2�x2 � x�

d2 � x2 � xd1 � x � x1x
x2m2x1m1x

m1d1 � m2d22

d2d1

m2

m1

P
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Now we consider a system of particles with masses , . . . , located at the
points , , . . . , in the -plane as shown in Figure 8. By analogy with
the one-dimensional case, we define the moment of the system about the y-axis to be

and the moment of the system about the x-axis as

Then measures the tendency of the system to rotate about the -axis and measures
the tendency to rotate about the -axis.

As in the one-dimensional case, the coordinates of the center of mass are given
in terms of the moments by the formulas

where is the total mass. Since and , the center of mass 
is the point where a single particle of mass would have the same moments as the

system.

EXAMPLE 3 Find the moments and center of mass of the system of objects that have
masses 3, 4, and 8 at the points , , and , respectively.

SOLUTION We use Equations 5 and 6 to compute the moments:

Since , we use Equations 7 to obtain

Thus the center of mass is . (See Figure 9.) M

Next we consider a flat plate (called a lamina) with uniform density that occupies a
region of the plane. We wish to locate the center of mass of the plate, which is called
the centroid of . In doing so we use the following physical principles: The symmetry
principle says that if is symmetric about a line , then the centroid of lies on . (If 
is reflected about , then remains the same so its centroid remains fixed. But the only
fixed points lie on .) Thus the centroid of a rectangle is its center. Moments should be
defined so that if the entire mass of a region is concentrated at the center of mass, then its
moments remain unchanged. Also, the moment of the union of two nonoverlapping regions
should be the sum of the moments of the individual regions.

l
�l

�l�l�
�

�



(114
15, 1)

y �
Mx

m
�

15

15
� 1x �

My

m
�

29

15

m � 3 � 4 � 8 � 15

 Mx � 3�1� � 4��1� � 8�2� � 15

 My � 3��1� � 4�2� � 8�3� � 29

�3, 2��2, �1���1, 1�
V

m�x, y�
my � Mxmx � Mym � � mi
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Mx

m
x �

My

m
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�x, y�
x

MxyMy
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n

i�1
 miyi6
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING | | | | 543

m£
m¡

m™

y

0 x

‹

y£

⁄

›

¤

fi

FIGURE 8

FIGURE 9

y

0 x

8

4

3

center of mass



Suppose that the region is of the type shown in Figure 10(a); that is, lies between
the lines and , above the -axis, and beneath the graph of , where is a 
continuous function. We divide the interval into n subintervals with endpoints

and equal width . We choose the sample point to be the midpoint of
the th subinterval, that is, . This determines the polygonal approxima-
tion to shown in Figure 10(b). The centroid of the th approximating rectangle is its
center . Its area is , so its mass is

The moment of about the -axis is the product of its mass and the distance from to
the -axis, which is 

Adding these moments, we obtain the moment of the polygonal approximation to , and
then by taking the limit as we obtain the moment of itself about the -axis:

In a similar fashion we compute the moment of about the -axis as the product of its
mass and the distance from to the -axis:

Again we add these moments and take the limit to obtain the moment of about the 
-axis:

Just as for systems of particles, the center of mass of the plate is defined so that
and . But the mass of the plate is the product of its density and its area:

and so

Notice the cancellation of the ’s. The location of the center of mass is independent of the
density.

�
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a
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 x f �x� dx

� y
b

a
 f �x� dx

�
y

b

a
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In summary, the center of mass of the plate (or the centroid of ) is located at the point
, where

EXAMPLE 4 Find the center of mass of a semicircular plate of radius .

SOLUTION In order to use (8) we place the semicircle as in Figure 11 so that
and , . Here there is no need to use the formula to calcu-

late because, by the symmetry principle, the center of mass must lie on the -axis, so
. The area of the semicircle is , so

The center of mass is located at the point . M

EXAMPLE 5 Find the centroid of the region bounded by the curves , ,
, and .

SOLUTION The area of the region is

so Formulas 8 give

(by integration by parts)

The centroid is and is shown in Figure 12. M( 1
2� � 1, 18�)
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If the region lies between two curves and , where , as
illustrated in Figure 13, then the same sort of argument that led to Formulas 8 can be used
to show that the centroid of is , where

(See Exercise 47.)

EXAMPLE 6 Find the centroid of the region bounded by the line and the 
parabola .

SOLUTION The region is sketched in Figure 14. We take , , , and
in Formulas 9. First we note that the area of the region is

Therefore

The centroid is . M

We end this section by showing a surprising connection between centroids and volumes
of revolution.

THEOREM OF PAPPUS Let be a plane region that lies entirely on one side of a
line in the plane. If is rotated about , then the volume of the resulting solid is
the product of the area of and the distance traveled by the centroid of .

PROOF We give the proof for the special case in which the region lies between and
as in Figure 13 and the line is the -axis. Using the method of cylindrical shells yly � t�x�

y � f �x�

�d�A
l�l

�

( 1
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(see Section 6.3), we have

(by Formulas 9)

where is the distance traveled by the centroid during one rotation about the 
-axis. M

EXAMPLE 7 A torus is formed by rotating a circle of radius about a line in the plane
of the circle that is a distance from the center of the circle. Find the volume of
the torus.

SOLUTION The circle has area . By the symmetry principle, its centroid is its cen-
ter and so the distance traveled by the centroid during a rotation is . Therefore,
by the Theorem of Pappus, the volume of the torus is

M

The method of Example 7 should be compared with the method of Exercise 63 in
Section 6.2.

V � Ad � �2�R���r 2 � � 2� 2r 2R
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A � �r 2

�	 r�R
rV

y
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 � �2� x�A � Ad

 � 2� �xA�

 � 2� y
b

a
 x� f �x� � t�x�� dx

 V � y
b

a
 2�x� f �x� � t�x�� dx
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5. 6.

8.

9. 10.

4 m

1 m

2 m7.

6 m6 m
1 m

1. An aquarium 5 ft long, 2 ft wide, and 3 ft deep is full of 
water. Find (a) the hydrostatic pressure on the bottom of the
aquarium, (b) the hydrostatic force on the bottom, and (c) the
hydrostatic force on one end of the aquarium.

2. A tank is 8 m long, 4 m wide, 2 m high, and contains kerosene
with density to a depth of 1.5 m. Find (a) the hydro-
static pressure on the bottom of the tank, (b) the hydrostatic
force on the bottom, and (c) the hydrostatic force on one end 
of the tank.

3–11 A vertical plate is submerged (or partially submerged) in
water and has the indicated shape. Explain how to approximate the
hydrostatic force against one side of the plate by a Riemann sum.
Then express the force as an integral and evaluate it.

3. 4.

820 kg�m3

EXERCISES8.3



19. A vertical, irregularly shaped plate is submerged in water.
The table shows measurements of its width, taken at the indi-
cated depths. Use Simpson’s Rule to estimate the force of the
water against the plate.

20. (a) Use the formula of Exercise 18 to show that

where is the -coordinate of the centroid of the plate
and is its area. This equation shows that the hydrostatic
force against a vertical plane region is the same as if the
region were horizontal at the depth of the centroid of the
region.

(b) Use the result of part (a) to give another solution to 
Exercise 10.

21–22 Point-masses are located on the -axis as shown. Find
the moment of the system about the origin and the center of
mass .

21.

22.

23–24 The masses are located at the points . Find the
moments and and the center of mass of the system.

23. , , ;

, ,

24. , , , ;

, , ,

25–28 Sketch the region bounded by the curves, and visually esti-
mate the location of the centroid. Then find the exact coordinates
of the centroid.

25. ,

26. , ,

, , ,

28. , , , x � 2x � 1y � 0y � 1�x

x � 1x � 0y � 0y � e x27.

x � 0y � 03x � 2y � 6

y � 0y � 4 � x 2

P4�6, �1�P3��3, �7�P2�3, 4�P1�1, �2�
m4 � 4m3 � 1m2 � 5m1 � 6

P3��2, �1�P2�3, �2�P1�1, 5�
m3 � 10m2 � 5m1 � 6

MyMx

Pimi

x0 3 7

m™=20 m£=10

_2

m¡=25

x0 2 5

m¡=40 m™=30

x
M

xmi

A
xx

F � ��tx �A

11.

12. A large tank is designed with ends in the shape of the region
between the curves and , measured in feet. 
Find the hydrostatic force on one end of the tank if it is filled
to a depth of 8 ft with gasoline. (Assume the gasoline’s den-
sity is .)

A trough is filled with a liquid of density 840 kg�m . The
ends of the trough are equilateral triangles with sides 8 m
long and vertex at the bottom. Find the hydrostatic force on
one end of the trough.

14. A vertical dam has a semicircular gate as shown in the figure.
Find the hydrostatic force against the gate.

15. A cube with 20-cm-long sides is sitting on the bottom of an
aquarium in which the water is one meter deep. Estimate the
hydrostatic force on (a) the top of the cube and (b) one of the
sides of the cube.

16. A dam is inclined at an angle of from the vertical and has
the shape of an isosceles trapezoid 100 ft wide at the top and
50 ft wide at the bottom and with a slant height of 70 ft. Find
the hydrostatic force on the dam when it is full of water.

17. A swimming pool is 20 ft wide and 40 ft long and its bottom
is an inclined plane, the shallow end having a depth of 3 ft
and the deep end, 9 ft. If the pool is full of water, estimate 
the hydrostatic force on (a) the shallow end, (b) the deep end,
(c) one of the sides, and (d) the bottom of the pool.

18. Suppose that a plate is immersed vertically in a fluid with
density and the width of the plate is at a depth of 
meters beneath the surface of the fluid. If the top of the plate
is at depth and the bottom is at depth , show that the
hydrostatic force on one side of the plate is

F � y
b

a
 �txw�x� dx

ba

xw�x��

30


12 m

2 m

4 m

water level

313.

42.0 lb�ft3

y � 12y � 1
2 x 2

2a
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Depth (m) 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Plate width (m) 0 0.8 1.7 2.4 2.9 3.3 3.6



40–41 Find the centroid of the region shown, not by integration,
but by locating the centroids of the rectangles and triangles (from
Exercise 39) and using additivity of moments.

40.

42. A rectangle with sides and is divided into two parts 
and by an arc of a parabola that has its vertex at one

corner of and passes through the opposite corner. Find the
centroids of both and .

43. If is the -coordinate of the centroid of the region that lies
under the graph of a continuous function , where ,
show that

44–46 Use the Theorem of Pappus to find the volume of the
given solid.

44. A sphere of radius (Use Example 4.)

45. A cone with height and base radius 

46. The solid obtained by rotating the triangle with vertices 
, , and about the -axis

47. Prove Formulas 9.

48. Let be the region that lies between the curves 
and , , where and are integers with

.
(a) Sketch the region .
(b) Find the coordinates of the centroid of .
(c) Try to find values of and such that the centroid lies

outside .�
nm

�
�

0 � n � m
nm0 � x � 1y � x n

y � x m�

x�5, 4��2, 5��2, 3�

rh

r

y
b

a
 �cx � d� f �x� dx � �cx � d � y

b

a
 f �x� dx

a � x � bf
xx

x

y

0 a

R™

R¡

b

R2R1

R
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baR

x

y

0 1_1

_1

2

1

2

_2

41.

x

y

0 1

1

3

2

3

_2

29–33 Find the centroid of the region bounded by the given
curves.

29. ,

30. ,

, , ,

32. , ,

33. ,

34–35 Calculate the moments and and the center of mass
of a lamina with the given density and shape.

34. 35.

36. Use Simpson’s Rule to estimate the centroid of the region
shown.

; 37. Find the centroid of the region bounded by the curves 
and , , to three decimal places. Sketch 
the region and plot the centroid to see if your answer is 
reasonable.

; 38. Use a graph to find approximate -coordinates of the points
of intersection of the curves and .
Then find (approximately) the centroid of the region bounded
by these curves.

39. Prove that the centroid of any triangle is located at the point 
of intersection of the medians. [Hints: Place the axes so that
the vertices are , , and . Recall that a median 
is a line segment from a vertex to the midpoint of the oppo-
site side. Recall also that the medians intersect at a point two-
thirds of the way from each vertex (along the median) to the
opposite side.]

�c, 0��0, b��a, 0�

y � x 3 � xy � x � ln x
x

0 � x � 2y � x 2
y � 2x

2

4

x

y

0 8642

x

(4, 3)y

0x

y

0 1

_1

1

� � 10� � 3

MyMx

x � 0x � 5 � y 2

y � 0x � y � 2y � x 3

x � ��4x � 0y � cos xy � sin x31.

y � x 2y � x � 2

x � y 2y � x 2
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APPLICATIONS TO ECONOMICS AND BIOLOGY

In this section we consider some applications of integration to economics (consumer sur-
plus) and biology (blood flow, cardiac output). Others are described in the exercises.

CONSUMER SURPLUS

Recall from Section 4.7 that the demand function is the price that a company has to
charge in order to sell units of a commodity. Usually, selling larger quantities requires
lowering prices, so the demand function is a decreasing function. The graph of a typical
demand function, called a demand curve, is shown in Figure 1. If is the amount of the
commodity that is currently available, then is the current selling price.

We divide the interval into subintervals, each of length , and let
be the right endpoint of the th subinterval, as in Figure 2. If, after the first 

units were sold, a total of only units had been available and the price per unit had been
set at dollars, then the additional units could have been sold (but no more). The
consumers who would have paid dollars placed a high value on the product; they
would have paid what it was worth to them. So, in paying only dollars they have saved
an amount of

�savings per unit��number of units� � �p�xi� � P� �x
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FIGURE 1
A typical demand curve

Suppose you have a choice of two coffee cups of the type shown, one that bends outward and one
inward, and you notice that they have the same height and their shapes fit together snugly. You
wonder which cup holds more coffee. Of course you could fill one cup with water and pour it 
into the other one but, being a calculus student, you decide on a more mathematical approach.
Ignoring the handles, you observe that both cups are surfaces of revolution, so you can think of
the coffee as a volume of revolution.

1. Suppose the cups have height , cup A is formed by rotating the curve about the 
-axis, and cup B is formed by rotating the same curve about the line . Find the value 

of such that the two cups hold the same amount of coffee.

2. What does your result from Problem 1 say about the areas and shown in the figure?

3. Use Pappus’s Theorem to explain your result in Problems 1 and 2.

4. Based on your own measurements and observations, suggest a value for and an equation
for and calculate the amount of coffee that each cup holds.x � f �y�
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Considering similar groups of willing consumers for each of the subintervals and adding
the savings, we get the total savings:

(This sum corresponds to the area enclosed by the rectangles in Figure 2.) If we let ,
this Riemann sum approaches the integral

which economists call the consumer surplus for the commodity.
The consumer surplus represents the amount of money saved by consumers in pur-

chasing the commodity at price , corresponding to an amount demanded of . Figure 3
shows the interpretation of the consumer surplus as the area under the demand curve and
above the line .

EXAMPLE 1 The demand for a product, in dollars, is

Find the consumer surplus when the sales level is 500.

SOLUTION Since the number of products sold is , the corresponding price is

Therefore, from Definition 1, the consumer surplus is

M

BLOOD FLOW

In Example 7 in Section 3.7 we discussed the law of laminar flow:

which gives the velocity of blood that flows along a blood vessel with radius and length
at a distance from the central axis, where is the pressure difference between the ends

of the vessel and is the viscosity of the blood. Now, in order to compute the rate of blood
flow, or flux (volume per unit time), we consider smaller, equally spaced radii . . . . r1, r2,
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The approximate area of the ring (or washer) with inner radius and outer radius is

where

(See Figure 4.) If is small, then the velocity is almost constant throughout this ring and
can be approximated by . Thus the volume of blood per unit time that flows across the
ring is approximately

and the total volume of blood that flows across a cross-section per unit time is approxi-
mately

This approximation is illustrated in Figure 5. Notice that the velocity (and hence the vol-
ume per unit time) increases toward the center of the blood vessel. The approximation gets
better as n increases. When we take the limit we get the exact value of the flux (or dis-
charge), which is the volume of blood that passes a cross-section per unit time:

The resulting equation

is called Poiseuille’s Law; it shows that the flux is proportional to the fourth power of the
radius of the blood vessel.

CARDIAC OUTPUT

Figure 6 shows the human cardiovascular system. Blood returns from the body through the
veins, enters the right atrium of the heart, and is pumped to the lungs through the pul-
monary arteries for oxygenation. It then flows back into the left atrium through the pulmo-
nary veins and then out to the rest of the body through the aorta. The cardiac output
of the heart is the volume of blood pumped by the heart per unit time, that is, the rate of
flow into the aorta.

The dye dilution method is used to measure the cardiac output. Dye is injected into the
right atrium and flows through the heart into the aorta. A probe inserted into the aorta
measures the concentration of the dye leaving the heart at equally spaced times over a time
interval until the dye has cleared. Let be the concentration of the dye at time 
If we divide into subintervals of equal length , then the amount of dye that flows
past the measuring point during the subinterval from to is approximately
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where is the rate of flow that we are trying to determine. Thus the total amount of dye
is approximately

and, letting , we find that the amount of dye is

Thus the cardiac output is given by

where the amount of dye is known and the integral can be approximated from the con-
centration readings.

EXAMPLE 2 A 5-mg bolus of dye is injected into a right atrium. The concentration of
the dye (in milligrams per liter) is measured in the aorta at one-second intervals as
shown in the chart. Estimate the cardiac output.

SOLUTION Here , , and . We use Simpson’s Rule to approximate the
integral of the concentration:

Thus Formula 3 gives the cardiac output to be

M� 0.12 L�s � 7.2 L�min F �
A

y
10

0  c�t� dt
�

5

41.87

 � 41.87

   � � 2�6.1� � 4�4.0� � 2�2.3� � 4�1.1� � 0�

 y
10

0
 c�t� dt � 1

3 �0 � 4�0.4� � 2�2.8� � 4�6.5� � 2�9.8� � 4�8.9�

T � 10�t � 1A � 5

V

A

F �
A

y
T

0
 c�t� dt

3

 A � F y
T

0
 c�t� dt

n l �

 �
n

i�1
 c�ti�F �t � F �

n

i�1
 c�ti� �t

F

SECTION 8.4 APPLICATIONS TO ECONOMICS AND BIOLOGY | | | | 553

t t

0 0 6 6.1
1 0.4 7 4.0
2 2.8 8 2.3
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4. The demand function for a certain commodity is .
Find the consumer surplus when the sales level is 300. Illustrate
by drawing the demand curve and identifying the consumer
surplus as an area.

A demand curve is given by . Find the con-
sumer surplus when the selling price is .

6. The supply function for a commodity gives the rela-
tion between the selling price and the number of units that 
manufacturers will produce at that price. For a higher price,
manufacturers will produce more units, so is an increasing
function of . Let be the amount of the commodity currently
produced and let be the current price. Some pro-
ducers would be willing to make and sell the commodity for a
lower selling price and are therefore receiving more than their
minimal price. The excess is called the producer surplus. An 

P � pS�X �
Xx
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pS�x�

$10
p � 450��x � 8�5.

p � 20 � 0.05x1. The marginal cost function was defined to be the 
derivative of the cost function. (See Sections 3.7 and 4.7.) 
If the marginal cost of maufacturing meters of a fabric is

(measured in dollars per
meter) and the fixed start-up cost is , use the
Net Change Theorem to find the cost of producing the first
2000 units.

2. The marginal revenue from the sale of units of a product 
is . If the revenue from the sale of the first
1000 units is $12,400, find the revenue from the sale of the 
first 5000 units.

The marginal cost of producing units of a certain product 
is (in dollars per unit). 
Find the increase in cost if the production level is raised from
1200 units to 1600 units. 

74 � 1.1x � 0.002x 2 � 0.00004x 3
x3.

12 � 0.0004x
x
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C��x� � 5 � 0.008x � 0.000009x 2

x
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14. A hot, wet summer is causing a mosquito population explo-
sion in a lake resort area. The number of mosquitos is
increasing at an estimated rate of per week
(where is measured in weeks). By how much does the mos-
quito population increase between the fifth and ninth weeks
of summer?

15. Use Poiseuille’s Law to calculate the rate of flow in a small
human artery where we can take , cm,

cm, and dynes�cm .

16. High blood pressure results from constriction of the arteries. 
To maintain a normal flow rate (flux), the heart has to pump
harder, thus increasing the blood pressure. Use Poiseuille’s
Law to show that if and are normal values of the radius
and pressure in an artery and the constricted values are and

, then for the flux to remain constant, and are related by
the equation

Deduce that if the radius of an artery is reduced to three-
fourths of its former value, then the pressure is more than
tripled.

The dye dilution method is used to measure cardiac output
with 6 mg of dye. The dye concentrations, in , are mod-
eled by , , where is measured in
seconds. Find the cardiac output.

18. After an 8-mg injection of dye, the readings of dye concentra-
tion, in , at two-second intervals are as shown in the
table. Use Simpson’s Rule to estimate the cardiac output.

19. The graph of the concentration function is shown after a
7-mg injection of dye into a heart. Use Simpson’s Rule to
estimate the cardiac output.
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argument similar to that for consumer surplus shows that the
surplus is given by the integral

Calculate the producer surplus for the supply function
at the sales level . Illustrate by

drawing the supply curve and identifying the producer surplus
as an area.

7. If a supply curve is modeled by the equation
, find the producer surplus when the 

selling price is $400.

8. For a given commodity and pure competition, the number of
units produced and the price per unit are determined as the
coordinates of the point of intersection of the supply and
demand curves. Given the demand curve and
the supply curve , find the consumer surplus
and the producer surplus. Illustrate by sketching the supply
and demand curves and identifying the surpluses as areas.

; 9. A company modeled the demand curve for its product 
(in dollars) by the equation

Use a graph to estimate the sales level when the selling price
is $16. Then find (approximately) the consumer surplus for
this sales level.

A movie theater has been charging $7.50 per person and sell-
ing about 400 tickets on a typical weeknight. After surveying
their customers, the theater estimates that for every 50 cents
that they lower the price, the number of moviegoers will
increase by 35 per night. Find the demand function and calcu-
late the consumer surplus when the tickets are priced at $6.00.

11. If the amount of capital that a company has at time is ,
then the derivative, , is called the net investment flow.
Suppose that the net investment flow is million dollars per
year (where is measured in years). Find the increase in capi-
tal (the capital formation) from the fourth year to the eighth
year. 

12. If revenue flows into a company at a rate of
, where is measured in years and is

measured in dollars per year, find the total revenue obtained
in the first four years.

13. Pareto’s Law of Income states that the number of people with
incomes between and is , where

and are constants with and . The average
income of these people is

Calculate .x
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PROBABILITY

Calculus plays a role in the analysis of random behavior. Suppose we consider the choles-
terol level of a person chosen at random from a certain age group, or the height of an adult
female chosen at random, or the lifetime of a randomly chosen battery of a certain type.
Such quantities are called continuous random variables because their values actually
range over an interval of real numbers, although they might be measured or recorded only
to the nearest integer. We might want to know the probability that a blood cholesterol level
is greater than 250, or the probability that the height of an adult female is between 60 and
70 inches, or the probability that the battery we are buying lasts between 100 and 200
hours. If X represents the lifetime of that type of battery, we denote this last probability as
follows:

According to the frequency interpretation of probability, this number is the long-run pro-
portion of all batteries of the specified type whose lifetimes are between 100 and 200
hours. Since it represents a proportion, the probability naturally falls between 0 and 1.

Every continuous random variable X has a probability density function . This means
that the probability that X lies between a and b is found by integrating from a to b:

For example, Figure 1 shows the graph of a model for the probability density function
for a random variable X defined to be the height in inches of an adult female in the

United States (according to data from the National Health Survey). The probability that the
height of a woman chosen at random from this population is between 60 and 70 inches is
equal to the area under the graph of from 60 to 70.

In general, the probability density function of a random variable X satisfies the con-
dition for all x. Because probabilities are measured on a scale from 0 to 1, it fol-
lows that

EXAMPLE 1 Let for and for all other 
values of .
(a) Verify that is a probability density function.
(b) Find .P�4 � X � 8�
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SOLUTION
(a) For we have , so for all . We also need to
check that Equation 2 is satisfied:

Therefore is a probability density function.

(b) The probability that lies between 4 and 8 is 

M

EXAMPLE 2 Phenomena such as waiting times and equipment failure times are com-
monly modeled by exponentially decreasing probability density functions. Find the exact
form of such a function.

SOLUTION Think of the random variable as being the time you wait on hold before an 
agent of a company you’re telephoning answers your call. So instead of x, let’s use t to
represent time, in minutes. If is the probability density function and you call at time

, then, from Definition 1, represents the probability that an agent answers
within the first two minutes and is the probability that your call is answered
during the fifth minute.

It’s clear that for (the agent can’t answer before you place the call).
For we are told to use an exponentially decreasing function, that is, a function of
the form , where A and c are positive constants. Thus

We use Equation 2 to determine the value of A:

Therefore and so . Thus every exponential density function has the form

A typical graph is shown in Figure 2. M
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FIGURE 2
An exponential density function
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AVERAGE VALUES

Suppose you’re waiting for a company to answer your phone call and you wonder how
long, on average, you can expect to wait. Let be the corresponding density function,
where t is measured in minutes, and think of a sample of N people who have called this
company. Most likely, none of them had to wait more than an hour, so let’s restrict our
attention to the interval . Let’s divide that interval into n intervals of length 
and endpoints . . . . (Think of as lasting a minute, or half a minute, or 10 sec-
onds, or even a second.) The probability that somebody’s call gets answered during the
time period from to is the area under the curve from to , which is
approximately equal to . (This is the area of the approximating rectangle in Fig-
ure 3, where is the midpoint of the interval.)

Since the long-run proportion of calls that get answered in the time period from to
is , we expect that, out of our sample of N callers, the number whose call was

answered in that time period is approximately and the time that each waited is
about . Therefore the total time they waited is the product of these numbers: approxi-
mately . Adding over all such intervals, we get the approximate total of every-
body’s waiting times:

If we now divide by the number of callers N, we get the approximate average waiting time:

We recognize this as a Riemann sum for the function . As the time interval shrinks
(that is, and ), this Riemann sum approaches the integral

This integral is called the mean waiting time.
In general, the mean of any probability density function is defined to be

The mean can be interpreted as the long-run average value of the random variable X. It can
also be interpreted as a measure of centrality of the probability density function.

The expression for the mean resembles an integral we have seen before. If is the
region that lies under the graph of , we know from Formula 8.3.8 that the x-coordinate of
the centroid of is

because of Equation 2. So a thin plate in the shape of balances at a point on the vertical
line . (See Figure 4.)x � �
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EXAMPLE 3 Find the mean of the exponential distribution of Example 2:

SOLUTION According to the definition of a mean, we have

To evaluate this integral we use integration by parts, with and :

The mean is , so we can rewrite the probability density function as

M

EXAMPLE 4 Suppose the average waiting time for a customer’s call to be answered 
by a company representative is five minutes.
(a) Find the probability that a call is answered during the first minute.
(b) Find the probability that a customer waits more than five minutes to be answered.

SOLUTION
(a) We are given that the mean of the exponential distribution is min and so,
from the result of Example 3, we know that the probability density function is 

Thus the probability that a call is answered during the first minute is

So about 18% of customers’ calls are answered during the first minute.

(b) The probability that a customer waits more than five minutes is

About 37% of customers wait more than five minutes before their calls are answered. M
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Notice the result of Example 4(b): Even though the mean waiting time is 5 minutes,
only 37% of callers wait more than 5 minutes. The reason is that some callers have to wait
much longer (maybe 10 or 15 minutes), and this brings up the average.

Another measure of centrality of a probability density function is the median. That is a
number m such that half the callers have a waiting time less than m and the other callers
have a waiting time longer than m. In general, the median of a probability density func-
tion is the number m such that

This means that half the area under the graph of lies to the right of m. In Exercise 9 you
are asked to show that the median waiting time for the company described in Example 4
is approximately 3.5 minutes.

NORMAL DISTRIBUTIONS

Many important random phenomena—such as test scores on aptitude tests, heights and
weights of individuals from a homogeneous population, annual rainfall in a given loca-
tion—are modeled by a normal distribution. This means that the probability density
function of the random variable X is a member of the family of functions

You can verify that the mean for this function is . The positive constant is called the
standard deviation; it measures how spread out the values of X are. From the bell-shaped
graphs of members of the family in Figure 5, we see that for small values of the values
of X are clustered about the mean, whereas for larger values of the values of X are more
spread out. Statisticians have methods for using sets of data to estimate and .

The factor is needed to make a probability density function. In fact, it can
be verified using the methods of multivariable calculus that

EXAMPLE 5 Intelligence Quotient (IQ) scores are distributed normally with mean 
100 and standard deviation 15. (Figure 6 shows the corresponding probability density
function.)
(a) What percentage of the population has an IQ score between 85 and 115?
(b) What percentage of the population has an IQ above 140?
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N The standard deviation is denoted by the 
lowercase Greek letter (sigma).


FIGURE 6
Distribution of IQ scores
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SOLUTION
(a) Since IQ scores are normally distributed, we use the probability density function
given by Equation 3 with and :

Recall from Section 7.5 that the function doesn’t have an elementary anti-
derivative, so we can’t evaluate the integral exactly. But we can use the numerical 
integration capability of a calculator or computer (or the Midpoint Rule or Simpson’s
Rule) to estimate the integral. Doing so, we find that

So about 68% of the population has an IQ between 85 and 115, that is, within one stan-
dard deviation of the mean.

(b) The probability that the IQ score of a person chosen at random is more than 140 is

To avoid the improper integral we could approximate it by the integral from 140 to 200.
(It’s quite safe to say that people with an IQ over 200 are extremely rare.) Then

Therefore about 0.4% of the population has an IQ over 140. M

P�X � 140� 
 y
200

140
 

1

15s2�  e
��x�100�2�450 dx 
 0.0038

P�X � 140� � y
�

140
 

1

15s2�  e
��x�100�2�450 dx

P�85 � X � 115� 
 0.68

y � e�x2

P�85 � X � 115� � y
115

85
 

1
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��x�100�2��2�152� 

dx
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5. Let .
(a) For what value of is a probability density function?
(b) For that value of , find .

6. Let if and if 
or .
(a) For what value of is a probability density function?
(b) For that value of , find .
(c) Find the mean.

A spinner from a board game randomly indicates a real number
between 0 and 10. The spinner is fair in the sense that it indi-
cates a number in a given interval with the same probability as
it indicates a number in any other interval of the same length.
(a) Explain why the function

is a probability density function for the spinner’s values.
(b) What does your intuition tell you about the value of the

mean? Check your guess by evaluating an integral.

f �x� � 	0.1

0

if 0 � x � 10

if x 
 0 or x � 10

7.

P(X 	
1
2)k

fk
x � 1

x 
 0f �x� � 00 � x � 1f �x� � kx 2�1 � x�

P��1 
 X 
 1�c
fc

f �x� � c��1 � x 2�Let be the probability density function for the lifetime of a
manufacturer’s highest quality car tire, where is measured in
miles. Explain the meaning of each integral.

(a) (b)

2. Let be the probability density function for the time it takes
you to drive to school in the morning, where is measured in
minutes. Express the following probabilities as integrals.
(a) The probability that you drive to school in less than 

15 minutes
(b) The probability that it takes you more than half an hour to

get to school

3. Let for and for all
other values of .
(a) Verify that is a probability density function.
(b) Find .

4. Let if and if .
(a) Verify that is a probability density function.
(b) Find .P�1 � X � 2�

f
x 
 0f �x� � 0x 	 0f �x� � xe�x

P (X 
 2 �
f
x

f �x� � 00 � x � 4f �x� � 3
64 xs16 � x 2 

t
f �t�

y
�

25,000
 f �x� dxy

40,000

30,000
 f �x� dx

x
f �x�1.
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of 500 g. At what target weight should the manufacturer set its
filling machine?

15. The speeds of vehicles on a highway with speed limit 
are normally distributed with mean and standard
deviation .
(a) What is the probability that a randomly chosen vehicle is

traveling at a legal speed?
(b) If police are instructed to ticket motorists driving 

or more, what percentage of motorists are targeted?

16. Show that the probability density function for a normally dis-
tributed random variable has inflection points at .

17. For any normal distribution, find the probability that the
random variable lies within two standard deviations of the
mean.

18. The standard deviation for a random variable with probability
density function and mean is defined by

Find the standard deviation for an exponential density function
with mean .

19. The hydrogen atom is composed of one proton in the nucleus
and one electron, which moves about the nucleus. In the quan-
tum theory of atomic structure, it is assumed that the electron
does not move in a well-defined orbit. Instead, it occupies a
state known as an orbital, which may be thought of as a
“cloud” of negative charge surrounding the nucleus. At the
state of lowest energy, called the ground state, or 1s-orbital,
the shape of this cloud is assumed to be a sphere centered at
the nucleus. This sphere is described in terms of the probability
density function

where is the Bohr radius . The 
integral

gives the probability that the electron will be found within the
sphere of radius meters centered at the nucleus.
(a) Verify that is a probability density function.
(b) Find . For what value of does have its

maximum value?

; (c) Graph the density function.
(d) Find the probability that the electron will be within the

sphere of radius centered at the nucleus.
(e) Calculate the mean distance of the electron from the

nucleus in the ground state of the hydrogen atom.

4a0

p�r�rlimr l � p�r�
p�r�

r

P�r� � y
r

0
 

4

a 3
0

 s 2e�2s�a0 ds
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 5.59 � 10�11 m�a0
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a 3
0

 r 2e�2r�a0
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��
 �x � ��2 f �x� dx�1�2

�f

x � � � 


125 km�h

8 km�h
112 km�h

100 km�h

(a) Explain why the function whose graph is shown is a proba-
bility density function.

(b) Use the graph to find the following probabilities:
(i) (ii)

(c) Calculate the mean.

9. Show that the median waiting time for a phone call to the com-
pany described in Example 4 is about 3.5 minutes.

10. (a) A type of lightbulb is labeled as having an average lifetime
of 1000 hours. It’s reasonable to model the probability of
failure of these bulbs by an exponential density function
with mean . Use this model to find the probability
that a bulb
(i) fails within the first 200 hours,

(ii) burns for more than 800 hours.
(b) What is the median lifetime of these lightbulbs?

11. The manager of a fast-food restaurant determines that 
the average time that her customers wait for service is 2.5 min-
utes.
(a) Find the probability that a customer has to wait more than

4 minutes.
(b) Find the probability that a customer is served within the

first 2 minutes.
(c) The manager wants to advertise that anybody who isn’t

served within a certain number of minutes gets a free ham-
burger. But she doesn’t want to give away free hamburgers
to more than 2% of her customers. What should the adver-
tisement say?

12. According to the National Health Survey, the heights of adult
males in the United States are normally distributed with mean
69.0 inches and standard deviation 2.8 inches.
(a) What is the probability that an adult male chosen at random

is between 65 inches and 73 inches tall?
(b) What percentage of the adult male population is more than

6 feet tall?

The “Garbage Project” at the University of Arizona reports 
that the amount of paper discarded by households per week is
normally distributed with mean 9.4 lb and standard deviation
4.2 lb. What percentage of households throw out at least 10 lb
of paper a week?

14. Boxes are labeled as containing 500 g of cereal. The machine
filling the boxes produces weights that are normally distributed
with standard deviation 12 g.
(a) If the target weight is 500 g, what is the probability that the

machine produces a box with less than 480 g of cereal?
(b) Suppose a law states that no more than 5% of a manufac-

turer’s cereal boxes can contain less than the stated weight 

13.

� � 1000

y=ƒ

4 6 8 10 x

y

0 2
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P�3 � X � 8�P�X 
 3�
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1–2 Find the length of the curve.

1. ,

2. ,

3. (a) Find the length of the curve

(b) Find the area of the surface obtained by rotating the curve
in part (a) about the -axis.

4. (a) The curve , , is rotated about the -axis.
Find the area of the resulting surface.

(b) Find the area of the surface obtained by rotating the curve
in part (a) about the -axis.

5. Use Simpson’s Rule with to estimate the length of the
curve , .

6. Use Simpson’s Rule with to estimate the area of the 
surface obtained by rotating the curve in Exercise 5 about the 
-axis.x

n � 6

0 � x � 3y � e�x2
n � 6

x

y0 � x � 1y � x 2

y

1 � x � 2y �
x 4

16
�

1

2x 2

��3 � x � �y � 2 ln(sin 1
2 x)

0 � x � 3y � 1
6�x 2 � 4�3�2

7. Find the length of the curve

8. Find the area of the surface obtained by rotating the curve in
Exercise 7 about the -axis.

9. A gate in an irrigation canal is constructed in the form of a
trapezoid 3 ft wide at the bottom, 5 ft wide at the top, and 2 ft
high. It is placed vertically in the canal so that the water just
covers the gate. Find the hydrostatic force on one side of the
gate.

10. A trough is filled with water and its vertical ends have the
shape of the parabolic region in the figure. Find the hydrostatic
force on one end of the trough.

4 ft

8 ft

y

1 � x � 16y � y
x

1
 sst � 1  dt

E X E R C I S E S

562 | | | | CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

REVIEW

C O N C E P T  C H E C K

8

6. Given a demand function , explain what is meant by the
consumer surplus when the amount of a commodity currently
available is and the current selling price is . Illustrate with 
a sketch.

7. (a) What is the cardiac output of the heart?
(b) Explain how the cardiac output can be measured by the dye

dilution method.

8. What is a probability density function? What properties does
such a function have?

9. Suppose is the probability density function for the weight
of a female college student, where is measured in pounds.
(a) What is the meaning of the integral ?
(b) Write an expression for the mean of this density function.
(c) How can we find the median of this density function?

10. What is a normal distribution? What is the significance of the
standard deviation?

x
130
0  f �x� dx

x
f �x�

PX

p�x�1. (a) How is the length of a curve defined?
(b) Write an expression for the length of a smooth curve given

by , .
(c) What if is given as a function of ?

2. (a) Write an expression for the surface area of the surface
obtained by rotating the curve , , about
the -axis.

(b) What if is given as a function of ?
(c) What if the curve is rotated about the -axis?

3. Describe how we can find the hydrostatic force against a verti-
cal wall submersed in a fluid.

4. (a) What is the physical significance of the center of mass of a
thin plate?

(b) If the plate lies between and , where
, write expressions for the coordinates of the

center of mass.

5. What does the Theorem of Pappus say?

a � x � b
y � 0y � f �x�

y
yx

x
a � x � by � f �x�

yx
a � x � by � f �x�



19. (a) Explain why the function

is a probability density function.
(b) Find .
(c) Calculate the mean. Is the value what you would expect?

20. Lengths of human pregnancies are normally distributed 
with mean 268 days and standard deviation 15 days. What per-
centage of pregnancies last between 250 days and 280 days?

21. The length of time spent waiting in line at a certain bank 
is modeled by an exponential density function with mean 
8 minutes.
(a) What is the probability that a customer is served in the first

3 minutes?
(b) What is the probability that a customer has to wait more

than 10 minutes?
(c) What is the median waiting time?

P�X 
 4�

f �x� � 	
0

�

20
 sin��x

10 � if

if

0 � x � 10

x 
 0 or x � 10

11–12 Find the centroid of the region bounded by the given curves.

11. ,

12. , , ,

13–14 Find the centroid of the region shown

13. 14.

15. Find the volume obtained when the circle of radius 1 with 
center is rotated about the -axis.

16. Use the Theorem of Pappus and the fact that the volume of a
sphere of radius is to find the centroid of the semi-
circular region bounded by the curve and 
the -axis.

17. The demand function for a commodity is given by

Find the consumer surplus when the sales level is 100.

18. After a 6-mg injection of dye into a heart, the readings of 
dye concentration at two-second intervals are as shown in 
the table. Use Simpson’s Rule to estimate the cardiac output.

p � 2000 � 0.1x � 0.01x 2

x
y � sr 2 � x 2 

4
3 �r 3r

y�1, 0�

x

y

0

1

2

3

3_2

(3, 2)

x

y

0

x � 3��4x � ��4y � 0y � sin x

y � sx y � 1
2 x
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t t

0 0 14 4.7
2 1.9 16 3.3
4 3.3 18 2.1
6 5.1 20 1.1
8 7.6 22 0.5

10 7.1 24 0
12 5.8

c�t�c�t�



564

1. Find the area of the region .

2. Find the centroid of the region enclosed by the loop of the curve .

3. If a sphere of radius is sliced by a plane whose distance from the center of the sphere is ,
then the sphere is divided into two pieces called segments of one base. The corresponding
surfaces are called spherical zones of one base.
(a) Determine the surface areas of the two spherical zones indicated in the figure.
(b) Determine the approximate area of the Arctic Ocean by assuming that it is approximately

circular in shape, with center at the North Pole and “circumference” at north latitude.
Use mi for the radius of the earth.

(c) A sphere of radius is inscribed in a right circular cylinder of radius . Two planes perpen-
dicular to the central axis of the cylinder and a distance apart cut off a spherical zone 
of two bases on the sphere. Show that the surface area of the spherical zone equals the
surface area of the region that the two planes cut off on the cylinder.

(d) The Torrid Zone is the region on the surface of the earth that is between the Tropic of
Cancer ( north latitude) and the Tropic of Capricorn ( south latitude). What is
the area of the Torrid Zone?

4. (a) Show that an observer at height above the north pole of a sphere of radius can see a
part of the sphere that has area

(b) Two spheres with radii and are placed so that the distance between their centers is ,
where . Where should a light be placed on the line joining the centers of the
spheres in order to illuminate the largest total surface?

5. Suppose that the density of seawater, , varies with the depth below the surface.
(a) Show that the hydrostatic pressure is governed by the differential equation

where is the acceleration due to gravity. Let and be the pressure and density at
. Express the pressure at depth as an integral.

(b) Suppose the density of seawater at depth is given by , where is a positive
constant. Find the total force, expressed as an integral, exerted on a vertical circular port-
hole of radius whose center is located at a distance below the surface.L � rr

H� � �0 e z�Hz
zz � 0

�0P0t
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dz
� ��z�t

z� � ��z�

d � r � R
dRr

2�r 2H

r � H

rH

h
d

23.45�23.45�

h
rr

r � 3960
75�

dr

y 2 � x 3 � x 4

S � ��x, y� � x � 0, y 	 1, x 2 � y 2 	 4y�
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6. The figure shows a semicircle with radius 1, horizontal diameter , and tangent lines at 
and . At what height above the diameter should the horizontal line be placed so as to mini-
mize the shaded area?

7. Let be a pyramid with a square base of side and suppose that is a sphere with its center
on the base of and is tangent to all eight edges of . Find the height of . Then find the
volume of the intersection of and . 

8. Consider a flat metal plate to be placed vertically under water with its top 2 m below the
surface of the water. Determine a shape for the plate so that if the plate is divided into any
number of horizontal strips of equal height, the hydrostatic force on each strip is the same.

9. A uniform disk with radius 1 m is to be cut by a line so that the center of mass of the smaller
piece lies halfway along a radius. How close to the center of the disk should the cut be made?
(Express your answer correct to two decimal places.)

10. A triangle with area is cut from a corner of a square with side 10 cm, as shown in the
figure. If the centroid of the remaining region is 4 cm from the right side of the square, how
far is it from the bottom of the square?

11. In a famous 18th-century problem, known as Buffon’s needle problem, a needle of length is
dropped onto a flat surface (for example, a table) on which parallel lines units apart, ,
have been drawn. The problem is to determine the probability that the needle will come to rest
intersecting one of the lines. Assume that the lines run east-west, parallel to the -axis in a
rectangular coordinate system (as in the figure). Let be the distance from the “southern” end
of the needle to the nearest line to the north. (If the needle’s southern end lies on a line, let

. If the needle happens to lie east-west, let the “western” end be the “southern” end.) Let
be the angle that the needle makes with a ray extending eastward from the “southern” end.

Then and . Note that the needle intersects one of the lines only when
. The total set of possibilities for the needle can be identified with the rectangular

region , , and the proportion of times that the needle intersects a line is
the ratio

This ratio is the probability that the needle intersects a line. Find the probability that the 
needle will intersect a line if . What if ?

12. If the needle in Problem 11 has length , it’s possible for the needle to intersect more
than one line.
(a) If , find the probability that a needle of length 7 will intersect at least one line.

[Hint: Proceed as in Problem 11. Define as before; then the total set of possibilities for
the needle can be identified with the same rectangular region , .
What portion of the rectangle corresponds to the needle intersecting a line?]

(b) If , find the probability that a needle of length 7 will intersect two lines.
(c) If , find a general formula for the probability that the needle intersects 

three lines.
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Perhaps the most important of all the applications of calculus is to differential equa-

tions. When physical scientists or social scientists use calculus, more often than not 

it is to analyze a differential equation that has arisen in the process of modeling some

phenomenon that they are studying. Although it is often impossible to find an explicit

formula for the solution of a differential equation, we will see that graphical and numer-

ical approaches provide the needed information.

Direction fields enable us 
to sketch solutions of 

differential equations with-
out an explicit formula.

DIFFERENTIAL 
EQUATIONS

9



MODELING WITH DIFFERENTIAL EQUATIONS

In describing the process of modeling in Section 1.2, we talked about formulating a math-
ematical model of a real-world problem either through intuitive reasoning about the phe-
nomenon or from a physical law based on evidence from experiments. The mathematical
model often takes the form of a differential equation, that is, an equation that contains an
unknown function and some of its derivatives. This is not surprising because in a real-
world problem we often notice that changes occur and we want to predict future behavior
on the basis of how current values change. Let’s begin by examining several examples of
how differential equations arise when we model physical phenomena.

MODELS OF POPULATION GROWTH

One model for the growth of a population is based on the assumption that the population
grows at a rate proportional to the size of the population. That is a reasonable assumption
for a population of bacteria or animals under ideal conditions (unlimited environment, ade-
quate nutrition, absence of predators, immunity from disease).

Let’s identify and name the variables in this model:

The rate of growth of the population is the derivative . So our assumption that the
rate of growth of the population is proportional to the population size is written as the
equation

where is the proportionality constant. Equation 1 is our first model for population
growth; it is a differential equation because it contains an unknown function P and its
derivative .

Having formulated a model, let’s look at its consequences. If we rule out a population
of 0, then for all t. So, if , then Equation 1 shows that for all t.
This means that the population is always increasing. In fact, as increases, Equation 1
shows that becomes larger. In other words, the growth rate increases as the popula-
tion increases.

Equation 1 asks us to find a function whose derivative is a constant multiple of itself.
We know from Chapter 3 that exponential functions have that property. In fact, if we let

, then

Thus any exponential function of the form is a solution of Equation 1. In Sec-
tion 9.4 we will see that there is no other solution.

Allowing C to vary through all the real numbers, we get the family of solutions
whose graphs are shown in Figure 1. But populations have only positive 

values and so we are interested only in the solutions with . And we are probably con-C � 0
P�t� � Cekt

P�t� � Cekt

P��t� � C�kekt� � k�Cekt� � kP�t�

P�t� � Cekt

dP�dt
P�t�

P��t� � 0k � 0P�t� � 0

dP�dt

k

dP

dt
� kP1

dP�dt

 P � the number of individuals in the population �the dependent variable�

 t � time �the independent variable�

9.1
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N Now is a good time to read (or reread) the dis-
cussion of mathematical modeling on page 24.

t

P

FIGURE 1
The family of solutions of dP/dt=kP



cerned only with values of t greater than the initial time . Figure 2 shows the physi-
cally meaningful solutions. Putting , we get , so the constant C
turns out to be the initial population, .

Equation 1 is appropriate for modeling population growth under ideal conditions, but
we have to recognize that a more realistic model must reflect the fact that a given environ-
ment has limited resources. Many populations start by increasing in an exponential man-
ner, but the population levels off when it approaches its carrying capacity K (or decreases
toward K if it ever exceeds K ). For a model to take into account both trends, we make two
assumptions:

N if P is small (Initially, the growth rate is proportional to P.)

N if (P decreases if it ever exceeds K.)

A simple expression that incorporates both assumptions is given by the equation 

Notice that if P is small compared with K, then is close to 0 and so . If
, then is negative and so .

Equation 2 is called the logistic differential equation and was proposed by the Dutch
mathematical biologist Pierre-François Verhulst in the 1840s as a model for world popula-
tion growth. We will develop techniques that enable us to find explicit solutions of the
logistic equation in Section 9.4, but for now we can deduce qualitative characteristics of
the solutions directly from Equation 2. We first observe that the constant functions

and are solutions because, in either case, one of the factors on the right
side of Equation 2 is zero. (This certainly makes physical sense: If the population is ever
either 0 or at the carrying capacity, it stays that way.) These two constant solutions are
called equilibrium solutions.

If the initial population lies between 0 and K, then the right side of Equation 2 is
positive, so and the population increases. But if the population exceeds the car-
rying capacity , then is negative, so and the population
decreases. Notice that, in either case, if the population approaches the carrying capacity

, then , which means the population levels off. So we expect that the
solutions of the logistic differential equation have graphs that look something like the ones
in Figure 3. Notice that the graphs move away from the equilibrium solution and
move toward the equilibrium solution .

A MODEL FOR THE MOTION OF A SPRING

Let’s now look at an example of a model from the physical sciences. We consider the
motion of an object with mass m at the end of a vertical spring (as in Figure 4). In Sec-
tion 6.4 we discussed Hooke’s Law, which says that if the spring is stretched (or com-
pressed) x units from its natural length, then it exerts a force that is proportional to x :

where k is a positive constant (called the spring constant). If we ignore any external resist-
ing forces (due to air resistance or friction) then, by Newton’s Second Law (force equals

restoring force � �kx

P � K
P � 0

dP�dt l 0�P l K �

dP�dt � 01 � P�K�P � K �
dP�dt � 0

P�0�

P�t� � KP�t� � 0

dP�dt � 01 � P�KP � K
dP�dt � kPP�K

dP

dt
� kP�1 �

P

K�2

P � K
dP

dt
� 0

dP

dt
� kP

P�0�
P�0� � Cek�0� � Ct � 0

t � 0
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mass times acceleration), we have

This is an example of what is called a second-order differential equation because it
involves second derivatives. Let’s see what we can guess about the form of the solution
directly from the equation. We can rewrite Equation 3 in the form

which says that the second derivative of x is proportional to x but has the opposite sign. We
know two functions with this property, the sine and cosine functions. In fact, it turns 
out that all solutions of Equation 3 can be written as combinations of certain sine 
and cosine functions (see Exercise 4). This is not surprising; we expect the spring to oscil-
late about its equilibrium position and so it is natural to think that trigonometric functions
are involved.

GENERAL DIFFERENTIAL EQUATIONS

In general, a differential equation is an equation that contains an unknown function and
one or more of its derivatives. The order of a differential equation is the order of the high-
est derivative that occurs in the equation. Thus, Equations 1 and 2 are first-order equations
and Equation 3 is a second-order equation. In all three of those equations the independent
variable is called t and represents time, but in general the independent variable doesn’t
have to represent time. For example, when we consider the differential equation

it is understood that y is an unknown function of x.
A function is called a solution of a differential equation if the equation is satisfied

when and its derivatives are substituted into the equation. Thus is a solution of
Equation 4 if

for all values of x in some interval.
When we are asked to solve a differential equation we are expected to find all possible

solutions of the equation. We have already solved some particularly simple differential
equations, namely, those of the form

For instance, we know that the general solution of the differential equation

is given by

where C is an arbitrary constant.
But, in general, solving a differential equation is not an easy matter. There is no sys-

tematic technique that enables us to solve all differential equations. In Section 9.2, how-
ever, we will see how to draw rough graphs of solutions even when we have no explicit
formula. We will also learn how to find numerical approximations to solutions.

y �
x 4

4
� C

y� � x 3

y� � f �x�

f ��x� � x f �x�

fy � f �x�
f

y� � xy4

d 2x

dt 2 � �
k

m
 x

m 
d 2x

dt 2 � �kx3

SECTION 9.1 MODELING WITH DIFFERENTIAL EQUATIONS | | | | 569

FIGURE 4

m

x

0

x m

equilibrium
position



EXAMPLE 1 Show that every member of the family of functions

is a solution of the differential equation .

SOLUTION We use the Quotient Rule to differentiate the expression for y:

The right side of the differential equation becomes

Therefore, for every value of c, the given function is a solution of the differential 
equation. M

When applying differential equations, we are usually not as interested in finding a fam-
ily of solutions (the general solution) as we are in finding a solution that satisfies some
additional requirement. In many physical problems we need to find the particular solution
that satisfies a condition of the form . This is called an initial condition, and the
problem of finding a solution of the differential equation that satisfies the initial condition
is called an initial-value problem.

Geometrically, when we impose an initial condition, we look at the family of solution
curves and pick the one that passes through the point . Physically, this corresponds
to measuring the state of a system at time and using the solution of the initial-value prob-
lem to predict the future behavior of the system.

EXAMPLE 2 Find a solution of the differential equation that satisfies
the initial condition .

SOLUTION Substituting the values and into the formula

from Example 1, we get

Solving this equation for c, we get , which gives . So the solution
of the initial-value problem is

My �
1 �

1
3 e t

1 �
1
3 e t �

3 � e t

3 � e t

c � 1
32 � 2c � 1 � c

2 �
1 � ce 0

1 � ce 0 �
1 � c

1 � c

y �
1 � ce t

1 � ce t

y � 2t � 0

y�0� � 2
y� � 1

2 �y 2 � 1�V

t0

�t0, y0 �

y�t0 � � y0

 �
1

2
 

4cet

�1 � cet�2 �
2cet

�1 � cet �2

 12 �y 2 � 1� �
1

2
 ��1 � ce t

1 � ce t�2

� 1	 �
1

2
 ��1 � ce t�2 � �1 � ce t�2

�1 � ce t�2 	

 �
ce t � c 2e 2t � ce t � c 2e 2t

�1 � ce t�2 �
2ce t

�1 � ce t�2

 y� �
�1 � ce t��ce t� � �1 � ce t���ce t�

�1 � ce t�2

y� � 1
2 �y 2 � 1�

y �
1 � ce t

1 � ce t

V
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N Figure 5 shows graphs of seven members of
the family in Example 1. The differential equation
shows that if , then . That is
borne out by the flatness of the graphs near

and .y � �1y � 1

y� � 0y � �1

5

_5

_5 5

FIGURE 5
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A population is modeled by the differential equation

(a) For what values of is the population increasing?
(b) For what values of is the population decreasing?
(c) What are the equilibrium solutions?

10. A function satisfies the differential equation

(a) What are the constant solutions of the equation?
(b) For what values of is increasing?
(c) For what values of is decreasing?

Explain why the functions with the given graphs can’t be
solutions of the differential equation

12. The function with the given graph is a solution of one of the
following differential equations. Decide which is the correct
equation and justify your answer.

A. B. C.

Psychologists interested in learning theory study learning
curves. A learning curve is the graph of a function , the
performance of someone learning a skill as a function of the
training time . The derivative represents the rate at
which performance improves.
(a) When do you think increases most rapidly? What hap-

pens to as increases? Explain.
(b) If is the maximum level of performance of which the

learner is capable, explain why the differential equation

is a reasonable model for learning.

k a positive constant
dP

dt
� k�M � P�

M
tdP�dt

P

dP�dtt

P�t�
13.

y� � 1 � 2xyy� � �2xyy� � 1 � xy

0 x

y

y

t1

1

y

t1

1

(a) (b)

dy

dt
� e t�y � 1�2

11.

yy
yy

dy

dt
� y 4 � 6y 3 � 5y 2

y�t�

P
P

dP

dt
� 1.2P�1 �

P

4200�
9.1. Show that is a solution of the differential equa-

tion .

2. Verify that is a solution of the 
initial-value problem

on the interval .

(a) For what values of does the function satisfy the
differential equation ?

(b) If and are the values of that you found in part (a),
show that every member of the family of functions

is also a solution.

4. (a) For what values of does the function satisfy
the differential equation ?

(b) For those values of , verify that every member of the
family of functions is also a 
solution.

5. Which of the following functions are solutions of the differ-
ential equation ?
(a) (b)
(c) (d)

6. (a) Show that every member of the family of functions
is a solution of the differential equation

.

; (b) Illustrate part (a) by graphing several members of the
family of solutions on a common screen.

(c) Find a solution of the differential equation that satisfies
the initial condition .

(d) Find a solution of the differential equation that satisfies
the initial condition .

(a) What can you say about a solution of the equation
just by looking at the differential equation?

(b) Verify that all members of the family are
solutions of the equation in part (a).

(c) Can you think of a solution of the differential equation
that is not a member of the family in part (b)?

(d) Find a solution of the initial-value problem

8. (a) What can you say about the graph of a solution of the
equation when is close to 0? What if is
large?

(b) Verify that all members of the family are
solutions of the differential equation .

; (c) Graph several members of the family of solutions on a
common screen. Do the graphs confirm what you pre-
dicted in part (a)?

(d) Find a solution of the initial-value problem

y�0� � 2y� � xy 3

y� � xy 3
y � �c � x 2 ��1�2

xxy� � xy 3

y�0� � 0.5y� � �y 2

y� � �y 2

y � 1��x � C �
y� � �y 2

7.

y�2� � 1

y�1� � 2

x 2y� � xy � 1
y � �ln x � C��x

y � �
1
2 x cos xy � 1

2 x sin x
y � cos xy � sin x

y� � y � sin x

y � A sin kt � B cos kt
k

4y� � �25y
y � cos ktk

y � ae r1x � be r2x

rr2r1

2y � � y� � y � 0
y � e rxr3.

�	�2 � x � 	�2

y�0� � �1y� � �tan x�y � cos2 x

y � sin x cos x � cos x

xy� � y � 2x
y � x � x�1

EXERCISES9.1



an object is proportional to the temperature difference
between the object and its surroundings, provided that this
difference is not too large. Write a differential equation that
expresses Newton’s Law of Cooling for this particular situ-
ation. What is the initial condition? In view of your answer
to part (a), do you think this differential equation is an
appropriate model for cooling?

(c) Make a rough sketch of the graph of the solution of the
initial-value problem in part (b).

(c) Make a rough sketch of a possible solution of this differen-
tial equation.

14. Suppose you have just poured a cup of freshly brewed coffee
with temperature in a room where the temperature 
is .
(a) When do you think the coffee cools most quickly? What

happens to the rate of cooling as time goes by? Explain.
(b) Newton’s Law of Cooling states that the rate of cooling of

20
C
95
C
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DIRECTION FIELDS AND EULER’S METHOD

Unfortunately, it’s impossible to solve most differential equations in the sense of obtain-
ing an explicit formula for the solution. In this section we show that, despite the absence
of an explicit solution, we can still learn a lot about the solution through a graphical
approach (direction fields) or a numerical approach (Euler’s method).

DIRECTION FIELDS

Suppose we are asked to sketch the graph of the solution of the initial-value problem 

We don’t know a formula for the solution, so how can we possibly sketch its graph? Let’s
think about what the differential equation means. The equation tells us that the
slope at any point on the graph (called the solution curve) is equal to the sum of the 
x- and y-coordinates of the point (see Figure 1). In particular, because the curve passes
through the point , its slope there must be . So a small portion of the solu-
tion curve near the point looks like a short line segment through with slope 1.
(See Figure 2.)

As a guide to sketching the rest of the curve, let’s draw short line segments at a num-
ber of points with slope . The result is called a direction field and is shown in
Figure 3. For instance, the line segment at the point has slope . The direc-
tion field allows us to visualize the general shape of the solution curves by indicating the
direction in which the curves proceed at each point.

0 x21

y

FIGURE 3
Direction field for yª=x+y

0 x21

y

FIGURE 4
The solution curve through (0, 1)

(0, 1)

1 � 2 � 3�1, 2�
x � y�x, y�

�0, 1��0, 1�
0 � 1 � 1�0, 1�

�x, y�
y� � x � y

y�0� � 1y� � x � y

9.2

Slope at
(¤, fi) is
¤+fi.

Slope at
(⁄, ›) is
⁄+›.

0 x

y

FIGURE 1
A solution of yª=x+y

0 x

y

(0, 1) Slope at (0, 1)

is 0+1=1. 

FIGURE 2
Beginning of the solution curve  
through (0, 1)



Now we can sketch the solution curve through the point by following the direc-
tion field as in Figure 4. Notice that we have drawn the curve so that it is parallel to near-
by line segments.

In general, suppose we have a first-order differential equation of the form

where is some expression in and . The differential equation says that the slope
of a solution curve at a point on the curve is . If we draw short line segments
with slope at several points , the result is called a direction field (or slope
field). These line segments indicate the direction in which a solution curve is heading, so
the direction field helps us visualize the general shape of these curves.

EXAMPLE 1
(a) Sketch the direction field for the differential equation .
(b) Use part (a) to sketch the solution curve that passes through the origin.

SOLUTION
(a) We start by computing the slope at several points in the following chart:

Now we draw short line segments with these slopes at these points. The result is the
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment
(which has slope ). We continue to draw the solution curve so that it moves parallel
to the nearby line segments. The resulting solution curve is shown in Figure 6. Returning
to the origin, we draw the solution curve to the left as well. M

The more line segments we draw in a direction field, the clearer the picture becomes.
Of course, it’s tedious to compute slopes and draw line segments for a huge number of
points by hand, but computers are well suited for this task. Figure 7 shows a more detailed,
computer-drawn direction field for the differential equation in Example 1. It enables us to
draw, with reasonable accuracy, the solution curves shown in Figure 8 with -intercepts

, , , , and .

FIGURE 7

3

_3

_3 3

FIGURE 8

3

_3

_3 3

210�1�2
y

�1

y� � x 2 � y 2 � 1
V

�x, y�F�x, y�
F�x, y��x, y�

yxF�x, y�

y� � F�x, y�

�0, 1�
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x �2 �1 0 1 2 �2 �1 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

3 0 �1 0 3 4 1 0 1 4 . . .y� � x 2 � y 2 � 1

0 x

y

1_1_2

1

2

-1

_2

FIGURE 5

2

Module 9.2A shows direction 
fields and solution curves for a variety of 
differential equations.
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Now let’s see how direction fields give insight into physical situations. The simple elec-
tric circuit shown in Figure 9 contains an electromotive force (usually a battery or gener-
ator) that produces a voltage of volts (V) and a current of amperes (A) at time t.
The circuit also contains a resistor with a resistance of R ohms ( ) and an inductor with
an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to
the inductor is . One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage . Thus we have

which is a first-order differential equation that models the current at time .

EXAMPLE 2 Suppose that in the simple circuit of Figure 9 the resistance is , the
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when so the current starts with , use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put , , and in Equation 1, we get

The direction field for this differential equation is shown in Figure 10.

(b) It appears from the direction field that all solutions approach the value 5 A, that is,

(c) It appears that the constant function is an equilibrium solution. Indeed, we
can verify this directly from the differential equation . If , then
the left side is and the right side is .15 � 3�5� � 0dI�dt � 0

I�t� � 5dI�dt � 15 � 3I
I�t� � 5

lim
t l �

 I�t� � 5

FIGURE 10
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2 3
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4

6

dI

dt
� 15 � 3Ior4 

dI

dt
� 12I � 60

E�t� � 60R � 12L � 4

I�0� � 0t � 0

12 �V

tI

L 
dI

dt
� RI � E�t�1

E�t�
L�dI�dt�

�
I�t�E�t�
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(d) We use the direction field to sketch the solution curve that passes through , as
shown in red in Figure 11.

M

Notice from Figure 10 that the line segments along any horizontal line are parallel. That
is because the independent variable t does not occur on the right side of the equation

. In general, a differential equation of the form

in which the independent variable is missing from the right side, is called autonomous.
For such an equation, the slopes corresponding to two different points with the same 
y-coordinate must be equal. This means that if we know one solution to an autonomous
differential equation, then we can obtain infinitely many others just by shifting the graph
of the known solution to the right or left. In Figure 11 we have shown the solutions 
that result from shifting the solution curve of Example 2 one and two time units (namely,
seconds) to the right. They correspond to closing the switch when or . 

EULER’S METHOD

The basic idea behind direction fields can be used to find numerical approximations to
solutions of differential equations. We illustrate the method on the initial-value problem
that we used to introduce direction fields:

The differential equation tells us that , so the solution curve has slope
1 at the point . As a first approximation to the solution we could use the linear approx-
imation . In other words, we could use the tangent line at as a rough
approximation to the solution curve (see Figure 12).

Euler’s idea was to improve on this approximation by proceeding only a short distance
along this tangent line and then making a midcourse correction by changing direction as
indicated by the direction field. Figure 13 shows what happens if we start out along the
tangent line but stop when . (This horizontal distance traveled is called the step
size.) Since , we have and we take as the starting point
for a new line segment. The differential equation tells us that , so
we use the linear function

y � 1.5 � 2�x � 0.5� � 2x � 0.5

y��0.5� � 0.5 � 1.5 � 2
�0.5, 1.5�y�0.5� � 1.5L�0.5� � 1.5

x � 0.5

�0, 1�L�x� � x � 1
�0, 1�

y��0� � 0 � 1 � 1

y�0� � 1y� � x � y

t � 2t � 1

y� � f �y�

I� � 15 � 3I

FIGURE 11
0 t1

I

2 3

2

4

6

�0, 0�
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y

x0 1

1
y=L(x)

solution curve

FIGURE 12
First Euler approximation

y

x0 1

1

0.5

1.5

FIGURE 13
Euler approximation with step size 0.5



as an approximation to the solution for (the orange segment in Figure 13). If we
decrease the step size from to , we get the better Euler approximation shown in
Figure 14.

In general, Euler’s method says to start at the point given by the initial value and pro-
ceed in the direction indicated by the direction field. Stop after a short time, look at the
slope at the new location, and proceed in that direction. Keep stopping and changing direc-
tion according to the direction field. Euler’s method does not produce the exact solution to
an initial-value problem—it gives approximations. But by decreasing the step size (and
therefore increasing the number of midcourse corrections), we obtain successively better
approximations to the exact solution. (Compare Figures 12, 13, and 14.)

For the general first-order initial-value problem , , our aim is to
find approximate values for the solution at equally spaced numbers , ,

, . . . , where is the step size. The differential equation tells us that the slope
at is , so Figure 15 shows that the approximate value of the solution
when is

Similarly,

In general,

EXAMPLE 3 Use Euler’s method with step size to construct a table of approximate
values for the solution of the initial-value problem

SOLUTION We are given that , , , and . So we have

This means that if is the exact solution, then .
Proceeding with similar calculations, we get the values in the table:

M

For a more accurate table of values in Example 3 we could decrease the step size. But
for a large number of small steps the amount of computation is considerable and so we
need to program a calculator or computer to carry out these calculations. The following
table shows the results of applying Euler’s method with decreasing step size to the initial-
value problem of Example 3.

y�0.3� � 1.362y�x�

 y3 � y2 � hF�x2, y2 � � 1.22 � 0.1�0.2 � 1.22� � 1.362

 y2 � y1 � hF�x1, y1� � 1.1 � 0.1�0.1 � 1.1� � 1.22

 y1 � y0 � hF�x0, y0 � � 1 � 0.1�0 � 1� � 1.1

F�x, y� � x � yy0 � 1x0 � 0h � 0.1

y�0� � 1y� � x � y

0.1

 yn � yn�1 � hF�xn�1, yn�1�

 y2 � y1 � hF�x1, y1�

 y1 � y0 � hF�x0, y0 �

x � x1

y� � F�x0, y0 ��x0, y0 �
hx2 � x1 � h

x1 � x0 � hx0

y�x0� � y0y� � F�x, y�

0.250.5
x � 0.5
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n n

1 0.1 1.100000 6 0.6 1.943122
2 0.2 1.220000 7 0.7 2.197434
3 0.3 1.362000 8 0.8 2.487178
4 0.4 1.528200 9 0.9 2.815895
5 0.5 1.721020 10 1.0 3.187485

ynxnynxn

y

x⁄x¸0

y¸

h

h F(x¸, y¸)

(⁄, ›)

slope=F(x¸, y¸)

FIGURE 15

y

x0 1

1

0.25

FIGURE 14
Euler approximation with step size 0.25

Module 9.2B shows how Euler’s
method works numerically and visually 
for a variety of differential equations and
step sizes.

TEC



Notice that the Euler estimates in the table seem to be approaching limits, namely, the
true values of and . Figure 16 shows graphs of the Euler approximations with
step sizes 0.5, 0.25, 0.1, 0.05, 0.02, 0.01, and 0.005. They are approaching the exact solu-
tion curve as the step size h approaches 0.

EXAMPLE 4 In Example 2 we discussed a simple electric circuit with resistance 
, inductance 4 H, and a battery with voltage 60 V. If the switch is closed when
, we modeled the current I at time t by the initial-value problem

Estimate the current in the circuit half a second after the switch is closed.

SOLUTION We use Euler’s method with , and step size
second:

So the current after 0.5 seconds is
MI�0.5� � 4.16 A

 I5 � 3.7995 � 0.1�15 � 3 � 3.7995� � 4.15965

 I4 � 3.285 � 0.1�15 � 3 � 3.285� � 3.7995

 I3 � 2.55 � 0.1�15 � 3 � 2.55� � 3.285

 I2 � 1.5 � 0.1�15 � 3 � 1.5� � 2.55

 I1 � 0 � 0.1�15 � 3 � 0� � 1.5
h � 0.1

F�t, I� � 15 � 3I, t0 � 0, I0 � 0

I�0� � 0
dI

dt
� 15 � 3I

t � 0
12 �
V

0 x

y

0.5 1

1

FIGURE 16
Euler approximations

approaching the exact solution

y�1�y�0.5�
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Step size Euler estimate of Euler estimate of 

0.500 1.500000 2.500000
0.250 1.625000 2.882813
0.100 1.721020 3.187485
0.050 1.757789 3.306595
0.020 1.781212 3.383176
0.010 1.789264 3.409628
0.005 1.793337 3.423034
0.001 1.796619 3.433848

y�1�y�0.5�

N Computer software packages that produce
numerical approximations to solutions of 
differential equations use methods that are
refinements of Euler’s method. Although Euler’s
method is simple and not as accurate, it is the
basic idea on which the more accurate methods
are based.
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5. 6.

7. Use the direction field labeled II (above) to sketch the graphs
of the solutions that satisfy the given initial conditions.
(a) (b) (c)

8. Use the direction field labeled IV (above) to sketch the graphs
of the solutions that satisfy the given initial conditions.
(a) (b) (c)

9–10 Sketch a direction field for the differential equation. Then
use it to sketch three solution curves.

9. 10.

11–14 Sketch the direction field of the differential equation. 
Then use it to sketch a solution curve that passes through the 
given point.

, 12. ,

, 14. ,

15–16 Use a computer algebra system to draw a direction field
for the given differential equation. Get a printout and sketch on it
the solution curve that passes through . Then use the CAS to
draw the solution curve and compare it with your sketch.

15. 16.

17. Use a computer algebra system to draw a direction field for
the differential equation . Get a printout and y� � y 3 � 4y

CAS

y� � x�y 2 � 4�y� � x 2 sin y

�0, 1�

CAS

�1, 0�y� � x � xy�0, 1�y� � y � xy13.

�0, 0�y� � 1 � xy�1, 0�y� � y � 2x11.

y� � x 2 � y 2y� � 1 � y

y�0� � 1y�0� � 0y�0� � �1

y�0� � �1y�0� � 2y�0� � 1

y

0 x

4

2_2

2

y

0 x2_2

2

_2

y

0 x

4

2_2

2

y

0 x2_2

2

_2

I II

III IV

y� � sin x sin yy� � x � y � 11. A direction field for the differential equation 
is shown.
(a) Sketch the graphs of the solutions that satisfy the given 

initial conditions.
(i) (ii)

(iii) (iv)

(b) Find all the equilibrium solutions.

2. A direction field for the differential equation is
shown.
(a) Sketch the graphs of the solutions that satisfy the given 

initial conditions.
(i) (ii) (iii)

(iv) (v)

(b) Find all the equilibrium solutions.

3–6 Match the differential equation with its direction field
(labeled I–IV). Give reasons for your answer.

4. y� � x�2 � y�y� � 2 � y3.

y

0 x

3

3_3

5

4

1 2_1_2

1

2

y�0� � 5y�0� � 4

y�0� � �y�0� � 2y�0� � 1

y� � x sin y

y

0 x

3

3_3

_3

1 2_1_2

1

2

_1

_2

y�0� � 3y�0� � �3

y�0� � �1y�0� � 1

y� � y(1 �
1
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22. Use Euler’s method with step size to estimate , where
is the solution of the initial-value problem ,

.

Use Euler’s method with step size to estimate ,
where is the solution of the initial-value problem

, .

24. (a) Use Euler’s method with step size to estimate ,
where is the solution of the initial-value problem

, .
(b) Repeat part (a) with step size .

; 25. (a) Program a calculator or computer to use Euler’s method
to compute , where is the solution of the initial-
value problem

(i) (ii)
(iii) (iv)

(b) Verify that is the exact solution of the
differential equation.

(c) Find the errors in using Euler’s method to compute 
with the step sizes in part (a). What happens to the error
when the step size is divided by 10?

26. (a) Program your computer algebra system, using Euler’s
method with step size 0.01, to calculate , where 
is the solution of the initial-value problem

(b) Check your work by using the CAS to draw the solution
curve.

27. The figure shows a circuit containing an electromotive force,
a capacitor with a capacitance of farads (F), and a resistor
with a resistance of ohms ( ). The voltage drop across the
capacitor is , where is the charge (in coulombs), so in
this case Kirchhoff’s Law gives

But , so we have

Suppose the resistance is , the capacitance is F, and a
battery gives a constant voltage of 60 V.
(a) Draw a direction field for this differential equation.
(b) What is the limiting value of the charge?

C

E R

0.05�5

R 
dQ

dt
�

1

C
 Q � E�t�

I � dQ�dt

RI �
Q

C
� E�t�

QQ�C
�R

C

y�0� � 1y� � x 3 � y 3

yy�2�
CAS

y�1�

y � 2 � e�x3

h � 0.001h � 0.01
h � 0.1h � 1

y�0� � 3
dy

dx
� 3x 2 y � 6x 2

y�x�y�1�

0.1
y�1� � 0y� � x � xy

y�x�
y�1.4�0.2

y�0� � 1y� � y � xy
y�x�

y�0.5�0.123.

y�0� � 0
y� � 1 � xyy�x�

y�1�0.2sketch on it solutions that satisfy the initial condition
for various values of . For what values of does

exist? What are the possible values for this limit?

Make a rough sketch of a direction field for the autonomous
differential equation , where the graph of is as
shown. How does the limiting behavior of solutions depend 
on the value of ?

(a) Use Euler’s method with each of the following step sizes
to estimate the value of , where is the solution of
the initial-value problem .
(i) (ii) (iii)

(b) We know that the exact solution of the initial-value 
problem in part (a) is . Draw, as accurately as you
can, the graph of , together with the
Euler approximations using the step sizes in part (a). 
(Your sketches should resemble Figures 12, 13, and 14.)
Use your sketches to decide whether your estimates in
part (a) are underestimates or overestimates.

(c) The error in Euler’s method is the difference between 
the exact value and the approximate value. Find the errors
made in part (a) in using Euler’s method to estimate the
true value of , namely . What happens to the
error each time the step size is halved?

20. A direction field for a differential equation is shown. Draw,
with a ruler, the graphs of the Euler approximations to the 
solution curve that passes through the origin. Use step sizes

and . Will the Euler estimates be under-
estimates or overestimates? Explain.

Use Euler’s method with step size to compute the approx-
imate -values of the solution of the initial-
value problem , .y�1� � 0y� � y � 2x

y1, y2, y3, and y4y
0.521.

y

2

1

1 2 x0

h � 0.5h � 1

e 0.4y�0.4�

y � e x, 0 � x � 0.4
y � e x

h � 0.1h � 0.2h � 0.4
y� � y, y�0� � 1

yy�0.4�
19.

0 y21_1_2

f(y)

y�0�

fy� � f �y�
18.

lim t l 	 y�t�
ccy�0� � c
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at a rate of per minute when its temperature is .
(a) What does the differential equation become in this case?
(b) Sketch a direction field and use it to sketch the solution

curve for the initial-value problem. What is the limiting
value of the temperature?

(c) Use Euler’s method with step size minutes to
estimate the temperature of the coffee after 10 minutes.

h � 2

70
C1
C(c) Is there an equilibrium solution?
(d) If the initial charge is , use the direction field to

sketch the solution curve.
(e) If the initial charge is , use Euler’s method with

step size 0.1 to estimate the charge after half a second.

28. In Exercise 14 in Section 9.1 we considered a cup of cof-
fee in a room. Suppose it is known that the coffee cools 20
C

95
C

Q�0� � 0 C

Q�0� � 0 C
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SEPARABLE EQUATIONS

We have looked at first-order differential equations from a geometric point of view (direc-
tion fields) and from a numerical point of view (Euler’s method). What about the symbolic
point of view? It would be nice to have an explicit formula for a solution of a differential
equation. Unfortunately, that is not always possible. But in this section we examine a cer-
tain type of differential equation that can be solved explicitly.

A separable equation is a first-order differential equation in which the expression for
can be factored as a function of x times a function of y. In other words, it can be

written in the form

The name separable comes from the fact that the expression on the right side can be “sep-
arated” into a function of and a function of . Equivalently, if , we could write

where . To solve this equation we rewrite it in the differential form

so that all ’s are on one side of the equation and all ’s are on the other side. Then we inte-
grate both sides of the equation:

Equation 2 defines implicitly as a function of . In some cases we may be able to solve
for in terms of .

We use the Chain Rule to justify this procedure: If and satisfy (2), then

so

and

Thus Equation 1 is satisfied.

h�y� 
dy

dx
� t�x�

 
d

dy
 �y h�y� dy� dy

dx
 � t�x�

 
d

dx
 �y h�y� dy� �

d

dx
 �y t�x� dx�

th
xy

xy

y h�y� dy � y t�x� dx2

xy

h�y� dy � t�x� dx

h�y� � 1�f �y�

dy

dx
�

t�x�
h�y�

1

f �y� � 0yx

dy

dx
� t�x� f �y�

dy�dx

9.3

N The technique for solving separable differen-
tial equations was first used by James Bernoulli
(in 1690) in solving a problem about pendulums
and by Leibniz (in a letter to Huygens in 1691).
John Bernoulli explained the general method in a
paper published in 1694.



EXAMPLE 1

(a) Solve the differential equation .

(b) Find the solution of this equation that satisfies the initial condition .

SOLUTION
(a) We write the equation in terms of differentials and integrate both sides:

where is an arbitrary constant. (We could have used a constant on the left side and
another constant on the right side. But then we could combine these constants by
writing .)

Solving for , we get

We could leave the solution like this or we could write it in the form

where . (Since is an arbitrary constant, so is .)

(b) If we put in the general solution in part (a), we get . To satisfy the
initial condition , we must have and so .

Thus the solution of the initial-value problem is

M

EXAMPLE 2 Solve the differential equation .

SOLUTION Writing the equation in differential form and integrating both sides, we have

where is a constant. Equation 3 gives the general solution implicitly. In this case it’s
impossible to solve the equation to express explicitly as a function of . M

EXAMPLE 3 Solve the equation .

SOLUTION First we rewrite the equation using Leibniz notation:

dy

dx
� x 2y

y� � x 2y

xy
C

 y 2 � sin y � 2x 3 � C3

 y �2y � cos y�dy � y 6x 2 dx

 �2y � cos y�dy � 6x 2 dx

dy

dx
�

6x 2

2y � cos y
V

y � s
3 x 3 � 8 

K � 8s
3 K  � 2y�0� � 2

y�0� � s
3 K  x � 0

KCK � 3C

y � s
3 x 3 � K  

y � s
3 x 3 � 3C  

y
C � C2 � C1

C2

C1C

1
3 y 3 � 1

3 x 3 � C

 y y 2dy � y x 2dx

y 2dy � x 2dx

y�0� � 2

dy

dx
�

x 2

y 2
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N Figure 1 shows graphs of several members 
of the family of solutions of the differential 
equation in Example 1. The solution of the initial-
value problem in part (b) is shown in red.

3

_3

_3 3

FIGURE 1

N Some computer algebra systems can plot
curves defined by implicit equations. Figure 2
shows the graphs of several members of the
family of solutions of the differential equation 
in Example 2. As we look at the curves from left
to right, the values of are , , , , , ,
and .�3

�2�10123C

4

_4

_2 2

FIGURE 2



If , we can rewrite it in differential notation and integrate:

This equation defines implicitly as a function of . But in this case we can solve
explicitly for as follows:

so

We can easily verify that the function is also a solution of the given differential
equation. So we can write the general solution in the form

where is an arbitrary constant ( , or , or ). M

EXAMPLE 4 In Section 9.2 we modeled the current in the electric circuit shown in
Figure 5 by the differential equation

Find an expression for the current in a circuit where the resistance is , the induc-
tance is 4 H, a battery gives a constant voltage of 60 V, and the switch is turned on when

. What is the limiting value of the current?

SOLUTION With L � 4, R � 12, and , the equation becomes

or
dI

dt
� 15 � 3I 4 

dI

dt
� 12I � 60

E�t� � 60

t � 0

12 �

L 
dI

dt
� RI � E�t�

I�t�V

6

_6

_2 2

FIGURE 4FIGURE 3

2
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0 x
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A � 0A � �eCA � eCA

y � Aex 3�3

y � 0

y � �eCex3�3

 � y � � e ln � y � � e �x3�3��C � eCex3�3

y
xy

 ln � y � �
x 3

3
� C

 y 
dy

y
� y x 2 dx
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y
� x 2 dx y � 0

y � 0
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N If a solution is a function that satisfies
for some , it follows from a 

uniqueness theorem for solutions of differential
equations that for all .xy�x� � 0

xy�x� � 0
y

N Figure 3 shows a direction field for the differ-
ential equation in Example 3. Compare it with
Figure 4, in which we use the equation

to graph solutions for several values
of . If you use the direction field to sketch 
solution curves with -intercepts , , , ,
and , they will resemble the curves in
Figure 4.

�2
�1125y

A
y � Ae x 3�3

R

E

switch

L

FIGURE 5



and the initial-value problem is

We recognize this equation as being separable, and we solve it as follows:

Since , we have , so A � 15 and the solution is

The limiting current, in amperes, is

M

ORTHOGONAL TRAJECTORIES

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the
family orthogonally, that is, at right angles (see Figure 7). For instance, each member of
the family of straight lines through the origin is an orthogonal trajectory of the
family of concentric circles with center the origin (see Figure 8). We say that
the two families are orthogonal trajectories of each other.

EXAMPLE 5 Find the orthogonal trajectories of the family of curves , where 
is an arbitrary constant.

SOLUTION The curves form a family of parabolas whose axis of symmetry is 
the -axis. The first step is to find a single differential equation that is satisfied by all x

x � ky 2

k
x � ky 2V

x

y

FIGURE 8

orthogonal
trajectory

FIGURE 7

x 2 � y 2 � r 2
y � mx

� 5 � 0 � 5 lim
t l 	

 I�t� � lim
t l 	

 �5 � 5e�3t � � 5 � 5 lim
t l 	

 e�3t

I�t� � 5 � 5e�3t

5 �
1
3 A � 0I�0� � 0

 I � 5 �
1
3 Ae�3t

 15 � 3I � �e�3Ce�3t � Ae�3t

 � 15 � 3I � � e�3�t�C�

 � 1
3 ln � 15 � 3I � � t � C

�15 � 3I � 0�y 
dI

15 � 3I
� y dt

I�0� � 0
dI

dt
� 15 � 3I
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N Figure 6 shows how the solution in Example 4
(the current) approaches its limiting value. Com-
parison with Figure 11 in Section 9.2 shows that
we were able to draw a fairly accurate solution
curve from the direction field.
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members of the family. If we differentiate , we get

This differential equation depends on , but we need an equation that is valid for all
values of simultaneously. To eliminate we note that, from the equation of the given
general parabola , we have and so the differential equation can be 
written as

or

This means that the slope of the tangent line at any point on one of the parabolas is
. On an orthogonal trajectory the slope of the tangent line must be the nega-

tive reciprocal of this slope. Therefore the orthogonal trajectories must satisfy the differ-
ential equation

This differential equation is separable, and we solve it as follows:

where is an arbitrary positive constant. Thus the orthogonal trajectories are the family
of ellipses given by Equation 4 and sketched in Figure 9. M

Orthogonal trajectories occur in various branches of physics. For example, in an elec-
trostatic field the lines of force are orthogonal to the lines of constant potential. Also,
the streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential
curves.

MIXING PROBLEMS

A typical mixing problem involves a tank of fixed capacity filled with a thoroughly mixed
solution of some substance, such as salt. A solution of a given concentration enters the tank
at a fixed rate and the mixture, thoroughly stirred, leaves at a fixed rate, which may differ
from the entering rate. If denotes the amount of substance in the tank at time t, then

is the rate at which the substance is being added minus the rate at which it is being
removed. The mathematical description of this situation often leads to a first-order sepa-
rable differential equation. We can use the same type of reasoning to model a variety of
phenomena: chemical reactions, discharge of pollutants into a lake, injection of a drug into
the bloodstream.
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EXAMPLE 6 A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that con-
tains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L�min. The solution
is kept thoroughly mixed and drains from the tank at the same rate. How much salt
remains in the tank after half an hour?

SOLUTION Let be the amount of salt (in kilograms) after minutes. We are given that
and we want to find . We do this by finding a differential equation satis-

fied by . Note that is the rate of change of the amount of salt, so

where (rate in) is the rate at which salt enters the tank and (rate out) is the rate at which
salt leaves the tank. We have

The tank always contains 5000 L of liquid, so the concentration at time is 
(measured in kilograms per liter). Since the brine flows out at a rate of 25 L�min, we
have

Thus, from Equation 5, we get

Solving this separable differential equation, we obtain

Since , we have , so

Therefore

Since is continuous and and the right side is never 0, we deduce that
is always positive. Thus and so

The amount of salt after 30 min is

My�30� � 150 � 130e�30�200 � 38.1 kg

y�t� � 150 � 130e�t�200

� 150 � y � � 150 � y150 � y�t�
y�0� � 20y�t�

� 150 � y � � 130e�t�200

�ln � 150 � y � �
t

200
� ln 130

�ln 130 � Cy�0� � 20

 �ln � 150 � y � �
t

200
� C

 y 
dy

150 � y
� y 

dt

200

dy

dt
� 0.75 �

 y�t�
200

�
150 � y�t�

200

rate out � �  y�t�
5000

 
kg

L ��25 
L

min� �
y�t�
200

 
kg

min

y�t��5000t

rate in � �0.03 
kg

L ��25 
L

min� � 0.75 
kg

min

dy

dt
� �rate in� � �rate out�5

dy�dty�t�
y�30�y�0� � 20

ty�t�
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N Figure 10 shows the graph of the function 
of Example 6. Notice that, as time goes by, the
amount of salt approaches 150 kg.
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; 24. Solve the equation and graph several
members of the family of solutions. How does the solution
curve change as the constant varies?

Solve the initial-value problem ,
, and graph the solution (if your CAS does

implicit plots).

26. Solve the equation and graph several
members of the family of solutions (if your CAS does
implicit plots). How does the solution curve change as the
constant varies?

27–28
(a) Use a computer algebra system to draw a direction field 

for the differential equation. Get a printout and use it to
sketch some solution curves without solving the differential
equation.

(b) Solve the differential equation.
(c) Use the CAS to draw several members of the family of solu-

tions obtained in part (b). Compare with the curves from 
part (a).

27. 28.

; 29–32 Find the orthogonal trajectories of the family of curves.
Use a graphing device to draw several members of each family on
a common screen.

29. 30.

32.

33. Solve the initial-value problem in Exercise 27 in Section 9.2
to find an expression for the charge at time . Find the limit-
ing value of the charge.

34. In Exercise 28 in Section 9.2 we discussed a differential
equation that models the temperature of a cup of coffee
in a room. Solve the differential equation to find an
expression for the temperature of the coffee at time .

In Exercise 13 in Section 9.1 we formulated a model for
learning in the form of the differential equation

where measures the performance of someone learning a
skill after a training time , is the maximum level of per-
formance, and is a positive constant. Solve this differential
equation to find an expression for . What is the limit of
this expression?

P�t�
k

Mt
P�t�

dP

dt
� k�M � P�

35.

t
20�C

95�C

t

y �
x

1 � kx
y �

k

x
31.

y 2 � kx 3x 2 � 2y 2 � k 2

y� � x 2�yy� � 1�y

CAS

C

y� � xsx 2 � 1��ye y �CAS

y�0� � ��2
y� � �sin x��sin y25.CAS

C

e�yy� � cos x � 01–10 Solve the differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9.

11–18 Find the solution of the differential equation that satisfies
the given initial condition.

11. ,

12. ,

13. ,

14. ,

,

16. ,

17. , ,

18. ,

19. Find an equation of the curve that passes through the point
and whose slope at is .

20. Find the function such that and
.

21. Solve the differential equation by making the
change of variable .

22. Solve the differential equation by making the
change of variable .

23. (a) Solve the differential equation .

; (b) Solve the initial-value problem ,
, and graph the solution.

(c) Does the initial-value problem ,
, have a solution? Explain.y�0� � 2

y� � 2xs1 � y 2 
 

y�0� � 0
y� � 2xs1 � y 2 

 

y� � 2xs1 � y 2 
 

v � y�x
xy� � y � xe y�x
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y� � x � y

f �0� � 1
2

f ��x� � f �x��1 � f �x��f

xy�x, y��0, 1�

L�1� � �1
dL

dt
� kL2 ln t

0 � x � ��2y���3� � ay� tan x � a � y

y�1� � �1xy� � y � y 2

u�0� � �5
du

dt
�

2t � sec2t

2u
15.
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dt
� sPt 
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dt
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�
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(a) Suppose that the concentration at time is . Deter-
mine the concentration at any time by solving the differ-
ential equation.

(b) Assuming that , find and interpret
your answer.

40. A certain small country has $10 billion in paper currency 
in circulation, and each day $50 million comes into the 
country’s banks. The government decides to introduce new
currency by having the banks replace old bills with new ones
whenever old currency comes into the banks. Let 
denote the amount of new currency in circulation at time ,
with .
(a) Formulate a mathematical model in the form of an 

initial-value problem that represents the “flow” of the 
new currency into circulation.

(b) Solve the initial-value problem found in part (a).
(c) How long will it take for the new bills to account for 

of the currency in circulation?

41. A tank contains 1000 L of brine with 15 kg of dissolved salt.
Pure water enters the tank at a rate of 10 L�min. The solution
is kept thoroughly mixed and drains from the tank at the same
rate. How much salt is in the tank (a) after minutes and
(b) after 20 minutes?

42. The air in a room with volume contains carbon
dioxide initially. Fresher air with only 0.05% carbon dioxide
flows into the room at a rate of and the mixed air
flows out at the same rate. Find the percentage of carbon
dioxide in the room as a function of time. What happens in
the long run?

43. A vat with 500 gallons of beer contains 4% alcohol (by 
volume). Beer with 6% alcohol is pumped into the vat at a
rate of and the mixture is pumped out at the same
rate. What is the percentage of alcohol after an hour?

44. A tank contains 1000 L of pure water. Brine that contains
0.05 kg of salt per liter of water enters the tank at a rate of
5 L�min. Brine that contains 0.04 kg of salt per liter of water
enters the tank at a rate of 10 L�min. The solution is kept
thoroughly mixed and drains from the tank at a rate of 
15 L�min. How much salt is in the tank (a) after minutes
and (b) after one hour?

When a raindrop falls, it increases in size and so its mass at
time is a function of , . The rate of growth of the mass
is for some positive constant . When we apply New-
ton’s Law of Motion to the raindrop, we get ,
where is the velocity of the raindrop (directed downward)
and is the acceleration due to gravity. The terminal velocity
of the raindrop is . Find an expression for the ter-
minal velocity in terms of and .

46. An object of mass is moving horizontally through a
medium which resists the motion with a force that is a func-
tion of the velocity; that is,

m 
d 2s

dt 2 � m 
dv

dt
� f �v�

m

kt

lim t l 	 v�t�
t

v
�mv�� � tm

kkm�t�
m�t�tt

45.

t

5 gal�min

2 m3�min

0.15%180 m3

t

90%

x �0� � 0
t

x � x �t�

lim t l 	 C�t�C0 � r�k

t
C0t � 036. In an elementary chemical reaction, single molecules of 

two reactants A and B form a molecule of the product C:
. The law of mass action states that the rate 

of reaction is proportional to the product of the concen-
trations of A and B:

(See Example 4 in Section 3.7.) Thus, if the initial concentra-
tions are A moles�L and B moles�L and we
write C , then we have

(a) Assuming that , find as a function of . Use the
fact that the initial concentration of C is 0.

(b) Find assuming that . How does this expres-
sion for simplify if it is known that after 
20 seconds?

37. In contrast to the situation of Exercise 36, experiments show
that the reaction satisfies the rate law

and so for this reaction the differential equation becomes

where and and are the initial concentrations of
hydrogen and bromine.
(a) Find as a function of in the case where . Use the

fact that .
(b) If , find as a function of . Hint: In performing

the integration, make the substitution 

38. A sphere with radius 1 m has temperature . It lies inside
a concentric sphere with radius 2 m and temperature .
The temperature at a distance from the common center
of the spheres satisfies the differential equation

If we let , then satisfies a first-order differential
equation. Solve it to find an expression for the temperature

between the spheres.

A glucose solution is administered intravenously into the
bloodstream at a constant rate . As the glucose is added, it is
converted into other substances and removed from the blood-
stream at a rate that is proportional to the concentration at
that time. Thus a model for the concentration of the
glucose solution in the bloodstream is

where is a positive constant.k

dC

dt
� r � kC

C � C�t�

r
39.

T �r�

SS � dT�dr

d 2T

dr 2 �
2

r
 

dT

dr
� 0

rT �r�
25 �C

15 �C

u � sb � x .]
[xta 
 b

x�0� � 0
a � btx

bax � �HBr�

dx

dt
� k�a � x��b � x�1�2

d �HBr�
dt

� k �H 2� �Br2�1�2

H2 � Br2  l  2HBr

�C� � 1
2 ax �t�

a � bx �t�

txa � bCAS

dx

dt
� k�a � x��b � x�

�x � �
� � b�� � a�

d �C�
dt

� k �A� �B�

A � B l C
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If water (or other liquid) drains from a tank, we expect that the flow will be greatest at first (when
the water depth is greatest) and will gradually decrease as the water level decreases. But we need 
a more precise mathematical description of how the flow decreases in order to answer the kinds 
of questions that engineers ask: How long does it take for a tank to drain completely? How much
water should a tank hold in order to guarantee a certain minimum water pressure for a sprinkler
system?

Let and be the height and volume of water in a tank at time . If water drains through a
hole with area at the bottom of the tank, then Torricelli’s Law says that

where is the acceleration due to gravity. So the rate at which water flows from the tank is propor-
tional to the square root of the water height.

1. (a) Suppose the tank is cylindrical with height 6 ft and radius 2 ft and the hole is circular with
radius 1 inch. If we take ft�s , show that satisfies the differential equation

(b) Solve this equation to find the height of the water at time , assuming the tank is full at 
time .

(c) How long will it take for the water to drain completely?
t � 0

t

dh

dt
� �

1

72
 sh 

h2
t � 32

t

dV

dt
� �as2th 1

a
tV�t�h�t�

HOW FAST DOES A TANK DRAIN?A P P L I E D
P R O J E C T

48. According to Newton’s Law of Universal Gravitation, the 
gravitational force on an object of mass that has been pro-
jected vertically upward from the earth’s surface is 

where is the object’s distance above the surface 
at time , is the earth’s radius, and is the acceleration 
due to gravity. Also, by Newton’s Second Law,

and so

(a) Suppose a rocket is fired vertically upward with an initial
velocity . Let be the maximum height above the sur-
face reached by the object. Show that

[Hint: By the Chain Rule, .]
(b) Calculate . This limit is called the escape

velocity for the earth.
(c) Use mi and ft�s to calculate in 

feet per second and in miles per second.
ve

2
t � 32R � 3960

ve � lim h l 	 v0

m �dv�dt� � mv �dv�dx�

v0 � � 2tRh

R � h
 

hv0

m 
dv

dt
� �

mtR 2

�x � R�2

F � ma � m �dv�dt�

tRt
x � x�t�

F �
mtR 2

�x � R�2

m
where and represent the velocity and
position of the object at time , respectively. For example,
think of a boat moving through the water.
(a) Suppose that the resisting force is proportional to the

velocity, that is, , a positive constant. 
(This model is appropriate for small values of .) Let

and be the initial values of and .
Determine and at any time . What is the total distance
that the object travels from time ?

(b) For larger values of a better model is obtained by sup-
posing that the resisting force is proportional to the square
of the velocity, that is, , . (This model
was first proposed by Newton.) Let and be the initial
values of and . Determine and at any time . What is
the total distance that the object travels in this case?

47. Let be the area of a tissue culture at time and let be
the final area of the tissue when growth is complete. Most
cell divisions occur on the periphery of the tissue and the
number of cells on the periphery is proportional to . So
a reasonable model for the growth of tissue is obtained by
assuming that the rate of growth of the area is jointly propor-
tional to and .
(a) Formulate a differential equation and use it to show that 

the tissue grows fastest when .
(b) Solve the differential equation to find an expression 

for . Use a computer algebra system to perform the
integration.

A�t�
CAS

A�t� � 1
3 M

M � A�t�sA�t�

sA�t�

MtA�t�

tsvsv
s0v0

k 
 0f �v� � �kv2

v
t � 0

tsv
svs�0� � s0v�0� � v0

v
kf �v� � �kv

t
s � s�t�v � v�t�
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2. Because of the rotation and viscosity of the liquid, the theoretical model given by Equation 1
isn’t quite accurate. Instead, the model

is often used and the constant (which depends on the physical properties of the liquid) is
determined from data concerning the draining of the tank.
(a) Suppose that a hole is drilled in the side of a cylindrical bottle and the height of the

water (above the hole) decreases from 10 cm to 3 cm in 68 seconds. Use Equation 2 to
find an expression for . Evaluate for .

(b) Drill a 4-mm hole near the bottom of the cylindrical part of a two-liter plastic soft-drink
bottle. Attach a strip of masking tape marked in centimeters from 0 to 10, with 0 corre-
sponding to the top of the hole. With one finger over the hole, fill the bottle with water 
to the 10-cm mark. Then take your finger off the hole and record the values of for

seconds. (You will probably find that it takes 68 seconds for the
level to decrease to .) Compare your data with the values of from part (a).
How well did the model predict the actual values?

3. In many parts of the world, the water for sprinkler systems in large hotels and hospitals is 
supplied by gravity from cylindrical tanks on or near the roofs of the buildings. Suppose 
such a tank has radius 10 ft and the diameter of the outlet is 2.5 inches. An engineer has to
guarantee that the water pressure will be at least 2160 for a period of 10 minutes. (When
a fire happens, the electrical system might fail and it could take up to 10 minutes for the emer-
gency generator and fire pump to be activated.) What height should the engineer specify for
the tank in order to make such a guarantee? (Use the fact that the water pressure at a depth of

feet is . See Section 8.3.)

4. Not all water tanks are shaped like cylinders. Suppose a tank has cross-sectional area at
height . Then the volume of water up to height is and so the Fundamental
Theorem of Calculus gives . It follows that

and so Torricelli’s Law becomes

(a) Suppose the tank has the shape of a sphere with radius 2 m and is initially half full of
water. If the radius of the circular hole is 1 cm and we take m�s , show that 
satisfies the differential equation

(b) How long will it take for the water to drain completely?

�4h � h2 � 
dh

dt
� �0.0001s20h 

h2
t � 10

A�h� 
dh

dt
� �as2th 

dV

dt
�

dV

dh
 
dh

dt
� A�h� 

dh

dt

dV�dh � A�h�
V � x

h
0  A�u� duhh

A�h�

P � 62.5dd

lb�ft 2

h�t�h � 3 cm
t � 10, 20, 30, 40, 50, 60

h�t�

t � 10, 20, 30, 40, 50, 60h�t�h�t�

h

k

dh

dt
� ksh 2
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N This part of the project is best done as a
classroom demonstration or as a group project
with three students in each group: a time-
keeper to call out seconds, a bottle keeper to
estimate the height every 10 seconds, and a
record keeper to record these values.



Suppose you throw a ball into the air. Do you think it takes longer to reach its maximum 
height or to fall back to earth from its maximum height? We will solve the problem in this proj-
ect but, before getting started, think about that situation and make a guess based on your physical
intuition.

1. A ball with mass is projected vertically upward from the earth’s surface with a positive
initial velocity . We assume the forces acting on the ball are the force of gravity and a
retarding force of air resistance with direction opposite to the direction of motion and with
magnitude , where is a positive constant and is the velocity of the ball at time .
In both the ascent and the descent, the total force acting on the ball is . [During
ascent, is positive and the resistance acts downward; during descent, is negative and
the resistance acts upward.] So, by Newton’s Second Law, the equation of motion is

Solve this differential equation to show that the velocity is

2. Show that the height of the ball, until it hits the ground, is

3. Let be the time that the ball takes to reach its maximum height. Show that

Find this time for a ball with mass 1 kg and initial velocity 20 m�s. Assume the air
resistance is of the speed.

; 4. Let be the time at which the ball falls back to earth. For the particular ball in Problem 3,
estimate by using a graph of the height function . Which is faster, going up or coming
down?

5. In general, it’s not easy to find because it’s impossible to solve the equation 
explicitly. We can, however, use an indirect method to determine whether ascent or descent
is faster; we determine whether is positive or negative. Show that

where . Then show that and the function

is increasing for . Use this result to decide whether is positive or negative. 
What can you conclude? Is ascent or descent faster?

y�2t1�x 
 1

f �x� � x �
1

x
� 2 ln x

x 
 1x � e pt1�m

y�2t1� �
m 2

t

p 2  �x �
1

x
� 2 ln x	

y�2t1�

y�t� � 0t2

y�t�t2

t2

1
10

t1 �
m

p
 ln�mt � pv0

mt
	

t1

y�t� � �v0 �
mt

p 	 
m

p
 �1 � e�pt�m � �

mtt

p

v�t� � �v0 �
mt

p 	e�pt�m �
mt

p

mv� � �pv � mt

v�t�v�t�
�pv � mt

tv�t�pp
 v�t� 


v0

m

WHICH IS FASTER, GOING UP OR COMING DOWN?A P P L I E D
P R O J E C T
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N In modeling force due to air resistance, 
various functions have been used, depending
on the physical characteristics and speed of
the ball. Here we use a linear model, , but
a quadratic model ( on the way up and

on the way down) is another possibility for
higher speeds (see Exercise 46 in Section 9.3).
For a golf ball, experiments have shown that a
good model is going up and 
coming down. But no matter which force func-
tion is used [where for 
and for ], the answer to the
question remains the same. See F. Brauer,
“What Goes Up Must Come Down, Eventually,”
Amer. Math. Monthly 108 (2001), pp. 437–440.

v � 0f �v� � 0
v 
 0f �v� 
 0�f �v�

p
 v 
1.3�pv 1.3
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MODELS FOR POPULATION GROWTH

In this section we investigate differential equations that are used to model population
growth: the law of natural growth, the logistic equation, and several others.

THE LAW OF NATURAL GROWTH

One of the models for population growth that we considered in Section 9.1 was based 
on the assumption that the population grows at a rate proportional to the size of the 
population:

Is that a reasonable assumption? Suppose we have a population (of bacteria, for instance)
with size and at a certain time it is growing at a rate of bacteria per
hour. Now let’s take another 1000 bacteria of the same type and put them with the first pop-
ulation. Each half of the new population was growing at a rate of 300 bacteria per hour.
We would expect the total population of 2000 to increase at a rate of 600 bacteria per 
hour initially (provided there’s enough room and nutrition). So if we double the size, we
double the growth rate. In general, it seems reasonable that the growth rate should be pro-
portional to the size.

In general, if is the value of a quantity at time and if the rate of change of 
with respect to is proportional to its size at any time, then

where is a constant. Equation 1 is sometimes called the law of natural growth. If is pos-
itive, then the population increases; if is negative, it decreases.

Because Equation 1 is a separable differential equation, we can solve it by the methods
of Section 9.3:

where A ( or 0) is an arbitrary constant. To see the significance of the constant A,
we observe that

Therefore A is the initial value of the function.

The solution of the initial-value problem

is P�t� � P0ekt

P�0� � P0
dP

dt
� kP

2

P�0� � Aek � 0 � A

� �eC

 P � Aekt

 
 P 
 � ekt�C � eCekt

 ln 
 P 
 � kt � C

 y 
dP

P
� y k dt

k
kk

dP

dt
� kP1

P�t�t
PtyP�t�

P� � 300P � 1000

dP

dt
� kP

9.4
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N Examples and exercises on the use of (2) are
given in Section 3.8.



Another way of writing Equation 1 is

which says that the relative growth rate (the growth rate divided by the population size)
is constant. Then (2) says that a population with constant relative growth rate must grow
exponentially.

We can account for emigration (or “harvesting”) from a population by modifying Equa-
tion 1: If the rate of emigration is a constant , then the rate of change of the population
is modeled by the differential equation

See Exercise 13 for the solution and consequences of Equation 3.

THE LOGISTIC MODEL

As we discussed in Section 9.1, a population often increases exponentially in its early
stages but levels off eventually and approaches its carrying capacity because of limited
resources. If is the size of the population at time t, we assume that

This says that the growth rate is initially close to being proportional to size. In other words,
the relative growth rate is almost constant when the population is small. But we also want
to reflect the fact that the relative growth rate decreases as the population P increases and
becomes negative if P ever exceeds its carrying capacity K, the maximum population that
the environment is capable of sustaining in the long run. The simplest expression for the
relative growth rate that incorporates these assumptions is

Multiplying by P, we obtain the model for population growth known as the logistic differ-
ential equation:

Notice from Equation 4 that if P is small compared with K, then is close to 0 and so
. However, if (the population approaches its carrying capacity), then

, so . We can deduce information about whether solutions increase or
decrease directly from Equation 4. If the population P lies between 0 and K, then the right
side of the equation is positive, so and the population increases. But if the pop-
ulation exceeds the carrying capacity , then is negative, so 
and the population decreases.

Let’s start our more detailed analysis of the logistic differential equation by looking at
a direction field.

dP�dt � 01 � P�K�P 
 K�
dP�dt 
 0

dP�dt l 0P�K l 1
P l KdP�dt � kP

P�K

dP

dt
� kP�1 �

P

K	4

1

P
 
dP

dt
� k�1 �

P

K	

if P is small
dP

dt
� kP

P�t�

dP

dt
� kP � m3

m

1

P
 
dP

dt
� k
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EXAMPLE 1 Draw a direction field for the logistic equation with and carry-
ing capacity . What can you deduce about the solutions?

SOLUTION In this case the logistic differential equation is

A direction field for this equation is shown in Figure 1. We show only the first quadrant
because negative populations aren’t meaningful and we are interested only in what hap-
pens after .

The logistic equation is autonomous ( depends only on P, not on t), so the
slopes are the same along any horizontal line. As expected, the slopes are positive for

and negative for .
The slopes are small when P is close to 0 or 1000 (the carrying capacity). Notice that

the solutions move away from the equilibrium solution and move toward the
equilibrium solution .

In Figure 2 we use the direction field to sketch solution curves with initial populations
, , and . Notice that solution curves that start below

are increasing and those that start above are decreasing. The slopes
are greatest when and therefore the solution curves that start below 
have inflection points when . In fact we can prove that all solution curves that
start below have an inflection point when P is exactly 500. (See Exercise 9.)

M
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FIGURE 2
Solution curves for the logistic

equation in Example 1
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FIGURE 1
Direction field for the logistic

equation in Example 1
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k � 0.08V
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The logistic equation (4) is separable and so we can solve it explicitly using the method
of Section 9.3. Since

we have

To evaluate the integral on the left side, we write

Using partial fractions (see Section 7.4), we get

This enables us to rewrite Equation 5:

where . Solving Equation 6 for P, we get

so

We find the value of A by putting in Equation 6. If , then (the initial
population), so

K � P0

P0
� Ae 0 � A

P � P0t � 0t � 0

P �
K

1 � Ae�kt

P

K
�

1

1 � Ae�kt?
K

P
� 1 � Ae�kt

A � �e�C

 
K � P

P
� Ae�kt6

 � K � P

P � � e�kt�C � e�Ce�kt

 ln � K � P

P � � �kt � C
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 P 
 � ln 
 K � P 
 � kt � C

 y � 1

P
�

1

K � P	 dP � y k dt

K
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1
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�

1

K � P
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P�1 � P�K �
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dP
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Thus the solution to the logistic equation is

Using the expression for in Equation 7, we see that

which is to be expected.

EXAMPLE 2 Write the solution of the initial-value problem

and use it to find the population sizes and . At what time does the population
reach 900?

SOLUTION The differential equation is a logistic equation with , carrying capac-
ity , and initial population . So Equation 7 gives the population at
time t as

Thus

So the population sizes when and 80 are

The population reaches 900 when

Solving this equation for t, we get

So the population reaches 900 when t is approximately 55. As a check on our work, we
graph the population curve in Figure 3 and observe where it intersects the line .
The cursor indicates that . Mt � 55

P � 900

 t �
ln 81

0.08
� 54.9

 �0.08t � ln 1
81 � �ln 81

 e�0.08t � 1
81

 1 � 9e�0.08t � 10
9

1000

1 � 9e�0.08t � 900

P�80� �
1000

1 � 9e�6.4 � 985.3P�40� �
1000

1 � 9e�3.2 � 731.6

t � 40

P�t� �
1000

1 � 9e�0.08t

where A �
1000 � 100

100
� 9P�t� �

1000

1 � Ae�0.08t

P0 � 100K � 1000
k � 0.08

P�80�P�40�

P�0� � 100
dP

dt
� 0.08P�1 �

P
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t l 	

 P�t� � K

P�t�

where A �
K � P0

P0
P�t� �

K

1 � Ae�kt7
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N Compare the solution curve in Figure 3 with
the lowest solution curve we drew from the
direction field in Figure 2.
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COMPARISON OF THE NATURAL GROWTH AND LOGISTIC MODELS

In the 1930s the biologist G. F. Gause conducted an experiment with the protozoan Para-
mecium and used a logistic equation to model his data. The table gives his daily count 
of the population of protozoa. He estimated the initial relative growth rate to be 0.7944 and
the carrying capacity to be 64.

EXAMPLE 3 Find the exponential and logistic models for Gause’s data. Compare the 
predicted values with the observed values and comment on the fit.

SOLUTION Given the relative growth rate and the initial population , the
exponential model is

Gause used the same value of k for his logistic model. [This is reasonable because
is small compared with the carrying capacity ( ). The equation

shows that the value of k for the logistic model is very close to the value for the expo-
nential model.]

Then the solution of the logistic equation in Equation 7 gives

where

So

We use these equations to calculate the predicted values (rounded to the nearest integer)
and compare them in the following table.

We notice from the table and from the graph in Figure 4 that for the first three or four
days the exponential model gives results comparable to those of the more sophisticated
logistic model. For , however, the exponential model is hopelessly inaccurate, but
the logistic model fits the observations reasonably well.

t � 5

P�t� �
64

1 � 31e�0.7944 t

A �
K � P0

P0
�

64 � 2

2
� 31

P�t� �
K

1 � Ae�kt �
64

1 � Ae�0.7944t

1

P0
 
dP

dt �
t�0

� k�1 �
2

64� � k

K � 64P0 � 2

P�t� � P0ekt � 2e 0.7944t

P0 � 2k � 0.7944

V
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t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

P (logistic model) 2 4 9 17 28 40 51 57 61 62 63 64 64 64 64 64 64

P (exponential model) 2 4 10 22 48 106 . . .

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57



M

Many countries that formerly experienced exponential growth are now finding that their
rates of population growth are declining and the logistic model provides a better model.
The table in the margin shows midyear values of , the population of Belgium, in thou-
sands, at time , from 1980 to 2000. Figure 5 shows these data points together with a
shifted logistic function obtained from a calculator with the ability to fit a logistic function
to these points by regression. We see that the logistic model provides a very good fit.

OTHER MODELS FOR POPULATION GROWTH

The Law of Natural Growth and the logistic differential equation are not the only equa-
tions that have been proposed to model population growth. In Exercise 18 we look at the
Gompertz growth function and in Exercises 19 and 20 we investigate seasonal-growth
models.

Two of the other models are modifications of the logistic model. The differential 
equation

has been used to model populations that are subject to harvesting of one sort or another.
(Think of a population of fish being caught at a constant rate.) This equation is explored
in Exercises 15 and 16.

For some species there is a minimum population level m below which the species tends
to become extinct. (Adults may not be able to find suitable mates.) Such populations have
been modeled by the differential equation

where the extra factor, , takes into account the consequences of a sparse popula-
tion (see Exercise 17).

1 � m�P

dP

dt
� kP�1 �

P

K��1 �
m
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FIGURE 5
Logistic model for

the population of Belgium
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FIGURE 4
The exponential and logistic

models for the Paramecium data
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t t

1980 9,847 1992 10,036
1982 9,856 1994 10,109
1984 9,855 1996 10,152
1986 9,862 1998 10,175
1988 9,884 2000 10,186
1990 9,962

B�t�B�t�
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where is the biomass (the total mass of the members of 
the population) in kilograms at time (measured in years), the
carrying capacity is estimated to be , and

per year.
(a) If , find the biomass a year later.
(b) How long will it take for the biomass to reach ?

4. The table gives the number of yeast cells in a new laboratory
culture.

(a) Plot the data and use the plot to estimate the carrying
capacity for the yeast population.

(b) Use the data to estimate the initial relative growth rate.
(c) Find both an exponential model and a logistic model for

these data.
(d) Compare the predicted values with the observed values,

both in a table and with graphs. Comment on how well
your models fit the data.

(e) Use your logistic model to estimate the number of yeast
cells after 7 hours.

5. The population of the world was about 5.3 billion in 1990.
Birth rates in the 1990s ranged from 35 to 40 million per year
and death rates ranged from 15 to 20 million per year. Let’s
assume that the carrying capacity for world population is
100 billion.
(a) Write the logistic differential equation for these data.

(Because the initial population is small compared to the
carrying capacity, you can take to be an estimate of the
initial relative growth rate.)

(b) Use the logistic model to estimate the world population in
the year 2000 and compare with the actual population of
6.1 billion.

(c) Use the logistic model to predict the world population in
the years 2100 and 2500.

(d) What are your predictions if the carrying capacity is 
50 billion?

6. (a) Make a guess as to the carrying capacity for the US 
population. Use it and the fact that the population was 
250 million in 1990 to formulate a logistic model for the
US population.

(b) Determine the value of in your model by using the 
fact that the population in 2000 was 275 million.

(c) Use your model to predict the US population in the years
2100 and 2200.

k

k

4 � 107 kg
y�0� � 2 � 107 kg

k � 0.71
K � 8 � 107 kg
t

y�t�Suppose that a population develops according to the logistic
equation

where is measured in weeks.
(a) What is the carrying capacity? What is the value of ?
(b) A direction field for this equation is shown. Where are 

the slopes close to 0? Where are they largest? Which 
solutions are increasing? Which solutions are decreasing?

(c) Use the direction field to sketch solutions for initial popu-
lations of 20, 40, 60, 80, 120, and 140. What do these
solutions have in common? How do they differ? Which
solutions have inflection points? At what population 
levels do they occur?

(d) What are the equilibrium solutions? How are the other
solutions related to these solutions?

; 2. Suppose that a population grows according to a logistic
model with carrying capacity 6000 and per year.
(a) Write the logistic differential equation for these data.
(b) Draw a direction field (either by hand or with a computer

algebra system). What does it tell you about the solution
curves?

(c) Use the direction field to sketch the solution curves for 
initial populations of 1000, 2000, 4000, and 8000. What
can you say about the concavity of these curves? What is
the significance of the inflection points?

(d) Program a calculator or computer to use Euler’s method
with step size to estimate the population after
50 years if the initial population is 1000.

(e) If the initial population is 1000, write a formula for the
population after years. Use it to find the population after
50 years and compare with your estimate in part (d).

(f) Graph the solution in part (e) and compare with the solu-
tion curve you sketched in part (c).

The Pacific halibut fishery has been modeled by the differen-
tial equation

dy

dt
� ky�1 �

y

K�
3.

t

h � 1

k � 0.0015

0 t

P

604020

150

100

50

k
t

dP

dt
� 0.05P � 0.0005P 2

1.

EXERCISES9.4

Time (hours) Yeast cells Time (hours) Yeast cells

0 18 10 509
2 39 12 597
4 80 14 640
6 171 16 664
8 336 18 672



;12.The table gives the midyear population of Spain, in thousands,
from 1955 to 2000.

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 29,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 29,000 to get your final model. It might be helpful to
choose to correspond to 1955 or 1975.]

13. Consider a population with constant relative birth
and death rates and , respectively, and a constant emigra-
tion rate , where , , and are positive constants. Assume
that . Then the rate of change of the population at time

is modeled by the differential equation

where 

(a) Find the solution of this equation that satisfies the initial
condition 

(b) What condition on will lead to an exponential expan-
sion of the population?

(c) What condition on will result in a constant population?
A population decline?

(d) In 1847, the population of Ireland was about 8 million
and the difference between the relative birth and death
rates was 1.6% of the population. Because of the potato
famine in the 1840s and 1850s, about 210,000 inhabitants
per year emigrated from Ireland. Was the population
expanding or declining at that time?

Let be a positive number. A differential equation of the
form

where is a positive constant, is called a doomsday equation
because the exponent in the expression is larger than
the exponent 1 for natural growth.
(a) Determine the solution that satisfies the initial condition

(b) Show that there is a finite time (doomsday) such
that .

(c) An especially prolific breed of rabbits has the growth term
. If 2 such rabbits breed initially and the warren has

16 rabbits after three months, then when is doomsday?
ky 1.01

lim t l T � y�t� � �
t � T

y�0� � y0.

ky 1�c
k

dy

dt
� ky 1�c

c14.

m

m
P�0� � P0.

k � � � �
dP

dt
� kP � m

t
� 	 �

m��m
��
P � P�t�

t � 0

(d) Use your model to predict the year in which the US popu-
lation will exceed 350 million.

One model for the spread of a rumor is that the rate of spread
is proportional to the product of the fraction of the popula-
tion who have heard the rumor and the fraction who have not
heard the rumor.
(a) Write a differential equation that is satisfied by .
(b) Solve the differential equation.
(c) A small town has 1000 inhabitants. At 8 AM, 80 people

have heard a rumor. By noon half the town has heard it.
At what time will of the population have heard the
rumor?

8. Biologists stocked a lake with 400 fish and estimated the 
carrying capacity (the maximal population for the fish of that
species in that lake) to be 10,000. The number of fish tripled
in the first year.
(a) Assuming that the size of the fish population satisfies the

logistic equation, find an expression for the size of the
population after years.

(b) How long will it take for the population to increase 
to 5000?

(a) Show that if satisfies the logistic equation (4), then

(b) Deduce that a population grows fastest when it reaches
half its carrying capacity.

; 10. For a fixed value of (say ), the family of logistic
functions given by Equation 7 depends on the initial value 
and the proportionality constant . Graph several members of
this family. How does the graph change when varies? How
does it change when varies?

; 11. The table gives the midyear population of Japan, in
thousands, from 1960 to 2005.

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 94,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 94,000 to get your final model. It might be helpful to
choose to correspond to 1960 or 1980.]t � 0

k
P0

k
P0

K � 10K

d 2P

dt 2 � k 2P�1 �
P

K��1 �
2P

K �
P9.

t

90%

y

y
7.
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Year Population Year Population

1960 94,092 1985 120,754
1965 98,883 1990 123,537
1970 104,345 1995 125,341
1975 111,573 2000 126,700
1980 116,807 2005 127,417

Year Population Year Population

1955 29,319 1980 37,488
1960 30,641 1985 38,535
1965 32,085 1990 39,351
1970 33,876 1995 39,750
1975 35,564 2000 40,016



(d) Use the solution in part (c) to show that if , then
the species will become extinct. [Hint: Show that the
numerator in your expression for is 0 for some value
of .]

18. Another model for a growth function for a limited population
is given by the Gompertz function, which is a solution of
the differential equation 

where is a constant and is the carrying capacity.
(a) Solve this differential equation.
(b) Compute .
(c) Graph the Gompertz growth function for ,

, and , and compare it with the logistic
function in Example 2. What are the similarities? What
are the differences?

(d) We know from Exercise 9 that the logistic function grows
fastest when . Use the Gompertz differential
equation to show that the Gompertz function grows fastest
when .

19. In a seasonal-growth model, a periodic function of time is
introduced to account for seasonal variations in the rate of
growth. Such variations could, for example, be caused by 
seasonal changes in the availability of food.
(a) Find the solution of the seasonal-growth model

where , , and are positive constants.

; (b) By graphing the solution for several values of , , and ,
explain how the values of , , and affect the solution.
What can you say about ?

20. Suppose we alter the differential equation in Exercise 19 as 
follows:

(a) Solve this differential equation with the help of a table of
integrals or a CAS.

; (b) Graph the solution for several values of , , and . How
do the values of , , and affect the solution? What can
you say about in this case?

21. Graphs of logistic functions (Figures 2 and 3) look suspi-
ciously similar to the graph of the hyperbolic tangent function
(Figure 3 in Section 3.11). Explain the similarity by showing
that the logistic function given by Equation 7 can be written
as 

where .  Thus the logistic function is really just
a shifted hyperbolic tangent.

c � �ln A��k

P�t� � 1
2 K [1 � tanh(1

2 k� t � c�)]

lim t l � P�t�

rk


rk

P�0� � P0
dP

dt
� kP cos2�rt � 
�

lim t l � P�t�

rk


rk

rk

P�0� � P0
dP

dt
� kP cos�rt � 
�

P � K�e

P � K�2

c � 0.05P0 � 100
K � 1000

lim t l � P�t�

Kc

dP

dt
� c ln�K

P�P

t
P�t�

P0 � mLet’s modify the logistic differential equation of Example 1
as follows:

(a) Suppose represents a fish population at time , 
where is measured in weeks. Explain the meaning of the
term .

(b) Draw a direction field for this differential equation.
(c) What are the equilibrium solutions?
(d) Use the direction field to sketch several solution curves.

Describe what happens to the fish population for various
initial populations.

(e) Solve this differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial populations 200 and 300. Graph the solutions
and compare with your sketches in part (d).

16. Consider the differential equation

as a model for a fish population, where is measured in
weeks and is a constant.
(a) Use a CAS to draw direction fields for various values 

of .
(b) From your direction fields in part (a), determine the 

values of for which there is at least one equilibrium 
solution. For what values of does the fish population
always die out?

(c) Use the differential equation to prove what you dis-
covered graphically in part (b).

(d) What would you recommend for a limit to the weekly
catch of this fish population?

There is considerable evidence to support the theory that for
some species there is a minimum population such that the
species will become extinct if the size of the population falls
below . This condition can be incorporated into the logistic
equation by introducing the factor . Thus the mod-
ified logistic model is given by the differential equation

(a) Use the differential equation to show that any solution is
increasing if and decreasing if .

(b) For the case where , , and ,
draw a direction field and use it to sketch several solu-
tion curves. Describe what happens to the population for
various initial populations. What are the equilibrium 
solutions?

(c) Solve the differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial population .P0

m � 200K � 1000k � 0.08
0 � P � mm � P � K

dP

dt
� kP�1 �

P

K��1 �
m

P�
�1 � m�P�

m

m
17.

c
c

c

c
t

dP

dt
� 0.08P�1 �

P

1000� � c

CAS

CAS

�15
t

tP�t�

dP

dt
� 0.08P�1 �

P

1000� � 15

15.
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In this project we explore three of the many applications of calculus to baseball. The physical
interactions of the game, especially the collision of ball and bat, are quite complex and their
models are discussed in detail in a book by Robert Adair, The Physics of Baseball, 3d ed. 
(New York: HarperPerennial, 2002).

1. It may surprise you to learn that the collision of baseball and bat lasts only about a thou-
sandth of a second. Here we calculate the average force on the bat during this collision by
first computing the change in the ball’s momentum.

The of an object is the product of its mass and its velocity , that is,
. Suppose an object, moving along a straight line, is acted on by a force 

that is a continuous function of time.
(a) Show that the change in momentum over a time interval is equal to the integral 

of from to ; that is, show that

This integral is called the impulse of the force over the time interval.
(b) A pitcher throws a 90-mi�h fastball to a batter, who hits a line drive directly back 

to the pitcher. The ball is in contact with the bat for 0.001 s and leaves the bat with
velocity 110 mi�h. A baseball weighs 5 oz and, in US Customary units, its mass is
measured in slugs: where .
(i) Find the change in the ball’s momentum.

(ii) Find the average force on the bat.

2. In this problem we calculate the work required for a pitcher to throw a 90-mi�h fastball by
first considering kinetic energy.

The kinetic energy of an object of mass and velocity is given by . Sup-
pose an object of mass , moving in a straight line, is acted on by a force that
depends on its position . According to Newton’s Second Law

where and denote the acceleration and velocity of the object. 
(a) Show that the work done in moving the object from a position to a position is equal

to the change in the object’s kinetic energy; that is, show that

where and are the velocities of the object at the positions and .
Hint: By the Chain Rule, 

(b) How many foot-pounds of work does it take to throw a baseball at a speed of 90 mi�h?

3. (a) An outfielder fields a baseball 280 ft away from home plate and throws it directly to the
catcher with an initial velocity of 100 ft�s. Assume that the velocity of the ball after

seconds satisfies the differential equation because of air resistance. How
long does it take for the ball to reach home plate? (Ignore any vertical motion of the
ball.)

(b) The manager of the team wonders whether the ball will reach home plate sooner if it 
is relayed by an infielder. The shortstop can position himself directly between the out-
fielder and home plate, catch the ball thrown by the outfielder, turn, and throw the ball to 

dv�dt � �
1

10 vt
v�t�

m 
dv

dt
� m 

dv

ds
 
ds

dt
� mv 

dv

ds

s1s0v1 � v�s1�v0 � v�s0 �

W � y
s1

s 0

 F�s� ds � 1
2 mv1

2 �
1
2 mv0

2

s1s0

va

F�s� � ma � m 
dv

dt

s
F � F�s�m

K � 1
2 mv2vmK

t � 32 ft�s2m � w�t

p�t1� � p�t0 � � y
t 1

t 0

 F�t� dt

t1t0F
	t0, t1


F � F�t�p � mv
vmmomentum p
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An overhead view of the position of a
baseball bat, shown every fiftieth of
a second during a typical swing.
(Adapted from The Physics of Baseball)

Batter’s box



the catcher with an initial velocity of 105 ft�s. The manager clocks the relay time of the
shortstop (catching, turning, throwing) at half a second. How far from home plate should
the shortstop position himself to minimize the total time for the ball to reach home
plate? Should the manager encourage a direct throw or a relayed throw? What if the
shortstop can throw at 115 ft�s?

; (c) For what throwing velocity of the shortstop does a relayed throw take the same time as a
direct throw?
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LINEAR EQUATIONS

A first-order linear differential equation is one that can be put into the form

where and are continuous functions on a given interval. This type of equation occurs
frequently in various sciences, as we will see.

An example of a linear equation is because, for , it can be written
in the form

Notice that this differential equation is not separable because it’s impossible to factor the
expression for as a function of x times a function of y. But we can still solve the equa-
tion by noticing, by the Product Rule, that

and so we can rewrite the equation as

If we now integrate both sides of this equation, we get

or

If we had been given the differential equation in the form of Equation 2, we would have
had to take the preliminary step of multiplying each side of the equation by x.

It turns out that every first-order linear differential equation can be solved in a similar
fashion by multiplying both sides of Equation 1 by a suitable function called an 
integrating factor. We try to find so that the left side of Equation 1, when multiplied by

, becomes the derivative of the product :

If we can find such a function , then Equation 1 becomes

�I�x�y�� � I�x� Q�x�

I

I�x��y� � P�x�y� � �I�x�y��3

I�x�yI�x�
I

I�x�

y � x �
C

x
xy � x 2 � C

�xy�� � 2x

xy� � y � �xy��

y�

y� �
1

x
 y � 22

x � 0xy� � y � 2x

QP

dy

dx
� P�x�y � Q�x�1

9.5



Integrating both sides, we would have

so the solution would be

To find such an , we expand Equation 3 and cancel terms:

This is a separable differential equation for , which we solve as follows:

where . We are looking for a particular integrating factor, not the most general
one, so we take and use

Thus a formula for the general solution to Equation 1 is provided by Equation 4, where 
is given by Equation 5. Instead of memorizing this formula, however, we just remember
the form of the integrating factor.

To solve the linear differential equation , multiply both sides by
the integrating factor and integrate both sides.

EXAMPLE 1 Solve the differential equation .

SOLUTION The given equation is linear since it has the form of Equation 1 with 
and . An integrating factor is

Multiplying both sides of the differential equation by , we get

or  
d

dx
 �ex3

y� � 6x 2ex3

 ex3

 
dy

dx
� 3x 2ex3

y � 6x 2ex3

ex3

I�x� � e x 3x 2 dx � ex3

Q�x� � 6x 2
P�x� � 3x 2

dy

dx
� 3x 2y � 6x 2V

I�x� � e x P�x� dx
y� � P�x�y � Q�x�

I

I�x� � e x P�x� dx5

A � 1
A � 
eC

 I � Ae x P�x� dx

 ln � I � � y P�x� dx

 y 
dI

I
� y P�x� dx

I

 I�x� P�x� � I��x�

 I�x�y� � I�x� P�x�y � �I�x�y�� � I��x�y � I�x�y�

I

y�x� �
1

I�x�
 �y I�x� Q�x� dx � C
4

I�x�y � y I�x� Q�x� dx � C
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Integrating both sides, we have

M

EXAMPLE 2 Find the solution of the initial-value problem

SOLUTION We must first divide both sides by the coefficient of to put the differential
equation into standard form:

The integrating factor is

Multiplication of Equation 6 by gives

Then

and so

Since , we have

Therefore the solution to the initial-value problem is

M

EXAMPLE 3 Solve .

SOLUTION The given equation is in the standard form for a linear equation. Multiplying by
the integrating factor

we get

or

Therefore  ex2

y � y ex2

 dx � C

 (ex2

y)� � ex2

 ex2

y� � 2xex2

y � ex2

 e x 2x dx � ex2

y� � 2xy � 1

y �
ln x � 2

x

2 �
ln 1 � C

1
� C

y�1� � 2

y �
ln x � C

x

xy � y 
1

x
 dx � ln x � C

�xy�� �
1

x
orxy� � y �

1

x

x

I�x� � e x �1�x� dx � e ln x � x

x 	 0y� �
1

x
 y �

1

x 26

y�

y�1� � 2x 	 0x 2y� � xy � 1

V

 y � 2 � Ce�x3

 ex3

y � y 6x 2ex3 dx � 2ex3

� C
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N The solution of the initial-value problem in
Example 2 is shown in Figure 2.

FIGURE 2

(1, 2)

5

_5

0 4

FIGURE 1 
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_3

_1.5 1.8

C=2

C=1

C=_2

C=_1

C=0

N Figure 1 shows the graphs of several members
of the family of solutions in Example 1. Notice
that they all approach as .x l �2



Recall from Section 7.5 that can’t be expressed in terms of elementary functions.
Nonetheless, it’s a perfectly good function and we can leave the answer as 

Another way of writing the solution is

(Any number can be chosen for the lower limit of integration.) M

APPLICATION TO ELECTRIC CIRCUITS

In Section 9.2 we considered the simple electric circuit shown in Figure 4: An electro-
motive force (usually a battery or generator) produces a voltage of volts (V) and a cur-
rent of amperes (A) at time . The circuit also contains a resistor with a resistance of

ohms ( ) and an inductor with an inductance of henries (H).
Ohm’s Law gives the drop in voltage due to the resistor as . The voltage drop due to

the inductor is . One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage . Thus we have

which is a first-order linear differential equation. The solution gives the current at time .

EXAMPLE 4 Suppose that in the simple circuit of Figure 4 the resistance is and
the inductance is 4 H. If a battery gives a constant voltage of 60 V and the switch is
closed when so the current starts with , find (a) , (b) the current after
1 s, and (c) the limiting value of the current.

SOLUTION
(a) If we put , , and in Equation 7, we obtain the initial-value
problem

or

Multiplying by the integrating factor , we get

 I�t� � 5 � Ce�3t

 e 3tI � y 15e 3t dt � 5e 3t � C

 
d

dt
 �e 3tI� � 15e 3t

 e 3t 
dI

dt
� 3e 3tI � 15e 3t

e x 3 dt � e 3t

I�0� � 0 
dI

dt
� 3I � 15

I�0� � 0 4 
dI

dt
� 12I � 60

E�t� � 60R � 12L � 4

I�t�I�0� � 0t � 0

12 �V

tI

L 
dI

dt
� RI � E�t�7

E�t�
L�dI�dt�

RI
L�R

tI�t�
E�t�

y � e�x2

 y
x

0
 e t 2 dt � Ce�x2

y � e�x2

 y ex2 dx � Ce�x2

x ex2 dx
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N Even though the solutions of the differential
equation in Example 3 are expressed in terms of
an integral, they can still be graphed by a com-
puter algebra system (Figure 3).

FIGURE 3
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FIGURE 4
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switch

L

N The differential equation in Example 4 is both
linear and separable, so an alternative method is
to solve it as a separable equation (Example 4 in
Section 9.3). If we replace the battery by a gen-
erator, however, we get an equation that is linear
but not separable (Example 5).



Since , we have , so and

(b) After 1 second the current is

(c) The limiting value of the current is given by

M

EXAMPLE 5 Suppose that the resistance and inductance remain as in Example 4 
but, instead of the battery, we use a generator that produces a variable voltage of

volts. Find .

SOLUTION This time the differential equation becomes

The same integrating factor gives

Using Formula 98 in the Table of Integrals, we have

Since , we get

so MI�t� � 5
101 �sin 30t � 10 cos 30t� �

50
101 e�3 t

�
50
101 � C � 0

I�0� � 0

 I � 5
101 �sin 30t � 10 cos 30t� � Ce�3t

 e 3tI � y 15e 3 t sin 30t dt � 15 
e 3t

909
 �3 sin 30t � 30 cos 30t� � C

d

dt
 �e 3tI� � e 3t 

dI

dt
� 3e 3tI � 15e 3t sin 30t

e 3t

dI

dt
� 3I � 15 sin 30tor4 

dI

dt
� 12I � 60 sin 30t

I�t�E�t� � 60 sin 30t

� 5 � 0 � 5� 5 � 5 lim
t l �

 e�3t lim
t l �

 I�t� � lim
t l �

 5�1 � e�3t �

I�1� � 5�1 � e�3 � � 4.75 A

I�t� � 5�1 � e�3t �

C � �55 � C � 0I�0� � 0
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FIGURE 5

6

0 2.5

y=5

N Figure 5 shows how the current in Example 4
approaches its limiting value.

N Figure 6 shows the graph of the current 
when the battery is replaced by a generator.

FIGURE 6
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13. ,

14.

15–20 Solve the initial-value problem.

15. , y�0� � 2y� � x � y

t ln t 
dr

dt
� r � te t

t � 0�1 � t� 
du

dt
� u � 1 � t

x 
dy

dx
� 4y � x 4e xsin x 

dy

dx
� �cos x�y � sin�x 2�

1–4 Determine whether the differential equation is linear.

1. 2.

3. 4.

5–14 Solve the differential equation.

6.

7. 8.

10. y� � y � sin�e x�xy� � y � sx 9.

x 2y� � 2xy � cos 2 xxy� � 2y � x 2

y� � x � 5yy� � 2y � 2e x5.

xy � sx � e xy�yy� � xy � x 2

y� � cos y � tan xy� � cos x � y

EXERCISES9.5



this case Kirchhoff’s Law gives

But (see Example 3 in Section 3.7), so we have

Suppose the resistance is , the capacitance is F, a 
battery gives a constant voltage of 60 V, and the initial charge
is C. Find the charge and the current at time .

30. In the circuit of Exercise 29, , , ,
and . Find the charge and the current at time .

Let be the performance level of someone learning a skill 
as a function of the training time . The graph of is called a
learning curve. In Exercise 13 in Section 9.1 we proposed the
differential equation

as a reasonable model for learning, where is a positive con-
stant. Solve it as a linear differential equation and use your
solution to graph the learning curve.

32. Two new workers were hired for an assembly line. Jim pro-
cessed 25 units during the first hour and 45 units during the
second hour. Mark processed 35 units during the first hour
and 50 units the second hour. Using the model of Exercise 31
and assuming that , estimate the maximum number
of units per hour that each worker is capable of processing.

In Section 9.3 we looked at mixing problems in which the 
volume of fluid remained constant and saw that such prob-
lems give rise to separable equations. (See Example 6 in that
section.) If the rates of flow into and out of the system are
different, then the volume is not constant and the resulting
differential equation is linear but not separable.

A tank contains 100 L of water. A solution with a salt con-
centration of is added at a rate of . The 
solution is kept mixed and is drained from the tank at a rate 
of . If is the amount of salt (in kilograms) after 

minutes, show that satisfies the differential equation

Solve this equation and find the concentration after
20 minutes.

34. A tank with a capacity of 400 L is full of a mixture of water
and chlorine with a concentration of 0.05 g of chlorine per 

dy

dt
� 2 �

3y

100 � 2t

yt
y�t�3 L�min

5 L�min0.4 kg�L

33.

P�0� � 0

k

dP

dt
� k�M � P�t��

Pt
P�t�31.

tE�t� � 10 sin 60t
Q�0� � 0C � 0.01 FR � 2 �

C

E R

tQ�0� � 0

0.055 �

R 
dQ

dt
�

1

C
 Q � E�t�

I � dQ�dt

RI �
Q

C
� E�t�

16. , ,

17. ,

18. , ,

,

20. ,

; 21–22 Solve the differential equation and use a graphing cal-
culator or computer to graph several members of the family of
solutions. How does the solution curve change as varies?

21. 22.

23. A Bernoulli differential equation (named after James
Bernoulli) is of the form

Observe that, if or , the Bernoulli equation is linear. 
For other values of , show that the substitution 
transforms the Bernoulli equation into the linear equation

24–25 Use the method of Exercise 23 to solve the differential
equation.

24.

26. Solve the second-order equation by 
making the substitution .

27. In the circuit shown in Figure 4, a battery supplies a constant
voltage of 40 V, the inductance is 2 H, the resistance is ,
and .
(a) Find .
(b) Find the current after s.

28. In the circuit shown in Figure 4, a generator supplies a volt-
age of volts, the inductance is H, the
resistance is , and A.
(a) Find .
(b) Find the current after s.

; (c) Use a graphing device to draw the graph of the current
function.

29. The figure shows a circuit containing an electromotive force, 
a capacitor with a capacitance of farads (F), and a resistor
with a resistance of ohms ( ). The voltage drop across the
capacitor is , where is the charge (in coulombs), so in QQ�C

�R
C

0.1
I�t�

I�0� � 120 �
1E�t� � 40 sin 60t

0.1
I�t�

I�0� � 0
10 �

u � y�
xy� � 2y� � 12x 2

y� �
2

x
 y �

 y 3

x 2
25.xy� � y � �xy 2

du

dx
� �1 � n�P�x�u � �1 � n�Q�x�

u � y 1�nn
1n � 0

dy

dx
� P�x�y � Q�x�y n

y� � �cos x�y � cos xxy� � 2y � e x

C

y�0� � 2�x 2 � 1� 
dy

dx
� 3x�y � 1� � 0

y�	� � 0xy� � y � x 2 sin x19.

y�4� � 20x � 02xy� � y � 6x

v�0� � 5
dv

dt
� 2tv � 3t 2e t 2

y�1� � 0t � 0t 
dy

dt
� 2y � t 3
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(a) Solve this as a linear equation to show that

(b) What is the limiting velocity?
(c) Find the distance the object has fallen after seconds.

36. If we ignore air resistance, we can conclude that heavier
objects fall no faster than lighter objects. But if we take air
resistance into account, our conclusion changes. Use the
expression for the velocity of a falling object in Exercise 35(a)
to find and show that heavier objects do fall faster than
lighter ones.

dv�dm

t

v �
mt

c
 �1 � e�ct�m �

liter. In order to reduce the concentration of chlorine, fresh
water is pumped into the tank at a rate of . The mixture is
kept stirred and is pumped out at a rate of . Find the
amount of chlorine in the tank as a function of time.

35. An object with mass is dropped from rest and we assume
that the air resistance is proportional to the speed of the object.
If is the distance dropped after seconds, then the speed is

and the acceleration is . If is the accelera-
tion due to gravity, then the downward force on the object is

, where is a positive constant, and Newton’s Second
Law gives

m 
dv

dt
� mt � cv

cmt � cv

ta � v��t�v � s��t�
ts�t�

m

10 L�s
4 L�s
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PREDATOR-PREY SYSTEMS

We have looked at a variety of models for the growth of a single species that lives alone in
an environment. In this section we consider more realistic models that take into account
the interaction of two species in the same habitat. We will see that these models take the
form of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food
supply and the second species, called the predator, feeds on the prey. Examples of prey and
predators include rabbits and wolves in an isolated forest, food fish and sharks, aphids and
ladybugs, and bacteria and amoebas. Our model will have two dependent variables and
both are functions of time. We let be the number of prey (using R for rabbits) and 
be the number of predators (with W for wolves) at time t.

In the absence of predators, the ample food supply would support exponential growth
of the prey, that is,

In the absence of prey, we assume that the predator population would decline at a rate pro-
portional to itself, that is,

With both species present, however, we assume that the principal cause of death among the
prey is being eaten by a predator, and the birth and survival rates of the predators depend
on their available food supply, namely, the prey. We also assume that the two species
encounter each other at a rate that is proportional to both populations and is therefore pro-
portional to the product RW. (The more there are of either population, the more encoun-
ters there are likely to be.) A system of two differential equations that incorporates these
assumptions is as follows:

where k, r, a, and b are positive constants. Notice that the term �aRW decreases the nat-
ural growth rate of the prey and the term bRW increases the natural growth rate of the 
predators.

 
dW

dt
� �rW � bRW 

dR

dt
� kR � aRW1

where r is a positive constant
dW

dt
� �rW

where k is a positive constant
dR

dt
� kR

W�t�R�t�

9.6

W represents the predator.

R represents the prey.



The equations in (1) are known as the predator-prey equations, or the Lotka-Volterra
equations. A solution of this system of equations is a pair of functions and that
describe the populations of prey and predator as functions of time. Because the system is
coupled (R and W occur in both equations), we can’t solve one equation and then the other;
we have to solve them simultaneously. Unfortunately, it is usually impossible to find
explicit formulas for R and W as functions of t. We can, however, use graphical methods
to analyze the equations. 

EXAMPLE 1 Suppose that populations of rabbits and wolves are described by the
Lotka-Volterra equations (1) with , , , and . The
time is measured in months.
(a) Find the constant solutions (called the equilibrium solutions) and interpret 
the answer.
(b) Use the system of differential equations to find an expression for .
(c) Draw a direction field for the resulting differential equation in the RW-plane. Then
use that direction field to sketch some solution curves.
(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves. Draw the
corresponding solution curve and use it to describe the changes in both population levels.
(e) Use part (d) to make sketches of R and W as functions of t.

SOLUTION
(a) With the given values of k, a, r, and b, the Lotka-Volterra equations become

Both R and W will be constant if both derivatives are 0, that is,

One solution is given by R � 0 and W � 0. (This makes sense: If there are no rabbits or
wolves, the populations are certainly not going to increase.) The other constant solution is

So the equilibrium populations consist of 80 wolves and 1000 rabbits. This means that
1000 rabbits are just enough to support a constant wolf population of 80. There are 
neither too many wolves (which would result in fewer rabbits) nor too few wolves
(which would result in more rabbits).

(b) We use the Chain Rule to eliminate t :

so
dW

dR
�

dW

dt

dR

dt

�
�0.02W � 0.00002RW

0.08R � 0.001RW

dW

dt
�

dW

dR
 
dR

dt

R �
0.02

0.00002
� 1000W �

0.08

0.001
� 80

 W� � W��0.02 � 0.00002R� � 0

 R� � R�0.08 � 0.001W� � 0

 
dW

dt
� �0.02W � 0.00002RW

 
dR

dt
� 0.08R � 0.001RW

dW�dR

t
b � 0.00002r � 0.02a � 0.001k � 0.08

V

W�t�R�t�
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as a model to explain the variations in the shark
and food-fish populations in the Adriatic Sea 
by the Italian mathematician Vito Volterra
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(c) If we think of W as a function of R, we have the differential equation

We draw the direction field for this differential equation in Figure 1 and we use it to
sketch several solution curves in Figure 2. If we move along a solution curve, we
observe how the relationship between R and W changes as time passes. Notice that the
curves appear to be closed in the sense that if we travel along a curve, we always return
to the same point. Notice also that the point (1000, 80) is inside all the solution curves.
That point is called an equilibrium point because it corresponds to the equilibrium solu-
tion R � 1000, W � 80.

When we represent solutions of a system of differential equations as in Figure 2, we
refer to the RW-plane as the phase plane, and we call the solution curves phase trajec-
tories. So a phase trajectory is a path traced out by solutions as time goes by. A
phase portrait consists of equilibrium points and typical phase trajectories, as shown in
Figure 2.

(d) Starting with 1000 rabbits and 40 wolves corresponds to drawing the solution curve
through the point . Figure 3 shows this phase trajectory with the direction
field removed. Starting at the point at time and letting increase, do we move
clockwise or counterclockwise around the phase trajectory? If we put and 

FIGURE 3
Phase trajectory through (1000, 40)
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in the first differential equation, we get

Since , we conclude that R is increasing at and so we move counter-
clockwise around the phase trajectory.

We see that at there aren’t enough wolves to maintain a balance between the popu-
lations, so the rabbit population increases. That results in more wolves and eventually
there are so many wolves that the rabbits have a hard time avoiding them. So the number
of rabbits begins to decline (at , where we estimate that R reaches its maximum popu-
lation of about 2800). This means that at some later time the wolf population starts to
fall (at , where and ). But this benefits the rabbits, so their popula-
tion later starts to increase (at , where and ). As a consequence, the
wolf population eventually starts to increase as well. This happens when the populations
return to their initial values of and , and the entire cycle begins again.

(e) From the description in part (d) of how the rabbit and wolf populations rise and fall,
we can sketch the graphs of and . Suppose the points , , and in Figure 3
are reached at times , , and . Then we can sketch graphs of R and W as in Figure 4.

To make the graphs easier to compare, we draw the graphs on the same axes but with
different scales for R and W, as in Figure 5. Notice that the rabbits reach their maximum
populations about a quarter of a cycle before the wolves.

M

FIGURE 5
Comparison of the rabbi

and wolf populations
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FIGURE 4
Graphs of the rabbit and wolf
populations as functions of time

In Module 9.6 you can change the
coefficients in the Lotka-Volterra equations
and observe the resulting changes in the
phase trajectory and graphs of the rabbit
and wolf populations.

TEC



An important part of the modeling process, as we discussed in Section 1.2, is to inter-
pret our mathematical conclusions as real-world predictions and to test the predictions
against real data. The Hudson’s Bay Company, which started trading in animal furs in
Canada in 1670, has kept records that date back to the 1840s. Figure 6 shows graphs of the
number of pelts of the snowshoe hare and its predator, the Canada lynx, traded by the com-
pany over a 90-year period. You can see that the coupled oscillations in the hare and lynx
populations predicted by the Lotka-Volterra model do actually occur and the period of
these cycles is roughly 10 years.

Although the relatively simple Lotka-Volterra model has had some success in explain-
ing and predicting coupled populations, more sophisticated models have also been pro-
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence
of predators, the prey grow according to a logistic model with carrying capacity K. Then
the Lotka-Volterra equations (1) are replaced by the system of differential equations

This model is investigated in Exercises 9 and 10.
Models have also been proposed to describe and predict population levels of two

species that compete for the same resources or cooperate for mutual benefit. Such models
are explored in Exercise 2.

 
dW

dt
� �rW � bRW 

dR
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� kR�1 �
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Relative abundance of hare and lynx

from Hudson’s Bay Company records
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2. Each system of differential equations is a model for two
species that either compete for the same resources or cooperate
for mutual benefit (flowering plants and insect pollinators, for
instance). Decide whether each system describes competition
or cooperation and explain why it is a reasonable model. (Ask
yourself what effect an increase in one species has on the
growth rate of the other.)

(a)

(b)

 
dy

dt
� 0.2y � 0.00008y 2 � 0.0002xy

 
dx

dt
� 0.15x � 0.0002x 2 � 0.0006xy

 
dy

dt
� 0.08x � 0.00004xy

 
dx

dt
� 0.12x � 0.0006x 2 � 0.00001xy

For each predator-prey system, determine which of the vari-
ables, or , represents the prey population and which repre-
sents the predator population. Is the growth of the prey
restricted just by the predators or by other factors as well? Do
the predators feed only on the prey or do they have additional
food sources? Explain.

(a)

(b)

 
dy

dt
� �0.015y � 0.00008xy

 
dx

dt
� 0.2x � 0.0002x 2 � 0.006xy

 
dy

dt
� 0.1y � 0.005xy

 
dx

dt
� �0.05x � 0.0001xy

yx
1.

EXERCISES9.6



6.

In Example 1(b) we showed that the rabbit and wolf popula-
tions satisfy the differential equation

By solving this separable differential equation, show that

where is a constant.
It is impossible to solve this equation for as an explicit

function of (or vice versa). If you have a computer algebra
system that graphs implicitly defined curves, use this equation
and your CAS to draw the solution curve that passes through
the point and compare with Figure 3.

8. Populations of aphids and ladybugs are modeled by the 
equations

(a) Find the equilibrium solutions and explain their 
significance.

(b) Find an expression for .
(c) The direction field for the differential equation in part (b)

is shown. Use it to sketch a phase portrait. What do the
phase trajectories have in common?
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3–4 A phase trajectory is shown for populations of rabbits 
and foxes .
(a) Describe how each population changes as time goes by.
(b) Use your description to make a rough sketch of the graphs of

R and F as functions of time.

4.

5–6 Graphs of populations of two species are shown. Use them
to sketch the corresponding phase trajectory.
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(b) Find all the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts at the
point . Describe what eventually happens to the
rabbit and wolf populations.

(d) Sketch graphs of the rabbit and wolf populations as func-
tions of time.

10. In Exercise 8 we modeled populations of aphids and ladybugs
with a Lotka-Volterra system. Suppose we modify those equa-
tions as follows:

(a) In the absence of ladybugs, what does the model predict
about the aphids?

(b) Find the equilibrium solutions.
(c) Find an expression for .
(d) Use a computer algebra system to draw a direction field

for the differential equation in part (c). Then use the
direction field to sketch a phase portrait. What do the
phase trajectories have in common?

(e) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory
and use it to describe how both populations change.

(f) Use part (e) to make rough sketches of the aphid and 
ladybug populations as functions of . How are the graphs
related to each other?

t

t � 0

dL�dA

 
dL

dt
� �0.5L � 0.0001AL

 
dA

dt
� 2A�1 � 0.0001A� � 0.01AL

CAS

�1000, 40�

(d) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory
and use it to describe how both populations change.

(e) Use part (d) to make rough sketches of the aphid and
ladybug populations as functions of . How are the graphs
related to each other?

9. In Example 1 we used Lotka-Volterra equations to model
populations of rabbits and wolves. Let’s modify those 
equations as follows:

(a) According to these equations, what happens to the rabbit
population in the absence of wolves?
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REVIEW

C O N C E P T  C H E C K

9

7. (a) Write a differential equation that expresses the law of 
natural growth. What does it say in terms of relative 
growth rate?

(b) Under what circumstances is this an appropriate model for
population growth?

(c) What are the solutions of this equation?

8. (a) Write the logistic equation.
(b) Under what circumstances is this an appropriate model for

population growth?

9. (a) Write Lotka-Volterra equations to model populations of
food fish and sharks .

(b) What do these equations say about each population in the
absence of the other?

�S��F�

1. (a) What is a differential equation?
(b) What is the order of a differential equation?
(c) What is an initial condition?

2. What can you say about the solutions of the equation
just by looking at the differential equation?

3. What is a direction field for the differential equation
?

4. Explain how Euler’s method works.

5. What is a separable differential equation? How do you solve it?

6. What is a first-order linear differential equation? How do you
solve it?

y� � F�x, y�

y� � x 2 � y 2



Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. All solutions of the differential equation are
decreasing functions.

2. The function is a solution of the differential
equation .

3. The equation is separable.

4. The equation is separable.y� � 3y � 2x � 6xy � 1

y� � x � y

x 2 y� � xy � 1
f �x� � �ln x��x

y� � �1 � y 4

5. The equation is linear.

6. The equation is linear.

7. If is the solution of the initial-value problem

then .lim t l � y � 5

y�0� � 1
dy

dt
� 2y�1 �

y

5	
y

y� � xy � e y

e xy� � y

T R U E - F A L S E  Q U I Z

1. (a) A direction field for the differential equation
is shown. Sketch the graphs of the

solutions that satisfy the given initial conditions.
(i) (ii)

(iii) (iv)
(b) If the initial condition is , for what values of 

is finite? What are the equilibrium solutions?

2. (a) Sketch a direction field for the differential equation
. Then use it to sketch the four solutions that 

satisfy the initial conditions , , 
, and .

(b) Check your work in part (a) by solving the differential
equation explicitly. What type of curve is each solution
curve?

3. (a) A direction field for the differential equation 
is shown. Sketch the solution of the initial-value problem

Use your graph to estimate the value of .y�0.3�

y�0� � 1y� � x 2 � y 2

y� � x 2 � y 2

y��2� � 1y�2� � 1
y�0� � �1y�0� � 1

y� � x�y

0 x

y

1 2

2

4

6

lim t l � y�t�c
y�0� � c

y�0� � 4.3y�0� � 3
y�0� � 1y�0� � �0.3

y� � y�y � 2��y � 4�

(b) Use Euler’s method with step size 0.1 to estimate 
where is the solution of the initial-value problem in
part (a). Compare with your estimate from part (a).

(c) On what lines are the centers of the horizontal line
segments of the direction field in part (a) located? What
happens when a solution curve crosses these lines?

4. (a) Use Euler’s method with step size 0.2 to estimate ,
where is the solution of the initial-value problem

(b) Repeat part (a) with step size 0.1.
(c) Find the exact solution of the differential equation and

compare the value at 0.4 with the approximations in
parts (a) and (b).

5–8 Solve the differential equation.

5. 6.

7. 8. x 2y� � y � 2x 3e�1�x2ye y2

y� � 2x � 3sx 

dx

dt
� 1 � t � x � txy� � xe�sin x � y cos x

y�0� � 1y� � 2xy 2

y�x�
y�0.4�

y�x�
y�0.3�

0 x

y

1 2_1_2

1

2

_1

_2

3_3

3

_3
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people and the number of uninfected people. In an isolated
town of 5000 inhabitants, 160 people have a disease at the
beginning of the week and 1200 have it at the end of the
week. How long does it take for of the population to
become infected?

20. The Brentano-Stevens Law in psychology models the way
that a subject reacts to a stimulus. It states that if represents
the reaction to an amount of stimulus, then the relative rates
of increase are proportional:

where is a positive constant. Find as a function of .

21. The transport of a substance across a capillary wall in lung
physiology has been modeled by the differential equation

where is the hormone concentration in the bloodstream, is
time, is the maximum transport rate, is the volume of the
capillary, and is a positive constant that measures the affin-
ity between the hormones and the enzymes that assist the
process. Solve this differential equation to find a relationship
between and .

22. Populations of birds and insects are modeled by the equations

(a) Which of the variables, or , represents the bird pop-
ulation and which represents the insect population?
Explain.

(b) Find the equilibrium solutions and explain their 
significance.

(c) Find an expression for .
(d) The direction field for the differential equation in part (c)

is shown. Use it to sketch the phase trajectory corre-
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9–11 Solve the initial-value problem.

9. ,

10. ,

11. ,

; 12. Solve the initial-value problem , , and
graph the solution.

13–14 Find the orthogonal trajectories of the family of curves.

13. 14.

15. (a) Write the solution of the initial-value problem

and use it to find the population when .
(b) When does the population reach 1200?

16. (a) The population of the world was 5.28 billion in 1990 and
6.07 billion in 2000. Find an exponential model for these
data and use the model to predict the world population in
the year 2020.

(b) According to the model in part (a), when will the world
population exceed 10 billion?

(c) Use the data in part (a) to find a logistic model for the
population. Assume a carrying capacity of 100 billion.
Then use the logistic model to predict the population in
2020. Compare with your prediction from the exponential
model.

(d) According to the logistic model, when will the world pop-
ulation exceed 10 billion? Compare with your prediction
in part (b).

17. The von Bertalanffy growth model is used to predict the
length of a fish over a period of time. If is the largest
length for a species, then the hypothesis is that the rate of
growth in length is proportional to , the length yet to
be achieved.
(a) Formulate and solve a differential equation to find an

expression for .
(b) For the North Sea haddock it has been determined that

, cm, and the constant of propor-
tionality is . What does the expression for become
with these data?

18. A tank contains 100 L of pure water. Brine that contains 
0.1 kg of salt per liter enters the tank at a rate of 10 L�min. 
The solution is kept thoroughly mixed and drains from the
tank at the same rate. How much salt is in the tank after 
6 minutes?

19. One model for the spread of an epidemic is that the rate of
spread is jointly proportional to the number of infected 

L�t�0.2
L�0� � 10L� � 53 cm

L�t�

L� � L

L�L�t�

t � 20

P�0� � 100
dP

dt
� 0.1P�1 �

P

2000�

y � e kxy � ke x

y�0� � 1y� � 3x 2e y

y�1� � 2xy� � y � x ln x

y�0� � 0�1 � cos x�y� � �1 � e�y�sin x

r�0� � 5
dr

dt
� 2tr � r
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(d) Sketch graphs of the bird and insect populations as func-
tions of time.

24. Barbara weighs 60 kg and is on a diet of 1600 calories per
day, of which 850 are used automatically by basal metabolism.
She spends about 15 cal�kg�day times her weight doing exer-
cise. If 1 kg of fat contains 10,000 cal and we assume that 
the storage of calories in the form of fat is efficient,
formulate a differential equation and solve it to find her
weight as a function of time. Does her weight ultimately
approach an equilibrium weight?

25. When a flexible cable of uniform density is suspended
between two fixed points and hangs of its own weight, the
shape of the cable must satisfy a differential equa-
tion of the form

where is a positive constant. Consider the cable shown in
the figure.
(a) Let in the differential equation. Solve the

resulting first-order differential equation (in ), and then
integrate to find .

(b) Determine the length of the cable.

xb0

y

_b

(0, a)

(b, h)(_b, h)

y
z

z � dy�dx

k

d 2y

dx 2 � k�1 � �dy

dx�2 

y � f �x�

100%

sponding to initial populations of 100 birds and 40,000
insects. Then use the phase trajectory to describe how
both populations change.

(e) Use part (d) to make rough sketches of the bird and insect
populations as functions of time. How are these graphs
related to each other?

23. Suppose the model of Exercise 22 is replaced by the 
equations

(a) According to these equations, what happens to the insect
population in the absence of birds?

(b) Find the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts with
100 birds and 40,000 insects. Describe what eventually
happens to the bird and insect populations.
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1. Find all functions such that is continuous and

2. A student forgot the Product Rule for differentiation and made the mistake of thinking 
that . However, he was lucky and got the correct answer. The function that he
used was and the domain of his problem was the interval . What was the
function ?

3. Let be a function with the property that , , and for
all real numbers and . Show that for all and deduce that .

4. Find all functions that satisfy the equation

5. Find the curve such that , , , and the area under the graph
of from to is proportional to the power of .

6. A subtangent is a portion of the -axis that lies directly beneath the segment of a tangent line
from the point of contact to the -axis. Find the curves that pass through the point and
whose subtangents all have length .

7. A peach pie is removed from the oven at 5:00 PM. At that time it is piping hot, . 
At 5:10 PM its temperature is ; at 5:20 PM it is . What is the temperature of the
room?

8. Snow began to fall during the morning of February 2 and continued steadily into the after-
noon. At noon a snowplow began removing snow from a road at a constant rate. The plow
traveled 6 km from noon to 1 PM but only 3 km from 1 PM to 2 PM. When did the snow begin
to fall? [Hints: To get started, let be the time measured in hours after noon; let be the
distance traveled by the plow at time ; then the speed of the plow is . Let be the num-
ber of hours before noon that it began to snow. Find an expression for the height of the snow
at time . Then use the given information that the rate of removal (in ) is constant.]

9. A dog sees a rabbit running in a straight line across an open field and gives chase. In a rectan-
gular coordinate system (as shown in the figure), assume:

(i) The rabbit is at the origin and the dog is at the point at the instant the dog first
sees the rabbit.

(ii) The rabbit runs up the -axis and the dog always runs straight for the rabbit.

(iii) The dog runs at the same speed as the rabbit.

(a) Show that the dog’s path is the graph of the function , where satisfies the differ-
ential equation 

(b) Determine the solution of the equation in part (a) that satisfies the initial conditions
when . [Hint: Let in the differential equation and solve the

resulting first-order equation to find ; then integrate to find .]
(c) Does the dog ever catch the rabbit?

yzz
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10. (a) Suppose that the dog in Problem 9 runs twice as fast as the rabbit. Find a differential
equation for the path of the dog. Then solve it to find the point where the dog catches the
rabbit.

(b) Suppose the dog runs half as fast as the rabbit. How close does the dog get to the rabbit?
What are their positions when they are closest?

11. A planning engineer for a new alum plant must present some estimates to his company regard-
ing the capacity of a silo designed to contain bauxite ore until it is processed into alum. The
ore resembles pink talcum powder and is poured from a conveyor at the top of the silo. The
silo is a cylinder 100 ft high with a radius of 200 ft. The conveyor carries and
the ore maintains a conical shape whose radius is 1.5 times its height.
(a) If, at a certain time , the pile is 60 ft high, how long will it take for the pile to reach the

top of the silo?
(b) Management wants to know how much room will be left in the floor area of the silo when

the pile is 60 ft high. How fast is the floor area of the pile growing at that height?
(c) Suppose a loader starts removing the ore at the rate of when the height of

the pile reaches 90 ft. Suppose, also, that the pile continues to maintain its shape. How
long will it take for the pile to reach the top of the silo under these conditions?

12. Find the curve that passes through the point and has the property that if the tangent line
is drawn at any point on the curve, then the part of the tangent line that lies in the first
quadrant is bisected at .

13. Recall that the normal line to a curve at a point on the curve is the line that passes through
and is perpendicular to the tangent line at . Find the curve that passes through the point

and has the property that if the normal line is drawn at any point on the curve, then 
the -intercept of the normal line is always 6.

14. Find all curves with the property that if the normal line is drawn at any point on the curve,
then the part of the normal line between and the -axis is bisected by the -axis.yxP

P

y
�3, 2�

PP
P

P
P

�3, 2�

20,000� ft3�h

t

60,000� ft3�h
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So far we have described plane curves by giving as a function of or 

as a function of or by giving a relation between and that defines 

implicitly as a function of . In this chapter we discuss two new methods

for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in

terms of a third variable called a parameter . Other curves, such as

the cardioid, have their most convenient description when we use a new coordinate

system, called the polar coordinate system.

�x � f �t�, y � t�t��t

yx

� f �x, y� � 0�x

yyx�x � t�y��y

x�y � f �x��xy

Parametric equations and polar coordinates enable us to
describe a great variety of new curves—some practical,
some beautiful, some fanciful, some strange.

PARAMETRIC EQUATIONS 
AND POLAR COORDINATES

10



CURVES DEFINED BY PARAMETRIC EQUATIONS

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form because C fails the Vertical Line Test. But
the x- and y-coordinates of the particle are functions of time and so we can write 
and . Such a pair of equations is often a convenient way of describing a curve and
gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a param-
eter) by the equations

(called parametric equations). Each value of determines a point , which we can
plot in a coordinate plane. As varies, the point varies and traces out
a curve , which we call a parametric curve. The parameter t does not necessarily repre-
sent time and, in fact, we could use a letter other than t for the parameter. But in many
applications of parametric curves, t does denote time and therefore we can interpret

as the position of a particle at time t.

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For instance, if
, then , and so the corresponding point is . In Figure 2 we plot the

points determined by several values of the parameter and we join them to produce
a curve.

A particle whose position is given by the parametric equations moves along the curve
in the direction of the arrows as increases. Notice that the consecutive points marked on
the curve appear at equal time intervals but not at equal distances. That is because the
particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a parabola.
This can be confirmed by eliminating the parameter as follows. We obtain 
from the second equation and substitute into the first equation. This gives

and so the curve represented by the given parametric equations is the parabola
. Mx � y 2 � 4y � 3

x � t 2 � 2t � �y � 1�2 � 2�y � 1� � y 2 � 4y � 3

t � y � 1t

t

t

FIGURE 2 
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C
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�x, y�t

y � t�t�x � f �t�

tyx
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x � f �t�

y � f �x�
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t x y

�2 8 �1
�1 3 0

0 0 1
1 �1 2
2 0 3
3 3 4
4 8 5

N This equation in and describes where the
particle has been, but it doesn’t tell us when the
particle was at a particular point. The parametric
equations have an advantage––they tell us
when the particle was at a point. They also indi-
cate the direction of the motion.

yx

C

0

(x, y)={f(t), g(t)}

FIGURE 1

y
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No restriction was placed on the parameter in Example 1, so we assumed that t could
be any real number. But sometimes we restrict t to lie in a finite interval. For instance, the
parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point and
ends at the point . The arrowhead indicates the direction in which the curve is traced
as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this
impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this example
the parameter can be interpreted as the angle (in radians) shown in Figure 4. As 
increases from 0 to , the point moves once around the circle in
the counterclockwise direction starting from the point .

M

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as 
increases from 0 to , the point starts at and moves twice
around the circle in the clockwise direction as indicated in Figure 5. M

Examples 2 and 3 show that different sets of parametric equations can represent the
same curve. Thus we distinguish between a curve, which is a set of points, and a parametric
curve, in which the points are traced in a particular way.

�0, 1��x, y� � �sin 2t, cos 2t�2�
tx 2 � y 2 � 1

x 2 � y 2 � sin2 2t � cos2 2t � 1

0 � t � 2�y � cos 2tx � sin 2t

FIGURE 4 
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EXAMPLE 4 Find parametric equations for the circle with center and radius .

SOLUTION If we take the equations of the unit circle in Example 2 and multiply the expres-
sions for and by , we get , . You can verify that these equations
represent a circle with radius and center the origin traced counterclockwise. We now
shift units in the -direction and units in the -direction and obtain parametric equa-
tions of the circle (Figure 6) with center and radius :

M

EXAMPLE 5 Sketch the curve with parametric equations , .

SOLUTION Observe that and so the point moves on the parabola
. But note also that, since , we have , so the para-

metric equations represent only the part of the parabola for which . Since
is periodic, the point moves back and forth infinitely often

along the parabola from to . (See Figure 7.) M
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Module 10.1A gives an animation of the
relationship between motion along a parametric
curve , and motion along the
graphs of and as functions of . Clicking on
TRIG gives you the family of parametric curves

If you choose and click 
on animate, you will see how the graphs of

and relate to the circle in
Example 2. If you choose ,

, you will see graphs as in Figure 8. By
clicking on animate or moving the -slider to 
the right, you can see from the color coding how
motion along the graphs of and

corresponds to motion along the para-
metric curve, which is called a Lissajous figure.
y � sin 2t

x � cos t

t
d � 2

a � b � c � 1
y � sin tx � cos t

a � b � c � d � 1

y � c sin dtx � a cos bt

ttf
y � t�t�x � f �t�
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GRAPHING DEVICES

Most graphing calculators and computer graphing programs can be used to graph curves
defined by parametric equations. In fact, it’s instructive to watch a parametric curve being
drawn by a graphing calculator because the points are plotted in order as the correspon-
ding parameter values increase.

EXAMPLE 6 Use a graphing device to graph the curve .

SOLUTION If we let the parameter be , then we have the equations

Using these parametric equations to graph the curve, we obtain Figure 9. It would be
possible to solve the given equation for y as four functions of x and
graph them individually, but the parametric equations provide a much easier method. M

In general, if we need to graph an equation of the form , we can use the para-
metric equations

Notice also that curves with equations (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

Graphing devices are particularly useful when sketching complicated curves. For 
instance, the curves shown in Figures 10, 11, and 12 would be virtually impossible to pro-
duce by hand.

One of the most important uses of parametric curves is in computer-aided design
(CAD). In the Laboratory Project after Section 10.2 we will investigate special parametric
curves, called Bézier curves, that are used extensively in manufacturing, especially in the
automotive industry. These curves are also employed in specifying the shapes of letters and
other symbols in laser printers.

THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as the
circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has
radius and rolls along the -axis and if one position of is the origin, find parametric
equations for the cycloid.
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FIGURE 10
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y=t+2 cos 5t
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FIGURE 11
x=1.5 cos t-cos 30t

y=1.5 sin t-sin 30t
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FIGURE 12
x=sin(t+cos 100t)

y=cos(t+sin 100t)
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An animation in Module 10.1B
shows how the cycloid is formed as the
circle moves.
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SOLUTION We choose as parameter the angle of rotation of the circle when is at
the origin). Suppose the circle has rotated through radians. Because the circle has been
in contact with the line, we see from Figure 14 that the distance it has rolled from the
origin is

Therefore the center of the circle is . Let the coordinates of be . Then
from Figure 14 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 14, which illustrates the

case where , it can be seen that these equations are still valid for other
values of (see Exercise 39).

Although it is possible to eliminate the parameter from Equations 1, the resulting
Cartesian equation in and is very complicated and not as convenient to work with as
the parametric equations. M

One of the first people to study the cycloid was Galileo, who proposed that bridges be
built in the shape of cycloids and who tried to find the area under one arch of a cycloid.
Later this curve arose in connection with the brachistochrone problem: Find the curve
along which a particle will slide in the shortest time (under the influence of gravity) from
a point to a lower point not directly beneath . The Swiss mathematician John
Bernoulli, who posed this problem in 1696, showed that among all possible curves that
join to , as in Figure 15, the particle will take the least time sliding from to if the
curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution to
the tautochrone problem; that is, no matter where a particle is placed on an inverted
cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens proposed
that pendulum clocks (which he invented) swing in cycloidal arcs because then the pendu-
lum takes the same time to make a complete oscillation whether it swings through a wide
or a small arc.

FAMILIES OF PARAMETRIC CURVES

EXAMPLE 8 Investigate the family of curves with parametric equations

What do these curves have in common? How does the shape change as increases?a

y � a tan t � sin tx � a � cos t
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SOLUTION We use a graphing device to produce the graphs for the cases , ,
, , , , , and shown in Figure 17. Notice that all of these curves (except

the case ) have two branches, and both branches approach the vertical asymptote
as approaches from the left or right.

When , both branches are smooth; but when reaches , the right branch
acquires a sharp point, called a cusp. For between and 0 the cusp turns into a loop,
which becomes larger as approaches 0. When , both branches come together and
form a circle (see Example 2). For between 0 and 1, the left branch has a loop, which
shrinks to become a cusp when . For , the branches become smooth again,
and as increases further, they become less curved. Notice that the curves with posi-
tive are reflections about the -axis of the corresponding curves with negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell. M

ay
aa

a � 1a � 1
a

a � 0a
�1a

�1aa � �1

a=_2 a=_1 a=_0.5 a=_0.2

a=2a=1a=0.5a=0

axx � a
a � 0

210.50�0.2�0.5
�1a � �2

8. ,

,

10. ,

11–18
(a) Eliminate the parameter to find a Cartesian equation of the

curve.
(b) Sketch the curve and indicate with an arrow the direction in

which the curve is traced as the parameter increases.

11. , ,

12. , ,

, ,

14. ,

15. ,

16. , ,

17. , y � cosh tx � sinh t

t 	 1y � st x � ln t

y � t � 1x � e 2t

y � e 2tx � et � 1

0 � t � ��2y � csc tx � sin t13.

���2 � � � ��2y � 5 sin �x � 4 cos �

0 � � � �y � cos �x � sin �

y � t 3x � t 2

y � 1 � tx � st 9.

y � 2 � t 2x � 1 � 3t1–4 Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve is
traced as increases.

1. , ,

2. , ,

3. , ,

, ,

5–10
(a) Sketch the curve by using the parametric equations to plot

points. Indicate with an arrow the direction in which the curve
is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of 
the curve.

5. ,

6. , ,

7. , , �3 � t � 4y � 5 � 2tx � t 2 � 2

�2 � t � 3y � 5 � 2tx � 1 � t

y � 2t � 1x � 3t � 5

�2 � t � 2y � e t � tx � e�t � t4.

�� � t � �y � t 2x � 5 sin t

0 � t � 2�y � t � cos tx � 2 cos t

0 � t � 5y � t 2 � 4 tx � 1 � st 

t

EXERCISES10.1
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FIGURE 17 Members of the family
x=a+cos t, y=a tan t+sin t,

all graphed in the viewing rectangle
�_4, 4� by �_4, 4�



25–27 Use the graphs of and to sketch the
parametric curve , . Indicate with arrows the
direction in which the curve is traced as increases.

25.

26.

27.

28. Match the parametric equations with the graphs labeled I-VI.
Give reasons for your choices. (Do not use a graphing
device.)
(a) ,
(b) ,
(c) ,
(d) ,
(e) ,

(f) ,

; 29. Graph the curve .

; 30. Graph the curves and and find their
points of intersection correct to one decimal place.

x � y�y � 1�2y � x 5

x � y � 3y 3 � y 5

x

y

x

y

x

y

x

y

x

y

x

y

I II III

IV V VI

y �
cos 2t

4 � t 2x �
sin 2t

4 � t 2

y � t 2 � cos 3tx � t � sin 4t
y � sin 2tx � cos 5t
y � sin�t � sin 2t�x � sin 2t

y � st  x � t 2 � 2t
y � t 2x � t 4 � t � 1

t

y

1

1t

x

1

1

t

x

1

1 t

y

1

1

t

x

_1

1 t

y

1

1

t
y � t�t�x � f �t�

y � t�t�x � f �t�18. ,

19–22 Describe the motion of a particle with position as 
varies in the given interval.

19. , ,

20. , ,

, ,

22. , ,

23. Suppose a curve is given by the parametric equations ,
, where the range of is and the range of is

. What can you say about the curve?

24. Match the graphs of the parametric equations and
in (a)–(d) with the parametric curves labeled I–IV.

Give reasons for your choices.

(c) III

t

2

2

yx

t

2

2

(d) IV

t

2

2

yx

t

2

2

y

x

2

2

1

y

x

1

2

t

x

2

1

1

t

y

1

1

y

x

2

2

(a) I

(b) II
x

t

2

1 t

2

1

y y

x

2

2

y � t�t�
x � f �t�

�2, 3�
t�1, 4�fy � t�t�

x � f �t�

�2� � t � 2�y � cos2tx � sin t

�� � t � 5�y � 2 cos tx � 5 sin t21.

0 � t � 3��2y � 4 � cos tx � 2 sin t

��2 � t � 3��2y � 1 � 2 sin tx � 3 � 2 cos t

t
�x, y�

y � 5 sinh tx � 2 cosh t
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If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point 
in the figure, using the angle as the parameter. Then elimi-
nate the parameter and identify the curve.

42. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point 
in the figure, using the angle as the parameter. The line seg-
ment is tangent to the larger circle.

43. A curve, called a witch of Maria Agnesi, consists of all pos-
sible positions of the point in the figure. Show that para-
metric equations for this curve can be written as 

Sketch the curve.

44. (a) Find parametric equations for the set of all points as
shown in the figure such that . (This curve
is called the cissoid of Diocles after the Greek scholar
Diocles, who introduced the cissoid as a graphical method
for constructing the edge of a cube whose volume is twice
that of a given cube.)

� OP � � � AB �
P

O x

a

A P

y=2a

¨

y
C

y � 2a sin2�x � 2a cot �

P

O x

y

¨

a
b

A

B

P

AB
�

P
ba

O

y

x

¨

a
b P

�
P

ba41.(a) Show that the parametric equations

where , describe the line segment that joins the
points and .

(b) Find parametric equations to represent the line segment
from to .

; 32. Use a graphing device and the result of Exercise 31(a) to
draw the triangle with vertices , , and .

Find parametric equations for the path of a particle that
moves along the circle in the manner
described.
(a) Once around clockwise, starting at 
(b) Three times around counterclockwise, starting at 
(c) Halfway around counterclockwise, starting at 

; (a) Find parametric equations for the ellipse
. [Hint: Modify the equations of 

the circle in Example 2.]
(b) Use these parametric equations to graph the ellipse when

and b � 1, 2, 4, and 8.
(c) How does the shape of the ellipse change as b varies?

; 35–36 Use a graphing calculator or computer to reproduce the
picture.

35. 36.

37–38 Compare the curves represented by the parametric equa-
tions. How do they differ?

37. (a) , (b) ,
(c) ,

38. (a) , (b) ,
(c) ,

39. Derive Equations 1 for the case .

40. Let be a point at a distance from the center of a circle of
radius . The curve traced out by as the circle rolls along a
straight line is called a trochoid. (Think of the motion of a
point on a spoke of a bicycle wheel.) The cycloid is the spe-
cial case of a trochoid with . Using the same parameter

as for the cycloid and, assuming the line is the -axis and
when is at one of its lowest points, show that 

parametric equations of the trochoid are

Sketch the trochoid for the cases and .d � rd � r

 y � r � d cos � x � r� � d sin �

P� � 0
x�

d � r

Pr
dP

��2 � � � �

y � e�2tx � e t
y � sec2tx � cos ty � t �2x � t

y � e�2tx � e�3t
y � t 4x � t 6y � t 2x � t 3

0

y

x

2

3 8

4

0

2

y

x2

a � 3

x 2�a 2 � y 2�b 2 � 1
34.

�0, 3�
�2, 1�

�2, 1�

x 2 � �y � 1�2 � 4
33.

C �1, 5�B �4, 2�A �1, 1�

�3, �1���2, 7�

P2�x 2, y2 �P1�x1, y1�
0 � t � 1

y � y1 � �y2 � y1�tx � x1 � �x 2 � x1�t

31.
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given by the parametric equations

where is the acceleration due to gravity ( m�s ).
(a) If a gun is fired with and m�s, when 

will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached 
by the bullet?

; (b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other 
values of the angle to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the 
parameter.

; Investigate the family of curves defined by the parametric
equations , . How does the shape change 
as increases? Illustrate by graphing several members of the
family.

; 48. The swallowtail catastrophe curves are defined by the para-
metric equations , . Graph 
several of these curves. What features do the curves have 
in common? How do they change when increases?

; The curves with equations , are
called Lissajous figures. Investigate how these curves vary
when , , and vary. (Take to be a positive integer.)

; 50. Investigate the family of curves defined by the parametric
equations , , where . Start 
by letting be a positive integer and see what happens to the
shape as increases. Then explore some of the possibilities
that occur when is a fraction.c

c
c

c � 0y � sin t � sin ctx � cos t

nnba

y � b cos tx � a sin nt49.

c

y � �ct 2 � 3t 4x � 2ct � 4t 3

c
y � t 3 � ctx � t 2

47.




v0 � 500
 � 30�

29.8t

y � �v0 sin 
�t �
1
2 tt 2x � �v0 cos 
�t

(b) Use the geometric description of the curve to draw a
rough sketch of the curve by hand. Check your work by
using the parametric equations to graph the curve.

; 45. Suppose that the position of one particle at time is given by

and the position of a second particle is given by

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points? 
In other words, are the particles ever at the same place at
the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

46. If a projectile is fired with an initial velocity of meters per
second at an angle above the horizontal and air resistance
is assumed to be negligible, then its position after seconds is t



v0

x 2 � 3 � cos t y2 � 1 � sin t 0 � t � 2�

0 � t � 2�y2 � 1 � sin tx 2 � �3 � cos t

0 � t � 2�y1 � 2 cos tx1 � 3 sin t

t

xO

y

A

P
x=2a

B

a

In this project we investigate families of curves, called hypocycloids and epicycloids, that are
generated by the motion of a point on a circle that rolls inside or outside another circle.

1. A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls on
the inside of a circle with center O and radius a. Show that if the initial position of P is 
and the parameter is chosen as in the figure, then parametric equations of the hypocycloid
are

2. Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs
of hypocycloids with a a positive integer and b � 1. How does the value of a affect the graph?
Show that if we take a � 4, then the parametric equations of the hypocycloid reduce to

This curve is called a hypocycloid of four cusps, or an astroid.

y � 4 sin3�x � 4 cos3�

y � �a � b� sin � � b sin�a � b

b
 �	x � �a � b� cos � � b cos�a � b

b
 �	

�
�a, 0�

; RUNNING CIRCLES AROUND CIRCLESL A B O R AT O R Y
P R O J E C T

xO

y

a

C

P
b

(a, 0)¨

A

Look at Module 10.1B to see how
hypocycloids and epicycloids are formed by 
the motion of rolling circles.

TEC
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3. Now try b � 1 and , a fraction where n and d have no common factor. First let n � 1
and try to determine graphically the effect of the denominator d on the shape of the graph.
Then let n vary while keeping d constant. What happens when ?

4. What happens if and is irrational? Experiment with an irrational number like 
or . Take larger and larger values for and speculate on what would happen if we

were to graph the hypocycloid for all real values of .

5. If the circle rolls on the outside of the fixed circle, the curve traced out by is called an
epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2–4.

PC

�
�e � 2s2 

ab � 1

n � d � 1

a � n�d

CALCULUS WITH PARAMETRIC CURVES

Having seen how to represent curves by parametric equations, we now apply the methods
of calculus to these parametric curves. In particular, we solve problems involving tangents,
area, arc length, and surface area.

TANGENTS

In the preceding section we saw that some curves defined by parametric equations 
and can also be expressed, by eliminating the parameter, in the form .
(See Exercise 67 for general conditions under which this is possible.) If we substitute

and in the equation , we get

and so, if , , and are differentiable, the Chain Rule gives

If , we can solve for :

Since the slope of the tangent to the curve at is , Equation 1
enables us to find tangents to parametric curves without having to eliminate the parameter.
Using Leibniz notation, we can rewrite Equation 1 in an easily remembered form:

It can be seen from Equation 2 that the curve has a horizontal tangent when 
(provided that ) and it has a vertical tangent when (provided that

). This information is useful for sketching parametric curves.dy�dt � 0
dx�dt � 0dx�dt � 0

dy�dt � 0

dx

dt
� 0if

dy

dx
�

dy

dt

dx

dt

2

F��x��x, F�x��y � F�x�

F��x� �
t��t�
f ��t�

1

F��x�f ��t� � 0

t��t� � F�� f �t��f ��t� � F��x� f ��t�

fFt

t�t� � F� f �t��

y � F�x�y � t�t�x � f �t�

y � F�x�y � t�t�
x � f �t�

10.2

N If we think of a parametric curve as being
traced out by a moving particle, then and

are the vertical and horizontal velocities
of the particle and Formula 2 says that the slope
of the tangent is the ratio of these velocities.

dx�dt
dy�dt



As we know from Chapter 4, it is also useful to consider . This can be found by
replacing y by dy�dx in Equation 2:

EXAMPLE 1 A curve is defined by the parametric equations ,
(a) Show that has two tangents at the point (3, 0) and find their equations.
(b) Find the points on where the tangent is horizontal or vertical.
(c) Determine where the curve is concave upward or downward.
(d) Sketch the curve.

SOLUTION
(a) Notice that when or . Therefore the
point on arises from two values of the parameter, and . This
indicates that crosses itself at . Since

the slope of the tangent when is , so the equa-
tions of the tangents at are

(b) has a horizontal tangent when , that is, when and .
Since , this happens when , that is, . The corresponding
points on are and (1, 2). has a vertical tangent when , that is,

.  (Note that there.) The corresponding point on is (0, 0).

(c) To determine concavity we calculate the second derivative:

Thus the curve is concave upward when and concave downward when .

(d) Using the information from parts (b) and (c), we sketch in Figure 1. M

EXAMPLE 2
(a) Find the tangent to the cycloid , at the point
where .  (See Example 7 in Section 10.1.)
(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION
(a) The slope of the tangent line is

dy

dx
�

dy�d�

dx�d�
�

r sin �

r�1 � cos ��
�

sin �

1 � cos �

� � ��3
y � r �1 � cos ��x � r�� � sin ��

V

C

t � 0t � 0

d 2y

dx 2 �

d

dt
 �dy

dx�
dx

dt

�

3

2
 �1 �

1

t 2�
2t

�
3�t 2 � 1�

4t 3

Cdy�dt � 0t � 0
dx�dt � 2t � 0C�1, �2�C

t � 	1t 2 � 1dy�dt � 3t 2 � 3
dx�dt � 0dy�dt � 0dy�dx � 0C

y � �s3  �x � 3�andy � s3  �x � 3�

�3, 0�
dy�dx � 	6�(2s3 ) � 	s3 t � 	s3 

dy

dx
�

dy�dt

dx�dt
�

3t 2 � 3

2t
�

3

2
 �t �

1

t �
�3, 0�C

t � �s3 t � s3 C�3, 0�
t � 	s3 t � 0y � t 3 � 3t � t�t 2 � 3� � 0

C
C

y � t 3 � 3t.x � t 2C

d 2y

dx 2 �
d

dx
 �dy

dx� �

d

dt
 �dy

dx�
dx

dt

d 2y�dx 2

| Note that
d 2y

dx2 �

d 2y

dt 2

d 2x

dt 2
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FIGURE 1  



When , we have

and

Therefore the slope of the tangent is and its equation is

The tangent is sketched in Figure 2.

(b) The tangent is horizontal when , which occurs when and
, that is, , an integer. The corresponding point on the

cycloid is .
When , both and are 0. It appears from the graph that there are

vertical tangents at those points. We can verify this by using l’Hospital’s Rule as follows:

A similar computation shows that as , so indeed there are verti-
cal tangents when , that is, when . M

AREAS

We know that the area under a curve from to is , where
. If the curve is traced out once by the parametric equations and ,

, then we can calculate an area formula by using the Substitution Rule for
Definite Integrals as follows:

EXAMPLE 3 Find the area under one arch of the cycloid

(See Figure 3.)

y � r�1 � cos ��x � r�� � sin ��

V

�or y



�
 t�t� f ��t� dt�A � y

b

a
 y dx � y

�



 t�t� f ��t� dt


 � t � �
y � t�t�x � f �t�F�x� 
 0

A � x
b
a
 F�x� dxbay � F�x�

x � 2n�r� � 2n�
� l 2n��dy�dx l ��

lim
� l

 

2n��
 
dy

dx
� lim

� l
 

2n��
 

sin �

1 � cos �
�  lim

� l
 

2n��
 
cos �

sin �
� �

dy�d�dx�d�� � 2n�
��2n � 1��r, 2r�

n� � �2n � 1��1 � cos � � 0
sin � � 0dy�dx � 0

FIGURE 2  0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π

3
¨=

s3  x � y � r� �

s3 � 2�ory �
r

2
� s3  �x �

r�

3
�

rs3 

2 �
s3 

dy

dx
�

sin���3�
1 � cos���3�

�
s3 �2

1 �
1
2

� s3 

y � r�1 � cos 
�

3 � �
r

2
x � r��

3
� sin 

�

3 � � r��

3
�

s3 

2 �
� � ��3
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N The limits of integration for are found as
usual with the Substitution Rule. When 

is either . When is the 
remaining value.

x � b, t
 or �t
x � a,

t



SOLUTION One arch of the cycloid is given by . Using the Substitution Rule
with and , we have

M

ARC LENGTH

We already know how to find the length of a curve given in the form ,
. Formula 8.1.3 says that if is continuous, then

Suppose that can also be described by the parametric equations and ,
, where . This means that is traversed once, from left to

right, as increases from to and , . Putting Formula 2 into Formula
3 and using the Substitution Rule, we obtain

Since , we have

Even if can’t be expressed in the form , Formula 4 is still valid but we obtain
it by polygonal approximations. We divide the parameter interval into n subintervals
of equal width . If , , , . . . , are the endpoints of these subintervals, then 
and are the coordinates of points that lie on and the polygon with ver-
tices , , . . . , approximates . (See Figure 4.)

As in Section 8.1, we define the length of to be the limit of the lengths of these
approximating polygons as :

The Mean Value Theorem, when applied to on the interval , gives a number in
such that

If we let and , this equation becomes

�xi � f ��ti*� �t

�yi � yi � yi�1�xi � xi � xi�1

f �ti� � f �ti�1� � f ��ti*��ti � ti�1�
�ti�1, ti�

ti*	ti�1, ti
f

L � lim
nl �

 �
n

i�1
 � Pi�1Pi �

n l �
CL

CPnP1P0

CPi�xi, yi�yi � t�ti�
xi � f �ti�tnt2t1t0�t

	
, �

y � F�x�C

L � y
�




 
�dx

dt �2

� �dy

dt �2 

 dt4

dx�dt � 0

L � y
b

a
 
1 � �dy

dx�2 

 dx � y
�




 
1 � �dy�dt

dx�dt�2 

 
dx

dt
 dt

f ��� � bf �
� � a�
t
Cdx�dt � f ��t� � 0
 � t � �

y � t�t�x � f �t�C

L � y
b

a
 
1 � �dy

dx�2 

 dx3

F�a � x � b
y � F�x�CL

� r 2( 3
2 � 2�) � 3�r 2� r 2[ 3

2 � � 2 sin � �
1
4 sin 2�]0

2�

 � r 2 y
2�

0
 [1 � 2 cos � �

1
2 �1 � cos 2��] d�

 � r 2 y
2�

0
 �1 � cos ��2 d� � r 2 y

2�

0
 �1 � 2 cos � � cos2�� d�

 A � y
2�r

0
 y dx � y

2�

0
 r �1 � cos �� r�1 � cos �� d�

dx � r�1 � cos �� d�y � r�1 � cos ��
0 � � � 2�
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N The result of Example 3 says that the area
under one arch of the cycloid is three times the
area of the rolling circle that generates the
cycloid (see Example 7 in Section 10.1). Galileo
guessed this result but it was first proved by the
French mathematician Roberval and the Italian
mathematician Torricelli.

FIGURE 3  
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Similarly, when applied to , the Mean Value Theorem gives a number in such
that

Therefore

and so

The sum in (5) resembles a Riemann sum for the function but it is not
exactly a Riemann sum because in general. Nevertheless, if and are contin-
uous, it can be shown that the limit in (5) is the same as if and were equal, namely,

Thus, using Leibniz notation, we have the following result, which has the same form as
Formula (4).

THEOREM If a curve is described by the parametric equations ,
, , where and are continuous on and is traversed

exactly once as increases from to , then the length of is

Notice that the formula in Theorem 6 is consistent with the general formulas
and of Section 8.1.

EXAMPLE 4 If we use the representation of the unit circle given in Example 2 in Sec-
tion 10.1,

then and , so Theorem 6 gives

as expected. If, on the other hand, we use the representation given in Example 3 in Sec-
tion 10.1,

then , , and the integral in Theorem 6 gives

y
2�

0
 
�dx

dt �2

� �dy

dt �2 

 dt � y
2�

0
 s4 cos2 2t � 4 sin2 2t  dt � y

2�

0
 2 dt � 4�

dy�dt � �2 sin 2tdx�dt � 2 cos 2t

0 � t � 2�y � cos 2tx � sin 2t

� y
2�

0
 dt � 2�L � y

2�

0

�dx

dt �2

� �dy

dt �2 

 dt � y
2�

0
ssin2t � cos2t  dt

dy�dt � cos tdx�dt � �sin t

0 � t � 2�y � sin tx � cos t

�ds�2 � �dx�2 � �dy�2
L � x ds

L � y
�




 
�dx

dt �2

� �dy

dt �2 

 dt

C�
t
C	
, �
t�f �
 � t � �y � t�t�

x � f �t�C6

L � y
�



 s	 f ��t�
2 � 	t��t�
2  dt

ti**ti*
t�f �ti* � ti**

s	 f ��t�
2 � 	t��t�
2 

L � lim
n l �

 �
n

i�1
 s	 f ��ti*�
2 � 	t��ti

**�
2  �t5

� s	 f ��ti*�
2 � 	t��ti
**�
2  �t

� s	 f ��ti*��t
2 � 	t��ti
**��t
2 � Pi�1Pi � � s��xi�2 � ��yi �2 

�yi � t��ti**� �t

�ti�1, ti�ti**t
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| Notice that the integral gives twice the arc length of the circle because as increases
from 0 to , the point traverses the circle twice. In general, when finding
the length of a curve from a parametric representation, we have to be careful to ensure
that is traversed only once as increases from to . M

EXAMPLE 5 Find the length of one arch of the cycloid ,

SOLUTION From Example 3 we see that one arch is described by the parameter interval
. Since

we have

To evaluate this integral we use the identity with , which
gives . Since , we have and so

. Therefore

and so

M

SURFACE AREA

In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for
surface area. If the curve given by the parametric equations , , ,
is rotated about the -axis, where , are continuous and , then the area of the
resulting surface is given by

The general symbolic formulas and (Formulas 8.2.7 and
8.2.8) are still valid, but for parametric curves we use

EXAMPLE 6 Show that the surface area of a sphere of radius is .

SOLUTION The sphere is obtained by rotating the semicircle

0 � t � �y � r sin tx � r cos t

4�r 2r

ds � 
�dx

dt �2

� �dy

dt �2 

 dt 

S � x 2�x dsS � x 2�y ds

S � y
�



 2�y
�dx

dt �2

� �dy

dt �2 

 dt 7

t�t� 
 0t�f �x

 � t � �y � t�t�x � f �t�

 � 2r	2 � 2
 � 8r

 L � 2r y
2�

0
 sin���2� d� � 2r	�2 cos���2�]0

2�

s2�1 � cos �� � s4 sin2���2� � 2 � sin���2� � � 2 sin���2�

sin���2� 
 0
0 � ��2 � �0 � � � 2�1 � cos � � 2 sin2���2�

� � 2xsin2x � 1
2 �1 � cos 2x�

 � y
2�

0
 sr 2�1 � 2 cos � � cos2� � sin2��  d� � r y

2�

0
 s2�1 � cos ��  d�

 L � y
2�

0
 
� dx

d��2

� � dy

d��2 

 d� � y
2�

0
 sr 2�1 � cos ��2 � r 2 sin2�   d�

dy

d�
� r sin �and

dx

d�
� r�1 � cos ��

0 � � � 2�

y � r�1 � cos ��.
x � r �� � sin ��V

�
tC
C
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N The result of Example 5 says that the length of
one arch of a cycloid is eight times the radius of
the generating circle (see Figure 5). This was first
proved in 1658 by Sir Christopher Wren, who
later became the architect of St. Paul’s Cathedral
in London.

FIGURE 5

0

y

x2πr

r

L=8r



about the -axis. Therefore, from Formula 7, we get

M� 2�r 2��cos t�]0

�

� 4�r 2� 2�r 2 y
�

0
 sin t dt

� 2� y
�

0
 r sin t � r dt� 2� y

�

0
 r sin t sr 2�sin2t � cos2t� dt

S � y
�

0
 2�r sin t s��r sin t�2 � �r cos t�2 dt

x
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19. ,

20. ,

; 21. Use a graph to estimate the coordinates of the rightmost point
on the curve , . Then use calculus to find the
exact coordinates.

; 22. Use a graph to estimate the coordinates of the lowest point and
the leftmost point on the curve , . Then
find the exact coordinates.

; 23–24 Graph the curve in a viewing rectangle that displays all the
important aspects of the curve.

,

24. ,

Show that the curve , has two tangents
at and find their equations. Sketch the curve.

; 26. Graph the curve , to
discover where it crosses itself. Then find equations of both
tangents at that point.

27. (a) Find the slope of the tangent line to the trochoid
, in terms of . (See Exer-

cise 40 in Section 10.1.)
(b) Show that if , then the trochoid does not have a 

vertical tangent.

28. (a) Find the slope of the tangent to the astroid ,
in terms of . (Astroids are explored in the

Laboratory Project on page 629.)
(b) At what points is the tangent horizontal or vertical?
(c) At what points does the tangent have slope 1 or ?

29. At what points on the curve , does the
tangent line have slope ?

30. Find equations of the tangents to the curve ,
that pass through the point .

Use the parametric equations of an ellipse, ,
, , to find the area that it encloses.0 � � � 2�y � b sin �

x � a cos �31.

�4, 3�y � 2t 3 � 1
x � 3t 2 � 1

1
y � 1 � 4t � t 2x � 2t 3

�1

�y � a sin3�
x � a cos3�

d � r

�y � r � d cos �x � r� � d sin �

y � sin t � 2 sin 2tx � cos t � 2 cos 2t

�0, 0�
y � sin t cos tx � cos t25.

y � 2t 2 � tx � t 4 � 4t 3 � 8t 2

y � t 3 � tx � t 4 � 2t 3 � 2t 223.

y � t � t 4x � t 4 � 2t

y � e tx � t � t 6

y � 2 sin �x � cos 3�

y � sin 2�x � 2 cos �1–2 Find .

1. , 2. ,

3–6 Find an equation of the tangent to the curve at the point corre-
sponding to the given value of the parameter.

3. , ;

4. , ;

, ;

6. , ;

7–8 Find an equation of the tangent to the curve at the given point
by two methods: (a) without eliminating the parameter and (b) by
first eliminating the parameter.

7. , ;

8. , ;

; 9–10 Find an equation of the tangent(s) to the curve at the given
point. Then graph the curve and the tangent(s).

9. , ;

10. , ;

11–16 Find and . For which values of is the curve
concave upward?

, 12. ,

13. , 14. ,

15. , ,

16. , ,

17–20 Find the points on the curve where the tangent is horizontal
or vertical. If you have a graphing device, graph the curve to check
your work.

17. ,

18. , y � 2t 3 � 3t 2 � 1x � 2t 3 � 3t 2 � 12t

y � t 3 � 12tx � 10 � t 2

0 � t � �y � cos tx � cos 2 t

0 � t � 2�y � 3 cos tx � 2 sin t

y � t � ln tx � t � ln ty � t � e� tx � t � e t

y � t 2 � 1x � t 3 � 12ty � t 2 � t 3x � 4 � t 211.

td 2 y�dx 2dy�dx

��1, 1�y � sin t � sin 2tx � cos t � cos 2t

�0, 0�y � t 2 � tx � 6 sin t

(1, s2)y � sec �x � tan �

�1, 3�y � t 2 � 2x � 1 � ln t

� � 0y � sin � � cos 2�x � cos � � sin 2�

t � 1y � t � ln t 2x � est 

5.

t � 1y � 1 � t 2x � t � t�1

t � �1y � t 3 � tx � t 4 � 1

y � st  e�tx � 1�ty � t 2 � tx � t sin t

dy�dx

EXERCISES10.2



49. Use Simpson’s Rule with to estimate the length of the
curve , , .

50. In Exercise 43 in Section 10.1 you were asked to derive the
parametric equations , for the
curve called the witch of Maria Agnesi. Use Simpson’s Rule
with to estimate the length of the arc of this curve
given by .

51–52 Find the distance traveled by a particle with position 
as varies in the given time interval. Compare with the length of
the curve.

51. , ,

52. , ,

53. Show that the total length of the ellipse ,
, , is

where is the eccentricity of the ellipse , where
.

54. Find the total length of the astroid , ,
where 

55. (a) Graph the epitrochoid with equations

What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of this

curve.

56. A curve called Cornu’s spiral is defined by the parametric
equations

where and are the Fresnel functions that were introduced
in Chapter 5.
(a) Graph this curve. What happens as and as 

?
(b) Find the length of Cornu’s spiral from the origin to the

point with parameter value .

57–58 Set up an integral that represents the area of the surface
obtained by rotating the given curve about the -axis. Then use
your calculator to find the surface area correct to four decimal
places.

57. , ,

58. , , 0 � t � ��3y � sin 3tx � sin2t

0 � t � 1y � �t 2 � 1�e tx � 1 � te t

x

t

t l ��
t l �

SC

 y � S�t� � y
t

0
 sin��u 2�2� du

 x � C�t� � y
t

0
 cos��u 2�2� du

CAS

 y � 11 sin t � 4 sin�11t�2�

 x � 11 cos t � 4 cos�11t�2�

CAS

a � 0.
y � a sin3�x � a cos3�

c � sa 2 � b 2 )
(e � c�ae

L � 4a y
��2

0
 s1 � e 2 sin2�   d�

a � b � 0y � b cos �
x � a sin �

0 � t � 4�y � cos tx � cos2t

0 � t � 3�y � cos2tx � sin2t

t
�x, y�

��4 � � � ��2
n � 4

y � 2a sin2�x � 2a cot �

�6 � t � 6y � t � e tx � t � e t
n � 632. Find the area enclosed by the curve , and

the .

33. Find the area enclosed by the and the curve 
, .

34. Find the area of the region enclosed by the astroid
, . (Astroids are explored in the Labo-

ratory Project on page 629.)

35. Find the area under one arch of the trochoid of Exercise 40 in
Section 10.1 for the case .

36. Let be the region enclosed by the loop of the curve in
Example 1.
(a) Find the area of .
(b) If is rotated about the -axis, find the volume of the

resulting solid.
(c) Find the centroid of .

37–40 Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four decimal
places.

37. , ,

38. , ,

39. , ,

40. , ,

41–44 Find the exact length of the curve.

, ,

42. , ,

43. , ,

44. , ,

; 45–47 Graph the curve and find its length.

, ,

46. , ,

47. , ,

48. Find the length of the loop of the curve ,
.y � 3t 2

x � 3t � t 3

�8 � t � 3y � 4e t�2x � e t � t

��4 � t � 3��4y � sin tx � cos t � ln(tan 12 t)
0 � t � �y � e t sin tx � e t cos t45.

0 � t � �y � 3 sin t � sin 3tx � 3 cos t � cos 3t

0 � t � 2y � ln�1 � t�x �
t

1 � t

0 � t � 3y � 5 � 2tx � et � e�t

0 � t � 1y � 4 � 2t 3x � 1 � 3t 241.

1 � t � 5y � st � 1x � ln t

0 � t � 2�y � t � sin tx � t � cos t

�3 � t � 3y � t 2x � 1 � e t

1 � t � 2y � 4
3 t 3�2x � t � t 2

�

x�
�

�

d � r

y

x0 a_a

_a

a

y � a sin3�x � a cos3�

y � t � t 2x � 1 � e t
x-axis

y-axis
y � st x � t 2 � 2t

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES | | | | 637



(b) By regarding a curve as the parametric curve
, , with parameter , show that the formula

in part (a) becomes

70. (a) Use the formula in Exercise 69(b) to find the curvature of
the parabola at the point .

(b) At what point does this parabola have maximum
curvature?

71. Use the formula in Exercise 69(a) to find the curvature of the
cycloid , at the top of one of its
arches.

72. (a) Show that the curvature at each point of a straight line 
is .

(b) Show that the curvature at each point of a circle of 
radius is .

73. A string is wound around a circle and then unwound while
being held taut. The curve traced by the point at the end of
the string is called the involute of the circle. If the circle has
radius and center and the initial position of is ,
and if the parameter is chosen as in the figure, show
that parametric equations of the involute are

74. A cow is tied to a silo with radius by a rope just long
enough to reach the opposite side of the silo. Find the area
available for grazing by the cow.

r

xO

y

r

¨ P

T

y � r �sin � � � cos ��x � r �cos � � � sin ��

�
�r, 0�POr

P

� � 1�rr

� � 0

y � 1 � cos �x � � � sin �

�1, 1�y � x 2

0 x

y

P

˙

� � � d 2 y�dx 2 �
	1 � �dy�dx�2 
3�2

xy � f �x�x � x
y � f �x�59–61 Find the exact area of the surface obtained by rotating the

given curve about the -axis.

59. , ,

60. , ,

, ,

; 62. Graph the curve

If this curve is rotated about the -axis, find the area of the
resulting surface. (Use your graph to help find the correct 
parameter interval.)

63. If the curve

is rotated about the -axis, use your calculator to estimate the
area of the resulting surface to three decimal places. 

64. If the arc of the curve in Exercise 50 is rotated about the 
-axis, estimate the area of the resulting surface using Simp-

son’s Rule with .

65–66 Find the surface area generated by rotating the given
curve about the -axis.

, ,

66. , ,

67. If is continuous and for , show that the
parametric curve , , , can be put in
the form . [Hint: Show that exists.]

68. Use Formula 2 to derive Formula 7 from Formula 8.2.5 for
the case in which the curve can be represented in the form

, .

69. The curvature at a point of a curve is defined as

where is the angle of inclination of the tangent line at ,
as shown in the figure. Thus the curvature is the absolute
value of the rate of change of with respect to arc length. It
can be regarded as a measure of the rate of change of direc-
tion of the curve at and will be studied in greater detail in
Chapter 13.
(a) For a parametric curve , , derive the 

formula

where the dots indicate derivatives with respect to , so
. [Hint: Use and Formula 2

to find . Then use the Chain Rule to find .]d��dsd��dt
� � tan�1�dy�dx�x� � dx�dt

t

� � � x�y�� � x��y� �
	x� 2 � y� 2 
3�2

y � y�t�x � x�t�

P

�

P�

� � � d�

ds �
P

a � x � by � F�x�

f �1y � F�x�
a � t � by � t�t�x � f �t�
a � t � bf ��t� � 0f �

0 � t � 1y � 4e t�2x � e t � t

0 � t � 5y � 2t 3x � 3t 265.

y

n � 4
x

x

1 � t � 2y � t �
1

t 2x � t � t 3

x

y � 2 sin � � sin 2�x � 2 cos � � cos 2�

0 � � � ��2y � a sin3�x � a cos3�61.

0 � t � 1y � 3t 2x � 3t � t 3

0 � t � 1y � t 2x � t 3

x
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The Bézier curves are used in computer-aided design and are named after the French mathema-
tician Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier curve 
is determined by four control points, and , and is 
defined by the parametric equations

where . Notice that when we have and when we have
, so the curve starts at and ends at .

1. Graph the Bézier curve with control points , , , and 
Then, on the same screen, graph the line segments , , and . (Exercise 31 in 
Section 10.1 shows how to do this.) Notice that the middle control points and don’t lie
on the curve; the curve starts at , heads toward and without reaching them, and ends 
at 

2. From the graph in Problem 1, it appears that the tangent at passes through and the 
tangent at passes through . Prove it.

3. Try to produce a Bézier curve with a loop by changing the second control point in 
Problem 1.

4. Some laser printers use Bézier curves to represent letters and other symbols. Experiment 
with control points until you find a Bézier curve that gives a reasonable representation of the 
letter C.

5. More complicated shapes can be represented by piecing together two or more Bézier curves.
Suppose the first Bézier curve has control points and the second one has con-
trol points . If we want these two pieces to join together smoothly, then the
tangents at should match and so the points , , and all have to lie on this common
tangent line. Using this principle, find control points for a pair of Bézier curves that repre-
sent the letter S.

P4P3P2P3

P3, P4, P5, P6

P0, P1, P2, P3

P2P3

P1P0

P3 .
P2P1P0

P2P1

P2P3P1P2P0P1

P3�40, 5�.P2�50, 42�P1�28, 48�P0�4, 1�

P3P0�x, y� � �x3, y3�
t � 1�x, y� � �x0, y0 �t � 00 � t � 1

 y � y0�1 � t�3 � 3y1t�1 � t�2 � 3y2t 2�1 � t� � y3t 3

 x � x0�1 � t�3 � 3x1t�1 � t�2 � 3x2t 2�1 � t� � x3t 3

P3�x3, y3 �P0�x0, y0 �, P1�x1, y1�, P2�x2, y2 �,

SECTION 10.3 POLAR COORDINATES | | | | 639

POLAR COORDINATES

A coordinate system represents a point in the plane by an ordered pair of numbers called
coordinates. Usually we use Cartesian coordinates, which are directed distances from two
perpendicular axes. Here we describe a coordinate system introduced by Newton, called
the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled . Then
we draw a ray (half-line) starting at called the polar axis. This axis is usually drawn hor-
izontally to the right and corresponds to the positive -axis in Cartesian coordinates.

If is any other point in the plane, let be the distance from to and let be the
angle (usually measured in radians) between the polar axis and the line as in Figure 1.
Then the point is represented by the ordered pair and , are called polar coordi-
nates of . We use the convention that an angle is positive if measured in the counter-
clockwise direction from the polar axis and negative in the clockwise direction. If ,
then and we agree that represents the pole for any value of .��0, ��r � 0

P � O
P

�r�r, ��P
OP

�POrP
x

O
O

10.3

x
O

¨

r

polar axis

P(r, ̈ )

FIGURE 1  

; BÉZIER CURVESL A B O R AT O R Y
P R O J E C T



We extend the meaning of polar coordinates to the case in which is negative by
agreeing that, as in Figure 2, the points and lie on the same line through 
and at the same distance from , but on opposite sides of . If , the point 
lies in the same quadrant as ; if , it lies in the quadrant on the opposite side of the
pole. Notice that represents the same point as .

EXAMPLE 1 Plot the points whose polar coordinates are given.
(a) (b) (c) (d)

SOLUTION The points are plotted in Figure 3. In part (d) the point is located
three units from the pole in the fourth quadrant because the angle is in the second
quadrant and is negative.

M

In the Cartesian coordinate system every point has only one representation, but in the
polar coordinate system each point has many representations. For instance, the point

in Example 1(a) could be written as or or .
(See Figure 4.)

In fact, since a complete counterclockwise rotation is given by an angle 2 , the point
represented by polar coordinates is also represented by

where is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5, in

which the pole corresponds to the origin and the polar axis coincides with the positive 
-axis. If the point has Cartesian coordinates and polar coordinates , then,

from the figure, we have

and so

Although Equations 1 were deduced from Figure 5, which illustrates the case where
and , these equations are valid for all values of and (See the gen-

eral definition of and in Appendix D.)cos �sin �
�.r0 � � � ��2r � 0

y � r sin �x � r cos �1

sin � �
y

r
cos � �

x

r

�r, ���x, y�Px

n

��r, � � �2n � 1���and�r, � � 2n��

�r, ��
�

O

13π
4

”1,        ’
13π

4

O

_
3π
4

”1, _      ’
3π
4

O

”1,       ’
5π
4

5π
4

FIGURE 4
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”_1,     ’
π
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��1, ��4��1, 13��4��1, �3��4��1, 5��4�
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3π

4
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O

3π

”1,       ’
5π
4

5π

4
O
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3��4
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Equations 1 allow us to find the Cartesian coordinates of a point when the polar coor-
dinates are known. To find and when and are known, we use the equations

which can be deduced from Equations 1 or simply read from Figure 5.

EXAMPLE 2 Convert the point from polar to Cartesian coordinates.

SOLUTION Since and , Equations 1 give

Therefore the point is in Cartesian coordinates. M

EXAMPLE 3 Represent the point with Cartesian coordinates in terms of polar
coordinates.

SOLUTION If we choose to be positive, then Equations 2 give

Since the point lies in the fourth quadrant, we can choose or
. Thus one possible answer is ; another is . M

Equations 2 do not uniquely determine when and are given because, as 
increases through the interval , each value of occurs twice. Therefore, in
converting from Cartesian to polar coordinates, it’s not good enough just to find and 
that satisfy Equations 2. As in Example 3, we must choose so that the point lies in
the correct quadrant.

POLAR CURVES

The graph of a polar equation , or more generally , consists of all
points that have at least one polar representation whose coordinates satisfy the
equation.

EXAMPLE 4 What curve is represented by the polar equation ?

SOLUTION The curve consists of all points with . Since represents the distance
from the point to the pole, the curve represents the circle with center and radius
. In general, the equation represents a circle with center and radius . (See

Figure 6.) M

� a �Or � a2
Or � 2

rr � 2�r, ��

r � 2V

�r, ��P
F�r, �� � 0r � f ���

�r, ���
�r

tan �0 � � � 2�
�yx�NOTE

�s2 , 7��4�(s2 , ���4)� � 7��4
� � ���4�1, �1�

 tan � �
y

x
� �1

 r � sx 2 � y 2 � s12 � ��1�2 � s2 

r

�1, �1�

(1, s3 )

 y � r sin � � 2 sin  
�

3
� 2 �

s3 

2
� s3 

  x � r cos � � 2 cos 
�

3
� 2 �

1

2
� 1

� � ��3r � 2

�2, ��3�

tan � �
y

x
r 2 � x 2 � y 22

yx�r
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EXAMPLE 5 Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is 1 radian. It 
is the straight line that passes through and makes an angle of 1 radian with the polar
axis (see Figure 7). Notice that the points on the line with are in the first
quadrant, whereas those with are in the third quadrant. M

EXAMPLE 6
(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which appears
to be a circle. We have used only values of between 0 and , since if we let increase
beyond , we obtain the same points again.

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2.
From we have , so the equation becomes ,
which gives 

or

Completing the square, we obtain

which is an equation of a circle with center and radius 1. M

FIGURE 9
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N Figure 9 shows a geometrical illustration 
that the circle in Example 6 has the equation

. The angle is a right angle
(Why?) and so .r�2 � cos �

OPQr � 2 cos �



EXAMPLE 7 Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 by shifting the sine curve up one

unit. This enables us to read at a glance the values of that correspond to increasing 
values of . For instance, we see that as increases from 0 to , (the distance from )
increases from 1 to 2, so we sketch the corresponding part of the polar curve in Figure
11(a). As increases from to , Figure 10 shows that decreases from 2 to 1, so we
sketch the next part of the curve as in Figure 11(b). As increases from to , 

decreases from 1 to 0 as shown in part (c). Finally, as increases from to , 
increases from 0 to 1 as shown in part (d). If we let increase beyond or decrease

beyond 0, we would simply retrace our path. Putting together the parts of the curve from
Figure 11(a)–(d), we sketch the complete curve in part (e). It is called a cardioid,
because it’s shaped like a heart.

M

EXAMPLE 8 Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian coordi-
nates in Figure 12. As increases from 0 to , Figure 12 shows that decreases from
1 to 0 and so we draw the corresponding portion of the polar curve in Figure 13 (indi-
cated by !). As increases from to , goes from 0 to . This means that the
distance from increases from 0 to 1, but instead of being in the first quadrant this por-
tion of the polar curve (indicated by @) lies on the opposite side of the pole in the third
quadrant. The remainder of the curve is drawn in a similar fashion, with the arrows and
numbers indicating the order in which the portions are traced out. The resulting curve
has four loops and is called a four-leaved rose.

M

¨=0
¨=π

⑧

¨=
3π
4

¨=
π
2

¨=
π
4

FIGURE 12
r=cos 2¨ in Cartesian coordinates

FIGURE 13
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FIGURE 11 Stages in sketching the cardioid r=1+sin ¨
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FIGURE 10
r=1+sin ̈  in Cartesian coordinates,
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Module 10.3 helps you see how
polar curves are traced out by showing 
animations similar to Figures 10–13.
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SYMMETRY

When we sketch polar curves, it is sometimes helpful to take advantage of symmetry. The
following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when is replaced by , the curve is symmetric
about the polar axis.

(b) If the equation is unchanged when is replaced by , or when is replaced by
, the curve is symmetric about the pole. (This means that the curve remains

unchanged if we rotate it through 180° about the origin.)

(c) If the equation is unchanged when is replaced by , the curve is symmetric
about the vertical line .

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since
. The curves in Examples 7 and 8 are symmetric about because

and . The four-leaved rose is also symmetric
about the pole. These symmetry properties could have been used in sketching the curves.
For instance, in Example 6 we need only have plotted points for and then
reflected about the polar axis to obtain the complete circle.

TANGENTS TO POLAR CURVES

To find a tangent line to a polar curve , we regard as a parameter and write its
parametric equations as

Then, using the method for finding slopes of parametric curves (Equation 10.2.2) and the
Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where (pro-

vided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3 sim-

plifies to
dr

d�
� 0if

dy

dx
� tan �

r � 0
dy�d� � 0

dx�d� � 0dx�d� � 0
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 sin � � r cos �
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For instance, in Example 8 we found that when or . This
means that the lines and (or and ) are tangent lines to

at the origin.

EXAMPLE 9
(a) For the cardioid of Example 7, find the slope of the tangent line 
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

(b) Observe that

Therefore there are horizontal tangents at the points , , and
vertical tangents at and . When , both and 
are 0, so we must be careful. Using l’Hospital’s Rule, we have

By symmetry,

Thus there is a vertical tangent line at the pole (see Figure 15). M
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Tangent lines for r=1+sin ¨



Instead of having to remember Equation 3, we could employ the method used
to derive it. For instance, in Example 9 we could have written

Then we would have

which is equivalent to our previous expression.

GRAPHING POLAR CURVES WITH GRAPHING DEVICES

Although it’s useful to be able to sketch simple polar curves by hand, we need to use a
graphing calculator or computer when we are faced with a curve as complicated as the ones
shown in Figures 16 and 17.

Some graphing devices have commands that enable us to graph polar curves directly.
With other machines we need to convert to parametric equations first. In this case we take
the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

EXAMPLE 10 Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing
command. In this case we need to work with the corresponding parametric equations,
which are

In any case, we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer is 
, then

sin 
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and so we require that be an even multiple of . This will first occur when
. Therefore we will graph the entire curve if we specify that .

Switching from to , we have the equations

and Figure 18 shows the resulting curve. Notice that this rose has 16 loops. M

EXAMPLE 11 Investigate the family of polar curves given by . How
does the shape change as changes? (These curves are called limaçons, after a French
word for snail, because of the shape of the curves for certain values of .)

SOLUTION Figure 19 shows computer-drawn graphs for various values of . For there
is a loop that decreases in size as decreases. When the loop disappears and the
curve becomes the cardioid that we sketched in Example 7. For between 1 and the
cardioid’s cusp is smoothed out and becomes a “dimple.” When decreases from to ,
the limaçon is shaped like an oval. This oval becomes more circular as , and when

the curve is just the circle .

The remaining parts of Figure 19 show that as becomes negative, the shapes change 
in reverse order. In fact, these curves are reflections about the horizontal axis of the corre-
sponding curves with positive . Mc

cFIGURE 19
Members of the family of
limaçons r=1+c sin ̈
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1
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FIGURE 18
r=sin(8¨/5)

N In Exercise 55 you are asked to prove analyti-
cally what we have discovered from the graphs
in Figure 19.

4. (a) (b) (c)

5–6 The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where and

.
(ii) Find polar coordinates of the point, where and

.

5. (a) (b)

6. (a) (b) �1, �2�(3s3 , 3)
(�1, s3 )�2, �2�

0 � � � 2�
r � 0�r, ��

0 � � � 2�
r � 0�r, ��

�2, �7��6��1, 5��2�(�s2 , 5��4)1–2 Plot the point whose polar coordinates are given. Then find
two other pairs of polar coordinates of this point, one with 
and one with .

1. (a) (b) (c)

2. (a) (b) (c)

3–4 Plot the point whose polar coordinates are given. Then find
the Cartesian coordinates of the point.

3. (a) (b) (c) ��2, 3��4�(2, �2��3)�1, ��

�1, �1���3, ��6��1, 7��4�

��1, ��2��1, �3��4��2, ��3�

r � 0
r � 0

EXERCISES10.3



7–12 Sketch the region in the plane consisting of points whose
polar coordinates satisfy the given conditions.

7.

8. ,

9. ,

10. ,

,

12. ,

13. Find the distance between the points with polar coordinates
and .

14. Find a formula for the distance between the points with polar
coordinates and .

15–20 Identify the curve by finding a Cartesian equation for the
curve.

15. 16.

18.

19. 20.

21–26 Find a polar equation for the curve represented by the given
Cartesian equation.

21. 22.

23. 24.

26.

27–28 For each of the described curves, decide if the curve would
be more easily given by a polar equation or a Cartesian equation.
Then write an equation for the curve.

27. (a) A line through the origin that makes an angle of with
the positive -axis

(b) A vertical line through the point 

28. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

29–48 Sketch the curve with the given polar equation.

29. 30.

31. 32.

33. , 34.

, 36. ,

37. 38.

40.

41. 42. r � 2 � sin �r � 1 � 2 sin �

r � 3 cos 6�r � 2 cos 4�39.

r �  cos 5�r � 4 sin 3�

� 
 1r � ln �� 
 0r � �35.

r � 1 � 3 cos �� 
 0r � 2�1 � sin ��

r � �3 cos �r � sin �

r 2 � 3r � 2 � 0� � ���6

�2, 3�

�3, 3�
x

��6

xy � 4x 2 � y 2 � 2cx25.

x � y � 9x � �y 2

x 2 � y 2 � 9x � 3

r � tan � sec �r � csc �

r � 2 sin � � 2 cos �r � 3 sin �17.

r cos � � 1r � 2

�r2, �2 ��r1, �1�

�4, 2��3��2, ��3�

� � � � 2�r 
 1

5��3 � � � 7��32 � r � 311.

3��4 � � � 5��42 � r � 5

���2 � � � ��60 � r � 4

��3 � � � 2��3r 
 0

1 � r � 2
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43. 44.

45. 46.

47. 48.

49–50 The figure shows the graph of as a function of in Carte-
sian coordinates. Use it to sketch the corresponding polar curve.

50.

51. Show that the polar curve (called a conchoid)
has the line as a vertical asymptote by showing that

. Use this fact to help sketch the conchoid.

52. Show that the curve (also a conchoid) has the
line as a horizontal asymptote by showing that

. Use this fact to help sketch the conchoid.

53. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show also
that the curve lies entirely within the vertical strip .
Use these facts to help sketch the cissoid.

54. Sketch the curve .

(a) In Example 11 the graphs suggest that the limaçon
has an inner loop when . Prove

that this is true, and find the values of that correspond to
the inner loop.

(b) From Figure 19 it appears that the limaçon loses its dimple
when . Prove this.

56. Match the polar equations with the graphs labeled I–VI. Give
reasons for your choices. (Don’t use a graphing device.)

(a) (b)
(c) (d)
(e) (f)

I II III

IV V VI

r � 1 � 2 sin 3�r � 2 � sin 3�

r � 1 � 2 cos �r � cos���3�
r � � 2,   0 � � � 16�r � s�  ,  0 � � � 16� 

c � 1
2

�
� c � � 1r � 1 � c sin �

55.

�x 2 � y 2 �3 � 4x 2 y 2

0 � x � 1
x � 1

r � sin � tan �

lim r l�	 y � �1
y � �1

r � 2 � csc �

lim r l�	 x � 2
x � 2

r � 4 � 2 sec �

¨

r

0 π 2π

1

2

¨

r

0 π 2π

2

_2

49.

�r

r � 1 � 2 cos���2�r � 1 � 2 cos 2�

r 2� � 1r � 2 cos�3��2�

r 2 � cos 4�r 2 � 9 sin 2�
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; 80. A family of curves is given by the equations ,
where is a real number and is a positive integer. How does
the graph change as increases? How does it change as 
changes? Illustrate by graphing enough members of the fam-
ily to support your conclusions.

; 81. A family of curves has polar equations

Investigate how the graph changes as the number changes.
In particular, you should identify the transitional values of 
for which the basic shape of the curve changes.

; 82. The astronomer Giovanni Cassini (1625–1712) studied the
family of curves with polar equations

where and are positive real numbers. These curves are
called the ovals of Cassini even though they are oval shaped
only for certain values of and . (Cassini thought that these
curves might represent planetary orbits better than Kepler’s
ellipses.) Investigate the variety of shapes that these curves
may have. In particular, how are and related to each other
when the curve splits into two parts?

83. Let be any point (except the origin) on the curve .
If is the angle between the tangent line at and the radial
line , show that

[Hint: Observe that in the figure.]

84. (a) Use Exercise 83 to show that the angle between the tan-
gent line and the radial line is at every point on
the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property that
the angle between the radial line and the tangent line is
a constant must be of the form , where and 
are constants.

kCr � Ce k�

�
r � f ���

��2� � 0

r � e�

� � ��4

O

P

ÿ

¨
˙

r=f(¨ )

� � 
 � �

tan � �
r

dr�d�

OP
P�

r � f ���P

ca

ca

ca

r 4 � 2c2r 2 cos 2� � c 4 � a 4 � 0 

a
a

r �
1 � a cos �

1 � a cos �

cn
nc

r � 1 � c sin n�57–62 Find the slope of the tangent line to the given polar curve
at the point specified by the value of .

57. , 58. ,

, 60. ,

61. , 62. ,

63–68 Find the points on the given curve where the tangent line
is horizontal or vertical.

64.

65. 66.

67. 68.

Show that the polar equation , where
, represents a circle, and find its center and radius.

70. Show that the curves and intersect at
right angles.

; 71–76 Use a graphing device to graph the polar curve. Choose
the parameter interval to make sure that you produce the entire
curve.

71. (nephroid of Freeth)

72. (hippopede)

73. (butterfly curve)

74.

75.

76.

; 77. How are the graphs of and
related to the graph of ?

In general, how is the graph of related to the
graph of ?

; 78. Use a graph to estimate the -coordinate of the highest points
on the curve . Then use calculus to find the exact
value.

; 79. (a) Investigate the family of curves defined by the polar equa-
tions , where is a positive integer. How is the
number of loops related to ?

(b) What happens if the equation in part (a) is replaced by
?r � � sin n� �

n
nr � sin n�

r � sin 2�
y

r � f ���
r � f �� � ��

r � 1 � sin �r � 1 � sin�� � ��3�
r � 1 � sin�� � ��6�

r � cos���2� � cos���3�

r � 2 � 5 sin���6�

r � sin2�4�� � cos�4��

r � e sin � � 2 cos�4��

r � s1 � 0.8 sin 2�  

r � 1 � 2 sin���2�

r � a cos �r � a sin �

ab � 0
r � a sin � � b cos �69.

r 2 � sin 2�r � 2 � sin �

r � e �r � 1 � cos �

r � 1 � sin �r � 3 cos �63.

� � ��3r � 1 � 2 cos�� � ��4r � cos 2�

� � �r � cos���3�� � �r � 1��59.

� � ��3r � 2 � sin �� � ��6r � 2 sin �

�



AREAS AND LENGTHS IN POLAR COORDINATES

In this section we develop the formula for the area of a region whose boundary is given by
a polar equation. We need to use the formula for the area of a sector of a circle

where, as in Figure 1, is the radius and is the radian measure of the central angle.
Formula 1 follows from the fact that the area of a sector is proportional to its central angle:

. (See also Exercise 35 in Section 7.3.)
Let be the region, illustrated in Figure 2, bounded by the polar curve 

and by the rays and , where is a positive continuous function and where
. We divide the interval into subintervals with endpoints , ,

, . . . , and equal width . The rays then divide into smaller regions with
central angle . If we choose in the subinterval , then the area

of the th region is approximated by the area of the sector of a circle with central angle
and radius . (See Figure 3.)
Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in (2) improves as . But the sums
in (2) are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area of
the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4, it is helpful to think of the area as being swept out by

a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose .

SOLUTION The curve was sketched in Example 8 in Section 10.3. Notice from
Figure 4 that the region enclosed by the right loop is swept out by a ray that rotates from
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to . Therefore Formula 4 gives

M

EXAMPLE 2 Find the area of the region that lies inside the circle and
outside the cardioid .

SOLUTION The cardioid (see Example 7 in Section 10.3) and the circle are sketched in
Figure 5 and the desired region is shaded. The values of and in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when

, which gives , so , . The desired area can be
found by subtracting the area inside the cardioid between and from
the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

M

Example 2 illustrates the procedure for finding the area of the region bounded by two
polar curves. In general, let be a region, as illustrated in Figure 6, that is bounded by
curves with polar equations , , , and , where 
and . The area of is found by subtracting the area inside 
from the area inside , so using Formula 3 we have

| CAUTION The fact that a single point has many representations in polar coordinates
sometimes makes it difficult to find all the points of intersection of two polar curves. 
For instance, it is obvious from Figure 5 that the circle and the cardioid have three 
points of intersection; however, in Example 2 we solved the equations and

and found only two such points, and . The origin is also
a point of intersection, but we can’t find it by solving the equations of the curves because
the origin has no single representation in polar coordinates that satisfies both equations.
Notice that, when represented as or , the origin satisfies and so it
lies on the circle; when represented as , it satisfies and so it lies on
the cardioid. Think of two points moving along the curves as the parameter value 
increases from 0 to . On one curve the origin is reached at and ; on the � � �� � 02�
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other curve it is reached at . The points don’t collide at the origin because they
reach the origin at different times, but the curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that you
draw the graphs of both curves. It is especially convenient to use a graphing calculator or
computer to help with this task.

EXAMPLE 3 Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and, there-
fore, , , , . Thus the values of between 0 and that sat-
isfy both equations are , , , . We have found four points of
intersection: , , and .

However, you can see from Figure 7 that the curves have four other points of inter-
section—namely, , , , and . These can be found using
symmetry or by noticing that another equation of the circle is and then solving
the equations and . M

ARC LENGTH

To find the length of a polar curve , , we regard as a parameter and
write the parametric equations of the curve as

Using the Product Rule and differentiating with respect to , we obtain

so, using , we have

Assuming that is continuous, we can use Theorem 10.2.6 to write the arc length as

Therefore the length of a curve with polar equation , , is

EXAMPLE 4 Find the length of the cardioid .

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section 10.3.) Its full length is given by the parameter interval , so 0 � � � 2�
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Formula 5 gives 

We could evaluate this integral by multiplying and dividing the integrand by
, or we could use a computer algebra system. In any event, we find that the

length of the cardioid is . ML � 8
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r=1+sin ¨

19. 20.

(inner loop)

22. Find the area enclosed by the loop of the strophoid
.

23–28 Find the area of the region that lies inside the first curve
and outside the second curve.

23. , 24. ,

25. , 26. ,

,

28. ,

29–34 Find the area of the region that lies inside both curves.

29. ,

30. ,

,

32. ,

33. ,

34. , , ,

35. Find the area inside the larger loop and outside the smaller loop
of the limaçon .

36. Find the area between a large loop and the enclosed small loop
of the curve .

37–42 Find all points of intersection of the given curves.

37. ,

38. ,

39. , 40. ,

, 42. , r 2 � cos 2�r 2 � sin 2�r � sin 2�r � sin �41.

r � sin 3�r � cos 3�r � 1r � 2 sin 2�

r � 1 	 sin �r � 1 � cos �

r � 3 sin �r � 1 	 sin �

r � 1 	 2 cos 3�

r � 1
2 	 cos �

b � 0a � 0r � b cos �r � a sin �

r 2 � cos 2�r 2 � sin 2�

r � 3 	 2 sin �r � 3 	 2 cos �

r � cos 2�r � sin 2�31.

r � 1 � cos �r � 1 	 cos �

r � sin �r � s3  cos �

r � 2 � sin �r � 3 sin �

r � 1 	 cos �r � 3 cos �27.

r � 3 sin �r � 2 	 sin �r � 2r 2 � 8 cos 2�

r � 1r � 1 � sin �r � 1r � 2 cos �

r � 2 cos � � sec �

r � 1 	 2 sin �21.

r � 2 sin 6�r � 3 cos 5�1–4 Find the area of the region that is bounded by the given curve
and lies in the specified sector.

1. , 2. ,

3. , 4. ,

5–8 Find the area of the shaded region.

5. 6.

8.

9–14 Sketch the curve and find the area that it encloses.

9. 10.

12.

13. 14.

; 15–16 Graph the curve and find the area that it encloses.

15. 16.

17–21 Find the area of the region enclosed by one loop of 
the curve.

17. 18. r � 4 sin 3�r � sin 2�

r � 2 sin � 	 3 sin 9�r � 1 	 2 sin 6�

r � 2 	 cos 2�r � 2 cos 3�

r � 2 � sin �r 2 � 4 cos 2�11.

r � 3�1 	 cos � �r � 3 cos �

r=sin 2̈r=4+3 sin ¨

7.

r=1+cos ¨r=œ„̈

0 � � � �r � ssin � ��3 � � � 2��3r � sin �

� � � � 2�r � e ��20 � � � ��4r � � 2
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49–52 Use a calculator to find the length of the curve correct to
four decimal places.

49. 50.

51. 52.

; 53–54 Graph the curve and find its length.

53. 54.

55. (a) Use Formula 10.2.7 to show that the area of the surface
generated by rotating the polar curve

(where is continuous and ) about the
polar axis is

(b) Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate about the 
polar axis.

56. (a) Find a formula for the area of the surface generated by
rotating the polar curve , (where is
continuous and ), about the line .

(b) Find the surface area generated by rotating the lemniscate
about the line .� � ��2r 2 � cos 2�

� � ��20 � a � b � �
f �a � � � br � f ���

r 2 � cos 2�

S � y
b

a
 2�r sin � �r 2 	 � dr

d�
2

 d�

0 � a � b � �f �

a � � � br � f ���

r � cos2���2�r � cos4���4�

r � 1 	 cos���3�r � sin���2�

r � 4 sin 3�r � 3 sin 2�

; 43. The points of intersection of the cardioid and
the spiral loop , , can’t be found
exactly. Use a graphing device to find the approximate values
of at which they intersect. Then use these values to estimate
the area that lies inside both curves.

44. When recording live performances, sound engineers often use
a microphone with a cardioid pickup pattern because it sup-
presses noise from the audience. Suppose the microphone is
placed 4 m from the front of the stage (as in the figure) and
the boundary of the optimal pickup region is given by the car-
dioid , where is measured in meters and the
microphone is at the pole. The musicians want to know the
area they will have on stage within the optimal pickup range
of the microphone. Answer their question.

45–48 Find the exact length of the polar curve.

45. , 46. ,

, 48. , 0 � � � 2�r � �0 � � � 2�r � � 247.

0 � � � 2�r � e 2�0 � � � ��3r � 3 sin �

stage

audience
microphone

12 m

4 m

rr � 8 	 8 sin �

�

���2 � � � ��2r � 2�
r � 1 	 sin �

CONIC SECTIONS

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and
derive their standard equations. They are called conic sections, or conics, because they
result from intersecting a cone with a plane as shown in Figure 1.

FIGURE 1
Conics

ellipse parabola hyperbola

10.5
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PARABOLAS

A parabola is the set of points in a plane that are equidistant from a fixed point (called
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2.
Notice that the point halfway between the focus and the directrix lies on the parabola; it is
called the vertex. The line through the focus perpendicular to the directrix is called the
axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges.
(See Problem 18 on page 268 for the reflection property of parabolas that makes them so
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the ori-
gin and its directrix parallel to the -axis as in Figure 3. If the focus is the point ,
then the directrix has the equation . If is any point on the parabola, then the
distance from to the focus is

and the distance from to the directrix is . (Figure 3 illustrates the case where
.) The defining property of a parabola is that these distances are equal:

We get an equivalent equation by squaring and simplifying:

An equation of the parabola with focus and directrix is

If we write , then the standard equation of a parabola (1) becomes .
It opens upward if and downward if [see Figure 4, parts (a) and (b)]. The
graph is symmetric with respect to the -axis because (1) is unchanged when is replaced
by .

FIGURE 4
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If we interchange and in (1), we obtain

which is an equation of the parabola with focus and directrix . (Inter-
changing and amounts to reflecting about the diagonal line .) The parabola opens
to the right if and to the left if [see Figure 4, parts (c) and (d)]. In both cases
the graph is symmetric with respect to the -axis, which is the axis of the parabola.

EXAMPLE 1 Find the focus and directrix of the parabola and sketch 
the graph.

SOLUTION If we write the equation as and compare it with Equation 2, we see
that , so . Thus the focus is and the directrix is .
The sketch is shown in Figure 5. M

ELLIPSES

An ellipse is the set of points in a plane the sum of whose distances from two fixed points
and is a constant (see Figure 6). These two fixed points are called the foci (plural of

focus). One of Kepler’s laws is that the orbits of the planets in the solar system are ellipses
with the sun at one focus.

In order to obtain the simplest equation for an ellipse, we place the foci on the -axis at
the points and as in Figure 7 so that the origin is halfway between the foci.
Let the sum of the distances from a point on the ellipse to the foci be . Then 
is a point on the ellipse when

that is,

or

Squaring both sides, we have

which simplifies to

We square again:

which becomes  �a 2 � c 2 �x 2 	 a 2 y 2 � a 2�a 2 � c 2 �
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From triangle in Figure 7 we see that , so and therefore 
. For convenience, let . Then the equation of the ellipse becomes

or, if both sides are divided by ,

Since , it follows that . The -intercepts are found by setting
. Then , or , so . The corresponding points and

are called the vertices of the ellipse and the line segment joining the vertices 
is called the major axis. To find the -intercepts we set and obtain , so

. Equation 3 is unchanged if is replaced by or is replaced by , so the
ellipse is symmetric about both axes. Notice that if the foci coincide, then , so 
and the ellipse becomes a circle with radius .

We summarize this discussion as follows (see also Figure 8).

The ellipse

has foci , where , and vertices .

If the foci of an ellipse are located on the -axis at , then we can find its equa-
tion by interchanging and in (4). (See Figure 9.)

The ellipse

has foci , where , and vertices .

EXAMPLE 2 Sketch the graph of and locate the foci.

SOLUTION Divide both sides of the equation by 144:

The equation is now in the standard form for an ellipse, so we have , ,
, and . The -intercepts are and the -intercepts are . Also,

, so and the foci are . The graph is sketched in 
Figure 10. M

EXAMPLE 3 Find an equation of the ellipse with foci and vertices .

SOLUTION Using the notation of (5), we have and . Then we obtain
, so an equation of the ellipse is

Another way of writing the equation is . M9x 2 	 5y 2 � 45
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Like parabolas, ellipses have an interesting reflection property that has practical conse-
quences. If a source of light or sound is placed at one focus of a surface with elliptical
cross-sections, then all the light or sound is reflected off the surface to the other focus (see
Exercise 63). This principle is used in lithotripsy, a treatment for kidney stones. A reflec-
tor with elliptical cross-section is placed in such a way that the kidney stone is at one focus.
High-intensity sound waves generated at the other focus are reflected to the stone and
destroy it without damaging surrounding tissue. The patient is spared the trauma of sur-
gery and recovers within a few days.

HYPERBOLAS

A hyperbola is the set of all points in a plane the difference of whose distances from two
fixed points and (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, and
economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly signifi-
cant application of hyperbolas is found in the navigation systems developed in World Wars
I and II (see Exercise 51).

Notice that the definition of a hyperbola is similar to that of an ellipse; the only change
is that the sum of distances has become a difference of distances. In fact, the derivation of
the equation of a hyperbola is also similar to the one given earlier for an ellipse. It is left
as Exercise 52 to show that when the foci are on the -axis at and the difference of
distances is , then the equation of the hyperbola is

where . Notice that the -intercepts are again and the points and
are the vertices of the hyperbola. But if we put in Equation 6 we get

, which is impossible, so there is no -intercept. The hyperbola is symmetric
with respect to both axes.

To analyze the hyperbola further, we look at Equation 6 and obtain

This shows that , so . Therefore we have or . This
means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the dashed
lines and shown in Figure 12. Both branches of the hyperbola
approach the asymptotes; that is, they come arbitrarily close to the asymptotes. [See
Exercise 69 in Section 4.5, where these lines are shown to be slant asymptotes.]
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FIGURE 11
P is on the hyperbola when
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If the foci of a hyperbola are on the -axis, then by reversing the roles of and we
obtain the following information, which is illustrated in Figure 13.

The hyperbola

has foci , where , vertices , and asymptotes
.

EXAMPLE 4 Find the foci and asymptotes of the hyperbola and sketch
its graph.

SOLUTION If we divide both sides of the equation by 144, it becomes

which is of the form given in (7) with and . Since , the
foci are . The asymptotes are the lines and . The graph is shown
in Figure 14. M

EXAMPLE 5 Find the foci and equation of the hyperbola with vertices and
asymptote .

SOLUTION From (8) and the given information, we see that and . Thus
and . The foci are and the equation of the

hyperbola is

M

SHIFTED CONICS

As discussed in Appendix C, we shift conics by taking the standard equations (1), (2), (4),
(5), (7), and (8) and replacing and by and .

EXAMPLE 6 Find an equation of the ellipse with foci , and vertices 
, . 

SOLUTION The major axis is the line segment that joins the vertices ,
and has length , so . The distance between the foci is , so . Thus

. Since the center of the ellipse is , we replace and in (4) 
by and to obtain

as the equation of the ellipse. M

�x � 3�2

4
	

�y 	 2�2

3
� 1

y 	 2x � 3
yx�3, �2�b 2 � a 2 � c 2 � 3

c � 12a � 24
�5, �2��1, �2�

�5, �2��1, �2�
�4, �2��2, �2�

y � kx � hyx

y 2 � 4x 2 � 1

(0, 
s5�2)c 2 � a 2 	 b 2 � 5
4b � a�2 � 1

2

a�b � 2a � 1

y � 2x
�0, 
1�

y � �
3
4 xy � 3

4 x�
5, 0�
c 2 � 16 	 9 � 25b � 3a � 4

x 2

16
�

y 2

9
� 1

9x 2 � 16y 2 � 144

y � 
�a�b�x
�0, 
a�c 2 � a 2 	 b 2�0, 
c�

y 2

a 2 �
x 2

b 2 � 1

8

yxy
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17–18 Find an equation of the ellipse. Then find its foci.

17. 18.

19–24 Find the vertices, foci, and asymptotes of the hyperbola and
sketch its graph.

20.

21. 22.

23.

24.

25–30 Identify the type of conic section whose equation is given
and find the vertices and foci.

25. 26.

28.

29. 30. 4x 2 � 4x � y 2 � 0y 2 � 2y � 4x 2 � 3

y 2 � 8y � 6x � 16x 2 � 4y � 2y 227.

x 2 � y 2 � 1x 2 � y � 1

y2 � 4x 2 � 2y � 16x � 31

4x 2 � y2 � 24x � 4y � 28 � 0

9x 2 � 4y 2 � 36y 2 � x 2 � 4

y 2

16
�

x 2

36
� 1

x 2

144
�

 y 2

25
� 119.

y

x

1

2

y

x

1

10

1–8 Find the vertex, focus, and directrix of the parabola and sketch
its graph.

1. 2.

3. 4.

6.

7. 8.

9–10 Find an equation of the parabola. Then find the focus and
directrix.

9. 10.

11–16 Find the vertices and foci of the ellipse and sketch 
its graph.

11. 12.

13. 14.

16. x 2 � 3y2 � 2x � 12y � 10 � 0

9x 2 � 18x � 4y 2 � 2715.

4x 2 � 25y 2 � 254x 2 � y 2 � 16

x 2

64
�

y 2

100
� 1

x 2

9
�

 y 2

5
� 1

y

x

1

20

y

x

1

_2

y � 12x � 2x 2 � 16y 2 � 2y � 12x � 25 � 0

x � 1 � �y � 5�2�x � 2�2 � 8�y � 3�5.

y 2 � 12x4x 2 � �y

4y � x 2 � 0x � 2y 2

EXERCISES10.5
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EXAMPLE 7 Sketch the conic

and find its foci.

SOLUTION We complete the squares as follows:

This is in the form (8) except that and are replaced by and . Thus
, , and . The hyperbola is shifted four units to the right and one

unit upward. The foci are and and the vertices are and
. The asymptotes are . The hyperbola is sketched in

Figure 15. M

y � 1 � �
3
2 �x � 4��4, �2�

�4, 4�(4, 1 � s13)(4, 1 � s13)
c 2 � 13b 2 � 4a 2 � 9

y � 1x � 4yx

 
�y � 1�2

9
�

�x � 4�2

4
� 1

 4�y � 1�2 � 9�x � 4�2 � 36

 4�y 2 � 2y � 1� � 9�x 2 � 8x � 16� � 176 � 4 � 144

 4�y 2 � 2y� � 9�x 2 � 8x� � 176

9x 2 � 4y 2 � 72x � 8y � 176 � 0

V

FIGURE 15
9≈-4¥-72x+8y+176=0
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y-1=_   (x-4)
3
2
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(4, _2)
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51. In the LORAN (LOng RAnge Navigation) radio navigation
system, two radio stations located at and transmit simul-
taneous signals to a ship or an aircraft located at . The
onboard computer converts the time difference in receiving
these signals into a distance difference , and 
this, according to the definition of a hyperbola, locates the 
ship or aircraft on one branch of a hyperbola (see the figure).
Suppose that station B is located 400 mi due east of station A
on a coastline. A ship received the signal from B 1200 micro-
seconds (�s) before it received the signal from A.
(a) Assuming that radio signals travel at a speed of 980 ft �s,

find an equation of the hyperbola on which the ship lies.
(b) If the ship is due north of , how far off the coastline is 

the ship?

52. Use the definition of a hyperbola to derive Equation 6 for a
hyperbola with foci and vertices .

53. Show that the function defined by the upper branch of the
hyperbola is concave upward.

54. Find an equation for the ellipse with foci and 
and major axis of length 4.

55. Determine the type of curve represented by the equation

in each of the following cases: (a) , (b) ,
and (c) .
(d) Show that all the curves in parts (a) and (b) have the same

foci, no matter what the value of is.

56. (a) Show that the equation of the tangent line to the parabola 
at the point can be written as

(b) What is the -intercept of this tangent line? Use this fact to
draw the tangent line.

57. Show that the tangent lines to the parabola drawn
from any point on the directrix are perpendicular.

58. Show that if an ellipse and a hyperbola have the same foci,
then their tangent lines at each point of intersection are 
perpendicular.

59. Use Simpson’s Rule with to estimate the length of the
ellipse .

60. The planet Pluto travels in an elliptical orbit around the sun 
(at one focus). The length of the major axis is km 1.18 � 1010

x 2 � 4y 2 � 4
n � 10

x 2 � 4py

x

y0y � 2p�x � x 0�

�x0, y0�y 2 � 4px

k

k � 0
0 � k � 16k � 16

x 2

k
�

 y 2

k � 16
� 1

��1, �1��1, 1�

y 2�a 2 � x 2�b 2 � 1

��a, 0���c, 0�

400 mi
transmitting stations

coastlineA B

P

B

�

� PA � � � PB �

P
BA

31–48 Find an equation for the conic that satisfies the given 
conditions.

31. Parabola, vertex , focus 

32. Parabola, vertex , directrix 

Parabola, focus , directrix 

34. Parabola, focus , vertex 

35. Parabola, vertex , vertical axis,
passing through 

36. Parabola, horizontal axis,
passing through , , and 

Ellipse, foci , vertices 

38. Ellipse, foci , vertices 

39. Ellipse, foci , , vertices ,

40. Ellipse, foci , , vertex 

41. Ellipse, center , vertex , focus  

42. Ellipse, foci , passing through 

43. Hyperbola, vertices , foci 

44. Hyperbola, vertices , foci 

45. Hyperbola, vertices , ,
foci ,

46. Hyperbola, vertices , ,
foci ,

Hyperbola, vertices , asymptotes 

48. Hyperbola, foci , ,
asymptotes and 

49. The point in a lunar orbit nearest the surface of the moon is
called perilune and the point farthest from the surface is called
apolune. The Apollo 11 spacecraft was placed in an elliptical
lunar orbit with perilune altitude 110 km and apolune altitude
314 km (above the moon). Find an equation of this ellipse if
the radius of the moon is 1728 km and the center of the moon
is at one focus.

50. A cross-section of a parabolic reflector is shown in the figure.
The bulb is located at the focus and the opening at the focus 
is 10 cm.
(a) Find an equation of the parabola.
(b) Find the diameter of the opening , 11 cm from 

the vertex.

5 cm

5 cm

A

B

C

D

V
F

11 cm

� CD �

y � 5 �
1
2 xy � 3 �

1
2 x

�2, 8��2, 0�

y � �2x��3, 0�47.

�8, 2���2, 2�
�7, 2���1, 2�

��3, 9���3, �7�
��3, 6���3, �4�

�0, �5��0, �2�

��5, 0���3, 0�

��4, 1.8���4, 0�

��1, 6���1, 0���1, 4�

�9, �1��8, �1��0, �1�

�0, 8��0, 0��0, 6��0, 2�

�0, �13��0, �5�

��5, 0���2, 0�37.

�3, 1��1, �1���1, 0�

�1, 5�
�2, 3�

�3, 2��3, 6�

x � 2��4, 0�33.

x � �5�1, 0�

�0, �2��0, 0�



CONIC SECTIONS IN POLAR COORDINATES

In the preceding section we defined the parabola in terms of a focus and directrix, but we
defined the ellipse and hyperbola in terms of two foci. In this section we give a more uni-
fied treatment of all three types of conic sections in terms of a focus and directrix. Further-
more, if we place the focus at the origin, then a conic section has a simple polar equation,
which provides a convenient description of the motion of planets, satellites, and comets.

THEOREM Let be a fixed point (called the focus) and be a fixed line
(called the directrix) in a plane. Let be a fixed positive number (called the
eccentricity). The set of all points in the plane such that

(that is, the ratio of the distance from to the distance from is the constant ) 
is a conic section. The conic is

(a)

(b)

(c)  a hyperbola if e � 1

 a parabola if e � 1

 an ellipse if e � 1

elF

� PF �
� Pl � � e

P
e

lF1

10.6

and the length of the minor axis is km. Use Simp-
son’s Rule with to estimate the distance traveled by the
planet during one complete orbit around the sun.

61. Find the area of the region enclosed by the hyperbola
and the vertical line through a focus.

62. (a) If an ellipse is rotated about its major axis, find the volume
of the resulting solid.

(b) If it is rotated about its minor axis, find the resulting
volume.

63. Let be a point on the ellipse with
foci and and let and be the angles between the lines

, and the ellipse as shown in the figure. Prove that
. This explains how whispering galleries and lithotripsy

work. Sound coming from one focus is reflected and passes
through the other focus. [Hint: Use the formula in Problem 17
on page 268 to show that .]

F¡ F™0 x

y

∫

å

+    =1
≈

a@

¥

b@

P(⁄, ›)

tan 	 � tan 


	 � 

PF2PF1


	F2F1

x 2�a 2 � y 2�b 2 � 1P1�x1, y1�

x 2�a 2 � y 2�b 2 � 1

n � 10
1.14 � 1010
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64. Let be a point on the hyperbola 
with foci and and let and be the angles between the
lines , and the hyperbola as shown in the figure. Prove
that . (This is the reflection property of the hyperbola. It
shows that light aimed at a focus of a hyperbolic mirror is
reflected toward the other focus .)

0 x

y

å
∫

F™F¡

P

F™F¡

P

F1

F2

	 � 

PF2PF1


	F2F1

x 2�a 2 � y 2�b 2 � 1P�x1, y1�
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PROOF Notice that if the eccentricity is , then and so the given condi-
tion simply becomes the definition of a parabola as given in Section 10.5.

Let us place the focus at the origin and the directrix parallel to the -axis and
units to the right. Thus the directrix has equation and is perpendicular to the

polar axis. If the point has polar coordinates , we see from Figure 1 that

Thus the condition , or , becomes

If we square both sides of this polar equation and convert to rectangular coordinates,
we get

or

After completing the square, we have

If , we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

where

In Section 10.5 we found that the foci of an ellipse are at a distance from the center,
where

This shows that

and confirms that the focus as defined in Theorem 1 means the same as the focus defined
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

If , then and we see that Equation 3 represents a hyperbola. Just as we
did before, we could rewrite Equation 3 in the form

and see that

Mwhere c 2 � a 2 � b 2e �
c

a

�x � h�2

a 2 �
 y 2

b 2 � 1

1 � e 2 � 0e � 1

e �
c

a

c �
e 2d

1 � e 2 � �h

c 2 � a 2 � b 2 �
e 4d 2

�1 � e 2 �25

c

b 2 �
e 2d 2

1 � e 2a 2 �
e 2d 2

�1 � e 2 �2h � �
e 2d

1 � e 24

�x � h�2

a 2 �
 y 2

b 2 � 1

e � 1

�x �
e 2d

1 � e 2�2

�
 y 2

1 � e 2 �
e 2d 2

�1 � e 2 �23

�1 � e 2 �x 2 � 2de 2x � y 2 � e 2d 2

x 2 � y 2 � e 2�d � x�2 � e 2�d 2 � 2dx � x 2 �

r � e�d � r cos ��2

� PF � � e � Pl �� PF ��� Pl � � e

� Pl � � d � r cos �� PF � � r

�r, ��P
x � dd

yF

� PF � � � Pl �e � 1

FIGURE 1
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x
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r cos ¨
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By solving Equation 2 for , we see that the polar equation of the conic shown in Fig-
ure 1 can be written as

If the directrix is chosen to be to the left of the focus as , or if the directrix is cho-
sen to be parallel to the polar axis as , then the polar equation of the conic is given
by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

THEOREM A polar equation of the form

represents a conic section with eccentricity . The conic is an ellipse if ,
a parabola if , or a hyperbola if .

EXAMPLE 1 Find a polar equation for a parabola that has its focus at the origin and
whose directrix is the line .

SOLUTION Using Theorem 6 with and , and using part (d) of Figure 2, we see
that the equation of the parabola is

M

EXAMPLE 2 A conic is given by the polar equation

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r �
10
3

1 �
2
3 cos �

r �
10

3 � 2 cos �

V

r �
6

1 � sin �

d � 6e � 1

y � �6
V

e � 1e � 1
e � 1e

r �
ed

1 � e sin �
orr �

ed

1 � e cos �

6

FIGURE 2  
Polar equations of conics

(a) r=
ed

1+e cos ¨

y

xF

x=d

directrix

(b) r=
ed

1-e cos ¨

xF

y

x=_d

directrix

(c) r=
ed

1+e sin ¨

y

F x

y=d         directrix

(d) r=
ed

1-e sin ¨

x

y

y=_d         directrix

F

y � �d
x � �d

r �
ed

1 � e cos �

r
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From Theorem 6 we see that this represents an ellipse with . Since ,
we have

so the directrix has Cartesian equation . When , ; when � ,
. So the vertices have polar coordinates and . The ellipse is sketched

in Figure 3. M

EXAMPLE 3 Sketch the conic .

SOLUTION Writing the equation in the form

we see that the eccentricity is and the equation therefore represents a hyperbola.
Since , and the directrix has equation . The vertices occur when

and , so they are and . It is also useful to
plot the -intercepts. These occur when , ; in both cases . For additional
accuracy we could draw the asymptotes. Note that when or

and when . Thus the asymptotes are parallel to the rays
and . The hyperbola is sketched in Figure 4.

M

When rotating conic sections, we find it much more convenient to use polar equations
than Cartesian equations. We just use the fact (see Exercise 77 in Section 10.3) that the
graph of is the graph of rotated counterclockwise about the origin
through an angle .

EXAMPLE 4 If the ellipse of Example 2 is rotated through an angle about the
origin, find a polar equation and graph the resulting ellipse.

SOLUTION We get the equation of the rotated ellipse by replacing with in the
equation given in Example 2. So the new equation is

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse has
been rotated about its left focus. M

r �
10

3 � 2 cos�� � ��4�

� � ��4�

��4V

	
r � f ���r � f �� � 	�

FIGURE 4
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In Figure 6 we use a computer to sketch a number of conics to demonstrate the effect
of varying the eccentricity . Notice that when is close to 0 the ellipse is nearly circular,
whereas it becomes more elongated as . When , of course, the conic is a
parabola.

KEPLER’S LAWS

In 1609 the German mathematician and astronomer Johannes Kepler, on the basis of huge
amounts of astronomical data, published the following three laws of planetary motion.

KEPLER’S LAWS

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of
the length of the major axis of its orbit.

Although Kepler formulated his laws in terms of the motion of planets around the sun,
they apply equally well to the motion of moons, comets, satellites, and other bodies that
orbit subject to a single gravitational force. In Section 13.4 we will show how to deduce
Kepler’s Laws from Newton’s Laws. Here we use Kepler’s First Law, together with the
polar equation of an ellipse, to calculate quantities of interest in astronomy.

For purposes of astronomical calculations, it’s useful to express the equation of an
ellipse in terms of its eccentricity and its semimajor axis . We can write the distance 
from the focus to the directrix in terms of if we use (4):

So . If the directrix is , then the polar equation is

r �
ed

1 � e cos �
�

a�1 � e2�
1 � e cos �

x � ded � a�1 � e2�

a2 �
e2d 2

�1 � e 2�2     ?    d 2 �
a 2�1 � e2�2

e2     ?    d �
a�1 � e2�

e

a
dae

FIGURE 6
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The polar equation of an ellipse with focus at the origin, semimajor axis ,
eccentricity , and directrix can be written in the form

The positions of a planet that are closest to and farthest from the sun are called its peri-
helion and aphelion, respectively, and correspond to the vertices of the ellipse. (See 
Figure 7.) The distances from the sun to the perihelion and aphelion are called the peri-
helion distance and aphelion distance, respectively. In Figure 1 the sun is at the focus ,
so at perihelion we have and, from Equation 7,

Similarly, at aphelion and .

The perihelion distance from a planet to the sun is and the aphelion
distance is .

EXAMPLE 5
(a) Find an approximate polar equation for the elliptical orbit of the earth around the sun
(at one focus) given that the eccentricity is about and the length of the major axis
is about .
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is , so . We are given
that and so, from Equation 7, an equation of the earth’s orbit around the sun is

or, approximately,

(b) From (8), the perihelion distance from the earth to the sun is

and the aphelion distance is

Ma�1 � e� � �1.495 � 108��1 � 0.017� � 1.52 � 108 km

a�1 � e� � �1.495 � 108��1 � 0.017� � 1.47 � 108 km

r �
1.49 � 108

1 � 0.017 cos �

r �
a�1 � e2�

1 � e cos �
�

�1.495 � 108� 	1 � �0.017�2

1 � 0.017 cos �

e � 0.017
a � 1.495 � 1082a � 2.99 � 108

2.99 � 108 km
0.017

a�1 � e�
a�1 � e�8

r � a�1 � e�� � �

r �
a�1 � e2�

1 � e cos 0
�

a�1 � e��1 � e�
1 � e

� a�1 � e�

� � 0
F

r �
a�1 � e2�

1 � e cos �

x � de
a7

perihelionaphelion
sun

planet

¨
r

FIGURE 7  



Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

22. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

23. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

24. Show that the parabolas and
intersect at right angles.

25. The orbit of Mars around the sun is an ellipse with eccen-
tricity and semimajor axis . Find a polar
equation for the orbit.

26. Jupiter’s orbit has eccentricity and the length of the
major axis is . Find a polar equation for the
orbit.

The orbit of Halley’s comet, last seen in 1986 and due to 
return in 2062, is an ellipse with eccentricity 0.97 and one
focus at the sun. The length of its major axis is 36.18 AU. 
[An astronomical unit (AU) is the mean distance between the
earth and the sun, about 93 million miles.] Find a polar equa-
tion for the orbit of Halley’s comet. What is the maximum
distance from the comet to the sun?

28. The Hale-Bopp comet, discovered in 1995, has an elliptical
orbit with eccentricity 0.9951 and the length of the major axis
is 356.5 AU. Find a polar equation for the orbit of this comet.
How close to the sun does it come?

29. The planet Mercury travels in an elliptical orbit with eccen-
tricity . Its minimum distance from the sun is 

km. Find its maximum distance from the sun.

30. The distance from the planet Pluto to the sun is 
km at perihelion and km at aphelion.

Find the eccentricity of Pluto’s orbit.

31. Using the data from Exercise 29, find the distance traveled by
the planet Mercury during one complete orbit around the sun.
(If your calculator or computer algebra system evaluates defi-
nite integrals, use it. Otherwise, use Simpson’s Rule.)

7.37 � 1094.43 � 109

4.6 � 107
0.206

27.

1.56 � 109 km
0.048

2.28 � 108 km0.093

r � d��1 � cos ��
r � c��1 � cos ��

r �
ed

1 � e sin �

y � �d
e

r �
ed

1 � e sin �

y � d
e

r �
ed

1 � e cos �

x � �d
e21.1–8 Write a polar equation of a conic with the focus at the origin

and the given data.

1. Hyperbola, eccentricity , directrix 

2. Parabola, directrix 

Ellipse, eccentricity , directrix 

4. Hyperbola, eccentricity 2, directrix 

5. Parabola, vertex 

6. Ellipse, eccentricity , vertex 

7. Ellipse, eccentricity , directrix 

8. Hyperbola, eccentricity 3, directrix 

9–16 (a) Find the eccentricity, (b) identify the conic, (c) give an
equation of the directrix, and (d) sketch the conic.

9. 10.

11. 12.

14.

15. 16.

; 17. (a) Find the eccentricity and directrix of the conic
and graph the conic and its directrix.

(b) If this conic is rotated counterclockwise about the origin
through an angle , write the resulting equation and
graph its curve.

; 18. Graph the conic and its directrix. Also
graph the conic obtained by rotating this curve about the ori-
gin through an angle .

; 19. Graph the conics with , ,
, and on a common screen. How does the value of 

affect the shape of the curve?

; 20. (a) Graph the conics for and var-
ious values of . How does the value of affect the shape
of the conic?

(b) Graph these conics for and various values of .
How does the value of affect the shape of the conic?e

ed � 1

dd
e � 1r � ed��1 � e sin ��

e1.00.8
0.6e � 0.4r � e��1 � e cos � �

��3

r � 4��5 � 6 cos ��

3��4

r � 1��1 � 2 sin ��

r �
10

5 � 6 sin �
r �

3

4 � 8 cos �

r �
8

4 � 5 sin �
r �

9

6 � 2 cos �
13.

r �
3

2 � 2 cos �
r �

12

4 � sin �

r �
12

3 � 10 cos �
r �

1

1 � sin �

r � �6 csc �

r � 4 sec �1
2

�1, ��2�0.8

�4, 3��2�

y � �2

x � �53
43.

x � 4

y � 67
4
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REVIEW

C O N C E P T  C H E C K

10

6. (a) Give a geometric definition of a parabola.
(b) Write an equation of a parabola with focus and direc-

trix . What if the focus is and the directrix 
is ?

7. (a) Give a definition of an ellipse in terms of foci.
(b) Write an equation for the ellipse with foci and 

vertices .

8. (a) Give a definition of a hyperbola in terms of foci.
(b) Write an equation for the hyperbola with foci and

vertices .
(c) Write equations for the asymptotes of the hyperbola in

part (b).

9. (a) What is the eccentricity of a conic section?
(b) What can you say about the eccentricity if the conic section

is an ellipse? A hyperbola? A parabola?
(c) Write a polar equation for a conic section with eccentricity

and directrix . What if the directrix is ?
? ?y � �dy � d

x � �dx � de

��a, 0�
��c, 0�

��a, 0�
��c, 0�

x � �p
�p, 0�y � �p

�0, p�
1. (a) What is a parametric curve?

(b) How do you sketch a parametric curve?

2. (a) How do you find the slope of a tangent to a parametric
curve?

(b) How do you find the area under a parametric curve?

3. Write an expression for each of the following:
(a) The length of a parametric curve
(b) The area of the surface obtained by rotating a parametric

curve about the 

4. (a) Use a diagram to explain the meaning of the polar coordi-
nates of a point.

(b) Write equations that express the Cartesian coordinates
of a point in terms of the polar coordinates.

(c) What equations would you use to find the polar coordinates
of a point if you knew the Cartesian coordinates?

5. (a) How do you find the slope of a tangent line to a polar
curve?

(b) How do you find the area of a region bounded by a polar
curve?

(c) How do you find the length of a polar curve?

�x, y�

�r, ��

x-axis

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If the parametric curve , satisfies ,
then it has a horizontal tangent when .

2. If and are twice differentiable, then

3. The length of the curve , , , is
.

4. If a point is represented by in Cartesian coordinates
(where ) and in polar coordinates, then

.� � tan �1� y�x�
�r, ��x � 0

�x, y�

x
b

a s	 f ��t�
 2 � 	t��t�
 2  dt
a � t � by � t�t�x � f �t�

d 2y

dx 2 �
d 2y�dt 2

d 2x�dt 2

y � t�t�x � f �t�

t � 1
t��1� � 0y � t�t�x � f �t�

5. The polar curves and have the
same graph.

6. The equations , , and ,
all have the same graph.

7. The parametric equations , have the same graph
as , .

8. The graph of is a parabola.

9. A tangent line to a parabola intersects the parabola only once.

10. A hyperbola never intersects its directrix.

y 2 � 2y � 3x

y � t 6x � t 3
y � t 4x � t 2

�0 � t � 2��y � 2 cos 3t
x � 2 sin 3tx 2 � y 2 � 4r � 2

r � sin 2� � 1r � 1 � sin 2�

T R U E - F A L S E  Q U I ZT R U E - F A L S E  Q U I Z



670 | | | | CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1–4 Sketch the parametric curve and eliminate the parameter to
find the Cartesian equation of the curve.

1. , ,

2. ,

3. , ,

4. ,

5. Write three different sets of parametric equations for the 
curve .

6. Use the graphs of  and to sketch the para-
metric curve , . Indicate with arrows the 
direction in which the curve is traced as increases.

7. (a) Plot the point with polar coordinates . Then find
its Cartesian coordinates.

(b) The Cartesian coordinates of a point are . Find two
sets of polar coordinates for the point.

8. Sketch the region consisting of points whose polar coor-
dinates satisfy .

9–16 Sketch the polar curve.

9. 10.

11. 12.

13. 14.

15. 16.

17–18 Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

; 19. The curve with polar equation is called a
cochleoid. Use a graph of as a function of in Cartesian
coordinates to sketch the cochleoid by hand. Then graph it
with a machine to check your sketch.

; 20. Graph the ellipse and its directrix. 
Also graph the ellipse obtained by rotation about the origin
through an angle .2��3

r � 2��4 � 3 cos � �

�r
r � �sin � ���

x 2 � y 2 � 2x � y � 2

r �
3

2 � 2 cos �
r �

3

1 � 2 sin �

r � 2 cos���2�r � 1 � cos 2�

r � 3 � cos 3�r � cos 3 �

r � sin 4�r � 1 � cos �

1 � r � 2 and ��6 � � � 5��6

��3, 3�

�4, 2��3�

t

x

_1

1 t

y

1

1

t
y � t�t�x � f �t�

y � t�t�x � f �t�

y � sx 

y � 1 � sin �x � 2 cos �

0 � � � ��2y � sec �x � cos �

y � e tx � 1 � e 2 t

�4 � t � 1y � 2 � tx � t 2 � 4t

21–24 Find the slope of the tangent line to the given curve at the
point corresponding to the specified value of the parameter.

21. , ;

22. , ;

23. ;

24. ;

25–26 Find and .

25. ,

26. ,

; 27. Use a graph to estimate the coordinates of the lowest point on
the curve , .  Then use calculus to
find the exact coordinates.

28. Find the area enclosed by the loop of the curve in Exercise 27.

29. At what points does the curve

have vertical or horizontal tangents? Use this information to
help sketch the curve.

30. Find the area enclosed by the curve in Exercise 29.

31. Find the area enclosed by the curve .

32. Find the area enclosed by the inner loop of the curve
.

33. Find the points of intersection of the curves and
.

34. Find the points of intersection of the curves and
.

35. Find the area of the region that lies inside both of the circles
and .

36. Find the area of the region that lies inside the curve
but outside the curve .

37–40 Find the length of the curve.

37. , ,

38. , ,

39. ,

40. , 0 � � � �r � sin3���3�

� � � � 2�r � 1��

0 � t � 1y � cosh 3tx � 2 � 3t

0 � t � 2y � 2t 3x � 3t 2

r � 2 � sin �r � 2 � cos 2�

r � sin � � cos �r � 2 sin �

r � 2 cos �
r � cot �

r � 4 cos �
r � 2

r � 1 � 3 sin �

r 2 � 9 cos 5�

y � 2a sin t � a sin 2tx � 2a cos t � a cos 2t

y � t 2 � t � 1x � t 3 � 3t

y � t � t 3x � 1 � t 2

y � t � cos tx � t � sin t

d 2 y�dx 2dy�dx

� � ��2r � 3 � cos 3�

� � �r � e ��

t � �1y � 2t � t 2x � t 3 � 6t � 1

t � 1y � 1 � t 2x � ln t

E X E R C I S E S



52. Find an equation of the ellipse with foci and major
axis with length 8.

53. Find an equation for the ellipse that shares a vertex and a
focus with the parabola and that has its other
focus at the origin.

54. Show that if is any real number, then there are exactly 
two lines of slope that are tangent to the ellipse

and their equations are
.

55. Find a polar equation for the ellipse with focus at the origin,
eccentricity .

56. Show that the angles between the polar axis and the 
asymptotes of the hyperbola , ,
are given by .

57. In the figure the circle of radius is stationary, and for every
, the point is the midpoint of the segment . The curve

traced out by for is called the longbow curve.
Find parametric equations for this curve.

0

y

2a

a

x

y=2a

¨

R

P

Q

0 � � � �P
QRP�

a

cos�1��1�e�
e � 1r � ed��1 � e cos ��

1
3 , and directrix with equation r � 4 sec �

y � mx � sa 2m 2 � b 2 
x 2�a 2 � y 2�b 2 � 1

m
m

x 2 � y � 100

�3, �2�41–42 Find the area of the surface obtained by rotating the given
curve about the -axis.

41. , ,

42. , ,

; 43. The curves defined by the parametric equations

are called strophoids (from a Greek word meaning “to turn
or twist”). Investigate how these curves vary as varies.

; 44. A family of curves has polar equations where 
is a positive number. Investigate how the curves change as 
changes.

45–48 Find the foci and vertices and sketch the graph.

45. 46.

47.

48.

49. Find an equation of the ellipse with foci and vertices
.

50. Find an equation of the parabola with focus and direc-
trix .

51. Find an equation of the hyperbola with foci and
asymptotes .y � �3x

�0, �4�

x � �4
�2, 1�

��5, 0�
��4, 0�

25x 2 � 4y 2 � 50x � 16y � 59

6y 2 � x � 36y � 55 � 0

4x 2 � y 2 � 16
x 2

9
�

 y 2

8
� 1

a
a

r a � � sin 2� �
c

y �
t�t 2 � c�
t 2 � 1

x �
t 2 � c

t 2 � 1

0 � t � 1y � cosh 3tx � 2 � 3t

1 � t � 4y �
t 3

3
�

1

2t 2x � 4st 

x
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1. A curve is defined by the parametric equations

Find the length of the arc of the curve from the origin to the nearest point where there is a
vertical tangent line.

2. (a) Find the highest and lowest points on the curve .
(b) Sketch the curve. (Notice that it is symmetric with respect to both axes and both of the

lines , so it suffices to consider initially.)
(c) Use polar coordinates and a computer algebra system to find the area enclosed by the

curve.

; 3. What is the smallest viewing rectangle that contains every member of the family of polar
curves , where ? Illustrate your answer by graphing several mem-
bers of the family in this viewing rectangle.

4. Four bugs are placed at the four corners of a square with side length . The bugs crawl 
counterclockwise at the same speed and each bug crawls directly toward the next bug at all
times. They approach the center of the square along spiral paths.
(a) Find the polar equation of a bug’s path assuming the pole is at the center of the square.

(Use the fact that the line joining one bug to the next is tangent to the bug’s path.)
(b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

5. A curve called the folium of Descartes is defined by the parametric equations

(a) Show that if lies on the curve, then so does ; that is, the curve is symmetric
with respect to the line . Where does the curve intersect this line?

(b) Find the points on the curve where the tangent lines are horizontal or vertical.
(c) Show that the line is a slant asymptote.
(d) Sketch the curve.
(e) Show that a Cartesian equation of this curve is .
(f) Show that the polar equation can be written in the form

(g) Find the area enclosed by the loop of this curve.
(h) Show that the area of the loop is the same as the area that lies between the asymptote 

and the infinite branches of the curve. (Use a computer algebra system to evaluate the
integral.)

CAS

r �
3 sec � tan �

1 � tan3�

x 3 � y 3 � 3xy

y � �x � 1

y � x
�b, a��a, b�

x �
3t

1 � t 3 y �
3t 2

1 � t 3

a

a a

a

a

0 � c � 1r � 1 � c sin �

CAS

y � x � 0y � �x

x 4 � y 4 � x 2 � y 2

x � y
t

1
 
cos u

u
 du y � y

t

1
 
sin u

u
 du
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6. A circle of radius has its center at the origin. A circle of radius rolls without slipping in
the counterclockwise direction around . A point is located on a fixed radius of the rolling
circle at a distance from its center, . [See parts (i) and (ii) of the figure.] Let be
the line from the center of to the center of the rolling circle and let be the angle that 
makes with the positive -axis.
(a) Using as a parameter, show that parametric equations of the path traced out by are

Note: If , the path is a circle of radius ; if , the path is an epicycloid. The
path traced out by for is called an epitrochoid.

; (b) Graph the curve for various values of between and .

(c) Show that an equilateral triangle can be inscribed in the epitrochoid and that its centroid is
on the circle of radius centered at the origin.

Note: This is the principle of the Wankel rotary engine. When the equilateral triangle
rotates with its vertices on the epitrochoid, its centroid sweeps out a circle whose center is
at the center of the curve.

(d) In most rotary engines the sides of the equilateral triangles are replaced by arcs of circles
centered at the opposite vertices as in part (iii) of the figure. (Then the diameter of the
rotor is constant.) Show that the rotor will fit in the epitrochoid if .

(ii)

y

xP¸

¨

P

y

x

r

b

P=P¸

2r

(i) (iii)

b �
3
2 (2 � s3 )r

b

r0b

0 � b � rP
b � r3rb � 0

x � b cos 3� � 3r cos � y � b sin 3� � 3r sin �

P�
x

L�C
L0 � b � rb

PC
r2rC
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INFINITE SEQUENCES
AND SERIES

11

Infinite sequences and series were introduced briefly in A Preview of Calculus in

connection with Zeno’s paradoxes and the decimal representation of numbers. Their

importance in calculus stems from Newton’s idea of representing functions as sums 

of infinite series. For instance, in finding areas he often integrated a function by first

expressing it as a series and then integrating each term of the series. We will pursue his

idea in Section 11.10 in order to integrate such functions as . (Recall that we have

previously been unable to do this.) Many of the functions that arise in mathematical

physics and chemistry, such as Bessel functions, are defined as sums of series, so it is

important to be familiar with the basic concepts of convergence of infinite sequences

and series.

Physicists also use series in another way, as we will see in Section 11.11. In studying

fields as diverse as optics, special relativity, and electromagnetism, they analyze phe-

nomena by replacing a function with the first few terms in the series that represents it.

e�x 2

x

y

T∞

y=sin x

T¡

T¶T£

The partial sums of a Taylor series provide better and 
better approximations to a function as increases.n

Tn



SEQUENCES

A sequence can be thought of as a list of numbers written in a definite order:

The number is called the first term, is the second term, and in general is the nth
term. We will deal exclusively with infinite sequences and so each term will have a 
successor .

Notice that for every positive integer there is a corresponding number and so a
sequence can be defined as a function whose domain is the set of positive integers. But we
usually write instead of the function notation for the value of the function at the
number .

The sequence { , , , . . .} is also denoted by

EXAMPLE 1 Some sequences can be defined by giving a formula for the nth term. In the
following examples we give three descriptions of the sequence: one by using the preced-
ing notation, another by using the defining formula, and a third by writing out the terms
of the sequence. Notice that doesn’t have to start at 1.

(a)

(b)

(c)

(d) M

EXAMPLE 2 Find a formula for the general term of the sequence

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

Notice that the numerators of these fractions start with 3 and increase by 1 whenever we
go to the next term. The second term has numerator 4, the third term has numerator 5; in
general, the th term will have numerator . The denominators are the powers of 5,
so has denominator . The signs of the terms are alternately positive and negative, so5 nan

n � 2n

a 5 �
7

3125
a 4 � �

6

625
a 3 �

5

125
a 2 � �

4

25
a 1 �

3

5

�3

5
, �

4

25
, 

5

125
, �

6

625
, 

7

3125
, . . .�

anV

�1, 
s3 

2
, 

1

2
, 0, . . . , cos 

n�

6
, . . .�an � cos 

n�

6
, n � 0�cos 

n�

6 �n�0

�

{0, 1, s2 , s3 , . . . , sn � 3 , . . .}an � sn � 3 , n � 3{sn � 3 }n�3
�

��
2

3
, 

3

9
, �

4

27
, 

5

81
, . . . , 

��1�n�n � 1�
3n , . . .�an �

��1�n�n � 1�
3n���1�n�n � 1�

3n �
�1

2
, 

2

3
, 

3

4
, 

4

5
, . . . , 

n

n � 1
, . . .�an �

n

n � 1� n

n � 1�n�1

�

n

�an � n�1
�or�an �

a3a2a1NOTATION

n
f �n�an

ann
an�1

an

ana2a1

a1, a2, a3, a4, . . . , an, . . .

11.1
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we need to multiply by a power of . In Example 1(b) the factor meant we
started with a negative term. Here we want to start with a positive term and so we use

or . Therefore

M

EXAMPLE 3 Here are some sequences that don’t have a simple defining equation.
(a) The sequence , where is the population of the world as of January 1 in the
year .
(b) If we let be the digit in the th decimal place of the number , then is a well-
defined sequence whose first few terms are

(c) The Fibonacci sequence is defined recursively by the conditions

Each term is the sum of the two preceding terms. The first few terms are

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 71). M

A sequence such as the one in Example 1(a), , can be pictured either by
plotting its terms on a number line as in Figure 1 or by plotting its graph as in Figure 2.
Note that, since a sequence is a function whose domain is the set of positive integers, its
graph consists of isolated points with coordinates

. . . . . .

From Figure 1 or 2 it appears that the terms of the sequence are
approaching 1 as becomes large. In fact, the difference

can be made as small as we like by taking sufficiently large. We indicate this by writing

In general, the notation

means that the terms of the sequence approach as becomes large. Notice that the
following definition of the limit of a sequence is very similar to the definition of a limit of
a function at infinity given in Section 2.6.

nL�an �

lim
n l �

 an � L

lim 
n l �

 
n

n � 1
� 1

n

1 �
n

n � 1
�

1

n � 1

n
an � n��n � 1�

�n, an ��3, a3��2, a2��1, a1�

an � n��n � 1�

�1, 1, 2, 3, 5, 8, 13, 21, . . .�

n � 3fn � fn�1 � fn�2f2 � 1f1 � 1

� fn�

�7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . .�

�an �enan

n
pn�pn �

an � ��1� n�1 n � 2

5 n

��1� n�1��1� n�1

��1� n�1
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DEFINITION A sequence has the limit and we write

if we can make the terms as close to as we like by taking sufficiently large.
If exists, we say the sequence converges (or is convergent). Otherwise,
we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the
limit .

A more precise version of Definition 1 is as follows.

DEFINITION A sequence has the limit and we write

if for every there is a corresponding integer such that

if then

Definition 2 is illustrated by Figure 4, in which the terms , , , . . . are plotted on
a number line. No matter how small an interval is chosen, there exists an

such that all terms of the sequence from onward must lie in that interval.

Another illustration of Definition 2 is given in Figure 5. The points on the graph of 
must lie between the horizontal lines and if . This picture
must be valid no matter how small is chosen, but usually a smaller requires a larger .

FIGURE 5
20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

N��
n � Ny � L � �y � L � �

�an�

FIGURE 4 0 L-∑ L L+∑
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aN�1N
�L � �, L � ��
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an l L as n l �orlim 
n l �

 an � L

L�an�2

0 n

an

L

0 n

an

L
FIGURE 3
Graphs of two
sequences with
lim  an= L
n     `

L

limn l � an

nLan

an l L as n l �orlim
n l �

 an � L

L�an �1
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If you compare Definition 2 with Definition 2.6.7, you will see that the only difference
between and is that is required to be an integer. Thus
we have the following theorem, which is illustrated by Figure 6.

THEOREM If and when is an integer, then 
.

In particular, since we know that when (Theorem 2.6.5),
we have

if

If becomes large as n becomes large, we use the notation . The fol-
lowing precise definition is similar to Definition 2.6.9.

DEFINITION means that for every positive number there is
an integer such that

if then

If , then the sequence is divergent but in a special way. We say that
diverges to .

The Limit Laws given in Section 2.3 also hold for the limits of sequences and their
proofs are similar.

If and are convergent sequences and is a constant, then

lim
n l �

 an
p � [lim

n l �
 an] p if  p � 0 and an � 0

 lim
n l �

 
an

bn
�

lim 
n l � 

an

lim
n l �

 bn
if lim

n l �
 bn � 0         

lim
n l �

 �anbn � � lim
n l �

 an � lim
n l �

 bn       

lim
n l �

 c � c                                     lim
n l �

 can � c lim
n l �

 an                       

 lim
n l �

 �an � bn � � lim
n l �

 an � lim
n l �

 bn

 lim
n l �

 �an � bn � � lim
n l �

 an � lim
n l �

 bn

c�bn ��an �

��an �
�an �lim n l � an � �

an � Mn � N

N
Mlimn l � an � �5

lim n l � an � �an

r � 0lim 
n l �

 
1

nr � 04

r � 0limx l � �1�xr � � 0

FIGURE 6 20 x

y

1 3 4

L

y=ƒ

limn l � an � L
nf �n� � anlim x l � f �x� � L3

nlimx l � f �x� � Llimn l � an � L
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LIMIT LAWS FOR SEQUENCES



The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If for and , then .

Another useful fact about limits of sequences is given by the following theorem, whose
proof is left as Exercise 75.

THEOREM If , then .

EXAMPLE 4 Find .

SOLUTION The method is similar to the one we used in Section 2.6: Divide numerator and
denominator by the highest power of and then use the Limit Laws.

Here we used Equation 4 with . M

EXAMPLE 5 Calculate .

SOLUTION Notice that both numerator and denominator approach infinity as . We
can’t apply l’Hospital’s Rule directly because it applies not to sequences but to func-
tions of a real variable. However, we can apply l’Hospital’s Rule to the related function

and obtain

Therefore, by Theorem 3, we have

M

EXAMPLE 6 Determine whether the sequence is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 and
infinitely often, does not approach any number. Thus does not exist;

that is, the sequence is divergent. M���1�n �
limn l � ��1�nan�1

��1, 1, �1, 1, �1, 1, �1, . . .�

an � ��1�n

lim 
n l �

 
ln n

n
� 0

lim 
x l �

 
ln x

x
� lim 

x l �
 
1�x

1
� 0

f �x� � �ln x��x

n l �

lim 
n l �

 
ln n

n

r � 1

 �
1

1 � 0
� 1

 lim
n l �

 
n

n � 1
� lim

n l �
 

1

1 �
1

n

�
lim
n l � 1

lim
n l �

 1 � lim
n l �

 
1

n

n

lim 
n l �

 
n

n � 1

lim 
n l �

 an � 0lim 
n l �

 	 an 	 � 06

lim 
n l �

 bn � Llim 
n l �

 an � lim 
n l �

 cn � Ln � n0an 
 bn 
 cn
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N This shows that the guess we made earlier
from Figures 1 and 2 was correct.

FIGURE 7
The sequence �bn� is squeezed
between the sequences �an�
and �cn�.

0 n

cn

an

bn

n

n

n

SQUEEZE THEOREM FOR SEQUENCES

0 n

an

1

1

2 3 4

_1

FIGURE 8



EXAMPLE 7 Evaluate if it exists.

SOLUTION

Therefore, by Theorem 6,

M

The following theorem says that if we apply a continuous function to the terms of a con-
vergent sequence, the result is also convergent. The proof is left as Exercise 76.

THEOREM If and the function is continuous at , then

EXAMPLE 8 Find .

SOLUTION Because the sine function is continuous at , Theorem 7 enables us to write

M

EXAMPLE 9 Discuss the convergence of the sequence , where
.

SOLUTION Both numerator and denominator approach infinity as , but here we have
no corresponding function for use with l’Hospital’s Rule ( is not defined when is not
an integer). Let’s write out a few terms to get a feeling for what happens to as gets
large:

It appears from these expressions and the graph in Figure 10 that the terms are decreas-
ing and perhaps approach 0. To confirm this, observe from Equation 8 that

Notice that the expression in parentheses is at most 1 because the numerator is less than
(or equal to) the denominator. So

We know that as . Therefore as by the Squeeze 
Theorem. M

n l �an l 0n l �1�n l 0

0 	 an 

1

n

an �
1

n
 
2 � 3 � � � � � n

n � n � � � � � n�

an �
1 � 2 � 3 � � � � � n

n � n � n � � � � � n
8

a3 �
1 � 2 � 3

3 � 3 � 3
a2 �

1 � 2

2 � 2
a1 � 1

nan

xx!
n l �

n! � 1 � 2 � 3 � � � � � n
an � n!�nnV

lim
n l �

 sin���n� � sin
lim
n l �

 ���n�� � sin 0 � 0

0

lim
n l �

 sin���n�

lim
n l �

  f �an� � f �L�

Lflim
n l �

 an � L7

lim 
n l �

 
��1�n

n
� 0

lim 
n l �

 � ��1�n

n � � lim 
n l �

 
1

n
� 0

lim
n l �

 
��1�n

n
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N CREATING GRAPHS OF SEQUENCES

Some computer algebra systems have special
commands that enable us to create sequences
and graph them directly. With most graphing
calculators, however, sequences can be graphed
by using parametric equations. For instance, the
sequence in Example 9 can be graphed by enter-
ing the parametric equations

and graphing in dot mode, starting with 
and setting the -step equal to . The result is
shown in Figure 10.

1t
t � 1

x � t y � t!�t t

N The graph of the sequence in Example 7 is
shown in Figure 9 and supports our answer.

FIGURE 10

1

0
10

FIGURE 9

0 n

an

1

1

_1



EXAMPLE 10 For what values of is the sequence convergent?

SOLUTION We know from Section 2.6 and the graphs of the exponential functions in
Section 1.5 that for and for . Therefore,
putting and using Theorem 3, we have

It is obvious that

and

If , then , so

and therefore by Theorem 6. If , then diverges as in
Example 6. Figure 11 shows the graphs for various values of . (The case is
shown in Figure 8.)

M

The results of Example 10 are summarized for future use as follows.

The sequence is convergent if and divergent for all other
values of .

DEFINITION A sequence is called increasing if for all ,
that is, It is called decreasing if for all . It 
is called monotonic if it is either increasing or decreasing.

EXAMPLE 11 The sequence is decreasing because

and so for all . Mn � 1an � an�1

3

n � 5
�

3

�n � 1� � 5
�

3

n � 6

� 3

n � 5�

n � 1an � an�1a1 	 a2 	 a3 	 � � � .
n � 1an 	 an�1�an�10

lim 
n l �

 r n � �0

1

if �1 	 r 	 1

if r � 1

r
�1 	 r 
 1�r n �9

r>1

r=1

0<r<1

0

r<_1

_1<r<0

0 n

an

1

1
n

an

1
1

FIGURE 11
The sequence an=rn

r � �1r
�r n �r 
 �1lim n l � r n � 0

lim 
n l �

 	 r n 	 � lim 
n l �

 	 r 	n � 0

0 	 	 r 	 	 1�1 	 r 	 0

lim 
n l �

 0 n � 0lim 
n l �

 1n � 1

lim 
n l �

 r n � ��

0

if r � 1

if 0 	 r 	 1

a � r
0 	 a 	 1limx l � ax � 0a � 1limx l � ax � �

�r n �rV
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N The right side is smaller because it has a
larger denominator.



EXAMPLE 12 Show that the sequence is decreasing.

SOLUTION 1 We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

Since , we know that the inequality is true. Therefore and 
so is decreasing.

SOLUTION 2 Consider the function :

Thus is decreasing on and so . Therefore is decreasing. M

DEFINITION A sequence is bounded above if there is a number such
that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.

For instance, the sequence is bounded below but not above. The
sequence is bounded because for all .

We know that not every bounded sequence is convergent [for instance, the sequence
satisfies but is divergent from Example 6] and not every mono-

tonic sequence is convergent . But if a sequence is both bounded and
monotonic, then it must be convergent. This fact is proved as Theorem 12, but intuitively
you can understand why it is true by looking at Figure 12. If is increasing and 
for all , then the terms are forced to crowd together and approach some number .

The proof of Theorem 12 is based on the Completeness Axiom for the set of real
numbers, which says that if is a nonempty set of real numbers that has an upper bound

( for all in ), then has a least upper bound . (This means that is an upper
bound for , but if is any other upper bound, then .) The Completeness Axiom is
an expression of the fact that there is no gap or hole in the real number line.

b 
 MMS
bbSSxx 
 MM

S
�

Ln
an 
 M�an �

�an � n l ��
�1 
 an 
 1an � ��1�n

n0 	 an 	 1an � n��n � 1�
�an � 0�an � n

�an �

for all n � 1m 
 an

m

for all n � 1an 
 M

M�an �11

�an �f �n� � f �n � 1��1, ��f

whenever x2 � 1f ��x� �
x 2 � 1 � 2x 2

�x 2 � 1�2 �
1 � x 2

�x 2 � 1�2 	 0

f �x� �
x

x 2 � 1

�an �
an�1 	 ann2 � n � 1n � 1

1 	 n2 � n&?

n3 � n2 � n � 1 	 n3 � 2n2 � 2n&?

�n � 1��n2 � 1� 	 n
�n � 1�2 � 1�&?
n � 1

�n � 1�2 � 1
	

n

n2 � 1

n � 1

�n � 1�2 � 1
	

n

n 2 � 1

an�1 	 an

an �
n

n 2 � 1
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MONOTONIC SEQUENCE THEOREM Every bounded, monotonic sequence is 
convergent.

PROOF Suppose is an increasing sequence. Since is bounded, the set
has an upper bound. By the Completeness Axiom it has a least upper

bound . Given , is not an upper bound for (since is the least upper
bound). Therefore

But the sequence is increasing so for every . Thus if , we have

so

since . Thus

so .
A similar proof (using the greatest lower bound) works if is decreasing. M

The proof of Theorem 12 shows that a sequence that is increasing and bounded above
is convergent. (Likewise, a decreasing sequence that is bounded below is convergent.) This
fact is used many times in dealing with infinite series.

EXAMPLE 13 Investigate the sequence defined by the recurrence relation

SOLUTION We begin by computing the first several terms:

These initial terms suggest that the sequence is increasing and the terms are approaching
6. To confirm that the sequence is increasing, we use mathematical induction to show
that for all . This is true for because . If we assume
that it is true for , then we have

so

and

Thus  ak�2 � ak�1

 12 �ak�1 � 6� �
1
2 �ak � 6�

 ak�1 � 6 � ak � 6

 ak�1 � ak

n � k
a2 � 4 � a1n � 1n � 1an�1 � an

 a9 � 5.984375 a8 � 5.96875 a7 � 5.9375

 a6 � 5.875 a5 � 5.75 a4 � 1
2 �5 � 6� � 5.5

 a3 � 1
2 �4 � 6� � 5 a2 � 1

2 �2 � 6� � 4 a1 � 2

for n � 1, 2, 3, . . .an�1 � 1
2 �an � 6�a1 � 2

�an�

�an �
lim n l � an � L

n � Nwhenever	 L � an 	 	 �

an 
 L

 0 
 L � an 	 �

an � L � �

n � Nn � Nan � aN

for some integer NaN � L � �

LSL � �� � 0L
S � �an 	 n � 1�

�an ��an �

12
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N Mathematical induction is often used in 
dealing with recursive sequences. See page 77
for a discussion of the Principle of Mathematical
Induction.



We have deduced that is true for . Therefore the inequality is true
for all by induction.

Next we verify that is bounded by showing that for all . (Since the
sequence is increasing, we already know that it has a lower bound: for 
all .) We know that , so the assertion is true for . Suppose it is true for

. Then

so

Thus

This shows, by mathematical induction, that for all .
Since the sequence is increasing and bounded, Theorem 12 guarantees that it has

a limit. The theorem doesn’t tell us what the value of the limit is. But now that we know
exists, we can use the recurrence relation to write

Since , it follows that , too (as , too). So we have

Solving this equation for , we get , as predicted. ML � 6L

L � 1
2 �L � 6�

n � 1 l �n l �an�1 l Lan l L

lim 
n l �

 an�1 � lim 
n l �

 12 �an � 6� � 1
2 ( lim 

n l �
 an � 6) � 1

2 �L � 6�

L � limn l � an

�an�
nan � 6

 ak�1 � 6

 12 �ak � 6� �
1
2 �12� � 6

 ak � 6 � 12

 ak � 6

n � k
n � 1a1 � 6n

an � a1 � 2
nan � 6�an �

n
n � k � 1an�1 � an
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EXERCISES11.1

1. (a) What is a sequence?
(b) What does it mean to say that ?
(c) What does it mean to say that ?

2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

3–8 List the first five terms of the sequence.

3. 4.

5. 6.

7. , 8. ,

9–14 Find a formula for the general term of the sequence,
assuming that the pattern of the first few terms continues.

9. 10. {1, 13 , 19 , 1
27 , 1

81 , . . .}{1, 13 , 15 , 17 , 19 , . . .}

an

an�1 �
an

an � 1
a1 � 4an�1 � 2an � 1a1 � 3

�2 � 4 � 6 � � � � � �2n��an �
3��1�n

n!

an �
n � 1

3n � 1
an � 1 � �0.2�n

limn l � an � �
limn l � an � 8

11. 12.

14.

List the first six terms of the sequence defined by

Does the sequence appear to have a limit? If so, find it.

16. List the first nine terms of the sequence . Does this
sequence appear to have a limit? If so, find it. If not, explain
why.

17–46 Determine whether the sequence converges or diverges. 
If it converges, find the limit.

17. 18. an �
n3

n3 � 1
an � 1 � �0.2�n

�cos�n	�3��

an �
n

2n � 1

15.

�5, 1, 5, 1, 5, 1, . . .�{1, � 2
3 , 49 , � 8

27 , . . .}13.

{�
1
4 , 29 , � 3

16 , 4
25 , . . .}�2, 7, 12, 17, . . .�

N A proof of this fact is requested in Exercise 58.
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(a) Determine whether the sequence defined as follows is
convergent or divergent:

(b) What happens if the first term is ?

55. If $1000 is invested at 6% interest, compounded annually,
then after years the investment is worth 
dollars.
(a) Find the first five terms of the sequence .
(b) Is the sequence convergent or divergent? Explain.

56. Find the first 40 terms of the sequence defined by

and . Do the same if . Make a conjecture
about this type of sequence.

57. For what values of is the sequence convergent?

58. (a) If is convergent, show that

(b) A sequence is defined by and
for . Assuming that is 

convergent, find its limit.

Suppose you know that is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

60–66 Determine whether the sequence is increasing, decreasing,
or not monotonic. Is the sequence bounded?

60.

62.

63. 64.

65. 66.

67. Find the limit of the sequence

68. A sequence is given by , .
(a) By induction or otherwise, show that is increasing 

and bounded above by 3. Apply the Monotonic Sequence
Theorem to show that exists.

(b) Find .limn l � an

limn l � an

�an �
an�1 � s2 � an

   a1 � s2 �an �

{s2 , s2s2 , s2s2s2 , . . .}

an � n �
1

n
an �

n

n 2 � 1

an � ne �n   an � n��1�n

an �
2n � 3

3n � 4
an �

1

2n � 3
61.

an � ��2�n�1

�an �59.

�an �n � 1an�1 � 1��1 � an �
a1 � 1�an �

lim 
n l �

 an�1 � lim 
n l �

 an

�an �

�nr n �r

a1 � 25a1 � 11

an�1 � �1
2 an

3an � 1

if an is an even number

if an is an odd number

�an �

an � 1000�1.06�nn

a1 � 2

a1 � 1    an�1 � 4 � an    for n � 1

54.
20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

37. 38.

39. 40.

41. 42.

44.

45. 46.

; 47–53 Use a graph of the sequence to decide whether the
sequence is convergent or divergent. If the sequence is conver-
gent, guess the value of the limit from the graph and then prove
your guess. (See the margin note on page 680 for advice on
graphing sequences.)

47. 48.

49. 50.

51.

52.

53. an �
1 � 3 � 5 � � � � � �2n � 1�

�2n�n

an �
1 � 3 � 5 � � � � � �2n � 1�

n!

an �
n2 cos n

1 � n2

an � s
n 3n � 5n an � �3 � 2n2

8n2 � n
  

an � sn  sin(	�sn )an � 1 � ��2�e�n

an �
��3�n

n!
an �

n!

2n

{1
1, 13 , 12 , 1

4 , 13 , 15 , 14 , 16 , . . .}�0, 1, 0, 0, 1, 0, 0, 0, 1, . . . �43.

an �
�ln n�2

n
an � ln�2n2 � 1� � ln�n2 � 1�

an �
sin 2n

1 � sn an � 	1 �
2

n

n

an � s
n 21�3n an � n sin�1�n�

an � ln�n � 1� � ln n36.an �
cos2n

2n35.

�n cos n	��n2e �n�

� ln n

ln 2n�� e n � e �n

e 2n � 1 �
�arctan 2n�� �2n � 1 �!

�2n � 1�!�
an � cos�2�n�an � cos�n�2�

an �
��1�n n3

n3 � 2n2 � 1
an �

��1�n�1n

n2 � 1

an � � n � 1

9n � 1
an � tan	 2n	

1 � 8n

an �

3n�2

5nan � e1�n

an �
n3

n � 1
an �

3 � 5n2

n � n2
19.
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(e) Use parts (c) and (d) to show that for all .
(f) Use Theorem 12 to show that exists.

(The limit is . See Equation 3.6.6.)

79. Let and be positive numbers with . Let be their
arithmetic mean and their geometric mean:

Repeat this process so that, in general,

(a) Use mathematical induction to show that

(b) Deduce that both and are convergent.
(c) Show that . Gauss called the 

common value of these limits the arithmetic-geometric
mean of the numbers and .

80. (a) Show that if and , 
then is convergent and .

(b) If and

find the first eight terms of the sequence . Then use 
part (a) to show that . This gives the 
continued fraction expansion

81. The size of an undisturbed fish population has been modeled
by the formula

where is the fish population after years and and are
positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is .
(a) Show that if is convergent, then the only possible 

values for its limit are 0 and .
(b) Show that .
(c) Use part (b) to show that if , then ; 

in other words, the population dies out.
(d) Now assume that . Show that if , then

is increasing and . Show also that 
if , then is decreasing and .
Deduce that if , then .limn l � pn � b � aa � b

pn � b � a� pn�p 0 � b � a
0 � pn � b � a� pn�

p 0 � b � aa � b

limn l � pn � 0a � b
pn�1 � �b�a�pn

b � a
� pn�

p0 � 0

banpn

pn�1 �
bpn

a � pn

s2 � 1 �
1

2 �
1

2 � � � �

lim n l � an � s2 
�an �

an�1 � 1 �
1

1 � an

a1 � 1
lim n l � an � L�an �

lim n l � a2n�1 � Llim n l � a2n � L

ba

limn l � an � limn l � bn

�bn ��an �

an � an�1 � bn�1 � bn

bn�1 � san bn
 an�1 �

an � bn

2

b1 � sab a1 �
a � b

2

b1

a1a � bba

e
lim n l � �1 � 1�n�n

nan � 4Show that the sequence defined by

is increasing and for all . Deduce that is conver-
gent and find its limit.

70. Show that the sequence defined by

satisfies and is decreasing. Deduce that the
sequence is convergent and find its limit.

71. (a) Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair
produces a new pair which becomes productive at age
2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the month? Show that
the answer is , where is the Fibonacci sequence
defined in Example 3(c).

(b) Let and show that .
Assuming that is convergent, find its limit.

72. (a) Let , , , . . . ,
, where is a continuous function. If

, show that .
(b) Illustrate part (a) by taking , , and 

estimating the value of to five decimal places.

; 73. (a) Use a graph to guess the value of the limit

(b) Use a graph of the sequence in part (a) to find the 
smallest values of that correspond to and

in Definition 2.

74. Use Definition 2 directly to prove that 
when .

75. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]

76. Prove Theorem 7.

77. Prove that if and is bounded, then
.

78. Let .

(a) Show that if , then

(b) Deduce that .
(c) Use and in part (b) to

show that is increasing.
(d) Use and in part (b) to show that

.a2n � 4
b � 1 � 1��2n�a � 1

�an �
b � 1 � 1�na � 1 � 1��n � 1�

b n ��n � 1�a � nb
 � a n�1

b n�1 � a n�1

b � a
� �n � 1�b n

0 
 a � b

an � 	1 �
1

n
n

limn l � �an bn� � 0
�bn�limn l � an � 0

� r � � 1
lim n l � r n � 0

� � 0.001
� � 0.1N

lim
n l �

 
n5

n!

L
a � 1f �x� � cos x

f �L� � Llimn l � an � L
fan�1 � f �an �

a3 � f �a2� � f � f �a��a2 � f �a�a1 � a

�an �
an�1 � 1 � 1�an�2an � fn�1�fn

� fn �fn

nth

0 � an 
 2

an�1 �
1

3 � an
a1 � 2

�an �nan � 3

an�1 � 3 �
1

an
a1 � 1
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A sequence that arises in ecology as a model for population growth is defined by the logistic 
difference equation

where measures the size of the population of the generation of a single species. To keep the
numbers manageable, is a fraction of the maximal size of the population, so . Notice
that the form of this equation is similar to the logistic differential equation in Section 9.4. The
discrete model—with sequences instead of continuous functions—is preferable for modeling insect
populations, where mating and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on, and asks 
these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or will 
it exhibit random behavior?

Write a program to compute the first terms of this sequence starting with an initial population
. Use this program to do the following.

1. Calculate 20 or 30 terms of the sequence for and for two values of such that
. Graph the sequences. Do they appear to converge? Repeat for a different value of

between 0 and 1. Does the limit depend on the choice of ? Does it depend on the choice
of ?

2. Calculate terms of the sequence for a value of between 3 and 3.4 and plot them. What do
you notice about the behavior of the terms?

3. Experiment with values of between 3.4 and 3.5. What happens to the terms?

4. For values of between 3.6 and 4, compute and plot at least 100 terms and comment on the
behavior of the sequence. What happens if you change by 0.001? This type of behavior is
called chaotic and is exhibited by insect populations under certain conditions.

p0

k

k

k

k
p0p0

1 � k � 3
kp0 � 1

2

p0, where 0 � p0 � 1
n

0 
 pn 
 1pn

nthpn

pn�1 � kpn�1 � pn �

LOGISTIC SEQUENCESCASL A B O R AT O R Y
P R O J E C T

SERIES

If we try to add the terms of an infinite sequence we get an expression of the form

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

But does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, . . .
and, after the term, we get , which becomes very large as increases.

However, if we start to add the terms of the series

1

2
�

1

4
�

1

8
�

1

16
�

1

32
�

1

64
� � � � �

1

2n � � � �

nn�n � 1��2nth

1 � 2 � 3 � 4 � 5 � � � � � n � � � �

� anor�
�

n�1
 an

a1 � a2 � a3 � � � � � an � � � �1

�an �n�1
�

11.2
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we get , , , , , , . . . , , . . . . The table shows that as we add more and more
terms, these partial sums become closer and closer to 1. (See also Figure 11 in A Preview
of Calculus, page 7.) In fact, by adding sufficiently many terms of the series we can make
the partial sums as close as we like to 1. So it seems reasonable to say that the sum of this
infinite series is 1 and to write

We use a similar idea to determine whether or not a general series (1) has a sum. We
consider the partial sums

and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it the

sum of the infinite series .

DEFINITION Given a series , let denote its
partial sum:

If the sequence is convergent and exists as a real number, then
the series is called convergent and we write

The number is called the sum of the series. Otherwise, the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write
, we mean that by adding sufficiently many terms of the series we can get as

close as we like to the number . Notice that

EXAMPLE 1 An important example of an infinite series is the geometric series

a � 0a � ar � ar 2 � ar 3 � � � � � ar n�1 � � � � � �
�

n�1
 ar n�1

�
�

n�1
 an � lim

n l �
 �

n

i�1
 ai

s
��

n�1 an � s

s

�
�

n�1
 an � sora1 � a2 � � � � � an � � � � � s

� an

lim n l � sn � s�sn �

sn � �
n

i�1
 ai � a1 � a2 � � � � � an

nth
sn��

n�1 an � a1 � a2 � a3 � � � �2

� an

lim n l � sn � s
�sn �

sn � a1 � a2 � a3 � � � � � an � �
n

i�1
 ai

 s4 � a1 � a2 � a3 � a4

 s3 � a1 � a2 � a3

 s2 � a1 � a2

 s1 � a1

�
�

n�1
 

1

2n �
1

2
�

1

4
�

1

8
�

1

16
� � � � �

1

2n � � � � � 1

1 � 1�2n63
64

31
32

15
16

7
8

3
4

1
2

688 | | | | CHAPTER 11 INFINITE SEQUENCES AND SERIES

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997

N Compare with the improper integral

To find this integral, we integrate from 1 to and
then let . For a series, we sum from 1 to 
and then let .n l �

nt l�

t

y
�

1
 f �x� dx � lim

t l �
 y

t

1
 f �x� dx



Each term is obtained from the preceding one by multiplying it by the common ratio .
(We have already considered the special case where and on page 687.)

If , then . Since doesn’t exist, the
geometric series diverges in this case.

If , we have

and

Subtracting these equations, we get

If , we know from (11.1.9) that as , so

Thus when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (11.1.9) and so, by Equation 3,

does not exist. Therefore the geometric series diverges in those cases. M

We summarize the results of Example 1 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

EXAMPLE 2 Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since , the
series is convergent by (4) and its sum is

M5 �
10

3
�

20

9
�

40

27
� � � � �

5

1 � (� 2
3 ) �

5
5
3

� 3

� r � � 2
3 � 1r � �

2
3a � 5

5 �
10
3 �

20
9 �

40
27 � � � �

V

� r � � 1

� r � � 1�
�

n�1
 ar n�1 �

a

1 � r

� r � � 1

�
�

n�1
 ar n�1 � a � ar � ar 2 � � � �

4

lim n l � sn

�r n �r � 1r 
 �1
a��1 � r�� r � � 1

lim
n l �

 sn � lim
n l �

 
a�1 � r n �

1 � r
�

a

1 � r
�

a

1 � r
 lim
n l �

 r n �
a

1 � r

n l �r n l 0�1 � r � 1

 sn �
a�1 � r n �

1 � r
3

 sn � rsn � a � ar n

 rsn �  ar � ar 2 � � � � � ar n�1 � ar n

 sn �  a � ar � ar 2 � � � � � ar n�1

r � 1

lim n l � snsn � a � a � � � � � a � na l ��r � 1
r � 1

2a � 1
2

r
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N Figure 1 provides a geometric demonstration
of the result in Example 1. If the triangles are
constructed as shown and is the sum of the
series, then, by similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s

N In words: The sum of a convergent geometric
series is

first term

1 � common ratio



EXAMPLE 3 Is the series convergent or divergent?

SOLUTION Let’s rewrite the term of the series in the form :

We recognize this series as a geometric series with and . Since , the
series diverges by (4). M

EXAMPLE 4 Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

M

EXAMPLE 5 Find the sum of the series , where .

SOLUTION Notice that this series starts with and so the first term is . (With
series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges and
(4) gives

M�
�

n�0
 xn �

1

1 � x
5

� r � � � x � � 1r � xa � 1

�
�

n�0
 xn � 1 � x � x 2 � x 3 � x 4 � � � �

x � 0x 0 � 1
x 0 � 1n � 0

� x � � 1�
�

n�0
 xn

 �
23

10
�

17

990
�

1147

495

 2.317 � 2.3 �

17

103

1 �
1

102

� 2.3 �

17

1000

99

100

r � 1�102a � 17�103

2.3171717. . . � 2.3 �
17

103 �
17

105 �
17

107 � � � �

2.317 � 2.3171717V

r � 1r � 4
3a � 4

�
�

n�1
 22n31�n � �

�

n�1
 �22�n 3��n�1� � �

�

n�1
 

4n

3n�1 � �
�

n�1
 4( 4

3 )n�1

arn�1nth

�
�

n�1
 22n31�n

FIGURE 2

0 n

sn

20

3
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N What do we really mean when we say that
the sum of the series in Example 2 is 3? Of
course, we can’t literally add an infinite number
of terms, one by one. But, according to Definition
2, the total sum is the limit of the sequence of
partial sums. So, by taking the sum of sufficiently
many terms, we can get as close as we like to
the number 3. The table shows the first ten par-
tial sums and the graph in Figure 2 shows how
the sequence of partial sums approaches 3.

sn

N Another way to identify and is to write out
the first few terms:

4 �
16
3 �

64
9 � � � �

ra

Module 11.2 explores a series that
depends on an angle in a triangle and
enables you to see how rapidly the series
converges when varies.




TEC

n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn



EXAMPLE 6 Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a convergent
series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

(see Section 7.4). Thus we have

and so

Therefore the given series is convergent and

M

EXAMPLE 7 Show that the harmonic series

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums , , ,
and show that they become large.

 � 1 �
1
2 �

1
2 �

1
2 �

1
2 � 1 �

4
2

 � 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 � � � � �
1
8 ) � ( 1

16 � � � � �
1
16 )

 s16 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 � � � � �
1
8 ) � ( 1

9 � � � � �
1
16 )

 � 1 �
1
2 �

1
2 �

1
2 � 1 �

3
2

 � 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 �
1
8 �

1
8 �

1
8 )

 s8 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 �
1
6 �

1
7 �

1
8 )

 s4 � 1 �
1
2 � ( 1

3 �
1
4 ) � 1 �

1
2 � ( 1

4 �
1
4 ) � 1 �

2
2

 s2 � 1 �
1
2

 s1 � 1

s32, . . .
s16s8,s4s2

�
�

n�1
 
1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

V

�
�

n�1
 

1

n�n � 1�
� 1

lim 
n l �

 sn � lim 
n l �

 	1 �
1

n � 1
 � 1 � 0 � 1

 � 1 �
1

n � 1

 � 	1 �
1

2
 � 	1

2
�

1

3
 � 	1

3
�

1

4
 � � � � � 	1

n
�

1

n � 1

 sn � �

n

i�1
 

1

i�i � 1�
� �

n

i�1
 	1

i
�

1

i � 1


1

i�i � 1�
�

1

i
�

1

i � 1

sn � �
n

i�1
 

1

i�i � 1�
�

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� � � � �

1

n�n � 1�

�
�

n�1
 

1

n�n � 1�
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N Notice that the terms cancel in pairs. This is
an example of a telescoping sum: Because of
all the cancellations, the sum collapses (like a
pirate’s collapsing telescope) into just two terms.

N Figure 3 illustrates Example 6 by show-
ing the graphs of the sequence of terms

and the sequence of
partial sums. Notice that and .
See Exercises 62 and 63 for two geometric inter-
pretations of Example 6.

sn l 1an l 0
�sn �an � 1�[n�n � 1�]

FIGURE 3

0

1

�an�

n

�sn�



Similarly, , , and in general

This shows that as and so is divergent. Therefore the harmonic
series diverges. M

THEOREM If the series is convergent, then .

PROOF Let . Then . Since is convergent, the
sequence is convergent. Let . Since as , we also
have . Therefore

M

With any series we associate two sequences: the sequence of its par-
tial sums and the sequence of its terms. If is convergent, then the limit of the
sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the
sequence is 0.

| The converse of Theorem 6 is not true in general. If , we cannot
conclude that is convergent. Observe that for the harmonic series we have

as , but we showed in Example 7 that is divergent.

THE TEST FOR DIVERGENCE If does not exist or if , then the

series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent,
then it is convergent, and so .

EXAMPLE 8 Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence. M

If we find that , we know that is divergent. If we find that
, we know nothing about the convergence or divergence of . Remem-

ber the warning in Note 2: If , the series might converge or it might
diverge.

� anlim n l � an � 0
� anlim n l � an � 0

� anlim n l � an � 0NOTE 3

lim 
n l �

 an � lim 
n l �

 
n2

5n2 � 4
� lim 

n l �
 

1

5 � 4�n2 �
1

5
� 0

�
�

n�1
 

n2

5n2 � 4

lim n l � an � 0

�
�

n�1
 an

lim 
n l �

 an � 0lim 
n l �

 an7

� 1�nn l �an � 1�n l 0
� 1�n� an

lim n l � an � 0NOTE 2

�an �
s�sn �

� an�an �
�sn �� anNOTE 1

 � s � s � 0

 lim 
n l �

 an � lim 
n l �

 �sn � sn�1� � lim 
n l �

 sn � lim 
n l �

 sn�1

lim n l � sn�1 � s
n l �n � 1 l �lim n l � sn � s�sn �

� anan � sn � sn�1sn � a1 � a2 � � � � � an

lim 
n l �

 an � 0�
�

n�1
 an6

�sn �n l �s2n l �

s2n � 1 �
n

2

s64 � 1 �
6
2s32 � 1 �

5
2
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N The method used in Example 7 for showing
that the harmonic series diverges is due to the
French scholar Nicole Oresme (1323–1382).



THEOREM If and are convergent series, then so are the series 
(where is a constant), , and , and

(i) (ii)

(iii)

These properties of convergent series follow from the corresponding Limit Laws for
Sequences in Section 11.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

The nth partial sum for the series is

and, using Equation 5.2.10, we have

Therefore is convergent and its sum is

M

EXAMPLE 9 Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 6 we found that

So, by Theorem 8, the given series is convergent and

M

A finite number of terms doesn’t affect the convergence or divergence of a
series. For instance, suppose that we were able to show that the series

�
�

n�4
 

n

n 3 � 1

NOTE 4

� 3 � 1 � 1 � 4 �
�

n�1
 	 3

n�n � 1�
�

1

2n
 � 3 �
�

n�1
 

1

n�n � 1�
� �

�

n�1
 

1

2n

�
�

n�1
 

1

n�n � 1�
� 1 

�
�

n�1
 

1

2n �
1
2

1 �
1
2

� 1

r � 1
2a � 1

2� 1�2n

�
�

n�1
 	 3

n�n � 1�
�

1

2n

�
�

n�1
 �an � bn � � s � t � �

�

n�1
 an � �

�

n�1
 bn

� �an � bn �

� lim
n l �

 sn � lim
n l �

 tn � s � t� lim
n l �

 �
n

i�1
 ai � lim

n l �
 �

n

i�1
 bi

 lim 
n l �

 un � lim 
n l �

 �
n

i�1
 �ai � bi � � lim 

n l �
 	�

n

i�1
 ai � �

n

i�1
 bi


un � �
n

i�1
 �ai � bi �

� �an � bn �

t � �
�

n�1
 bntn � �

n

i�1
 bis � �

�

n�1
 ansn � �

n

i�1
 ai

�
�

n�1
 �an � bn � � �

�

n�1
 an � �

�

n�1
 bn

�
�

n�1
 �an � bn � � �

�

n�1
 an � �

�

n�1
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�

n�1
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�

n�1
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� can� bn� an8
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is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known that
the series converges, then the full series

is also convergent.

�
�

n�1
 an � �

N

n�1
 an � �

�

n�N�1
 an

��
n�N�1 an

��
n�1 n��n 3 � 1�

�
�

n�1
 

n

n 3 � 1
�

1

2
�

2

9
�

3

28
� �

�

n�4
 

n

n 3 � 1
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18.

19. 20.

21–34 Determine whether the series is convergent or divergent. 
If it is convergent, find its sum.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

32.

33. 34.

35–40 Determine whether the series is convergent or divergent
by expressing as a telescoping sum (as in Example 6). If it is
convergent, find its sum.

36.

37. 38. �
�

n�1
 ln 

n

n � 1�
�

n�1
 

3

n�n � 3�

�
�

n�1
 

2

n 2 � 4n � 3�
�

n�2
 

2

n 2 � 1
35.

sn

�
�

n�1
 
en

n2�
�

n�1
 � 1

en
 �

1

n�n � 1��
�
�

n�1
 � 3

5 n �
2

n��
�

n�1
 arctan n31.

�
�

k�1
 �cos 1�k�

�

n�1
 ln� n2 � 1

2n2 � 1�
�
�

n�1
 	�0.8�n�1 � �0.3�n
�

�

n�1
 sn 2 

�
�

n�1
 
1 � 3 n

2 n�
�

n�1
 
1 � 2 n

3 n

�
�

k�1
 
k�k � 2�
�k � 3�2�

�

k�2
 

k 2

k 2 � 1

�
�

n�1
 

n � 1

2n � 3�
�

n�1
 

1

2n

�
�

n�1
 

e n

3 n�1�
�

n�0
 

� n

3 n�1

�
�

n�0

 
1

(s2 )n�
�

n�1
 
��3�n�1

4 n
17.

1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

; 3–8 Find at least 10 partial sums of the series. Graph both the
sequence of terms and the sequence of partial sums on the same
screen. Does it appear that the series is convergent or divergent?
If it is convergent, find the sum. If it is divergent, explain why.

4.

5. 6.

7. 8.

Let .

(a) Determine whether is convergent.
(b) Determine whether is convergent.

10. (a) Explain the difference between

(b) Explain the difference between

11–20 Determine whether the geometric series is convergent or
divergent. If it is convergent, find its sum.

11. 12.

13.

14.

15. 16. �
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56. If the partial sum of a series is ,

find and .

57. When money is spent on goods and services, those who
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local govern-
ment begins the process by spending dollars. Suppose that
each recipient of spent money spends and saves

of the money that he or she receives. The values and
s are called the marginal propensity to consume and the mar-
ginal propensity to save and, of course, .
(a) Let be the total spending that has been generated after 

transactions. Find an equation for .
(b) Show that , where . The number 

is called the multiplier. What is the multiplier if the 
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lending a
large percentage of the money that they receive in deposits.

58. A certain ball has the property that each time it falls from a
height onto a hard, level surface, it rebounds to a height ,
where . Suppose that the ball is dropped from an
initial height of meters.
(a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels. (Use the fact that the
ball falls in .)

(b) Calculate the total time that the ball travels.
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where
. How long will it take for the ball to come 

to rest?

Find the value of if

60. Find the value of such that

61. In Example 7 we showed that the harmonic series is diver-
gent. Here we outline another method, making use of the 
fact that for any . (See Exercise 4.3.76.)

If is the partial sum of the harmonic series, show
that . Why does this imply that the harmonic
series is divergent?

; 62. Graph the curves , , for 
on a common screen. By finding the areas between successive
curves, give a geometric demonstration of the fact, shown in
Example 6, that
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40.

41–46 Express the number as a ratio of integers.

42.

43.

44.

45. 46.

47–51 Find the values of for which the series converges. Find
the sum of the series for those values of .

48.

49. 50.

51.

52. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

is another series with this property.

53–54 Use the partial fraction command on your CAS to find 
a convenient expression for the partial sum, and then use this
expression to find the sum of the series. Check your answer by
using the CAS to sum the series directly.

53. 54.

If the partial sum of a series is

find and .�
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69. If is convergent and is divergent, show that 
the series is divergent. [Hint: Argue by 
contradiction.]

70. If and are both divergent, is neces-
sarily divergent?

Suppose that a series has positive terms and its partial
sums satisfy the inequality for all . Explain
why must be convergent.

72. The Fibonacci sequence was defined in Section 11.1 by the
equations

Show that each of the following statements is true.

(a)

(b)

(c)

The Cantor set, named after the German mathematician
Georg Cantor (1845–1918), is constructed as follows. We
start with the closed interval and remove the open inter-
val . That leaves the two intervals and and
we remove the open middle third of each. Four intervals
remain and again we remove the open middle third of each of
them. We continue this procedure indefinitely, at each step
removing the open middle third of every interval that remains
from the preceding step. The Cantor set consists of the num-
bers that remain in after all those intervals have been
removed.
(a) Show that the total length of all the intervals that are

removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers in
the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart
of the Cantor set. It is constructed by removing the center
one-ninth of a square of side 1, then removing the centers
of the eight smaller remaining squares, and so on. (The
figure shows the first three steps of the construction.)
Show that the sum of the areas of the removed squares 
is 1. This implies that the Sierpinski carpet has area 0.

[0, 1]

[ 2
3, 1][0, 13 ]( 1

3, 23 )
[0, 1]
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� �an � bn�� bn� an

� �an � bn�
� bn� an63. The figure shows two circles and of radius 1 that touch

at . is a common tangent line; is the circle that touches
, , and ; is the circle that touches , , and ; is

the circle that touches , , and . This procedure can be
continued indefinitely and produces an infinite sequence of
circles . Find an expression for the diameter of and
thus provide another geometric demonstration of Example 6.

64. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpen-

dicular to , , and this process is continued 
indefinitely, as shown in the figure. Find the total length of 
all the perpendiculars

in terms of and .

What is wrong with the following calculation?

(Guido Ubaldus thought that this proved the existence of God
because “something has been created out of nothing.”)

66. Suppose that is known to be a convergent
series. Prove that is a divergent series.

67. Prove part (i) of Theorem 8.

68. If is divergent and , show that is divergent.� canc � 0� an

��
n�1 1�an

��
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THE INTEGRAL TEST AND ESTIMATES OF SUMS

In general, it is difficult to find the exact sum of a series. We were able to accomplish this
for geometric series and the series because in each of those cases we could
find a simple formula for the partial sum . But usually it isn’t easy to compute

. Therefore, in the next few sections, we develop several tests that enable us to
determine whether a series is convergent or divergent without explicitly finding its sum.
(In some cases, however, our methods will enable us to find good estimates of the sum.)
Our first test involves improper integrals.

We begin by investigating the series whose terms are the reciprocals of the squares of
the positive integers:

There’s no simple formula for the sum of the first n terms, but the computer-generated
table of values given in the margin suggests that the partial sums are approaching a num-
ber near 1.64 as and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the curve
and rectangles that lie below the curve. The base of each rectangle is an interval

of length 1; the height is equal to the value of the function at the right endpoint
of the interval. So the sum of the areas of the rectangles is
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circles and sides of the triangle. If the triangle has sides of
length 1, find the total area occupied by the circles.

74. (a) A sequence is defined recursively by the equation
for , where and can be any

real numbers. Experiment with various values of and 
and use your calculator to guess the limit of the sequence.

(b) Find in terms of and by expressing
in terms of and summing a series.

75. Consider the series

(a) Find the partial sums and . Do you recognize the
denominators? Use the pattern to guess a formula for .

(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and find

its sum.

76. In the figure there are infinitely many circles approaching the
vertices of an equilateral triangle, each circle touching other 

sn
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If we exclude the first rectangle, the total area of the remaining rectangles is smaller
than the area under the curve for , which is the value of the integral

. In Section 7.8 we discovered that this improper integral is convergent and has
value 1. So the picture shows that all the partial sums are less than

Thus the partial sums are bounded. We also know that the partial sums are increasing
(because all the terms are positive). Therefore the partial sums converge (by the Monotonic
Sequence Theorem) and so the series is convergent. The sum of the series (the limit of the
partial sums) is also less than 2:

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler
(1707–1783) to be , but the proof of this fact is quite difficult. (See Problem 6 in the
Problems Plus following Chapter 15.)]

Now let’s look at the series

The table of values of suggests that the partial sums aren’t approaching a finite number,
so we suspect that the given series may be divergent. Again we use a picture for confirma-
tion. Figure 2 shows the curve , but this time we use rectangles whose tops lie
above the curve.

The base of each rectangle is an interval of length 1. The height is equal to the value of
the function at the left endpoint of the interval. So the sum of the areas of all the
rectangles is

This total area is greater than the area under the curve for , which is equal
to the integral . But we know from Section 7.8 that this improper integral is
divergent. In other words, the area under the curve is infinite. So the sum of the series must
be infinite; that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used to
prove the following test. (The proof is given at the end of this section.)
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THE INTEGRAL TEST Suppose is a continuous, positive, decreasing function on
and let . Then the series is convergent if and only if the

improper integral is convergent. In other words:

(i) If is convergent, then is convergent.

(ii) If is divergent, then is divergent.

When we use the Integral Test, it is not necessary to start the series or the inte-
gral at . For instance, in testing the series

Also, it is not necessary that be always decreasing. What is important is that be ulti-
mately decreasing, that is, decreasing for larger than some number . Then is
convergent, so is convergent by Note 4 of Section 11.2.

EXAMPLE 1 Test the series for convergence or divergence.

SOLUTION The function is continuous, positive, and decreasing on
so we use the Integral Test:

Thus is a convergent integral and so, by the Integral Test, the series
is convergent. M

EXAMPLE 2 For what values of is the series convergent?

SOLUTION If , then . If , then . In either
case, , so the given series diverges by the Test for Divergence (11.2.7).

If , then the function is clearly continuous, positive, and decreasing
on . We found in Chapter 7 [see (7.8.2)] that

It follows from the Integral Test that the series converges if and diverges if
. (For , this series is the harmonic series discussed in Example 7 in

Section 11.2.) M

The series in Example 2 is called the p-series. It is important in the rest of this chapter,
so we summarize the results of Example 2 for future reference as follows.
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N In order to use the Integral Test we need to be
able to evaluate and therefore we
have to be able to find an antiderivative of .
Frequently this is difficult or impossible, so we
need other tests for convergence too.

f
x

�
1  f �x� dx



The -series is convergent if and divergent if .

EXAMPLE 3
(a) The series

is convergent because it is a p-series with .
(b) The series

is divergent because it is a p-series with . M

We should not infer from the Integral Test that the sum of the series is equal to
the value of the integral. In fact,

Therefore, in general,

EXAMPLE 4 Determine whether the series converges or diverges.

SOLUTION The function is positive and continuous for because the
logarithm function is continuous. But it is not obvious whether or not is decreasing, so
we compute its derivative:

Thus when , that is, . It follows that is decreasing when 
and so we can apply the Integral Test:

Since this improper integral is divergent, the series is also divergent by the
Integral Test. M

ESTIMATING THE SUM OF A SERIES

Suppose we have been able to use the Integral Test to show that a series is conver-
gent and we now want to find an approximation to the sum of the series. Of course, any
partial sum is an approximation to because . But how good is such an
approximation? To find out, we need to estimate the size of the remainder
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The remainder is the error made when , the sum of the first terms, is used as an
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that is decreas-
ing on . Comparing the areas of the rectangles with the area under for 
in Figure 3, we see that

Similarly, we see from Figure 4 that

So we have proved the following error estimate.

REMAINDER ESTIMATE FOR THE INTEGRAL TEST Suppose , where 
is a continuous, positive, decreasing function for and is convergent. If

, then

EXAMPLE 5
(a) Approximate the sum of the series by using the sum of the first 10 terms.
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within ?

SOLUTION In both parts (a) and (b) we need to know . With ,
which satisfies the conditions of the Integral Test, we have

(a)

According to the remainder estimate in (2), we have

So the size of the error is at most .

(b) Accuracy to within means that we have to find a value of such that
. Since
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Solving this inequality, we get

We need 32 terms to ensure accuracy to within . M

If we add to each side of the inequalities in (2), we get

because . The inequalities in (3) give a lower bound and an upper bound 
for . They provide a more accurate approximation to the sum of the series than the partial
sum does.

EXAMPLE 6 Use (3) with to estimate the sum of the series .

SOLUTION The inequalities in (3) become

From Example 5 we know that

so

Using , we get

If we approximate by the midpoint of this interval, then the error is at most half the
length of the interval. So

M

If we compare Example 6 with Example 5, we see that the improved estimate in (3) can
be much better than the estimate . To make the error smaller than we had to
use 32 terms in Example 5 but only 10 terms in Example 6.

PROOF OF THE INTEGRAL TEST

We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and
2 for the series and . For the general series , look at Figures 5 and 6. The
area of the first shaded rectangle in Figure 5 is the value of at the right endpoint of ,	1, 2
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that is, . So, comparing the areas of the shaded rectangles with the area under
from 1 to , we see that

(Notice that this inequality depends on the fact that is decreasing.) Likewise, Figure 6
shows that

(i) If is convergent, then (4) gives

since . Therefore

Since for all , the sequence is bounded above. Also

since . Thus is an increasing bounded sequence and so it is 
convergent by the Monotonic Sequence Theorem (11.1.12). This means that is 
convergent.

(ii) If is divergent, then as because . But (5)
gives

and so . This implies that and so diverges. M� ansn l �sn�1 l �

y
n

1
 f �x� dx � �

n�1

i�1
 ai � sn�1

f �x� 
 0n l �x
n
1  f �x� dx l �x

�

1  f �x� dx

� an

�sn �an�1 � f �n � 1� 
 0

sn�1 � sn � an�1 
 sn

�sn �nsn � M

sn � a1 � �
n

i�2
 ai � a1 � y

�

1
 f �x� dx � M, say

f �x� 
 0

�
n

i�2
 ai � y

n

1
 f �x� dx � y

�

1
 f �x� dx

y
�

1
 f �x� dx

y
n

1
 f �x� dx � a1 � a2 � � � � � an�15

f

a2 � a3 � � � � � an � y
n

1
 f �x� dx4

ny � f �x�
f �2� � a2
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3–8 Use the Integral Test to determine whether the series is 
convergent or divergent.

3. 4.

5. 6.

8. �
�

n�1
 
n � 2

n � 1�
�

n�1
 ne�n7.

�
�

n�1
 

1

sn � 4 �
�

n�1
 

1

�2n � 1�3

�
�

n�1
 

1

n5�
�

n�1
 

1

s
5 n 

1. Draw a picture to show that

What can you conclude about the series?

2. Suppose is a continuous positive decreasing function 
for and . By drawing a picture, rank the 
following three quantities in increasing order:

�
6

i�2
 ai�

5

i�1
 aiy

6

1
 f �x� dx

an � f �n�x 
 1
f

�
�

n�2
 

1

n 1.3 	 y
�

1
 

1

x 1.3  dx

EXERCISES11.3



(a) Use the sum of the first 10 terms to estimate the sum of the
series . How good is this estimate?

(b) Improve this estimate using (3) with .
(c) Find a value of that will ensure that the error in the

approximation is less than .

34. Find the sum of the series correct to three decimal
places.

35. Estimate correct to five decimal places.

36. How many terms of the series would you
need to add to find its sum to within ?

37. Show that if we want to approximate the sum of the series
so that the error is less than 5 in the ninth decimal

place, then we need to add more than terms!

38. (a) Show that the series is convergent.
(b) Find an upper bound for the error in the approximation

.
(c) What is the smallest value of such that this upper bound

is less than ?
(d) Find for this value of .

(a) Use (4) to show that if is the partial sum of the 
harmonic series, then

(b) The harmonic series diverges, but very slowly. Use part (a)
to show that the sum of the first million terms is less than
15 and the sum of the first billion terms is less than 22.

40. Use the following steps to show that the sequence

has a limit. (The value of the limit is denoted by and is called
Euler’s constant.)
(a) Draw a picture like Figure 6 with and interpret

as an area [or use (5)] to show that for all .
(b) Interpret

as a difference of areas to show that . There-
fore, is a decreasing sequence.

(c) Use the Monotonic Sequence Theorem to show that is
convergent.

41. Find all positive values of for which the series 
converges.

42. Find all values of for which the following series converges. 

�
�

n�1
� c

n
�

1

n � 1�
c

��
n�1 b ln nb

�tn �
�tn �

tn � tn�1 � 0

tn � tn�1 � �ln	n � 1
 � ln n� �
1

n � 1

ntn � 0tn

f 	x
 � 1�x

�

tn � 1 �
1

2
�

1

3
� � � � �

1

n
� ln n

sn � 1 � ln n

nthsn39.

nsn

0.05
n

s 
 sn

��
n�1 	ln n
2�n 2CAS

1011,301

��
n�1 n�1.001

0.01
��

n�2 1��n	ln n
2�

��
n�1 	2n � 1
�6

��
n�1 1�n5

0.001s 
 sn

n
n � 10

��
n�1 1�n2

33.9–26 Determine whether the series is convergent or divergent.

9. 10.

12.

13.

14.

15. 16.

18.

19. 20.

22.

23. 24.

25. 26.

27–30 Find the values of for which the series is convergent.

27. 28.

29. 30.

31. The Riemann zeta-function is defined by

and is used in number theory to study the distribution of prime
numbers. What is the domain of ?

32. (a) Find the partial sum of the series . Estimate the
error in using as an approximation to the sum of the
series.

(b) Use (3) with to give an improved estimate of the
sum.

(c) Find a value of so that is within of the sum.0.00001snn
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s10

��
n�1 1�n4s10
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n ln n
21.
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n	n � 1
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1

n2 � 4
17.
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n3 � 1�
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5 � 2sn 
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1
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1
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1
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1
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1
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1
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1
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THE COMPARISON TESTS

In the comparison tests the idea is to compare a given series with a series that is known to
be convergent or divergent. For instance, the series

reminds us of the series , which is a geometric series with and and
is therefore convergent. Because the series (1) is so similar to a convergent series, we have
the feeling that it too must be convergent. Indeed, it is. The inequality

shows that our given series (1) has smaller terms than those of the geometric series and
therefore all its partial sums are also smaller than 1 (the sum of the geometric series). This
means that its partial sums form a bounded increasing sequence, which is convergent. It
also follows that the sum of the series is less than the sum of the geometric series:

Similar reasoning can be used to prove the following test, which applies only to series
whose terms are positive. The first part says that if we have a series whose terms are 
smaller than those of a known convergent series, then our series is also convergent. The
second part says that if we start with a series whose terms are larger than those of a known
divergent series, then it too is divergent.

THE COMPARISON TEST Suppose that and are series with positive terms.

(i) If is convergent and for all , then is also convergent.

(ii) If is divergent and for all , then is also divergent.

PROOF
(i) Let

Since both series have positive terms, the sequences and are increasing
. Also , so for all . Since .

Thus for all . This means that is increasing and bounded above and therefore
converges by the Monotonic Sequence Theorem. Thus converges.

(ii) If is divergent, then (since is increasing). But so .
Thus . Therefore diverges. M

In using the Comparison Test we must, of course, have some known series for
the purpose of comparison. Most of the time we use one of these series:

N A -series [ converges if and diverges if ; see (11.3.1)]
N A geometric series [ converges if and diverges if ; 

see (11.2.4)]
� r � 
 1� r � � 1� arn�1

p � 1p � 1� 1�npp

� bn

� ansn l �
sn 
 tnai 
 bi�tn �tn l �� bn

� an

�sn �nsn � t
ai � bi, we have sn � tnntn � ttn l t	sn�1 � sn � an�1 
 sn 


�tn ��sn �

t � �
�

n�1
 bntn � �

n

i�1
 bisn � �

n

i�1
 ai

� annan 
 bn� bn

� annan � bn� bn

� bn� an

�
�

n�1
 

1

2n � 1
� 1

1

2n � 1
�

1

2n

r � 1
2a � 1

2��
n�1 1�2n

�
�

n�1
 

1

2n � 1
1
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N It is important to keep in mind the distinction
between a sequence and a series. A sequence is
a list of numbers, whereas a series is a sum.
With every series there are associated two
sequences: the sequence of terms and the
sequence of partial sums.�sn �

�an �
� an

Standard Series for Use
with the Comparison Test



EXAMPLE 1 Determine whether the series converges or diverges.

SOLUTION For large the dominant term in the denominator is so we compare the
given series with the series . Observe that

because the left side has a bigger denominator. (In the notation of the Comparison Test,
is the left side and is the right side.) We know that

is convergent because it’s a constant times a -series with . Therefore

is convergent by part (i) of the Comparison Test. M

Although the condition or in the Comparison Test is given for
all , we need verify only that it holds for , where is some fixed integer, because
the convergence of a series is not affected by a finite number of terms. This is illustrated
in the next example.

EXAMPLE 2 Test the series for convergence or divergence.

SOLUTION This series was tested (using the Integral Test) in Example 4 in Section 11.3,
but it is also possible to test it by comparing it with the harmonic series. Observe that

for and so

We know that is divergent ( -series with ). Thus the given series is divergent
by the Comparison Test. M

The terms of the series being tested must be smaller than those of a convergent
series or larger than those of a divergent series. If the terms are larger than the terms of a
convergent series or smaller than those of a divergent series, then the Comparison Test
doesn’t apply. Consider, for instance, the series

The inequality

is useless as far as the Comparison Test is concerned because is convergent
and . Nonetheless, we have the feeling that ought to be convergent
because it is very similar to the convergent geometric series . In such cases the fol-
lowing test can be used.

� ( 1
2 )n

� 1�	2n � 1
an � bn

� bn � � ( 1
2 )n

1

2n � 1
�

1

2n

�
�

n�1
 

1

2n � 1

NOTE 2

p � 1p� 1�n

n 
 3
ln n

n
�

1

n

n 
 3ln n � 1

�
�

n�1
 
ln n

n
V

Nn 
 Nn
an 
 bnan � bnNOTE 1

�
�

n�1
 

5

2n2 � 4n � 3

p � 2 � 1p

�
�

n�1
 

5

2n2 �
5

2
 �

�

n�1
 

1

n2

bnan

5

2n2 � 4n � 3
�

5

2n2

� 5�	2n2 

2n2n

�
�

n�1
 

5

2n2 � 4n � 3
V
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THE LIMIT COMPARISON TEST Suppose that and are series with positive
terms. If

where c is a finite number and , then either both series converge or both
diverge.

PROOF Let m and M be positive numbers such that . Because is close
to c for large n, there is an integer N such that

and so

If converges, so does . Thus converges by part (i) of the Comparison
Test. If diverges, so does and part (ii) of the Comparison Test shows that 
diverges. M

EXAMPLE 3 Test the series for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

and obtain

Since this limit exists and is a convergent geometric series, the given series con-
verges by the Limit Comparison Test. M

EXAMPLE 4 Determine whether the series converges or diverges.

SOLUTION The dominant part of the numerator is and the dominant part of the denomi-
nator is . This suggests taking

 � lim
n l �

 

2 �
3

n

2� 5

n5 � 1 

�
2 � 0

2s0 � 1 � 1
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n l �
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2
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n 1�2an �
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2n2
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an

bn
� lim

n l �
 
1�	2n � 1
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2nan �
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2n � 1

� an� mbn� bn

� an� Mbn� bn

 mbn � an � Mbn when n � N

 m �
an

bn
� M  when n � N

an�bnm � c � M
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an

bn
� c
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N Exercises 40 and 41 deal with the 
cases and .c � �c � 0



Since is divergent ( -series with ), the given series diverges
by the Limit Comparison Test. M

Notice that in testing many series we find a suitable comparison series by keeping
only the highest powers in the numerator and denominator.

ESTIMATING SUMS

If we have used the Comparison Test to show that a series converges by comparison
with a series , then we may be able to estimate the sum by comparing remainders.
As in Section 11.3, we consider the remainder

For the comparison series we consider the corresponding remainder

Since for all , we have . If is a -series, we can estimate its remain-
der as in Section 11.3. If is a geometric series, then is the sum of a geometric
series and we can sum it exactly (see Exercises 35 and 36). In either case we know that 
is smaller than .

EXAMPLE 5 Use the sum of the first 100 terms to approximate the sum of the series
. Estimate the error involved in this approximation.

SOLUTION Since

the given series is convergent by the Comparison Test. The remainder for the compari-
son series was estimated in Example 5 in Section 11.3 using the Remainder Esti-
mate for the Integral Test. There we found that

Therefore the remainder for the given series satisfies

With we have

Using a programmable calculator or a computer, we find that

with error less than . M0.00005
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33–36 Use the sum of the first 10 terms to approximate the sum of
the series. Estimate the error.

33. 34.

35. 36.

The meaning of the decimal representation of a number
(where the digit is one of the numbers 0, 1,

2, . . . , 9) is that

Show that this series always converges.

38. For what values of does the series converge?

39. Prove that if and converges, then also 
converges.

40. (a) Suppose that and are series with positive terms
and is convergent. Prove that if

then is also convergent.
(b) Use part (a) to show that the series converges.

(i) (ii)

(a) Suppose that and are series with positive terms
and is divergent. Prove that if

then is also divergent.
(b) Use part (a) to show that the series diverges.

(i) (ii)

42. Give an example of a pair of series and with positive
terms where and diverges, but 
converges. (Compare with Exercise 40.)

43. Show that if and then is
divergent.

44. Show that if and is convergent, then 
is convergent.

45. If is a convergent series with positive terms, is it true that
is also convergent?

46. If and are both convergent series with positive terms,
is it true that is also convergent?� an bn

� bn� an

� sin	an 

� an

� ln	1 � an 
� anan � 0
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37.
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1 � 2n

�
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n�1
 
sin 2 n

n3�
�

n�1
 

1

sn4 � 1 

Suppose and are series with positive terms and is
known to be convergent.
(a) If for all , what can you say about ? Why?
(b) If for all , what can you say about ? Why?

2. Suppose and are series with positive terms and is
known to be divergent.
(a) If for all n, what can you say about ? Why?
(b) If for all n, what can you say about ? Why?

3–32 Determine whether the series converges or diverges.

3. 4.

5. 6.

7.

9.

11. 12.

13. 14.

15. 16.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.
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ALTERNATING SERIES

The convergence tests that we have looked at so far apply only to series with positive
terms. In this section and the next we learn how to deal with series whose terms are not
necessarily positive. Of particular importance are alternating series, whose terms alternate
in sign.

An alternating series is a series whose terms are alternately positive and negative. Here
are two examples:

We see from these examples that the th term of an alternating series is of the form

where is a positive number. (In fact, .)
The following test says that if the terms of an alternating series decrease toward 0 in

absolute value, then the series converges.

THE ALTERNATING SERIES TEST If the alternating series

satisfies

(i)

(ii)

then the series is convergent.

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind
the proof. We first plot on a number line. To find we subtract , so is to the
left of . Then to find we add , so is to the right of . But, since , is to
the left of . Continuing in this manner, we see that the partial sums oscillate back and
forth. Since , the successive steps are becoming smaller and smaller. The even par-
tial sums , , , . . . are increasing and the odd partial sums , , , . . . are decreasing.
Thus it seems plausible that both are converging to some number , which is the sum of
the series. Therefore we consider the even and odd partial sums separately in the follow-
ing proof.
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b¡

-b™
+b£

-b¢
+b∞

-bß

s
s5s3s1s6s4s2

bn l 0
s1

s3b3 � b2s2s3b3s3s1

s2b2s2s1 � b1

lim 
n l �

 bn � 0

for all nbn�1 � bn

bn � 0�
�

n�1
 	�1
n�1bn � b1 � b2 � b3 � b4 � b5 � b6 � � � �

bn � � an �bn

an � 	�1
nbnoran � 	�1
n�1bn

n

 �
1

2
�

2

3
�

3

4
�

4

5
�

5

6
�

6

7
� � � � � �

�

n�1
 	�1
n 

n

n � 1

 1 �
1

2
�

1

3
�

1

4
�

1

5
�

1

6
� � � � � �

�

n�1
 
	�1
n�1

n

11.5

710 | | | | CHAPTER 11 INFINITE SEQUENCES AND SERIES



PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial sums:

In general

Thus

But we can also write

Every term in brackets is positive, so for all . Therefore the sequence 
of even partial sums is increasing and bounded above. It is therefore convergent by the
Monotonic Sequence Theorem. Let’s call its limit , that is,

Now we compute the limit of the odd partial sums:

[by condition (ii)]

Since both the even and odd partial sums converge to , we have 
[see Exercise 80(a) in Section 11.1] and so the series is convergent. M

EXAMPLE 1 The alternating harmonic series

satisfies

(i) because

(ii)

so the series is convergent by the Alternating Series Test. M

EXAMPLE 2 The series is alternating but
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 s2n � s

s
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FIGURE 2

0 n

1

�an�

�sn�

N Figure 2 illustrates Example 1 by showing the
graphs of the terms and the
partial sums . Notice how the values of 
zigzag across the limiting value, which appears
to be about . In fact, it can be proved that 
the exact sum of the series is 
(see Exercise 36).

ln 2 
 0.693
0.7

sn sn

an � 	�1
n�1�n



so condition (ii) is not satisfied. Instead, we look at the limit of the nth term of the series:

This limit does not exist, so the series diverges by the Test for Divergence. M

EXAMPLE 3 Test the series for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of the
Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by
is decreasing. However, if we consider the related function

, we find that

Since we are considering only positive , we see that if , that is,
. Thus is decreasing on the interval . This means that 

and therefore when . (The inequality can be verified directly but
all that really matters is that the sequence is eventually decreasing.)

Condition (ii) is readily verified:

Thus the given series is convergent by the Alternating Series Test. M

ESTIMATING SUMS

A partial sum of any convergent series can be used as an approximation to the total sum
, but this is not of much use unless we can estimate the accuracy of the approximation. The

error involved in using is the remainder . The next theorem says that 
for series that satisfy the conditions of the Alternating Series Test, the size of the error is
smaller than , which is the absolute value of the first neglected term.

ALTERNATING SERIES ESTIMATION THEOREM If is the sum of an
alternating series that satisfies

(i) and (ii)

then

PROOF We know from the proof of the Alternating Series Test that s lies between any two
consecutive partial sums and . It follows that
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N Instead of verifying condition (i) of the Alter-
nating Series Test by computing a derivative, 
we could verify that directly by using
the technique of Solution 1 of Example 12 in
Section 11.1.

bn�1 � bn

N You can see geometrically why the 
Alternating Series Estimation Theorem is true 
by looking at Figure 1 (on page 710). Notice that

and so on. Notice
also that lies between any two consecutive
partial sums.

s
� s � s5 � � b6,s � s4 � b5,



EXAMPLE 4 Find the sum of the series correct to three decimal places.

(By definition, .)

SOLUTION We first observe that the series is convergent by the Alternating Series Test
because

(i)

(ii) so as

To get a feel for how many terms we need to use in our approximation, let’s write out
the first few terms of the series:

Notice that

and

By the Alternating Series Estimation Theorem we know that

This error of less than does not affect the third decimal place, so we have
correct to three decimal places. M

| The rule that the error (in using to approximate ) is smaller than the first 
neglected term is, in general, valid only for alternating series that satisfy the conditions 
of the Alternating Series Estimation Theorem. The rule does not apply to other types of
series.
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N In Section 11.10 we will prove that
for all , so what we have

obtained in Example 4 is actually an approxi-
mation to the number .e�1

xe x � ��
n�0 x n�n!

9. 10.
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1. (a) What is an alternating series?
(b) Under what conditions does an alternating series converge?
(c) If these conditions are satisfied, what can you say about the

remainder after terms?

2–20 Test the series for convergence or divergence.

2.

4.

5. 6.
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31. Is the 50th partial sum of the alternating series
an overestimate or an underestimate of the 

total sum? Explain.

32–34 For what values of is each series convergent?

33. 34.

35. Show that the series , where if is odd
and if is even, is divergent. Why does the Alter-
nating Series Test not apply?

36. Use the following steps to show that

Let and be the partial sums of the harmonic and alter-
nating harmonic series.
(a) Show that .
(b) From Exercise 40 in Section 11.3 we have

as

and therefore

as

Use these facts together with part (a) to show that
as .n l �s2n l ln 2

n l �h2n � ln�2n� l �
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32.
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s50
; 21–22 Calculate the first 10 partial sums of the series and graph

both the sequence of terms and the sequence of partial sums on
the same screen. Estimate the error in using the 10th partial sum
to approximate the total sum.

21. 22.

23–26 Show that the series is convergent. How many terms of
the series do we need to add in order to find the sum to the indi-
cated accuracy?

24.

25.

26.

27–30 Approximate the sum of the series correct to four 
decimal places.

27. 28.

29. 30. �
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ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS

Given any series , we can consider the corresponding series

whose terms are the absolute values of the terms of the original series.

DEFINITION A series is called absolutely convergent if the series of
absolute values is convergent.

Notice that if is a series with positive terms, then and so absolute con-
vergence is the same as convergence in this case.

EXAMPLE 1 The series

�
�

n�1
 
��1�n�1

n2 � 1 �
1

22 �
1

32 �
1

42 � � � �

� an � � an� an

� � an �
� an1

�
�

n�1
 � an � � � a1 � � � a2 � � � a3 � � � � �

� an

11.6

N We have convergence tests for series with
positive terms and for alternating series. But
what if the signs of the terms switch back and
forth irregularly? We will see in Example 3 that
the idea of absolute convergence sometimes
helps in such cases.



is absolutely convergent because

is a convergent -series ( ). M

EXAMPLE 2 We know that the alternating harmonic series

is convergent (see Example 1 in Section 11.5), but it is not absolutely convergent
because the corresponding series of absolute values is

which is the harmonic series ( -series with ) and is therefore divergent. M

DEFINITION A series is called conditionally convergent if it is conver-
gent but not absolutely convergent.

Example 2 shows that the alternating harmonic series is conditionally convergent. Thus
it is possible for a series to be convergent but not absolutely convergent. However, the next
theorem shows that absolute convergence implies convergence.

THEOREM If a series is absolutely convergent, then it is convergent.

PROOF Observe that the inequality

is true because is either or . If is absolutely convergent, then is
convergent, so is convergent. Therefore, by the Comparison Test,
is convergent. Then

is the difference of two convergent series and is therefore convergent. M

EXAMPLE 3 Determine whether the series

is convergent or divergent.

SOLUTION This series has both positive and negative terms, but it is not alternating. 
(The first term is positive, the next three are negative, and the following three are posi-
tive: The signs change irregularly.) We can apply the Comparison Test to the series of
absolute values
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FIGURE 1

0 n

0.5

	an


	sn


N Figure 1 shows the graphs of the terms and
partial sums of the series in Example 3. Notice
that the series is not alternating but has positive
and negative terms.

sn

an



Since for all , we have

We know that is convergent ( -series with ) and therefore is
convergent by the Comparison Test. Thus the given series is absolutely
convergent and therefore convergent by Theorem 3. M

The following test is very useful in determining whether a given series is absolutely
convergent.

THE RATIO TEST

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series 

is divergent.

(iii) If , the Ratio Test is inconclusive; that is, no conclusion can be

drawn about the convergence or divergence of .

PROOF
(i) The idea is to compare the given series with a convergent geometric series. Since

, we can choose a number such that . Since

the ratio will eventually be less than ; that is, there exists an integer 
such that

or, equivalently,

Putting successively equal to , , , . . . in (4), we obtain

and, in general,

for all k 	 1� aN�k � � � aN � r k5
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Now the series

is convergent because it is a geometric series with . So the inequality (5),
together with the Comparison Test, shows that the series

is also convergent. It follows that the series is convergent. (Recall that a finite
number of terms doesn’t affect convergence.) Therefore is absolutely convergent.

(ii) If or , then the ratio will eventually be
greater than 1; that is, there exists an integer such that

This means that whenever and so

Therefore diverges by the Test for Divergence. M

Part (iii) of the Ratio Test says that if , the test gives no
information. For instance, for the convergent series we have

whereas for the divergent series we have

Therefore, if , the series might converge or it might diverge. In
this case the Ratio Test fails and we must use some other test.

EXAMPLE 4 Test the series for absolute convergence.

SOLUTION We use the Ratio Test with :
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N ESTIMATING SUMS

In the last three sections we used various meth-
ods for estimating the sum of a series—the
method depended on which test was used to
prove convergence. What about series for which
the Ratio Test works? There are two possibilities:
If the series happens to be an alternating series,
as in Example 4, then it is best to use the meth-
ods of Section 11.5. If the terms are all positive,
then use the special methods explained in 
Exercise 34.



Thus, by the Ratio Test, the given series is absolutely convergent and therefore 
convergent. M

EXAMPLE 5 Test the convergence of the series .

SOLUTION Since the terms are positive, we don’t need the absolute value signs.

(See Equation 3.6.6.) Since , the given series is divergent by the Ratio Test. M

Although the Ratio Test works in Example 5, an easier method is to use the Test
for Divergence. Since

it follows that does not approach 0 as . Therefore the given series is divergent 
by the Test for Divergence.

The following test is convenient to apply when th powers occur. Its proof is similar to
the proof of the Ratio Test and is left as Exercise 37.

THE ROOT TEST

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series is divergent.

(iii) If , the Root Test is inconclusive.

If , then part (iii) of the Root Test says that the test gives no infor-
mation. The series could converge or diverge. (If in the Ratio Test, don’t try the
Root Test because will again be 1. And if in the Root Test, don’t try the Ratio Test
because it will fail too.)

EXAMPLE 6 Test the convergence of the series .

SOLUTION

Thus the given series converges by the Root Test. M
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REARRANGEMENTS

The question of whether a given convergent series is absolutely convergent or condi-
tionally convergent has a bearing on the question of whether infinite sums behave like
finite sums.

If we rearrange the order of the terms in a finite sum, then of course the value of the
sum remains unchanged. But this is not always the case for an infinite series. By a
rearrangement of an infinite series we mean a series obtained by simply changing
the order of the terms. For instance, a rearrangement of could start as follows:

It turns out that

if is an absolutely convergent series with sum s,
then any rearrangement of has the same sum s.

However, any conditionally convergent series can be rearranged to give a different sum. To
illustrate this fact let’s consider the alternating harmonic series

(See Exercise 36 in Section 11.5.) If we multiply this series by , we get

Inserting zeros between the terms of this series, we have

Now we add the series in Equations 6 and 7 using Theorem 11.2.8:

Notice that the series in (8) contains the same terms as in (6), but rearranged so that one
negative term occurs after each pair of positive terms. The sums of these series, however,
are different. In fact, Riemann proved that

if is a conditionally convergent series and r is any real number what-
soever, then there is a rearrangement of that has a sum equal to r.

A proof of this fact is outlined in Exercise 40.

� an

� an

1 �
1
3 �

1
2 �

1
5 �

1
7 �

1
4 � � � � � 3

2 ln 28

0 �
1
2 � 0 �

1
4 � 0 �

1
6 � 0 �

1
8 � � � � � 1

2 ln 27

1
2 �

1
4 �

1
6 �

1
8 � � � � � 1

2 ln 2

1
2

1 �
1
2 �

1
3 �

1
4 �

1
5 �

1
6 �

1
7 �

1
8 � � � � � ln 26

� an

� an

a1 � a2 � a5 � a3 � a4 � a15 � a6 � a7 � a20 � � � �

� an

� an

SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS | | | | 719

N Adding these zeros does not affect the sum of
the series; each term in the sequence of partial
sums is repeated, but the limit is the same.

5. 6.

7. 8.

9. 10.

11. 12.

14. �
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n 2 2n

n!�
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13.
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s
4 n 

1. What can you say about the series in each of the following
cases?

(a) (b)

(c)

2–28 Determine whether the series is absolutely convergent,
conditionally convergent, or divergent.

2.
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Ratio Test. As usual, we let be the remainder after terms,
that is,

(a) If is a decreasing sequence and , show, by
summing a geometric series, that

(b) If is an increasing sequence, show that

35. (a) Find the partial sum of the series . Use Exer-
cise 34 to estimate the error in using as an approximation
to the sum of the series.

(b) Find a value of so that is within of the sum.
Use this value of to approximate the sum of the series.

36. Use the sum of the first 10 terms to approximate the sum of 
the series

Use Exercise 34 to estimate the error.

37. Prove the Root Test. [Hint for part (i): Take any number such
that and use the fact that there is an integer such
that whenever .]

38. Around 1910, the Indian mathematician Srinivasa 
Ramanujan discovered the formula

William Gosper used this series in 1985 to compute the first
17 million digits of .
(a) Verify that the series is convergent.
(b) How many correct decimal places of do you get if you

use just the first term of the series? What if you use two
terms?

39. Given any series , we define a series whose terms are
all the positive terms of and a series whose terms 
are all the negative terms of . To be specific, we let

Notice that if , then and , whereas if
, then and .

(a) If is absolutely convergent, show that both of the series
and are convergent.

(b) If is conditionally convergent, show that both of the
series and are divergent.

40. Prove that if is a conditionally convergent series and 
is any real number, then there is a rearrangement of 

whose sum is . [Hints: Use the notation of Exercise 39. 
Take just enough positive terms so that their sum is greater
than . Then add just enough negative terms so that the
cumulative sum is less than . Continue in this manner and use
Theorem 11.2.6.]
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nRn15. 16.

17. 18.

20.

22.

23. 24.

25.

26.

27.

28.

The terms of a series are defined recursively by the equations

Determine whether converges or diverges.

30. A series is defined by the equations

Determine whether converges or diverges.

For which of the following series is the Ratio Test inconclusive
(that is, it fails to give a definite answer)?

(a) (b)

(c) (d)

32. For which positive integers is the following series
convergent?

(a) Show that converges for all .
(b) Deduce that for all .

34. Let be a series with positive terms and let .
Suppose that , so converges by the � anlimn l � rn � L � 1

rn � an�1�an� an

xlimn l � x n�n! � 0
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n�0 x n�n!33.
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STRATEGY FOR TESTING SERIES

We now have several ways of testing a series for convergence or divergence; the problem
is to decide which test to use on which series. In this respect, testing series is similar to
integrating functions. Again there are no hard and fast rules about which test to apply to a
given series, but you may find the following advice of some use.

It is not wise to apply a list of the tests in a specific order until one finally works. That
would be a waste of time and effort. Instead, as with integration, the main strategy is to
classify the series according to its form.

1. If the series is of the form , it is a -series, which we know to be convergent
if and divergent if .

2. If the series has the form or , it is a geometric series, which converges
if and diverges if . Some preliminary algebraic manipulation may
be required to bring the series into this form.

3. If the series has a form that is similar to a -series or a geometric series, then 
one of the comparison tests should be considered. In particular, if is a rational 
function or an algebraic function of (involving roots of polynomials), then the
series should be compared with a -series. Notice that most of the series in Exer-
cises 11.4 have this form. (The value of should be chosen as in Section 11.4 by
keeping only the highest powers of in the numerator and denominator.) The com-
parison tests apply only to series with positive terms, but if has some negative
terms, then we can apply the Comparison Test to and test for absolute 
convergence.

4. If you can see at a glance that , then the Test for Divergence should
be used.

5. If the series is of the form or , then the Alternating Series
Test is an obvious possibility.

6. Series that involve factorials or other products (including a constant raised to the
power) are often conveniently tested using the Ratio Test. Bear in mind that

as for all -series and therefore all rational or algebraic 
functions of . Thus the Ratio Test should not be used for such series.

7. If is of the form , then the Root Test may be useful.

8. If , where is easily evaluated, then the Integral Test is effective
(assuming the hypotheses of this test are satisfied).

In the following examples we don’t work out all the details but simply indicate which
tests should be used.

EXAMPLE 1

Since as , we should use the Test for Divergence. M

EXAMPLE 2

Since is an algebraic function of , we compare the given series with a -series. The pnan
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comparison series for the Limit Comparison Test is , where

M

EXAMPLE 3

Since the integral is easily evaluated, we use the Integral Test. The Ratio Test
also works. M

EXAMPLE 4

Since the series is alternating, we use the Alternating Series Test. M

EXAMPLE 5

Since the series involves , we use the Ratio Test. M

EXAMPLE 6

Since the series is closely related to the geometric series , we use the Comparison
Test. M
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21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. �
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1–38 Test the series for convergence or divergence.

1. 2.

3. 4.

5. 6.

7. 8.
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POWER SERIES

A power series is a series of the form

where is a variable and the ’s are constants called the coefficients of the series. For each
fixed , the series (1) is a series of constants that we can test for convergence or divergence.
A power series may converge for some values of and diverge for other values of . The
sum of the series is a function

whose domain is the set of all for which the series converges. Notice that resembles a
polynomial. The only difference is that has infinitely many terms.

For instance, if we take for all , the power series becomes the geometric series

which converges when and diverges when (see Equation 11.2.5).
More generally, a series of the form

is called a power series in or a power series centered at a or a power series
about a. Notice that in writing out the term corresponding to in Equations 1 and 2
we have adopted the convention that even when . Notice also that when

, all of the terms are 0 for and so the power series (2) always converges when
.

EXAMPLE 1 For what values of is the series convergent?

SOLUTION We use the Ratio Test. If we let , as usual, denote the nth term of the series,
then . If , we have

By the Ratio Test, the series diverges when . Thus the given series converges only
when . M

EXAMPLE 2 For what values of does the series converge? 

SOLUTION Let . Then
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N TRIGONOMETRIC SERIES

A power series is a series in which each term is
a power function. A trigonometric series

is a series whose terms are trigonometric func-
tions. This type of series is discussed on the
website

www.stewartcalculus.com

Click on Additional Topics and then on Fourier
Series.

�
�

n�0
 �an cos nx � bn sin nx�

N Notice that

 � �n � 1�n!

�n � 1�! � �n � 1�n�n � 1� �  . . . � 3 � 2 � 1



By the Ratio Test, the given series is absolutely convergent, and therefore convergent,
when and divergent when . Now

so the series converges when and diverges when or .
The Ratio Test gives no information when so we must consider 

and separately. If we put in the series, it becomes , the harmonic
series, which is divergent. If , the series is , which converges by the
Alternating Series Test. Thus the given power series converges for . M

We will see that the main use of a power series is that it provides a way to represent
some of the most important functions that arise in mathematics, physics, and chemistry. In
particular, the sum of the power series in the next example is called a Bessel function, after
the German astronomer Friedrich Bessel (1784–1846), and the function given in Exer-
cise 35 is another example of a Bessel function. In fact, these functions first arose when
Bessel solved Kepler’s equation for describing planetary motion. Since that time, these
functions have been applied in many different physical situations, including the tempera-
ture distribution in a circular plate and the shape of a vibrating drumhead.

EXAMPLE 3 Find the domain of the Bessel function of order 0 defined by

SOLUTION Let . Then

Thus, by the Ratio Test, the given series converges for all values of . In other words, the
domain of the Bessel function is . M

Recall that the sum of a series is equal to the limit of the sequence of partial sums. So
when we define the Bessel function in Example 3 as the sum of a series we mean that, for
every real number ,

where

The first few partial sums are
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N Notice how closely the computer-generated
model (which involves Bessel functions and
cosine functions) matches the photograph of a
vibrating rubber membrane.
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Figure 1 shows the graphs of these partial sums, which are polynomials. They are all
approximations to the function , but notice that the approximations become better when
more terms are included. Figure 2 shows a more complete graph of the Bessel function.

For the power series that we have looked at so far, the set of values of for which the
series is convergent has always turned out to be an interval [a finite interval for the 
geometric series and the series in Example 2, the infinite interval in Example 3,
and a collapsed interval in Example 1]. The following theorem, proved in
Appendix F, says that this is true in general.

THEOREM For a given power series , there are only three 
possibilities:

(i) The series converges only when .

(ii) The series converges for all .

(iii) There is a positive number such that the series converges if 
and diverges if .

The number in case (iii) is called the radius of convergence of the power series. By
convention, the radius of convergence is in case (i) and in case (ii). The
interval of convergence of a power series is the interval that consists of all values of for
which the series converges. In case (i) the interval consists of just a single point . In case
(ii) the interval is . In case (iii) note that the inequality can be rewrit-
ten as . When is an endpoint of the interval, that is, ,
anything can happen—the series might converge at one or both endpoints or it might
diverge at both endpoints. Thus in case (iii) there are four possibilities for the interval of
convergence:

The situation is illustrated in Figure 3.

We summarize here the radius and interval of convergence for each of the examples
already considered in this section.

FIGURE 3
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Series Radius of convergence Interval of convergence

Geometric series

Example 1

Example 2
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Partial sums of the Bessel function J¸
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In general, the Ratio Test (or sometimes the Root Test) should be used to determine the
radius of convergence . The Ratio and Root Tests always fail when is an endpoint of
the interval of convergence, so the endpoints must be checked with some other test.

EXAMPLE 4 Find the radius of convergence and interval of convergence of the series

SOLUTION Let . Then

By the Ratio Test, the given series converges if and diverges if .
Thus it converges if and diverges if . This means that the radius of con-
vergence is .

We know the series converges in the interval , but we must now test for con-
vergence at the endpoints of this interval. If , the series becomes

which diverges. (Use the Integral Test or simply observe that it is a -series with
.) If , the series is 

which converges by the Alternating Series Test. Therefore the given power series con-
verges when , so the interval of convergence is . M

EXAMPLE 5 Find the radius of convergence and interval of convergence of the series

SOLUTION If , then

Using the Ratio Test, we see that the series converges if and it diverges if
. So it converges if and diverges if . Thus the

radius of convergence is .R � 3
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an � ��3�nxn�sn � 1 
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�

n�0
 
��3�nxn

sn � 1 

xR
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The inequality can be written as , so we test the series at
the endpoints and 1. When , the series is

which diverges by the Test for Divergence [ doesn’t converge to 0]. When ,
the series is

which also diverges by the Test for Divergence. Thus the series converges only when
, so the interval of convergence is . M��5, 1��5 � x � 1

�
�

n�0
 
n�3�n

3n�1 � 1
3 �

�

n�0
 n

x � 1��1�nn

�
�

n�0
 
n��3�n

3n�1 � 1
3 �

�

n�0
 ��1�nn

x � �5�5
�5 � x � 1
 x � 2 
 � 3
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25. 26.

27.

28.

If is convergent, does it follow that the following
series are convergent?

(a) (b)

30. Suppose that converges when and diverges
when . What can be said about the convergence or diver-
gence of the following series?

(a) (b)

(c) (d)

31. If is a positive integer, find the radius of convergence of 
the series

32. Let and be real numbers with . Find a power series
whose interval of convergence is 
(a) (b)
(c) (d)

33. Is it possible to find a power series whose interval of
convergence is ? Explain.�0, ��

�p, q��p, q�
�p, q��p, q�

p � qqp

�
�

n�0
 
�n!�k

�kn�!
 x n

k

�
�

n�0
 ��1�ncn 9n�

�

n�0
 cn��3�n

�
�

n�0
 cn 8n�

�

n�0
 cn

x � 6
x � �4	�

n�0 cn x n

�
�

n�0
 cn��4�n�

�

n�0
 cn��2�n

cn 4n	�
n�029.

�
�

n�1
 

n!x n

1 � 3 � 5 � 	 	 	 � �2n � 1�

�
�

n�1
 

x n

1 � 3 � 5 � 	 	 	 � �2n � 1�

�
�

n�2
 

x 2n

n�ln n�2�
�

n�1
 
�4x � 1�n

n2

�
�

n�1
 

n 2 x n

2 � 4 � 6 � 	 	 	 � �2n�
24.�

�

n�1
 n!�2x � 1�n23.

1. What is a power series?

2. (a) What is the radius of convergence of a power series? 
How do you find it?

(b) What is the interval of convergence of a power series? 
How do you find it?

3–28 Find the radius of convergence and interval of convergence
of the series.

4.

5. 6.

8.

9. 10.

11. 12.

13. 14.

16.

17. 18.

19. 20.

21. , 22. �
�

n�1
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 sn x n�
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n 3
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(c) If your CAS has built-in Airy functions, graph on the
same screen as the partial sums in part (b) and observe
how the partial sums approximate .

A function is defined by

that is, its coefficients are and for all .
Find the interval of convergence of the series and find an
explicit formula for .

38. If , where for all , find the
interval of convergence of the series and a formula for .

39. Show that if , where , then the radius
of convergence of the power series is .

40. Suppose that the power series satisfies 
for all . Show that if exists, then it is equal
to the radius of convergence of the power series.

41. Suppose the series has radius of convergence 2 and the
series has radius of convergence 3. What is the radius
of convergence of the series ?

42. Suppose that the radius of convergence of the power series
is . What is the radius of convergence of the power

series ?	 cn x 2n
R	 cn x n

	 �cn � dn�x n

	 dn x n

	 cn x n

lim n l � 
 cn�cn�1 
n
cn � 0	 cn�x � a� n

R � 1�c	 cn x n
c � 0lim n l � sn 
 cn 
 � c

f �x�
n 
 0cn�4 � cnf �x� � 	�

n�0 cn x n

f �x�

n 
 0c2n�1 � 2c2n � 1

f �x� � 1 � 2x � x 2 � 2x 3 � x 4 � 	 	 	

f37.

A

ACAS
; 34. Graph the first several partial sums of the series ,

together with the sum function , on a com-
mon screen. On what interval do these partial sums appear to
be converging to ?

35. The function defined by

is called the Bessel function of order 1.
(a) Find its domain.

; (b) Graph the first several partial sums on a common 
screen.

(c) If your CAS has built-in Bessel functions, graph on the
same screen as the partial sums in part (b) and observe
how the partial sums approximate .

36. The function defined by

is called the Airy function after the English mathematician
and astronomer Sir George Airy (1801–1892).
(a) Find the domain of the Airy function.

; (b) Graph the first several partial sums on a common screen.

A�x� � 1 �
x 3

2 	 3
�

x 6

2 	 3 	 5 	 6
�

x 9

2 	 3 	 5 	 6 	 8 	 9
� 	 	 	

A

J1

J1CAS

J1�x� � �
�

n�0
 

��1�nx 2n�1

n!�n � 1�!22n�1

J1

f �x�

f �x� � 1��1 � x�
	�

n�0 x nsn�x�
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REPRESENTATIONS OF FUNCTIONS AS POWER SERIES

In this section we learn how to represent certain types of functions as sums of power series
by manipulating geometric series or by differentiating or integrating such a series. You might
wonder why we would ever want to express a known function as a sum of infinitely many
terms. We will see later that this strategy is useful for integrating functions that don’t have
elementary antiderivatives, for solving differential equations, and for approximating func-
tions by polynomials. (Scientists do this to simplify the expressions they deal with; com-
puter scientists do this to represent functions on calculators and computers.)

We start with an equation that we have seen before:

We first encountered this equation in Example 5 in Section 11.2, where we obtained it by
observing that it is a geometric series with and . But here our point of view is
different. We now regard Equation 1 as expressing the function as a sum
of a power series.

FIGURE 1

ƒ=
1

1-x
and some partial sums

0 x

y

1_1

f

s™

s∞

sˆ
s¡¡

f �x� � 1��1 � x�
r � xa � 1


 x 
 � 1
1

1 � x
� 1 � x � x 2 � x 3 � 	 	 	 � �

�

n�0
 xn1

11.9

N A geometric illustration of Equation 1 is
shown in Figure 1. Because the sum of a series
is the limit of the sequence of partial sums, we
have

where

is the th partial sum. Notice that as 
increases, becomes a better approxima-
tion to for .�1 � x � 1f �x�

sn�x�
nn

sn�x� � 1 � x � x2 � 	 	 	 � x n

1

1 � x
� lim 

n l �
 sn�x�



EXAMPLE 1 Express as the sum of a power series and find the interval of 
convergence.

SOLUTION Replacing by in Equation 1, we have

Because this is a geometric series, it converges when , that is, , or
. Therefore the interval of convergence is . (Of course, we could have

determined the radius of convergence by applying the Ratio Test, but that much work is
unnecessary here.) M

EXAMPLE 2 Find a power series representation for .

SOLUTION In order to put this function in the form of the left side of Equation 1 we first
factor a 2 from the denominator:

This series converges when , that is, . So the interval of convergence
is . M

EXAMPLE 3 Find a power series representation of .

SOLUTION Since this function is just times the function in Example 2, all we have to do
is to multiply that series by :

Another way of writing this series is as follows:

As in Example 2, the interval of convergence is . M

DIFFERENTIATION AND INTEGRATION OF POWER SERIES

The sum of a power series is a function whose domain is the inter-
val of convergence of the series. We would like to be able to differentiate and integrate
such functions, and the following theorem (which we won’t prove) says that we can do so
by differentiating or integrating each individual term in the series, just as we would for a
polynomial. This is called term-by-term differentiation and integration.

f �x� � 	�
n�0 cn�x � a�n

��2, 2�

x 3

x � 2
� �

�

n�3
 
��1�n�1

2n�2  xn 

 � 1
2 x 3 �

1
4 x 4 �

1
8 x 5 �

1
16 x 6 � 	 	 	

 
x 3

x � 2
� x 3 �

1

x � 2
� x 3 �

�

n�0
 
��1�n

2n�1  xn � �
�

n�0
 
��1�n

2n�1  xn�3

x 3
x 3

x 3��x � 2�

��2, 2�

 x 
 � 2
 �x�2 
 � 1

 �
1

2
 �

�

n�0
 
�

x

2�n

� �
�

n�0
 
��1�n

2n�1  xn

 
1

2 � x
�

1

2
1 �
x

2�
�

1

2�1 � 
�
x

2��

1��x � 2�

��1, 1�
 x 
 � 1
x 2 � 1
 �x 2 
 � 1

 � �
�

n�0
 ��1�nx 2n � 1 � x 2 � x 4 � x 6 � x 8 � 	 	 	

 
1

1 � x 2 �
1

1 � ��x 2 �
� �

�

n�0
 ��x 2 �n

�x 2x

1��1 � x 2 �V
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N It’s legitimate to move across the 
sigma sign because it doesn’t depend on . 
[Use Theorem 11.2.8(i) with .]c � x 3

n
x 3



THEOREM If the power series has radius of convergence ,
then the function defined by

is differentiable (and therefore continuous) on the interval and

(i)

(ii)

The radii of convergence of the power series in Equations (i) and (ii) are both .

Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii)

(iv)

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and the
integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the same is
true for infinite sums, provided we are dealing with power series. (For other types of series
of functions the situation is not as simple; see Exercise 36.)

Although Theorem 2 says that the radius of convergence remains the same
when a power series is differentiated or integrated, this does not mean that the interval of
convergence remains the same. It may happen that the original series converges at an end-
point, whereas the differentiated series diverges there. (See Exercise 37.)

The idea of differentiating a power series term by term is the basis for a power-
ful method for solving differential equations. We will discuss this method in Chapter 17.

EXAMPLE 4 In Example 3 in Section 11.8 we saw that the Bessel function

is defined for all . Thus, by Theorem 2, is differentiable for all and its derivative is
found by term-by-term differentiation as follows:

MJ0��x� � �
�

n�0
 

d

dx
 
��1�nx 2n

22n�n!�2 � �
�

n�1
 
��1�n 2nx 2n�1

22n�n!�2

xJ0x

J0�x� � �
�

n�0
 
��1�nx 2n

22n�n!�2

NOTE 3

NOTE 2

y ��
�

n�0
 cn�x � a�n�dx � �

�

n�0
 y cn�x � a�n dx

d

dx��
�

n�0
 cn�x � a�n� � �

�

n�0
 

d

dx
 �cn�x � a�n �

NOTE 1

R

 � C � �
�

n�0
 cn 

�x � a�n�1

n � 1

 y f �x� dx � C � c0�x � a� � c1 
�x � a�2

2
� c2 

�x � a�3

3
� 	 	 	

f ��x� � c1 � 2c2�x � a� � 3c3�x � a�2 � 	 	 	 � �
�

n�1
 ncn�x � a�n�1

�a � R, a � R�

f �x� � c0 � c1�x � a� � c2�x � a�2 � 	 	 	 � �
�

n�0
 cn�x � a�n

f
R � 0	 cn�x � a�n2
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N In part (ii), is written as
, where , so all

the terms of the series have the same form.
C � C1 � ac0c0�x � a� � C

x c0 dx � c0 x � C1



EXAMPLE 5 Express as a power series by differentiating Equation 1. What
is the radius of convergence?

SOLUTION Differentiating each side of the equation

we get

If we wish, we can replace by and write the answer as

According to Theorem 2, the radius of convergence of the differentiated series is the
same as the radius of convergence of the original series, namely, . M

EXAMPLE 6 Find a power series representation for and its radius of 
convergence.

SOLUTION We notice that, except for a factor of , the derivative of this function is
. So we integrate both sides of Equation 1:

To determine the value of we put in this equation and obtain .
Thus and

The radius of convergence is the same as for the original series: . M

Notice what happens if we put in the result of Example 6. Since ,
we see that

EXAMPLE 7 Find a power series representation for .

SOLUTION We observe that and find the required series by integrating
the power series for found in Example 1.

 � C � x �
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 � 1� x �

x 2

2
�

x 3

3
� 	 	 	 � C � �

�

n�0
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1 � x
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R � 1

1
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n � 1n
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To find we put and obtain . Therefore

Since the radius of convergence of the series for is 1, the radius of conver-
gence of this series for is also 1. M

EXAMPLE 8
(a) Evaluate as a power series.

(b) Use part (a) to approximate correct to within .

SOLUTION
(a) The first step is to express the integrand, , as the sum of a power series.
As in Example 1, we start with Equation 1 and replace by :

Now we integrate term by term:

This series converges for , that is, for .

(b) In applying the Fundamental Theorem of Calculus, it doesn’t matter which anti-
derivative we use, so let’s use the antiderivative from part (a) with C � 0:

This infinite series is the exact value of the definite integral, but since it is an alternating
series, we can approximate the sum using the Alternating Series Estimation Theorem. 
If we stop adding after the term with , the error is smaller than the term with 
n � 4:

So we have
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N The power series for obtained in Exam-
ple 7 is called Gregory’s series after the Scottish
mathematician James Gregory (1638–1675), who
had anticipated some of Newton’s discoveries.
We have shown that Gregory’s series is valid
when , but it turns out (although it
isn’t easy to prove) that it is also valid when

. Notice that when the series
becomes

This beautiful result is known as the Leibniz 
formula for .





4
� 1 �

1

3
�

1

5
�

1

7
� 	 	 	

x � 1x � �1

�1 � x � 1

tan�1x

N This example demonstrates one way in 
which power series representations are useful.
Integrating by hand is incredibly dif-
ficult. Different computer algebra systems return
different forms of the answer, but they are all
extremely complicated. (If you have a CAS, try 
it yourself.) The infinite series answer that we
obtain in Example 8(a) is actually much easier to
deal with than the finite answer provided by a
CAS.

1��1 � x 7 �
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15–18 Find a power series representation for the function and
determine the radius of convergence.

16.

17. 18.

; 19–22 Find a power series representation for , and graph and
several partial sums on the same screen. What happens as 
increases?

19. 20.

22.

23–26 Evaluate the indefinite integral as a power series. What is
the radius of convergence?

24.

25. 26.

27–30 Use a power series to approximate the definite integral to
six decimal places.

27. 28.

29. 30.

31. Use the result of Example 6 to compute correct to five
decimal places.

32. Show that the function

is a solution of the differential equation

33. (a) Show that (the Bessel function of order 0 given in
Example 4) satisfies the differential equation

(b) Evaluate correct to three decimal places.x
1

0  J0�x� dx

x 2J0��x� � xJ0��x� � x 2J0�x� � 0

J0

f ��x� � f �x� � 0

f �x� � �
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n�0
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�2n�!

ln 1.1

y
0.3

0
 

x 2

1 � x 4  dxy
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0
 x arctan�3x� dx

y
0.4

0
 ln�1 � x 4� dxy

0.2

0
 

1

1 � x 5  dx

y tan�1�x 2 � dxy 
x � tan �1x

x 3  dx

y 
ln�1 � t�

t
 dty 

t

1 � t 8  dt23.

f �x� � tan�1�2x�f �x� � ln
1 � x

1 � x�21.

f �x� � ln�x 2 � 4�f �x� �
x

x 2 � 16

nsn�x�
ff

f �x� � arctan�x�3�f �x� �
x 3

�x � 2�2

f �x� �
x 2

�1 � 2x�2f �x� � ln�5 � x�15.

1. If the radius of convergence of the power series 
is 10, what is the radius of convergence of the series

? Why?

2. Suppose you know that the series converges for
. What can you say about the following series? Why?

3–10 Find a power series representation for the function and
determine the interval of convergence.

3. 4.

6.

7.

9. 10.

11–12 Express the function as the sum of a power series by first
using partial fractions. Find the interval of convergence.

11. 12.

(a) Use differentiation to find a power series representation
for

What is the radius of convergence?
(b) Use part (a) to find a power series for

(c) Use part (b) to find a power series for

14. (a) Find a power series representation for .
What is the radius of convergence?

(b) Use part (a) to find a power series for .
(c) Use part (a) to find a power series for .f �x� � ln�x 2 � 1�
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f �x� �
x 2

�1 � x�3

f �x� �
1

�1 � x�3

f �x� �
1

�1 � x�2

13.
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38. (a) Starting with the geometric series , find the sum of
the series

(b) Find the sum of each of the following series.

(i) , (ii)

(c) Find the sum of each of the following series.

(i) ,

(ii) (iii)

39. Use the power series for to prove the following expres-
sion for as the sum of an infinite series:

40. (a) By completing the square, show that 

(b) By factoring as a sum of cubes, rewrite the integral
in part (a).  Then express as the sum of a power
series and use it to prove the following formula for :

� �
3s3 

4
 �

�

n�0
 
��1�n

8 n � 2

3n � 1
�

1

3n � 2�
�

1��x 3 � 1�
x 3 � 1

y
1�2

0
 

dx

x 2 � x � 1
�

�

3s3 

� � 2s3  �
�

n�0
 

��1�n

�2n � 1�3n

�
tan �1x

�
�

n�1
 
n2

2n�
�

n�2
 
n2 � n

2n

� x � � 1�
�

n�2
 n�n � 1�x n

�
�

n�1
 

n

2n� x � � 1�
�

n�1
 nx n

� x � � 1 �
�

n�1
 nx n�1

	�
n�0 x n34. The Bessel function of order 1 is defined by

(a) Show that satisfies the differential equation

(b) Show that .

(a) Show that the function

is a solution of the differential equation

(b) Show that .

36. Let . Show that the series converges
for all values of but the series of derivatives diverges
when , an integer. For what values of does the
series converge?

Let

Find the intervals of convergence for , , and .f �f �f

f �x� � �
�

n�1
 
x n

n2

37.

	 fn��x�
xnx � 2n�

	 fn��x�x
	 fn�x�fn�x� � �sin nx��n2

f �x� � e x

f ��x� � f �x�

f �x� � �
�

n�0
 
x n

n!

35.

J0��x� � �J1�x�

x 2J1��x� � xJ1��x� � �x 2 � 1�J1�x� � 0

J1

J1�x� � �
�

n�0
 

��1�n x 2n�1

n! �n � 1�!22n�1
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TAYLOR AND MACLAURIN SERIES

In the preceding section we were able to find power series representations for a certain
restricted class of functions. Here we investigate more general problems: Which functions
have power series representations? How can we find such representations?

We start by supposing that is any function that can be represented by a power series

Let’s try to determine what the coefficients must be in terms of . To begin, notice that
if we put in Equation 1, then all terms after the first one are 0 and we get

By Theorem 11.9.2, we can differentiate the series in Equation 1 term by term:

and substitution of in Equation 2 gives

f ��a� � c1

x � a

� x � a � � Rf ��x� � c1 � 2c2�x � a� � 3c3�x � a�2 � 4c4�x � a�3 � 	 	 	2

f �a� � c0

x � a
fcn

� x � a � � Rf �x� � c0 � c1�x � a� � c2�x � a�2 � c3�x � a�3 � c4�x � a�4 � 	 	 	1

f

11.10
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Now we differentiate both sides of Equation 2 and obtain

Again we put in Equation 3. The result is

Let’s apply the procedure one more time. Differentiation of the series in Equation 3 gives

and substitution of in Equation 4 gives

By now you can see the pattern. If we continue to differentiate and substitute , we
obtain

Solving this equation for the coefficient 

This formula remains valid even for if we adopt the conventions that and
. Thus we have proved the following theorem.

THEOREM If has a power series representation (expansion) at , that is, if

then its coefficients are given by the formula

Substituting this formula for back into the series, we see that if has a power series
expansion at , then it must be of the following form.

 � f �a� �
 f ��a�

1!
 �x � a� �

 f ��a�
2!

 �x � a�2 �
 f 
�a�

3!
 �x � a�3 � 	 	 	

 f �x� � �
�

n�0
 
 f �n��a�

n!
 �x � a�n6

a
fcn

cn �
 f �n��a�

n!

� x � a � � Rf �x� � �
�

n�0
cn�x � a�n

af5

f �0� � f
0! � 1n � 0

cn �
 f �n��a�

n!

cn, we getnth

f �n��a� � 2 � 3 � 4 � 	 	 	 � ncn � n!cn

x � a

f 
�a� � 2 � 3c3 � 3!c3

x � a

� x � a � � Rf 
�x� � 2 � 3c3 � 2 � 3 � 4c4�x � a� � 3 � 4 � 5c5�x � a�2 � 	 	 	4

f ��a� � 2c2

x � a

� x � a � � Rf ��x� � 2c2 � 2 � 3c3�x � a� � 3 � 4c4�x � a�2 � 	 	 	3



The series in Equation 6 is called the Taylor series of the function f at a (or about a
or centered at a). For the special case the Taylor series becomes

This case arises frequently enough that it is given the special name Maclaurin series.

We have shown that if can be represented as a power series about , then is
equal to the sum of its Taylor series. But there exist functions that are not equal to the sum
of their Taylor series. An example of such a function is given in Exercise 70.

EXAMPLE 1 Find the Maclaurin series of the function and its radius of 
convergence.

SOLUTION If , then , so for all . Therefore the
Taylor series for at 0 (that is, the Maclaurin series) is

To find the radius of convergence we let . Then

so, by the Ratio Test, the series converges for all and the radius of convergence 
is . M

The conclusion we can draw from Theorem 5 and Example 1 is that if has a power
series expansion at 0, then

So how can we determine whether does have a power series representation?
Let’s investigate the more general question: Under what circumstances is a function

equal to the sum of its Taylor series? In other words, if has derivatives of all orders, when
is it true that

As with any convergent series, this means that is the limit of the sequence of partial
sums. In the case of the Taylor series, the partial sums are

 � f �a� �
 f ��a�

1!
 �x � a� �

 f ��a�
2!

 �x � a�2 � 	 	 	 �
 f �n��a�

n!
 �x � a�n

 Tn�x� � �
n

i�0
 
 f �i��a�

i!
 �x � a�i

f �x�

f �x� � �
�

n�0
 
 f �n��a�

n!
 �x � a�n

f

e x

e x � �
�

n�0
 
xn

n!

ex

R � �
x


 an�1

an

 � 
 xn�1

�n � 1�!
�

n!

xn 
 � � x �
n � 1

l 0 � 1

an � xn�n!

�
�

n�0
 
 f �n��0�

n!
 xn � �

�

n�0
 
xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� 	 	 	

f
nf �n��0� � e 0 � 1f �n��x� � exf �x� � ex

f �x� � exV

fafNOTE

f �x� � �
�

n�0
 
 f �n��0�

n!
 xn � f �0� �

 f ��0�
1!

 x �
 f ��0�

2!
 x 2 � 	 	 	7

a � 0
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The Taylor series is named after the English 
mathematician Brook Taylor (1685–1731) and the
Maclaurin series is named in honor of the Scot-
tish mathematician Colin Maclaurin (1698–1746)
despite the fact that the Maclaurin series is 
really just a special case of the Taylor series. But
the idea of representing particular functions as
sums of power series goes back to Newton, and
the general Taylor series was known to the Scot-
tish mathematician James Gregory in 1668 and 
to the Swiss mathematician John Bernoulli in 
the 1690s. Taylor was apparently unaware of the
work of Gregory and Bernoulli when he published
his discoveries on series in 1715 in his book
Methodus incrementorum directa et inversa.
Maclaurin series are named after Colin Maclau-
rin because he popularized them in his calculus
textbook Treatise of Fluxions published in 1742.

TAYLOR AND MACLAURIN



Notice that is a polynomial of degree called the nth-degree Taylor polynomial of f
at a. For instance, for the exponential function , the result of Example 1 shows
that the Taylor polynomials at 0 (or Maclaurin polynomials) with , 2, and 3 are

The graphs of the exponential function and these three Taylor polynomials are drawn in
Figure 1.

In general, is the sum of its Taylor series if

If we let

so that

then is called the remainder of the Taylor series. If we can somehow show that
, then it follows that

We have therefore proved the following.

THEOREM If , where is the nth-degree Taylor polyno-
mial of at and

for , then is equal to the sum of its Taylor series on the interval
.

In trying to show that for a specific function , we usually use the
following fact.

TAYLOR’S INEQUALITY If for , then the remainder
of the Taylor series satisfies the inequality

To see why this is true for n � 1, we assume that . In particular, we have
, so for we have

An antiderivative of is , so by Part 2 of the Fundamental Theorem of Calculus, we
have

f ��x� � f ��a� � M�x � a�orf ��x� � f ��a� � M�x � a�

f �f �

y
x

a
 f ��t� dt � y

x

a
 M dt

a � x � a � df ��x� � M
� f ��x� � � M

for � x � a � � d� Rn�x� � �
M

�n � 1�!
 � x � a �n�1

Rn�x�
� x � a � � d� f �n�1��x� � � M9

flim n l � Rn�x� � 0

� x � a � � R
f� x � a � � R

lim 
n l �

 Rn�x� � 0

af
Tnf �x� � Tn�x� � Rn�x�8

lim 
n l �

 Tn�x� � lim 
n l �

 � f �x� � Rn�x�� � f �x� � lim 
n l �

 Rn�x� � f �x�

lim n l � Rn�x� � 0
Rn�x�

f �x� � Tn�x� � Rn�x�Rn�x� � f �x� � Tn�x�

f �x� � lim 
n l �

 Tn�x�

f �x�

T3�x� � 1 � x �
x 2

2!
�

x 3

3!
T2�x� � 1 � x �

x 2

2!
T1�x� � 1 � x

n � 1
f �x� � ex

nTn
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0 x

y

y=´

y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1

N As increases, appears to approach 
in Figure 1. This suggests that is equal to the
sum of its Taylor series.

e x

e xTn�x�n



Thus

But . So

A similar argument, using , shows that

So

Although we have assumed that , similar calculations show that this inequality is
also true for .

This proves Taylor’s Inequality for the case where . The result for any n is proved
in a similar way by integrating times. (See Exercise 69 for the case .)

In Section 11.11 we will explore the use of Taylor’s Inequality in approxi-
mating functions. Our immediate use of it is in conjunction with Theorem 8.

In applying Theorems 8 and 9 it is often helpful to make use of the following fact.

for every real number x

This is true because we know from Example 1 that the series converges for all 
and so its term approaches 0.

EXAMPLE 2 Prove that is equal to the sum of its Maclaurin series.

SOLUTION If , then for all n. If d is any positive number and
, then . So Taylor’s Inequality, with and ,

says that

for

Notice that the same constant works for every value of n. But, from Equa-
tion 10, we have

lim 
n l �

 
ed

�n � 1�!
 � x �n�1 � ed lim 

n l �
 � x �n�1

�n � 1�!
� 0

M � ed

� x � � d� Rn�x� � �
ed

�n � 1�!
 � x �n�1

M � eda � 0� f �n�1��x� � � ex � ed� x � � d
f �n�1��x� � exf �x� � ex

exV

nth
x	 x n�n!

lim 
n l �

 
xn

n!
� 010

NOTE

n � 2n � 1
n � 1

x � a
x � a

 � R1�x� � �
M

2
 � x � a �2

 R1�x� 
 �
M

2
 �x � a�2

f ��x� 
 �M

R1�x� �
M

2
 �x � a�2

R1�x� � f �x� � T1�x� � f �x� � f �a� � f ��a��x � a�

 f �x� � f �a� � f ��a��x � a� �
M

2
 �x � a�2

 f �x� � f �a� � f ��a��x � a� � M 
�x � a�2

2

 y
x

a
 f ��t� dt � y

x

a
 � f ��a� � M�t � a�� dt
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N As alternatives to Taylor’s Inequality, we have
the following formulas for the remainder term. If

is continuous on an interval and ,
then

This is called the integral form of the remainder
term. Another formula, called Lagrange’s form of
the remainder term, states that there is a number

between and such that

This version is an extension of the Mean Value
Theorem (which is the case ).

Proofs of these formulas, together with dis-
cussions of how to use them to solve the exam-
ples of Sections 11.10 and 11.11, are given on the
website

www.stewartcalculus.com

Click on Additional Topics and then on Formulas
for the Remainder Term in Taylor series.

n � 0

Rn�x� �
f �n�1��z�
�n � 1�!

 �x � a�n�1

axz

Rn�x� �
1

n!
 y

x

a
 �x � t�n f �n�1��t� dt

x � IIf �n�1�



It follows from the Squeeze Theorem that and therefore
for all values of x. By Theorem 8, is equal to the sum of its 

Maclaurin series, that is,

M

In particular, if we put in Equation 11, we obtain the following expression
for the number as a sum of an infinite series:

EXAMPLE 3 Find the Taylor series for at .

SOLUTION We have and so, putting in the definition of a Taylor series
(6), we get

Again it can be verified, as in Example 1, that the radius of convergence is . As in
Example 2 we can verify that , so

M

We have two power series expansions for , the Maclaurin series in Equation 11 and
the Taylor series in Equation 13. The first is better if we are interested in values of near
0 and the second is better if is near 2.

EXAMPLE 4 Find the Maclaurin series for and prove that it represents for all .

SOLUTION We arrange our computation in two columns as follows:

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as 
follows:

� x �
x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	 � �

�

n�0
��1�n 

x 2n�1

�2n � 1�!

f �0� �
 f ��0�

1!
 x �

 f ��0�
2!

 x 2 �
 f 
�0�

3!
 x 3 � 	 	 	

 f �4��x� � sin x  f �4��0� � 0

 f 
�x� � �cos x f 
�0� � �1

 f ��x� � �sin x  f ��0� � 0

 f ��x� � cos x  f ��0� � 1

 f �x� � sin x  f �0� � 0

xsin xsin x

x
x

ex

for all xex � �
�

n�0
 
e 2

n!
 �x � 2�n13

lim n l � Rn�x� � 0
R � �

�
�

n�0
 
 f �n��2�

n!
 �x � 2�n � �

�

n�0
 
e 2

n!
 �x � 2�n

a � 2f �n��2� � e 2

a � 2f �x� � ex

e � �
�

n�0
 

1

n!
� 1 �

1

1!
�

1

2!
�

1

3!
� 	 	 	12

e
x � 1

for all xex � �
�

n�0
 
xn

n!
11

exlim n l � Rn�x� � 0
lim n l � � Rn�x� � � 0
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N In 1748 Leonard Euler used Equation 12 to 
find the value of correct to digits. In 2003
Shigeru Kondo, again using the series in (12),
computed to more than 50 billion decimal
places. The special techniques employed to
speed up the computation are explained on the
web page

numbers.computation.free.fr

e

23e



Since is or , we know that for all x. So we can
take in Taylor’s Inequality:

By Equation 10 the right side of this inequality approaches 0 as , so
by the Squeeze Theorem. It follows that as , so

is equal to the sum of its Maclaurin series by Theorem 8. M

We state the result of Example 4 for future reference.

EXAMPLE 5 Find the Maclaurin series for .

SOLUTION We could proceed directly as in Example 4 but it’s easier to differentiate the
Maclaurin series for given by Equation 15:

Since the Maclaurin series for converges for all , Theorem 2 in Section 11.9 tells
us that the differentiated series for also converges for all . Thus

M

EXAMPLE 6 Find the Maclaurin series for the function .

SOLUTION Instead of computing derivatives and substituting in Equation 7, it’s easier to
multiply the series for (Equation 16) by :

M

EXAMPLE 7 Represent as the sum of its Taylor series centered at .��3f �x� � sin x

x cos x � x �
�

n�0
��1�n 

x 2n

�2n�!
� �

�

n�0
��1�n 

x 2n�1

�2n�!

xcos x

f �x� � x cos x

for all x � �
�

n�0
��1�n 

x 2n

�2n�!

 cos x � 1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� 	 	 	16

xcos x
xsin x

 � 1 �
3x 2

3!
�

5x 4

5!
�

7x 6

7!
� 	 	 	 � 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� 	 	 	

 cos x �
d

dx
 �sin x� �

d

dx
 �x �

x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	�

sin x

cos x

for all x � �
�

n�0
��1�n 

x 2n�1

�2n � 1�!

 sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	15

sin xn l �Rn�x� l 0� Rn�x� �l 0
n l �

� Rn�x� � �
M

�n � 1�! � xn�1 � � � x �n�1

�n � 1�!
14

M � 1
� f �n�1��x� � � 1�cos x�sin xf �n�1��x�
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FIGURE 2

0 x

y

1

1

y=sin x

T∞

T£

T¡

N Figure 2 shows the graph of together
with its Taylor (or Maclaurin) polynomials

Notice that, as increases, becomes a
better approximation to .sin x

Tn�x�n

 T5�x� � x �
x 3

3!
�

x 5

5!

 T3�x� � x �
x 3

3!

 T1�x� � x

sin x

N The Maclaurin series for , , and 
that we found in Examples 2, 4, and 5 were dis-
covered, using different methods, by Newton.
These equations are remarkable because they
say we know everything about each of these
functions if we know all its derivatives at the
single number 0.

cos xsin xe x



SOLUTION Arranging our work in columns, we have

and this pattern repeats indefinitely. Therefore the Taylor series at is

The proof that this series represents for all is very similar to that in Example 4.
[Just replace by in (14).] We can write the series in sigma notation if we
separate the terms that contain :

M

The power series that we obtained by indirect methods in Examples 5 and 6 and in
Section 11.9 are indeed the Taylor or Maclaurin series of the given functions because
Theorem 5 asserts that, no matter how a power series representation 
is obtained, it is always true that . In other words, the coefficients are
uniquely determined.

EXAMPLE 8 Find the Maclaurin series for , where is any real number.

SOLUTION Arranging our work in columns, we have

. .

. .

. .

Therefore the Maclaurin series of is

�
�

n�0

 
 f �n��0�

n!
 xn � �

�

n�0

 
k�k � 1� 	 	 	 �k � n � 1�

n!
 xn

f �x� � �1 � x�k

 f �n��x� � k�k � 1� 	 	 	 �k � n � 1��1 � x�k�n f �n��0� � k�k � 1� 	 	 	 �k � n � 1�

 f 
�x� � k�k � 1��k � 2��1 � x�k�3  f 
�0� � k�k � 1��k � 2�

 f ��x� � k�k � 1��1 � x�k�2  f ��0� � k�k � 1�

 f ��x� � k�1 � x�k�1  f ��0� � k

 f �x� � �1 � x�k  f �0� � 1

kf �x� � �1 � x�k

cn � f �n��a��n!
f �x� � 	 cn�x � a�n

sin x � �
�

n�0
 
��1�n

s3 

2�2n�! �x �
�

3 �2n

� �
�

n�0
 

��1�n

2�2n � 1�!�x �
�

3 �2n�1

s3 
x � ��3x

xsin x

�
s3 

2
�

1

2 � 1!
 �x �

�

3 � �
s3 

2 � 2!
 �x �

�

3 �2

�
1

2 � 3!
 �x �

�

3 �3

� 	 	 	

f��

3 � �

 f ���

3 �
1!

 �x �
�

3 � �

 f ���

3 �
2!

 �x �
�

3 �2

�

 f 
��

3 �
3!

 �x �
�

3 �3

� 	 	 	

��3

 f 
��

3 � � �
1

2
 f 
�x� � �cos x

 f ���

3 � � �
s3 

2
 f ��x� � �sin x

 f ���

3 � �
1

2
 f ��x� � cos x

 f��

3 � �
s3 

2
 f �x� � sin x
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0 x

y

π
3

y=sin x

T£

FIGURE 3

N We have obtained two different series repre-
sentations for , the Maclaurin series in
Example 4 and the Taylor series in Example 7. It
is best to use the Maclaurin series for values of

near 0 and the Taylor series for near .
Notice that the third Taylor polynomial in Fig-
ure 3 is a good approximation to near 
but not as good near 0. Compare it with the third
Maclaurin polynomial in Figure 2, where the
opposite is true.

T3

��3sin x
T3

��3xx

sin x



This series is called the binomial series. If its th term is 

Thus, by the Ratio Test, the binomial series converges if and diverges 
if . M

The traditional notation for the coefficients in the binomial series is

and these numbers are called the binomial coefficients.
The following theorem states that is equal to the sum of its Maclaurin series.

It is possible to prove this by showing that the remainder term approaches 0, but that
turns out to be quite difficult. The proof outlined in Exercise 71 is much easier.

THE BINOMIAL SERIES If is any real number and , then

Although the binomial series always converges when , the question of whether
or not it converges at the endpoints, , depends on the value of . It turns out that the
series converges at 1 if and at both endpoints if . Notice that if is a
positive integer and , then the expression for contains a factor , so 
for . This means that the series terminates and reduces to the ordinary Binomial
Theorem when is a positive integer. (See Reference Page 1.)

EXAMPLE 9 Find the Maclaurin series for the function and its radius
of convergence.

SOLUTION We write in a form where we can use the binomial series:

1

s4 � x 
�

1


4�1 �
x

4�
�

1

2
1 �
x

4
 

�
1

2
 �1 �

x

4��1�2

f �x�

f �x� �
1

s4 � x 
V

k
n � k

� 0( k
n )�k � k�( k

n )n � k
kk 
 0�1 � k � 0

k�1
� x � � 1

�1 � x�k � �
�

n�0
 � k

n�xn � 1 � kx �
k�k � 1�

2!
x 2 �

k�k � 1��k � 2�
3!

x 3 � 	 	 	

� x � � 1k17

Rn�x�
�1 � x�k

� k

n� �
k�k � 1��k � 2� 	 	 	 �k � n � 1�

n!

� x � � 1
� x � � 1

 � � k � n �
n � 1

 � x � �

1 �

k

n



1 �
1

n

 � x � l � x � as n l �

 
 an�1

an

 � 
 k�k � 1� 	 	 	 �k � n � 1��k � n�xn�1

�n � 1�!
�

n!

k�k � 1� 	 	 	 �k � n � 1�xn 

an, thenn
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Using the binomial series with and with replaced by , we have

We know from (17) that this series converges when , that is, , so the
radius of convergence is . M

We collect in the following table, for future reference, some important Maclaurin series
that we have derived in this section and the preceding one.

One reason that Taylor series are important is that they enable us to integrate functions
that we couldn’t previously handle. In fact, in the introduction to this chapter we men-
tioned that Newton often integrated functions by first expressing them as power series and
then integrating the series term by term. The function can’t be integrated by
techniques discussed so far because its antiderivative is not an elementary function (see
Section 7.5). In the following example we use Newton’s idea to integrate this function.

f �x� � e�x2

R � 1�1 � x�k � �
�

n�0
 � k

n�xn � 1 � kx �
k�k � 1�

2!
x 2 �

k�k � 1��k � 2�
3!

x 3 � 	 	 	

R � 1tan�1x � �
�

n�0
��1�n 

x 2n�1

2n � 1
� x �

x 3

3
�

x 5

5
�

x 7

7
� 	 	 	

R � �cos x � �
�

n�0
��1�n 

x 2n

�2n�!
� 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� 	 	 	

R � �sin x � �
�

n�0
��1�n 

x 2n�1

�2n � 1�!
� x �

x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	

R � �ex � �
�

n�0
 
xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� 	 	 	

R � 1
1

1 � x
� �

�

n�0
 xn � 1 � x � x 2 � x 3 � 	 	 	

R � 4
� x � � 4� �x�4 � � 1

 �
1

2
 �1 �

1

8
 x �

1 � 3

2!82  x 2 �
1 � 3 � 5

3!83  x 3 � 	 	 	 �
1 � 3 � 5 � 	 	 	 � �2n � 1�

n!8n  xn � 	 	 	�
� 	 	 	 �

(� 1
2)(� 3

2)(� 5
2) 	 	 	 (� 1

2 � n � 1)
n!

 ��
x

4�n

� 	 	 	�
 � 

1

2
 �1 � ��

1

2���
x

4� �
(� 1

2 )(� 3
2 )

2!
 ��

x

4�2

�
(� 1

2)(� 3
2)(� 5

2)
3!

 ��
x

4�3

 
1

s4 � x �
1

2
 �1 �

x

4��1�2

�
1

2
 �

�

n�0
 ��

1
2

n ���
x

4�n

�x�4xk � �
1
2
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TABLE 1

Important Maclaurin Series and 
Their Radii of Convergence

Module 11.10/11.11 enables you
to see how successive Taylor polynomials
approach the original function.

TEC



EXAMPLE 10
(a) Evaluate as an infinite series.

(b) Evaluate correct to within an error of .

SOLUTION
(a) First we find the Maclaurin series for . Although it’s possible to use the
direct method, let’s find it simply by replacing with in the series for given in
Table 1. Thus, for all values of x,

Now we integrate term by term:

This series converges for all because the original series for converges for all .

(b) The Fundamental Theorem of Calculus gives

The Alternating Series Estimation Theorem shows that the error involved in this approxi-
mation is less than

M

Another use of Taylor series is illustrated in the next example. The limit could be found
with l’Hospital’s Rule, but instead we use a series.

EXAMPLE 11 Evaluate .

SOLUTION Using the Maclaurin series for , we have

because power series are continuous functions. M

 � lim 
x l 0

 �1

2
�

x

3!
�

x 2

4!
�

x 3

5!
� � � �� �

1

2

    � lim 
x l 0

 

x 2

2!
�

x 3

3!
�

x4

4!
� � � �

x 2

 lim 
x l 0

 
ex � 1 � x

x 2 � lim 
x l 0

 
�1 �

x

1!
�

x 2

2!
�

x 3

3!
� � � �� � 1 � x

x 2

ex

lim 
x l 0

 
ex � 1 � x

x 2

1

11 � 5!
�

1

1320
� 0.001

 � 1 �
1
3 �

1
10 �

1
42 �

1
216 � 0.7475

 � 1 �
1
3 �

1
10 �

1
42 �

1
216 � � � �

 y
1

0
 e�x2

 dx � �x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
�

x 9

9 � 4!
� � � ��

0

1

xe�x2

x

 � C � x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
� � � � � ��1�n 

x 2n�1

�2n � 1�n!
� � � �

 y e�x2

 dx � y �1 �
x 2

1!
�

x 4

2!
�

x 6

3!
� � � � � ��1�n 

x 2n

n!
� � � �� dx

e�x2

� 	
�

n�0
 
��x 2 �n

n!
� 	

�

n�0
 ��1�n 

x 2n

n!
� 1 �

x 2

1!
�

x 4

2!
�

x 6

3!
� � � �

ex�x 2x
f �x� � e�x2

0.001x
1
0  e�x2

 dx

x e�x2

 dx
V
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N We can take in the antiderivative 
in part (a).

C � 0

N Some computer algebra systems compute 
limits in this way.



MULTIPLICATION AND DIVISION OF POWER SERIES

If power series are added or subtracted, they behave like polynomials (Theorem 11.2.8
shows this). In fact, as the following example illustrates, they can also be multiplied and
divided like polynomials. We find only the first few terms because the calculations for the
later terms become tedious and the initial terms are the most important ones.

EXAMPLE 12 Find the first three nonzero terms in the Maclaurin series for (a) 
and (b) .

SOLUTION
(a) Using the Maclaurin series for and in Table 1, we have

We multiply these expressions, collecting like terms just as for polynomials:

Thus

(b) Using the Maclaurin series in Table 1, we have

We use a procedure like long division:

Thus M

Although we have not attempted to justify the formal manipulations used in Exam-
ple 12, they are legitimate. There is a theorem which states that if both and

converge for and the series are multiplied as if they were polyno-
mials, then the resulting series also converges for and represents . For
division we require ; the resulting series converges for sufficiently small .
 x 
b0 � 0

f �x�t�x�
 x 
 � R

 x 
 � Rt�x� � � bnxn

f �x� � � cnxn

tan x � x �
1
3 x 3 �

2
15 x 5 � � � �

tan x �
sin x

cos x
�

x �
x 3

3!
�

x 5

5!
� � � �

1 �
x 2

2!
�

x 4

4!
� � � �

ex sin x � x � x 2 �
1
3 x 3 � � � �

� � ��
1
3 x 3�x 2�x

� � ��
1
6 x 4�

1
6 x 3��

� � ��
1
6 x 4�

1
2 x 3�x 2�x

� � ��
1
6 x 3�x�

� � ��
1
6 x 3�

1
2 x 2�x1 �

ex sin x � �1 �
x

1!
�

x 2

2!
�

x 3

3!
� � � ���x �

x 3

3!
� � � ��

sin xex

tan x
ex sin x
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 215 x 5 � � � �

 13 x 3 �  16 x 5 � � � �

 13 x 3 �  130 x 5 � � � �

 x �
1
2 x 3 �  124 x 5 � � ��

 1 �
1
2 x 2 �

1
24 x 4 � � � �)x � 1

6 x 3 �  1
120 x 5 � � � �

 x �
1
3 x 3 �  215 x 5 � � � �
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17. , 18. ,

19. , 20. ,

21. Prove that the series obtained in Exercise 7 represents 
for all .

22. Prove that the series obtained in Exercise 18 represents 
for all .

23. Prove that the series obtained in Exercise 11 represents 
for all .

24. Prove that the series obtained in Exercise 12 represents 
for all .

25–28 Use the binomial series to expand the function as a power
series. State the radius of convergence.

25. 26.

28.

29–38 Use a Maclaurin series in Table 1 to obtain the Maclaurin
series for the given function.

29. 30.

31. 32.

34.

36.

37. Hint: Use 

38.

; 39–42 Find the Maclaurin series of (by any method) and its
radius of convergence. Graph and its first few Taylor polynomials
on the same screen. What do you notice about the relationship
between these polynomials and ?

40.

41. 42.

43. Use the Maclaurin series for to calculate correct to five
decimal places.

e�0.2e x

f �x� � ln�1 � x 2�f �x� � xe�x

f �x� � e�x2

� cos xf �x� � cos�x 2 �39.

f

f
f

f �x� � �1
6

x � sin x

x 3 if x � 0

if x � 0

sin2x � 1
2 �1 � cos 2x�.][f �x� � sin2x

f �x� �
x 2

s2 � x  f �x� �
x

s4 � x 2 
35.

f �x� � x 2 tan�1�x 3 �f �x� � x cos( 1
2 x 2)33.

f �x� � e x � 2e�xf �x� � e x � e 2x

f �x� � cos��x
2�f �x� � sin �x

�1 � x�2
31

�2 � x�3
27.

1

�1 � x�4s1 � x 

x
cosh x

x
sinh x

x
sin x

x
sin �x

a � 1f �x� � x �2a � 9f �x� � 1
sx 

a � �
2f �x� � sin xa � �f �x� � cos x1. If for all , write a formula for .

2. The graph of is shown. 

(a) Explain why the series

is not the Taylor series of centered at 1.
(b) Explain why the series

is not the Taylor series of centered at 2.

3. If for find the Maclaurin
series for and its radius of convergence.

4. Find the Taylor series for centered at 4 if

What is the radius of convergence of the Taylor series?

5–12 Find the Maclaurin series for using the definition 
of a Maclaurin series. [Assume that has a power series expan-
sion. Do not show that .] Also find the associated radius
of convergence.

6.

7. 8.

9. 10.

11. 12.

13–20 Find the Taylor series for centered at the given value
of . [Assume that has a power series expansion. Do not show
that .]

13. ,

14. ,

, 16. , a � �3f �x� � 1
xa � 3f �x� � e x15.

a � �2f �x� � x � x 3

a � 1f �x� � x 4 � 3x 2 � 1

Rn�x� l 0
fa

f �x�

f �x� � cosh xf �x� � sinh x

f �x� � xe xf �x� � e5x

f �x� � cos 3xf �x� � sin �x

f �x� � ln�1 � x�f �x� � �1 � x��25.

Rn�x� l 0
f
f �x�

f �n��4� �
��1�n n!

3n�n � 1�

f

f
n � 0, 1, 2, . . . ,f �n��0� � �n � 1�!

f

2.8 � 0.5�x � 2� � 1.5�x � 2�2 � 0.1�x � 2�3 � � � �

f

1.6 � 0.8�x � 1� � 0.4�x � 1�2 � 0.1�x � 1�3 � � � �

y

0 x

f

1

1

f

b8xf �x� � ��
n�0 bn�x � 5�n

EXERCISES11.10
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61. 62.

63–68 Find the sum of the series.

64.

65. 66.

67.

68.

69. Prove Taylor’s Inequality for , that is, prove that if
for , then

70. (a) Show that the function defined by

is not equal to its Maclaurin series.

; (b) Graph the function in part (a) and comment on its behavior
near the origin.

71. Use the following steps to prove (17).

(a) Let . Differentiate this series to show that

(b) Let and show that .
(c) Deduce that .

72. In Exercise 53 in Section 10.2 it was shown that the length of
the ellipse , , where , is

where is the eccentricity of the ellipse.
Expand the integrand as a binomial series and use the result of
Exercise 46 in Section 7.1 to express as a series in powers of
the eccentricity up to the term in .e 6

L

e � sa 2 � b 2  
a

L � 4a y
�
2

0
 s1 � e 2 sin2 	  d	

a 
 b 
 0y � b cos 	x � a sin 	

t�x� � �1 � x�k
h��x� � 0h�x� � �1 � x��k

t�x�

�1 � x � 1t��x� �
kt�x�
1 � x

x n( k
n )t�x� � ��

n�0 

f �x� � �e�1
x2

0

if x � 0

if x � 0


 R2�x� 
 �
M

6
 
 x � a 
3 for 
 x � a 
 � d


 x � a 
 � d
 f 
�x� 
 � M
n � 2

1 � ln 2 �
�ln 2�2

2!
�

�ln 2�3

3!
� � � �

3 �
9

2!
�

27

3!
�

81

4!
� � � �

	
�

n�0
 

3n

5n n!	
�

n�0
 

��1�n� 2n�1

42n�1�2n � 1�!

	
�

n�0
 
��1�n � 2n

62n�2n�!	
�

n�0
��1�n 

x 4n

n!
63.

y � e x ln�1 � x�y �
x

sin x
44. Use the Maclaurin series for to compute correct to

five decimal places.

(a) Use the binomial series to expand .
(b) Use part (a) to find the Maclaurin series for .

46. (a) Expand as a power series.
(b) Use part (a) to estimate correct to three decimal

places.

47–50 Evaluate the indefinite integral as an infinite series.

47. 48.

49. 50.

51–54 Use series to approximate the definite integral to within the
indicated accuracy.

51. (three decimal places)

52. (five decimal places)

53.

54.

55–57 Use series to evaluate the limit.

55. 56.

58. Use the series in Example 12(b) to evaluate

We found this limit in Example 4 in Section 4.4 using l’Hospi-
tal’s Rule three times. Which method do you prefer?

59–62 Use multiplication or division of power series to find the
first three nonzero terms in the Maclaurin series for the function.

60. y � sec xy � e�x2

 cos x59.

lim
x l 0

 
tan x � x

x 3

lim
x l 0

 
sin x � x �

1
6 x 3

x 557.

lim
x l 0

 
1 � cos x

1 � x � e xlim
x l 0

 
x � tan�1x

x 3

(
 error 
 � 0.001)y
0.5

0
 x 2e�x2

 dx

(
 error 
 � 5 � 10�6)y
0.4

0
 s1 � x 4  dx

y
0.2

0
 �tan �1�x 3 � � sin�x 3�� dx

y
1

0
 x cos�x 3 � dx

y arctan�x 2� dxy 
cos x � 1

x
 dx

y 
e x � 1

x
 dxy x cos�x 3� dx

1
s
4 1.1

1
s
4 1 � x  

sin�1x
1
s1 � x 2 45.

sin 3�sin x



The Binomial Theorem, which gives the expansion of , was known to Chinese mathe-
maticians many centuries before the time of Newton for the case where the exponent k is a 
positive integer. In 1665, when he was 22, Newton was the first to discover the infinite series
expansion of when k is a fractional exponent (positive or negative). He didn’t publish 
his discovery, but he stated it and gave examples of how to use it in a letter (now called the 
epistola prior) dated June 13, 1676, that he sent to Henry Oldenburg, secretary of the Royal
Society of London, to transmit to Leibniz. When Leibniz replied, he asked how Newton had
discovered the binomial series. Newton wrote a second letter, the epistola posterior of Octo-
ber 24, 1676, in which he explained in great detail how he arrived at his discovery by a very
indirect route. He was investigating the areas under the curves from 0 to x for

, 1, 2, 3, 4, . . . . These are easy to calculate if n is even. By observing patterns and inter-
polating, Newton was able to guess the answers for odd values of n. Then he realized he could
get the same answers by expressing as an infinite series.

Write a report on Newton’s discovery of the binomial series. Start by giving the statement of
the binomial series in Newton’s notation (see the epistola prior on page 285 of [4] or page 402 
of [2]). Explain why Newton’s version is equivalent to Theorem 17 on page 742. Then read
Newton’s epistola posterior (page 287 in [4] or page 404 in [2]) and explain the patterns that
Newton discovered in the areas under the curves . Show how he was able to 
guess the areas under the remaining curves and how he verified his answers. Finally, explain how
these discoveries led to the binomial series. The books by Edwards [1] and Katz [3] contain
commentaries on Newton’s letters.

1. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 178–187.

2. John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (London:
MacMillan Press, 1987).

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),
pp. 463–466.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, NJ: Princeton 
University Press, 1969).

y � �1 � x 2 �n
2

�1 � x 2 �n
2

n � 0
y � �1 � x 2 �n
2

�a � b�k

�a � b�k

HOW NEWTON DISCOVERED THE BINOMIAL SERIESW R I T I N G
P R O J E C T
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This project deals with the function

1. Use your computer algebra system to evaluate for and .
Does it appear that has a limit as ?

2. Use the CAS to graph near . Does it appear that has a limit as ?

3. Try to evaluate with l’Hospital’s Rule, using the CAS to find derivatives of the
numerator and denominator. What do you discover? How many applications of l’Hospital’s
Rule are required?

4. Evaluate by using the CAS to find sufficiently many terms in the Taylor series 
of the numerator and denominator. (Use the command taylor in Maple or Series in 
Mathematica.)

5. Use the limit command on your CAS to find directly. (Most computer algebra
systems use the method of Problem 4 to compute limits.)

6. In view of the answers to Problems 4 and 5, how do you explain the results of Problems 1 and 2?

limx  l  0 f �x�

limx  l  0 f �x�

limx  l  0 f �x�

x l 0fx � 0f

x l 0f
0.0001x � 1, 0.1, 0.01, 0.001,f �x�

f �x� �
sin�tan x� � tan�sin x�

arcsin�arctan x� � arctan�arcsin x�

AN ELUSIVE LIMITCASL A B O R AT O R Y
P R O J E C T



APPLICATIONS OF TAYLOR POLYNOMIALS

In this section we explore two types of applications of Taylor polynomials. First we look
at how they are used to approximate functions––computer scientists like them because
polynomials are the simplest of functions. Then we investigate how physicists and engi-
neers use them in such fields as relativity, optics, blackbody radiation, electric dipoles, the
velocity of water waves, and building highways across a desert.

APPROXIMATING FUNCTIONS BY POLYNOMIALS

Suppose that is equal to the sum of its Taylor series at a:

In Section 11.10 we introduced the notation for the th partial sum of this series
and called it the th-degree Taylor polynomial of at . Thus

Since is the sum of its Taylor series, we know that as and so can
be used as an approximation to : .

Notice that the first-degree Taylor polynomial

is the same as the linearization of f at a that we discussed in Section 3.10. Notice also that
and its derivative have the same values at a that and have. In general, it can be

shown that the derivatives of at agree with those of up to and including derivatives
of order (see Exercise 38).

To illustrate these ideas let’s take another look at the graphs of and its first few
Taylor polynomials, as shown in Figure 1. The graph of is the tangent line to 
at ; this tangent line is the best linear approximation to near . The graph 
of is the parabola , and the graph of is the cubic curve

, which is a closer fit to the exponential curve than .
The next Taylor polynomial would be an even better approximation, and so on.

The values in the table give a numerical demonstration of the convergence of the Taylor
polynomials to the function . We see that when the convergence is
very rapid, but when it is somewhat slower. In fact, the farther is from 0, the more
slowly converges to .

When using a Taylor polynomial to approximate a function , we have to ask the
questions: How good an approximation is it? How large should we take to be in order to
achieve a desired accuracy? To answer these questions we need to look at the absolute
value of the remainder:


 Rn�x� 
 � 
 f �x� � Tn�x� 


n
fTn

exTn�x�
xx � 3

x � 0.2y � exTn�x�

T4

T2y � exy � 1 � x � x 2
2 � x 3
6
T3y � 1 � x � x 2
2T2

�0, 1�ex�0, 1�
y � exT1

y � ex
n

faTn

f �fT1

T1�x� � f �a� � f ��a��x � a�

f �x� � Tn�x�f
Tnn l �Tn�x� l f �x�f

 � f �a� �
 f ��a�

1!
 �x � a� �

 f ��a�
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There are three possible methods for estimating the size of the error:

1. If a graphing device is available, we can use it to graph and thereby esti-
mate the error.

2. If the series happens to be an alternating series, we can use the Alternating Series
Estimation Theorem.

3. In all cases we can use Taylor’s Inequality (Theorem 11.10.9), which says that if
, then

EXAMPLE 1
(a) Approximate the function by a Taylor polynomial of degree 2 at .
(b) How accurate is this approximation when ?

SOLUTION
(a)

Thus the second-degree Taylor polynomial is

The desired approximation is

(b) The Taylor series is not alternating when , so we can’t use the Alternating
Series Estimation Theorem in this example. But we can use Taylor’s Inequality with 

and :

where . Because , we have and so

Therefore we can take . Also , so and
. Then Taylor’s Inequality gives

Thus, if , the approximation in part (a) is accurate to within . M0.00047 � x � 9
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Let’s use a graphing device to check the calculation in Example 1. Figure 2 shows that
the graphs of and are very close to each other when is near 8. Fig-
ure 3 shows the graph of computed from the expression

We see from the graph that

when . Thus the error estimate from graphical methods is slightly better than the
error estimate from Taylor’s Inequality in this case.

EXAMPLE 2
(a) What is the maximum error possible in using the approximation 

when ? Use this approximation to find correct to six decimal
places.
(b) For what values of is this approximation accurate to within ?

SOLUTION
(a) Notice that the Maclaurin series

is alternating for all nonzero values of , and the successive terms decrease in size
because , so we can use the Alternating Series Estimation Theorem. The error 
in approximating by the first three terms of its Maclaurin series is at most

If , then , so the error is smaller than

To find we first convert to radian measure.

Thus, correct to six decimal places, .

(b) The error will be smaller than if
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Solving this inequality for , we get

So the given approximation is accurate to within when . M

What if we use Taylor’s Inequality to solve Example 2? Since , we
have and so

So we get the same estimates as with the Alternating Series Estimation Theorem.
What about graphical methods? Figure 4 shows the graph of

and we see from it that when . This is the same estimate
that we obtained in Example 2. For part (b) we want , so we graph both

and in Figure 5. By placing the cursor on the right intersection
point we find that the inequality is satisfied when . Again this is the same esti-
mate that we obtained in the solution to Example 2.

If we had been asked to approximate instead of in Example 2, it would
have been wise to use the Taylor polynomials at (instead of ) because they
are better approximations to for values of close to . Notice that is close to

(or radians) and the derivatives of are easy to compute at .
Figure 6 shows the graphs of the Maclaurin polynomial approximations

to the sine curve. You can see that as increases, is a good approximation to on
a larger and larger interval.

One use of the type of calculation done in Examples 1 and 2 occurs in calculators and
computers. For instance, when you press the or key on your calculator, or when a
computer programmer uses a subroutine for a trigonometric or exponential or Bessel func-
tion, in many machines a polynomial approximation is calculated. The polynomial is often
a Taylor polynomial that has been modified so that the error is spread more evenly through-
out an interval.

APPLICATIONS TO PHYSICS

Taylor polynomials are also used frequently in physics. In order to gain insight into an
equation, a physicist often simplifies a function by considering only the first two or three
terms in its Taylor series. In other words, the physicist uses a Taylor polynomial as an
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approximation to the function. Taylor’s Inequality can then be used to gauge the accuracy
of the approximation. The following example shows one way in which this idea is used in
special relativity.

EXAMPLE 3 In Einstein’s theory of special relativity the mass of an object moving
with velocity is

where is the mass of the object when at rest and is the speed of light. The kinetic
energy of the object is the difference between its total energy and its energy at rest:

(a) Show that when is very small compared with , this expression for agrees with
classical Newtonian physics: .
(b) Use Taylor’s Inequality to estimate the difference in these expressions for when

m
s.

SOLUTION
(a) Using the expressions given for and , we get 

With , the Maclaurin series for is most easily computed as a 
binomial series with . (Notice that because .) Therefore we have

and

If is much smaller than , then all terms after the first are very small when compared
with the first term. If we omit them, we get

(b) If , , and M is a number such that
, then we can use Taylor’s Inequality to write

We have and we are given that m
s, so
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N The upper curve in Figure 7 is the graph of 
the expression for the kinetic energy of an
object with velocity in special relativity. The
lower curve shows the function used for in
classical Newtonian physics. When is much
smaller than the speed of light, the curves are
practically identical.
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Thus, with ,

So when m�s, the magnitude of the error in using the Newtonian expression
for kinetic energy is at most . M

Another application to physics occurs in optics. Figure 8 is adapted from Optics,
4th ed., by Eugene Hecht (San Francisco: Addison-Wesley, 2002), page 153. It depicts a
wave from the point source S meeting a spherical interface of radius R centered at C. The
ray SA is refracted toward P.

Using Fermat’s principle that light travels so as to minimize the time taken, Hecht
derives the equation

where and are indexes of refraction and , , , and are the distances indicated in
Figure 8. By the Law of Cosines, applied to triangles ACS and ACP, we have

Because Equation 1 is cumbersome to work with, Gauss, in 1841, simplified it by using
the linear approximation for small values of . (This amounts to using the
Taylor polynomial of degree 1.) Then Equation 1 becomes the following simpler equation
[as you are asked to show in Exercise 34(a)]:

The resulting optical theory is known as Gaussian optics, or first-order optics, and has
become the basic theoretical tool used to design lenses.

A more accurate theory is obtained by approximating by its Taylor polynomial of
degree 3 (which is the same as the Taylor polynomial of degree 2). This takes into account
rays for which is not so small, that is, rays that strike the surface at greater distances h
above the axis. In Exercise 34(b) you are asked to use this approximation to derive the
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N Here we use the identity

cos�� � �� � �cos �



more accurate equation

The resulting optical theory is known as third-order optics.
Other applications of Taylor polynomials to physics and engineering are explored in

Exercises 32, 33, 35, 36, and 37 and in the Applied Project on page 757.
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; (c) Check your result in part (b) by graphing .

13. , , ,

14. , , ,

15. , , ,

16. , , ,

17. , , ,

, , ,

, , ,

20. , , ,

21. , , ,

22. , , ,

23. Use the information from Exercise 5 to estimate cor-
rect to five decimal places.

24. Use the information from Exercise 16 to estimate 
correct to five decimal places.

Use Taylor’s Inequality to determine the number of terms of
the Maclaurin series for that should be used to estimate 
to within .

26. How many terms of the Maclaurin series for do you
need to use to estimate to within ?

; 27–29 Use the Alternating Series Estimation Theorem or 
Taylor’s Inequality to estimate the range of values of for which
the given approximation is accurate to within the stated error.
Check your answer graphically.

27.

28.

29. (� error � � 0.05)arctan x � x �
x 3

3
�

x 5

5

(� error � � 0.005)cos x � 1 �
x 2

2
�

x 4

24

(� error � � 0.01)sin x � x �
x 3

6

x

0.001ln 1.4
ln�1 � x�

0.00001
e 0.1e x

25.

sin 38	

cos 80	

�1 � x � 1n � 5a � 0f �x� � sinh 2x

�1 � x � 1n � 4a � 0f �x� � x sin x

0.5 � x � 1.5n � 3a � 1f �x� � x ln x

0 � x � 0.1n � 3a � 0f �x� � ex2

19.

0.5 � x � 1.5n � 3a � 1f �x� � ln�1 � 2x�18.

�0.2 � x � 0.2n � 2a � 0f �x� � sec x

0 � x � ��3n � 4a � ��6f �x� � sin x

0.8 � x � 1.2n � 3a � 1f �x� � x 2�3

0.9 � x � 1.1n � 2a � 1f �x� � x�2

4 � x � 4.2n � 2a � 4f �x� � sx 

� Rn�x� �; 1. (a) Find the Taylor polynomials up to degree 6 for
centered at . Graph and these 

polynomials on a common screen.
(b) Evaluate and these polynomials at , , 

and .
(c) Comment on how the Taylor polynomials converge 

to .

; 2. (a) Find the Taylor polynomials up to degree 3 for
centered at . Graph and these 

polynomials on a common screen.
(b) Evaluate and these polynomials at and 1.3.
(c) Comment on how the Taylor polynomials converge 

to .

; 3–10 Find the Taylor polynomial for the function at the
number . Graph and on the same screen.

3. ,

4. ,

,

6. ,

7. ,

8. ,

,

10. ,

11–12 Use a computer algebra system to find the Taylor poly-
nomials centered at for . Then graph these
polynomials and on the same screen.

11. ,

12. ,

13–22
(a) Approximate by a Taylor polynomial with degree at the

number .
(b) Use Taylor’s Inequality to estimate the accuracy of the

approximation when x lies in the given 
interval.
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Equation 4 for third-order optics. [Hint: Use the first two
terms in the binomial series for and . Also, use

.]

35. If a water wave with length moves with velocity across a
body of water with depth , as in the figure, then

(a) If the water is deep, show that .
(b) If the water is shallow, use the Maclaurin series for 

to show that . (Thus in shallow water the veloc-
ity of a wave tends to be independent of the length of the
wave.)

(c) Use the Alternating Series Estimation Theorem to show
that if , then the estimate is accurate to
within .

36. The period of a pendulum with length that makes a maxi-
mum angle with the vertical is

where and is the acceleration due to gravity.
(In Exercise 40 in Section 7.7 we approximated this integral
using Simpson’s Rule.)
(a) Expand the integrand as a binomial series and use the

result of Exercise 46 in Section 7.1 to show that

If is not too large, the approximation ,
obtained by using only the first term in the series, is often
used. A better approximation is obtained by using two
terms:

(b) Notice that all the terms in the series after the first one
have coefficients that are at most . Use this fact to com-
pare this series with a geometric series and show that

(c) Use the inequalities in part (b) to estimate the period of a
pendulum with meter and . How does it
compare with the estimate ? What if

?
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30. Suppose you know that

and the Taylor series of centered at 4 converges to 
for all in the interval of convergence. Show that the fifth-
degree Taylor polynomial approximates with error less
than 0.0002.

A car is moving with speed 20 m�s and acceleration 2 m�s
at a given instant. Using a second-degree Taylor polynomial,
estimate how far the car moves in the next second. Would it
be reasonable to use this polynomial to estimate the distance
traveled during the next minute?

32. The resistivity of a conducting wire is the reciprocal of the
conductivity and is measured in units of ohm-meters ( -m).
The resistivity of a given metal depends on the temperature
according to the equation

where is the temperature in . There are tables that list the
values of (called the temperature coefficient) and (the
resistivity at C) for various metals. Except at very low
temperatures, the resistivity varies almost linearly with tem-
perature and so it is common to approximate the expression
for by its first- or second-degree Taylor polynomial 
at .
(a) Find expressions for these linear and quadratic

approximations.

; (b) For copper, the tables give C and
-m. Graph the resistivity of copper 

and the linear and quadratic approximations for 
C C.

; (c) For what values of does the linear approximation agree
with the exponential expression to within one percent?

An electric dipole consists of two electric charges of equal
magnitude and opposite sign. If the charges are and and
are located at a distance from each other, then the electric
field at the point in the figure is

By expanding this expression for as a series in powers of
, show that is approximately proportional to 

when is far away from the dipole.

34. (a) Derive Equation 3 for Gaussian optics from Equation 1 
by approximating in Equation 2 by its first-degree
Taylor polynomial.

(b) Show that if is replaced by its third-degree Taylor
polynomial in Equation 2, then Equation 1 becomes 
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Any object emits radiation when heated. A blackbody is a system that absorbs all the radiation
that falls on it. For instance, a matte black surface or a large cavity with a small hole in its wall
(like a blastfurnace) is a blackbody and emits blackbody radiation. Even the radiation from the
sun is close to being blackbody radiation.

Proposed in the late 19th century, the Rayleigh-Jeans Law expresses the energy density of
blackbody radiation of wavelength as

where is measured in meters, is the temperature in kelvins (K), and is Boltzmann’s con-
stant. The Rayleigh-Jeans Law agrees with experimental measurements for long wavelengths 
but disagrees drastically for short wavelengths. [The law predicts that as but
experiments have shown that .] This fact is known as the ultraviolet catastrophe.

In 1900 Max Planck found a better model (known now as Planck’s Law) for blackbody 
radiation:

where is measured in meters, is the temperature (in kelvins), and

1. Use l’Hospital’s Rule to show that

for Planck’s Law. So this law models blackbody radiation better than the Rayleigh-Jeans
Law for short wavelengths.
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 k � Boltzmann’s constant � 1.3807 � 10�23 J�K

 c � speed of light � 2.997925 � 108 m�s
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P R O J E C T

38. Show that and have the same derivatives at up to 
order .

39. In Section 4.8 we considered Newton’s method for approxi-
mating a root of the equation , and from an 
initial approximation we obtained successive approxi-
mations , , . . . , where

Use Taylor’s Inequality with , , and to
show that if exists on an interval containing , , 
and , and , for all , then

[This means that if is accurate to decimal places, then
is accurate to about decimal places. More precisely, 

if the error at stage is at most , then the error at stage
is at most .]�M�2K �10�2mn � 1

10�mn
2dxn�1

dxn

� xn�1 � r � �
M

2K � xn � r �2

x � I� f ��x� � � K� f ��x� � � Mxn�1

xnrIf ��x�
x � ra � xnn � 1

xn�1 � xn �
 f �xn�
f ��xn�

x3x2

x1

f �x� � 0r

n
afTn37. If a surveyor measures differences in elevation when making

plans for a highway across a desert, corrections must be made
for the curvature of the earth.
(a) If is the radius of the earth and is the length of the

highway, show that the correction is

(b) Use a Taylor polynomial to show that

(c) Compare the corrections given by the formulas in parts
(a) and (b) for a highway that is 100 km long. (Take the
radius of the earth to be 6370 km.)

R

L C

R

C �
L 2

2R
�

5L 4

24R 3

C � R sec�L�R� � R

LR
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REVIEW

C O N C E P T  C H E C K

11

(b) If a series is convergent by the Comparison Test, how do
you estimate its sum?

(c) If a series is convergent by the Alternating Series Test, how
do you estimate its sum?

8. (a) Write the general form of a power series.
(b) What is the radius of convergence of a power series?
(c) What is the interval of convergence of a power series?

9. Suppose is the sum of a power series with radius of con-
vergence .
(a) How do you differentiate ? What is the radius of conver-

gence of the series for ?
(b) How do you integrate ? What is the radius of convergence

of the series for ?

10. (a) Write an expression for the -degree Taylor polynomial
of centered at .

(b) Write an expression for the Taylor series of centered at .
(c) Write an expression for the Maclaurin series of .
(d) How do you show that is equal to the sum of its 

Taylor series?
(e) State Taylor’s Inequality.

11. Write the Maclaurin series and the interval of convergence for
each of the following functions.
(a) (b) (c)
(d) (e)

12. Write the binomial series expansion of . What is the
radius of convergence of this series?

�1 � x�k

tan�1xcos x
sin xe x1��1 � x�

f �x�
f

af
af

nth

x f �x� dx
f
f �

f
R
f �x�

1. (a) What is a convergent sequence?
(b) What is a convergent series?
(c) What does mean?
(d) What does mean?

2. (a) What is a bounded sequence?
(b) What is a monotonic sequence?
(c) What can you say about a bounded monotonic sequence?

3. (a) What is a geometric series? Under what circumstances is 
it convergent? What is its sum?

(b) What is a -series? Under what circumstances is it 
convergent?

4. Suppose and is the partial sum of the series.
What is ? What is ?

5. State the following.
(a) The Test for Divergence
(b) The Integral Test
(c) The Comparison Test
(d) The Limit Comparison Test
(e) The Alternating Series Test
(f) The Ratio Test
(g) The Root Test

6. (a) What is an absolutely convergent series?
(b) What can you say about such a series?
(c) What is a conditionally convergent series?

7. (a) If a series is convergent by the Integral Test, how do you
estimate its sum?

limn l � snlimn l � an

nthsn� an � 3

p

��
n�1 an � 3

limn l � an � 3
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2. Use a Taylor polynomial to show that, for large wavelengths, Planck’s Law gives approxi-
mately the same values as the Rayleigh-Jeans Law.

; 3. Graph as given by both laws on the same screen and comment on the similarities and
differences. Use K (the temperature of the sun). (You may want to change from
meters to the more convenient unit of micrometers: �m m.)

4. Use your graph in Problem 3 to estimate the value of for which is a maximum under
Planck’s Law.

; 5. Investigate how the graph of changes as varies. (Use Planck’s Law.) In particular, graph
for the stars Betelgeuse ( ), Procyon ( ), and Sirius ( ) 

as well as the sun. How does the total radiation emitted (the area under the curve) vary 
with ? Use the graph to comment on why Sirius is known as a blue star and Betelgeuse as
a red star.

T

T � 9200 KT � 6400 KT � 3400 Kf
Tf

f ����

� 10�61
T � 5700 

f



Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If , then is convergent.

2. The series is convergent.

3. If , then .

4. If is convergent, then is convergent.

5. If is convergent, then is convergent.

6. If diverges when , then it diverges when .

7. The Ratio Test can be used to determine whether 
converges.

8. The Ratio Test can be used to determine whether 
converges.

9. If and diverges, then diverges.

10. 

�

n�0
 
��1�n

n!
�

1

e

� an� bn0 � an � bn

� 1�n!

� 1�n 3

x � 10x � 6� cn x n

� cn��6�n� cn6n

� cn��2�n� cn6n

limn l � a2n�1 � Llimn l � an � L

��
n�1 n �sin 1

� anlimn l � an � 0

11. If , then .

12. If is divergent, then is divergent.

13. If converges for all , 
then .

14. If and are divergent, then is divergent.

15. If and are divergent, then is divergent.

16. If is decreasing and for all , then is 
convergent.

17. If and converges, then converges.

18. If and , then .

19.

20. If and , then .

�

n�1
 an bn � AB


�

n�1
 bn � B


�

n�1
 an � A

0.99999 . . . � 1

limn l � an � 0limn l � �an�1�an� � 1an � 0

� ��1�nan� anan � 0

�an �nan � 0�an �

�an bn ��bn ��an �

�an � bn ��bn ��an �

f ��0� � 2
xf �x� � 2x � x 2 �

1
3 x 3 � � � �

� � an �� an

limn l � � n � 0�1 � � � 1

T R U E - F A L S E  Q U I Z

1–8 Determine whether the sequence is convergent or divergent.
If it is convergent, find its limit.

1. 2.

3. 4.

5. 6.

7. 8.

9. A sequence is defined recursively by the equations ,
. Show that is increasing and 

for all . Deduce that is convergent and find its limit.

; 10. Show that and use a graph to find the
smallest value of that corresponds to in the pre-
cise definition of a limit.

11–22 Determine whether the series is convergent or divergent.

11. 12.

13. 14.

15. 16. 

�

n�1
 ln� n

3n � 1�

�

n�2
 

1

nsln n 



�

n�1
 

��1�n

sn � 1

�

n�1
 
n3

5n



�

n�1
 
n2 � 1

n3 � 1

�

n�1
 

n

n3 � 1

� � 0.1N
lim n l � n 4e �n � 0

�an �n
an � 2�an �an�1 � 1

3 �an � 4�
a1 � 1

���10�n�n!���1 � 3�n�4n �

an �
ln n

sn an �
n sin n

n2 � 1

an � cos�n��2�an �
n3

1 � n2

an �
9n�1

10nan �
2 � n3

1 � 2n3

17. 18.

19.

20.

21. 22.

23–26 Determine whether the series is conditionally conver-
gent, absolutely convergent, or divergent.

23. 24.

25. 26.

27–31 Find the sum of the series.

27. 28.

29. 30. 

�

n�0
 
��1�n� n

32n�2n�!

�

n�1
 �tan�1�n � 1� � tan�1n�



�

n�1
 

1

n�n � 3�

�

n�1
 
��3�n�1

23n



�

n�2
 
��1�n

sn 

ln n

�

n�1
 
��1�n�n � 1�3n

22n�1



�

n�1
 ��1�n�1n �3


�

n�1
 ��1�n�1n �1�3



�

n�1
 
sn � 1 � sn � 1

n

�

n�1
 ��1�n�1 

sn 

n � 1



�

n�1
 
��5�2n

n 2 9n



�

n�1
 
1 � 3 � 5 � � � � � �2n � 1�

5n n!



�

n�1
 

n2n

�1 � 2n2�n

�

n�1
 

cos 3n

1 � �1.2�n
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49. 50.

51. 52.

53. 54.

55. Evaluate as an infinite series.

56. Use series to approximate correct to two deci-
mal places.

57–58
(a) Approximate by a Taylor polynomial with degree at the

number .

; (b) Graph and on a common screen.
(c) Use Taylor’s Inequality to estimate the accuracy of the approxi-

mation when lies in the given interval.

; (d) Check your result in part (c) by graphing .

57. , , ,

58. , , ,

59. Use series to evaluate the following limit.

60. The force due to gravity on an object with mass at a 
height above the surface of the earth is

where is the radius of the earth and is the acceleration due
to gravity.
(a) Express as a series in powers of .

; (b) Observe that if we approximate by the first term in the
series, we get the expression that is usually used
when is much smaller than . Use the Alternating Series
Estimation Theorem to estimate the range of values of for
which the approximation is accurate to within one
percent. (Use km.)

61. Suppose that for all .
(a) If is an odd function, show that

(b) If is an even function, show that

62. If , show that .f �2n��0� �
�2n�!

n!
f �x� � ex2

c1 � c3 � c5 � � � � � 0

f

c0 � c2 � c4 � � � � � 0

f
xf �x� � ��

n�0 cn x n

R � 6400
F � mt

h
Rh
F � mt

F
h�RF

tR

F �
mtR2

�R � h�2

h
m

lim
x l 0

 
sin x � x

x 3

0 � x � ��6n � 2a � 0f �x� � sec x

0.9 � x � 1.1n � 3a � 1f �x� � sx 

� Rn�x� �
xf �x� � Tn�x�

Tnf
a

nf

x
1
0  s1 � x 4  dx

y 
e x

x
 dx

f �x� � �1 � 3x��5f �x� � 1�s
4 16 � x 

f �x� � 10 xf �x� � sin�x 4 �

f �x� � xe 2xf �x� � ln�1 � x�
31.

32. Express the repeating decimal as a 
fraction.

33. Show that for all .

34. For what values of does the series converge?

35. Find the sum of the series correct to four 
decimal places.

36. (a) Find the partial sum of the series and estimate
the error in using it as an approximation to the sum of the
series.

(b) Find the sum of this series correct to five decimal places.

37. Use the sum of the first eight terms to approximate the sum of
the series . Estimate the error involved in this
approximation.

38. (a) Show that the series is convergent.

(b) Deduce that .

39. Prove that if the series is absolutely convergent, then
the series

is also absolutely convergent.

40–43 Find the radius of convergence and interval of convergence
of the series.

40. 41.

42. 43.

44. Find the radius of convergence of the series

45. Find the Taylor series of at .

46. Find the Taylor series of at .

47–54 Find the Maclaurin series for and its radius of conver-
gence. You may use either the direct method (definition of a
Maclaurin series) or known series such as geometric series,
binomial series, or the Maclaurin series for , , and .

47. 48. f �x� � tan�1�x 2 �f �x� �
x 2

1 � x

tan�1xsin xe x

f

a � ��3f �x� � cos x

a � ��6f �x� � sin x



�

n�1
 
�2n�!
�n!�2  x n



�

n�0
 
2n�x � 3�n

sn � 3 

�

n�1
 
2n�x � 2�n

�n � 2�!



�

n�1
 
�x � 2�n

n 4n

�

n�1
 ��1�n 

x n

n2 5n



�

n�1
 �n � 1

n �an

��
n�1 an

lim
n l �

 
n n

�2n�!
� 0



�

n�1
 

n n

�2n�!

��
n�1 �2 � 5n��1

��
n�1 1�n6s5



�

n�1
 
��1�n�1

n 5

��
n�1 �ln x�nx

xcosh x � 1 �
1
2 x 2

4.17326326326 . . .

1 � e �
e 2

2!
�

e 3

3!
�

e 4

4!
� � � �
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1. If , find .

2. A function is defined by

Where is continuous?

3. (a) Show that .

(b) Find the sum of the series

4. Let be a sequence of points determined as in the figure. Thus ,
, and angle is a right angle. Find .

5. To construct the snowflake curve, start with an equilateral triangle with sides of length . 
Step 1 in the construction is to divide each side into three equal parts, construct an equilateral
triangle on the middle part, and then delete the middle part (see the figure). Step 2 is to repeat
step 1 for each side of the resulting polygon. This process is repeated at each succeeding step.
The snowflake curve is the curve that results from repeating this process indefinitely.
(a) Let , , and represent the number of sides, the length of a side, and the total length of

the th approximating curve (the curve obtained after step of the construction), respec-
tively. Find formulas for , , and .

(b) Show that as .
(c) Sum an infinite series to find the area enclosed by the snowflake curve. 

Note: Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a finite
area.

6. Find the sum of the series

where the terms are the reciprocals of the positive integers whose only prime factors are 2s
and 3s.

7. (a) Show that for ,

if the left side lies between and .
(b) Show that

(c) Deduce the following formula of John Machin (1680–1751):

(d) Use the Maclaurin series for to show that

(e) Show that

0.004184075 � arctan 1
239 � 0.004184077 

0.197395560 � arctan 15 � 0.197395562 

arctan

4 arctan 15 � arctan 1
239 �

�

4

arctan 120
119 � arctan 1

239 �
�

4

��2���2

arctan x � arctan y � arctan 
x � y

1 � xy

xy � �1

1 �
1

2
�

1

3
�

1

4
�

1

6
�

1

8
�

1

9
�

1

12
� � � �

n l �pn l �
pnlnsn

nn
pnlnsn

1

limn l � �Pn APn�1APn Pn�1� Pn Pn�1 � � 2n�1
� AP1 � � 1�Pn �



�

n�1
 

1

2n  tan 
x

2n

tan 12 x � cot 12 x � 2 cot x

f

f �x� � lim 
n l �

 
x 2n � 1

x 2n � 1

f

f �15��0�f �x� � sin�x 3 �
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(f) Deduce that, correct to seven decimal places,

Machin used this method in 1706 to find correct to 100 decimal places. Recently, with 
the aid of computers, the value of has been computed to increasingly greater accuracy.
Yasumada Kanada of the University of Tokyo recently computed the value of to a trillion
decimal places!

8. (a) Prove a formula similar to the one in Problem 7(a) but involving instead of .
(b) Find the sum of the series

9. Find the interval of convergence of and find its sum.

10. If , show that

If you don’t see how to prove this, try the problem-solving strategy of using analogy (see
page 76). Try the special cases and first. If you can see how to prove the asser-
tion for these cases, then you will probably see how to prove it in general.

11. Find the sum of the series .

12. Suppose you have a large supply of books, all the same size, and you stack them at the edge
of a table, with each book extending farther beyond the edge of the table than the one beneath
it. Show that it is possible to do this so that the top book extends entirely beyond the table. In
fact, show that the top book can extend any distance at all beyond the edge of the table if the
stack is high enough. Use the following method of stacking: The top book extends half its
length beyond the second book. The second book extends a quarter of its length beyond the
third. The third extends one-sixth of its length beyond the fourth, and so on. (Try it yourself
with a deck of cards.) Consider centers of mass.

13. If the curve , is rotated about the , the resulting solid looks like an
infinite decreasing string of beads.
(a) Find the exact volume of the bead. (Use either a table of integrals or a computer 

algebra system.)
(b) Find the total volume of the beads.

14. If , evaluate the expression

15. Suppose that circles of equal diameter are packed tightly in rows inside an equilateral tri-
angle. (The figure illustrates the case .) If is the area of the triangle and is the total
area occupied by the rows of circles, show that

lim
n l �

 
An

A
�

�

2s3 

n
AnAn � 4

n

1 �
1

2 p �
1

3p �
1

4 p � � � �

1 �
1

2 p �
1

3p �
1

4 p � � � �

p � 1

nth

x-axisy � e �x�10 sin x, x � 0

 

�

n�2
 ln�1 �

1

n 2�
k � 2k � 1

lim
n l �

 (a0 sn � a1 sn � 1 � a2 sn � 2 � � � � � ak sn � k ) � 0

a0 � a1 � a2 � � � � � ak � 0

��
n�1 n3x n



�

n�0
 arccot�n 2 � n � 1�

arctanarccot

�
�

�

� � 3.1415927
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16. A sequence is defined recursively by the equations

Find the sum of the series .

17. Taking the value of at 0 to be 1 and integrating a series term by term, show that

18. Starting with the vertices , , , of a square, we construct further
points as shown in the figure: is the midpoint of is the midpoint of is the
midpoint of , and so on. The polygonal spiral path approaches a
point inside the square.
(a) If the coordinates of are , show that and find a

similar equation for the -coordinates.
(b) Find the coordinates of .

19. If has positive radius of convergence and , show that

20. Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its base
is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes indefi-
nitely many turns around by showing that is a divergent series.

21. Consider the series whose terms are the reciprocals of the positive integers that can be written
in base 10 notation without using the digit 0. Show that this series is convergent and the sum
is less than 90.

22. (a) Show that the Maclaurin series of the function

is

where is the Fibonacci number, that is, , , and 
for . [Hint: Write and multiply both sides
of this equation by .]

(b) By writing as a sum of partial fractions and thereby obtaining the Maclaurin series in
a different way, find an explicit formula for the Fibonacci number.

23. Let

Show that .

24. Prove that if , the partial sum of the harmonic series is not an integer. 

Hint: Let be the largest power of 2 that is less than or equal to and let be the product 
of all odd integers that are less than or equal to . Suppose that , an integer. Then

. The right side of this equation is even. Prove that the left side is odd by
showing that each of its terms is an even integer, except for the last one.
M2ksn � M2km

sn � mn
Mn2k

nthn � 1

u 3 � v3 � w3 � 3uvw � 1
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VECTORS AND THE
GEOMETRY OF SPACE

12

In this chapter we introduce vectors and coordinate systems for three-dimensional

space. This will be the setting for our study of the calculus of functions of two variables

in Chapter 14 because the graph of such a function is a surface in space. In this chapter

we will see that vectors provide particularly simple descriptions of lines and planes 

in space.

Wind velocity is a vector because it has both magnitude
and direction. Pictured are velocity vectors showing 
the wind pattern over the North Atlantic and Western
Europe on February 28, 2007. Larger arrows indicate
stronger winds.
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THREE-DIMENSIONAL COORDINATE SYSTEMS

To locate a point in a plane, two numbers are necessary. We know that any point in 
the plane can be represented as an ordered pair of real numbers, where is the 
-coordinate and is the -coordinate. For this reason, a plane is called two-dimensional.

To locate a point in space, three numbers are required. We represent any point in space by
an ordered triple of real numbers.

In order to represent points in space, we first choose a fixed point (the origin) and
three directed lines through that are perpendicular to each other, called the coordinate
axes and labeled the -axis, -axis, and -axis. Usually we think of the - and -axes as
being horizontal and the -axis as being vertical, and we draw the orientation of the axes
as in Figure 1. The direction of the -axis is determined by the right-hand rule as illus-
trated in Figure 2: If you curl the fingers of your right hand around the -axis in the direc-
tion of a counterclockwise rotation from the positive -axis to the positive -axis, then
your thumb points in the positive direction of the -axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The -plane is the plane that contains the - and -axes; the -plane contains
the - and -axes; the -plane contains the - and -axes. These three coordinate planes
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimensional
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom
corner of a room and call the corner the origin. The wall on your left is in the -plane, the
wall on your right is in the -plane, and the floor is in the -plane. The -axis runs along
the intersection of the floor and the left wall. The -axis runs along the intersection of the
floor and the right wall. The -axis runs up from the floor toward the ceiling along the inter-
section of the two walls. You are situated in the first octant, and you can now imagine seven
other rooms situated in the other seven octants (three on the same floor and four on the
floor below), all connected by the common corner point .

Now if is any point in space, let be the (directed) distance from the -plane to 
let be the distance from the -plane to and let be the distance from the -plane to

. We represent the point by the ordered triple of real numbers and we call ,
, and the coordinates of ; is the -coordinate, is the -coordinate, and is the 
-coordinate. Thus, to locate the point , we can start at the origin and move units

along the -axis, then units parallel to the -axis, and then units parallel to the -axis
as in Figure 4.
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The point determines a rectangular box as in Figure 5. If we drop a perpen-
dicular from to the -plane, we get a point with coordinates called the pro-
jection of on the -plane. Similarly, and are the projections of on
the -plane and -plane, respectively.

As numerical illustrations, the points and are plotted in Fig-
ure 6.

The Cartesian product is the set of all ordered
triples of real numbers and is denoted by . We have given a one-to-one correspon-
dence between points in space and ordered triples in . It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the
first octant can be described as the set of points whose coordinates are all positive.

In two-dimensional analytic geometry, the graph of an equation involving and is a
curve in . In three-dimensional analytic geometry, an equation in , , and represents
a surface in .

EXAMPLE 1 What surfaces in are represented by the following equations?
(a) (b)

SOLUTION
(a) The equation represents the set , which is the set of all points
in whose -coordinate is . This is the horizontal plane that is parallel to the -plane
and three units above it as in Figure 7(a).

(b) The equation represents the set of all points in whose -coordinate is 5.
This is the vertical plane that is parallel to the -plane and five units to the right of it as
in Figure 7(b). M
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When an equation is given, we must understand from the context whether it rep-
resents a curve in or a surface in . In Example 1, represents a plane in , but
of course can also represent a line in if we are dealing with two-dimensional ana-
lytic geometry. See Figure 7(b) and (c).

In general, if is a constant, then represents a plane parallel to the -plane,
is a plane parallel to the -plane, and is a plane parallel to the -plane. In

Figure 5, the faces of the rectangular box are formed by the three coordinate planes 
(the -plane), (the -plane), and (the -plane), and the planes , ,
and .

EXAMPLE 2 Describe and sketch the surface in represented by the equation .

SOLUTION The equation represents the set of all points in whose - and -coordinates
are equal, that is, . This is a vertical plane that intersects the 

-plane in the line , . The portion of this plane that lies in the first octant is
sketched in Figure 8. M

The familiar formula for the distance between two points in a plane is easily extended
to the following three-dimensional formula.

DISTANCE FORMULA IN THREE DIMENSIONS The distance between the
points and is

To see why this formula is true, we construct a rectangular box as in Figure 9, where 
and are opposite vertices and the faces of the box are parallel to the coordinate planes.
If and are the vertices of the box indicated in the figure, then

Because triangles and are both right-angled, two applications of the Pythago-
rean Theorem give

and

Combining these equations, we get

Therefore  � P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2 

 � �x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

 � � x2 � x1 �2 � � y2 � y1 �2 � � z2 � z1 �2

 � P1P2 �2 � � P1A �2 � � AB �2 � � BP2 �2

� P1B �2 � � P1A �2 � � AB �2

� P1P2 �2 � � P1B �2 � � BP2 �2

P1ABP1BP2

� BP2 � � � z2 � z1 �� AB � � � y2 � y1 �� P1A � � � x2 � x1 �

B�x2, y2, z1�A�x2, y1, z1�
P2

P1

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2 

P2�x2, y2, z2 �P1�x1, y1, z1�
� P1P2 �

z � 0y � xxy
��x, x, z� � x � �, z � ��

yx� 3

y � x� 3V

z � c
y � bx � axyz � 0xzy � 0yz
x � 0

xyz � kxzy � k
yzx � kk

� 2y � 5
� 3y � 5� 3� 2

NOTE
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EXAMPLE 3 The distance from the point to the point is

M

EXAMPLE 4 Find an equation of a sphere with radius and center .

SOLUTION By definition, a sphere is the set of all points whose distance from 
is . (See Figure 10.) Thus is on the sphere if and only if . Squaring both

sides, we have or

M

The result of Example 4 is worth remembering.

EQUATION OF A SPHERE An equation of a sphere with center and 
radius is

In particular, if the center is the origin , then an equation of the sphere is

EXAMPLE 5 Show that is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if we
complete squares:

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center and radius . M

EXAMPLE 6 What region in is represented by the following inequalities?

SOLUTION The inequalities

can be rewritten as

so they represent the points whose distance from the origin is at least 1 and at
most 2. But we are also given that , so the points lie on or below the xy-plane. 
Thus the given inequalities represent the region that lies between (or on) the spheres

and and beneath (or on) the xy-plane. It is sketched
in Figure 11. M

x 2 � y 2 � z2 � 4x 2 � y 2 � z2 � 1

z � 0
�x, y, z�

 1 � sx 2 � y 2 � z 2 � 2

1 � x 2 � y 2 � z2 � 4

z � 01 � x 2 � y 2 � z2 � 4

� 3

s8 � 2s2 ��2, 3, �1�

 �x � 2�2 � �y � 3�2 � �z � 1�2 � 8

 �x 2 � 4x � 4� � �y 2 � 6y � 9� � �z2 � 2z � 1� � �6 � 4 � 9 � 1

x 2 � y 2 � z2 � 4x � 6y � 2z � 6 � 0

x 2 � y 2 � z2 � r 2

O

�x � h�2 � �y � k�2 � �z � l�2 � r 2

r
C�h, k, l�

�x � h�2 � �y � k�2 � �z � l�2 � r 2 

� PC �2 � r 2
� PC � � rPrC

P�x, y, z�

C�h, k, l�rV

� s1 � 4 � 4 � 3 � PQ � � s�1 � 2�2 � ��3 � 1�2 � �5 � 7�2 

Q�1, �3, 5�P�2, �1, 7�
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15–18 Show that the equation represents a sphere, and find its 
center and radius.

15.

16.

17.

18.

19. (a) Prove that the midpoint of the line segment from
to is

(b) Find the lengths of the medians of the triangle with vertices
, , and .

20. Find an equation of a sphere if one of its diameters has end-
points and .

Find equations of the spheres with center that touch
(a) the -plane, (b) the -plane, (c) the -plane.

22. Find an equation of the largest sphere with center (5, 4, 9) that
is contained in the first octant.

23–32 Describe in words the region of represented by the equa-
tion or inequality.

23. 24.

25. 26.

28.

29. 30.

32.

33–36 Write inequalities to describe the region.

33. The region between the -plane and the vertical plane 

34. The solid cylinder that lies on or below the plane and on
or above the disk in the -plane with center the origin and
radius 2

The region consisting of all points between (but not on) 
the spheres of radius and centered at the origin, 
where 

36. The solid upper hemisphere of the sphere of radius 2 centered
at the origin

r � R
Rr

35.

xy
z � 8

x � 5yz

x 2 � y 2 � z 2 � 2zx 2 � z 2 � 931.

x � zx 2 � y 2 � z 2 � 3

z 2 � 10 � z � 627.

y 	 0x � 3

x � 10y � �4

� 3

xzyzxy
�2, �3, 6�21.

�4, 3, 10��2, 1, 4�

C�4, 1, 5�B��2, 0, 5�A�1, 2, 3�

� x1 � x2

2
, 

 y1 � y2

2
, 

z1 � z2

2 �
P2�x2, y2, z2 �P1�x1, y1, z1�

4x 2 � 4y2 � 4z2 � 8x � 16y � 1

2x 2 � 2y 2 � 2z 2 � 8x � 24z � 1

x 2 � y 2 � z 2 � 8x � 6y � 2z � 17 � 0

x 2 � y 2 � z2 � 6x � 4y � 2z � 11

1. Suppose you start at the origin, move along the -axis a
distance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates 
of your position?

2. Sketch the points , , , and 
on a single set of coordinate axes.

3. Which of the points , , and is
closest to the -plane? Which point lies in the -plane?

4. What are the projections of the point (2, 3, 5) on the -, -,
and -planes? Draw a rectangular box with the origin and

as opposite vertices and with its faces parallel to the
coordinate planes. Label all vertices of the box. Find the length
of the diagonal of the box.

Describe and sketch the surface in represented by the equa-
tion .

6. (a) What does the equation represent in ? What does
it represent in ? Illustrate with sketches.

(b) What does the equation represent in ? What does
represent? What does the pair of equations ,
represent? In other words, describe the set of points

such that and . Illustrate with a sketch.

7–8 Find the lengths of the sides of the triangle . Is it a right
triangle? Is it an isosceles triangle?

7. , ,

8. , ,

9. Determine whether the points lie on straight line.
(a) , ,
(b) , ,

10. Find the distance from to each of the following.
(a) The -plane (b) The -plane
(c) The -plane (d) The -axis
(e) The -axis (f) The -axis

11. Find an equation of the sphere with center and
radius 5. What is the intersection of this sphere with the 

-plane?

12. Find an equation of the sphere with center and
radius 5. Describe its intersection with each of the coordinate
planes.

Find an equation of the sphere that passes through the point 
and has center .

14. Find an equation of the sphere that passes through the origin
and whose center is .�1, 2, 3�

�3, 8, 1��4, 3, �1�
13.

�2, �6, 4�

xz

�1, �4, 3�

zy
xxz
yzxy

�3, 7, �5�

F�3, 4, 2�E�1, �2, 4�D�0, �5, 5�
C�1, 3, 3�B�3, 7, �2�A�2, 4, 2�

R�4, �5, 4�Q�4, 1, 1�P�2, �1, 0�

R�1, 2, 1�Q�7, 0, 1�P�3, �2, �3�

PQR

z � 5y � 3�x, y, z�
z � 5

y � 3z � 5
�3y � 3

�3
�2x � 4

x � y � 2
�35.

�2, 3, 5�
xz

yzxy

yzxz
R�0, 3, 8�Q��5, �1, 4�P�6, 2, 3�

�1, �1, 2��2, 4, 6��4, 0, �1��0, 5, 2�

x
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words, the points on are directly beneath, or above, the
points on .)
(a) Find the coordinates of the point on the line .
(b) Locate on the diagram the points , , and , where 

the line intersects the -plane, the -plane, and the 
-plane, respectively.

38. Consider the points such that the distance from to
is twice the distance from to . Show

that the set of all such points is a sphere, and find its center and
radius.

Find an equation of the set of all points equidistant from the
points and . Describe the set.

40. Find the volume of the solid that lies inside both of the spheres

and x 2 � y 2 � z2 � 4

x 2 � y 2 � z2 � 4x � 2y � 4z � 5 � 0

B�6, 2, �2�A��1, 5, 3�
39.

B�6, 2, �2�PA��1, 5, 3�
PP

xz
yzxyL1

CBA
L1P

L1

L237. The figure shows a line in space and a second line 
which is the projection of on the -plane. (In other 

x

0
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y
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VECTORS

The term vector is used by scientists to indicate a quantity (such as displacement or veloc-
ity or force) that has both magnitude and direction. A vector is often represented by an
arrow or a directed line segment. The length of the arrow represents the magnitude of the
vector and the arrow points in the direction of the vector. We denote a vector by printing a
letter in boldface or by putting an arrow above the letter 

For instance, suppose a particle moves along a line segment from point to point .
The corresponding displacement vector , shown in Figure 1, has initial point (the tail)
and terminal point (the tip) and we indicate this by writing AB

l
. Notice that the vec-

tor CD
l

has the same length and the same direction as even though it is in a differ-
ent position. We say that and are equivalent (or equal) and we write . The zero
vector, denoted by 0, has length . It is the only vector with no specific direction.

COMBINING VECTORS

Suppose a particle moves from , so its displacement vector is AB
l

. Then the particle
changes direction and moves from , with displacement vector BC

l
as in Figure 2. The

combined effect of these displacements is that the particle has moved from . The
resulting displacement vector AC

l
is called the sum of AB

l
and BC

l
and we write

AC
l

AB
l

BC
l

In general, if we start with vectors and , we first move so that its tail coincides with
the tip of and define the sum of and as follows.

DEFINITION OF VECTOR ADDITION If and are vectors positioned so the initial
point of is at the terminal point of , then the sum is the vector from the
initial point of to the terminal point of .vu

u � vuv
vu

vuu
vvu

��

A to C
B to C

A to B

0
u � vvu

vu �
v �B

Av
BA

�vl�.�v�

12.2

FIGURE 1
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The definition of vector addition is illustrated in Figure 3. You can see why this defini-
tion is sometimes called the Triangle Law.

In Figure 4 we start with the same vectors and as in Figure 3 and draw another 
copy of with the same initial point as . Completing the parallelogram, we see that

. This also gives another way to construct the sum: If we place and so
they start at the same point, then lies along the diagonal of the parallelogram with

and as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors shown in Figure 5.

SOLUTION First we translate and place its tail at the tip of , being careful to draw a 
copy of that has the same length and direction. Then we draw the vector [see
Figure 6(a)] starting at the initial point of and ending at the terminal point of the 
copy of .

Alternatively, we could place so it starts where starts and construct by the
Parallelogram Law as in Figure 6(b).

M

It is possible to multiply a vector by a real number . (In this context we call the real
number a scalar to distinguish it from a vector.) For instance, we want to be the same
vector as , which has the same direction as but is twice as long. In general, we mul-
tiply a vector by a scalar as follows.

DEFINITION OF SCALAR MULTIPLICATION If is a scalar and is a vector, then the
scalar multiple is the vector whose length is times the length of and
whose direction is the same as if and is opposite to if . If 
or , then .

This definition is illustrated in Figure 7. We see that real numbers work like scaling fac-
tors here; that’s why we call them scalars. Notice that two nonzero vectors are parallel if
they are scalar multiples of one another. In particular, the vector has the same
length as but points in the opposite direction. We call it the negative of .

By the difference of two vectors we mean

u � v � u � ��v�

u � v
vv

�v � ��1�v

cv � 0v � 0
c � 0c � 0vc � 0v

v� c �cv
vc

vv � v
2vc

c

FIGURE 6
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b
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a � bab
b

a
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ab

a and bV

vu
u � v

vuu � v � v � u
uv

vu

FIGURE 3 The Triangle Law
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Visual 12.2 shows how the Triangle
and Parallelogram Laws work for various
vectors .a and b
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So we can construct by first drawing the negative of , , and then adding it to
by the Parallelogram Law as in Figure 8(a). Alternatively, since the vec-
tor , when added to , gives . So we could construct as in Figure 8(b) by
means of the Triangle Law.

EXAMPLE 2 If are the vectors shown in Figure 9, draw .

SOLUTION We first draw the vector pointing in the direction opposite to and twice
as long. We place it with its tail at the tip of and then use the Triangle Law to draw

as in Figure 10.

M

COMPONENTS

For some purposes it’s best to introduce a coordinate system and treat vectors algebra-
ically. If we place the initial point of a vector at the origin of a rectangular coordinate
system, then the terminal point of has coordinates of the form or ,
depending on whether our coordinate system is two- or three-dimensional (see Figure 11).
These coordinates are called the components of and we write

or

We use the notation for the ordered pair that refers to a vector so as not to confuse
it with the ordered pair that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector
OP
l

whose terminal point is . What they have in common is that the ter-
minal point is reached from the initial point by a displacement of three units to the right 
and two upward. We can think of all these geometric vectors as representations of the 

FIGURE 12
Representations of the vector a=k3, 2l
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FIGURE 11
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algebraic vector . The particular representation OP
l

from the origin to the point
is called the position vector of the point .

In three dimensions, the vector OP
l

is the position vector of the
point . (See Figure 13.) Let’s consider any other representation AB

l
of , where

the initial point is and the terminal point is . Then we must have
, , and and so , , and
. Thus we have the following result.

Given the points and , the vector with represen-
tation AB

l
is

EXAMPLE 3 Find the vector represented by the directed line segment with initial point
) and terminal point .

SOLUTION By (1), the vector corresponding to AB
l

is

M

The magnitude or length of the vector is the length of any of its representations and
is denoted by the symbol or . By using the distance formula to compute the length
of a segment , we obtain the following formulas.

The length of the two-dimensional vector is

The length of the three-dimensional vector is

How do we add vectors algebraically? Figure 14 shows that if and
, then the sum is , at least for the case where the

components are positive. In other words, to add algebraic vectors we add their compo-
nents. Similarly, to subtract vectors we subtract components. From the similar triangles in
Figure 15 we see that the components of are and . So to multiply a vector by a
scalar we multiply each component by that scalar.

If and , then

Similarly, for three-dimensional vectors,

c	a1, a2, a3 
 � 	ca1, ca2, ca3 


	a1, a2, a3 
 � 	b1, b2, b3 
 � 	a1 � b1, a2 � b2, a3 � b3 


	a1, a2, a3 
 � 	b1, b2, b3 
 � 	a1 � b1, a2 � b2, a3 � b3 


ca � 	ca1, ca2 


a � b � 	a1 � b1, a2 � b2 
a � b � 	a1 � b1, a2 � b2 


b � 	b1, b2 
a � 	a1, a2 


ca2ca1ca

a � b � 	a1 � b1, a2 � b2 
b � 	b1, b2 

a � 	a1, a2 


� a � � sa 2
1 � a 2

2 � a 2
3

 

a � 	a1, a2, a3 


� a � � sa 2
1 � a 2

2
 

a � 	a1, a2 


OP
� v �� v �

v

a � 	�2 � 2, 1 � ��3�, 1 � 4 
 � 	�4, 4, �3 


B��2, 1, 1�A�2, �3, 4
V

a � 	x2 � x1, y2 � y1, z2 � z1 


aB�x2, y2, z2 �A�x1, y1, z1�1

a3 � z2 � z1

a2 � y2 � y1a1 � x2 � x1z1 � a3 � z2y1 � a2 � y2x1 � a1 � x2

B�x2, y2, z2 �A�x1, y1, z1�
aP�a1, a2, a3�

� 	a1, a2, a3 
a �

PP�3, 2�
a � 	3, 2 
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FIGURE 14

0

y

xb¡a¡

b¡

b™b
a+b

a

(a¡+b¡, a™+b™)

a™ a™

FIGURE 15

ca™

ca¡

ca
a™

a¡

a

FIGURE 13
Representations of a=ka¡, a™, a£l

O

z

y

x

position
vector of P

P(a¡, a™, a£)

A(x, y, z) B(x+a¡, y+a™, z+a£)



EXAMPLE 4 If and , find and the vectors ,
, , and .

SOLUTION

M

We denote by the set of all two-dimensional vectors and by the set of all three-
dimensional vectors. More generally, we will later need to consider the set of all 
-dimensional vectors. An -dimensional vector is an ordered -tuple:

where are real numbers that are called the components of . Addition and
scalar multiplication are defined in terms of components just as for the cases and

.

PROPERTIES OF VECTORS If , , and are vectors in and and are scalars,
then

1. 2.

3. 4.

5. 6.

7. 8.

These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
lelogram Law) or as follows for the case :

We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ

l
is obtained either by first con-

structing a � b and then adding c or by adding a to the vector b � c.
Three vectors in play a special role. Let

k � �0, 0, 1 �j � �0, 1, 0 �i � �1, 0, 0 �

V3

 � b � a

 � �b1 � a1, b2 � a2 � � �b1, b2 � � �a1, a2 �

 a � b � �a1, a2 � � �b1, b2 � � �a1 � b1, a2 � b2 �

n � 2

1a � a�cd �a � c�da�

�c � d�a � ca � dac�a � b� � ca � cb

a � ��a� � 0a � 0 � a

a � �b � c� � �a � b� � ca � b � b � a

dcVncba

n � 3
n � 2

aa1, a2, . . . , an

a � �a1, a2, . . . , an �

nnn
Vn

V3V2

 � �8, 0, 6 � � ��10, 5, 25 � � ��2, 5, 31 �

 2a � 5b � 2 �4, 0, 3 � � 5 ��2, 1, 5 �

 3b � 3 ��2, 1, 5 � � �3��2�, 3�1�, 3�5�� � ��6, 3, 15 �

 � �4 � ��2�, 0 � 1, 3 � 5 � � �6, �1, �2 �

 a � b � �4, 0, 3 � � ��2, 1, 5 �

 � �4 � ��2�, 0 � 1, 3 � 5 � � �2, 1, 8 �

 a � b � �4, 0, 3 � � ��2, 1, 5 �

 � a � � s42 � 02 � 32 � s25 � 5

2a � 5b3ba � b
a � b� a �b � ��2, 1, 5 �a � �4, 0, 3 �V
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N Vectors in dimensions are used to list vari-
ous quantities in an organized way. For instance,
the components of a six-dimensional vector

might represent the prices of six different ingre-
dients required to make a particular product.
Four-dimensional vectors are used in
relativity theory, where the first three compo-
nents specify a position in space and the fourth
represents time.

� x, y, z, t�

p � � p1, p2, p3, p4, p5, p6 �

n

FIGURE 16

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c



These vectors , , and are called the standard basis vectors. They have length and
point in the directions of the positive -, -, and -axes. Similarly, in two dimensions we
define and . (See Figure 17.)

If , then we can write

Thus any vector in can be expressed in terms of , , and . For instance,

Similarly, in two dimensions, we can write

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

EXAMPLE 5 If and , express the vector in terms
of , , and .

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

M

A unit vector is a vector whose length is 1. For instance, , , and are all unit vec-
tors. In general, if , then the unit vector that has the same direction as is

In order to verify this, we let . Then and is a positive scalar, so has
the same direction as . Also

� u � � � ca � � � c � � a � �
1

� a �  � a � � 1

a
ucu � cac � 1�� a �

u �
1

� a �  a �
a

� a �  4

aa � 0
kji

 � 2 i � 4 j � 6k � 12 i � 21k � 14 i � 4 j � 15k

 2a � 3b � 2�i � 2 j � 3k� � 3�4 i � 7k�

kji
2a � 3bb � 4 i � 7 ka � i � 2 j � 3k

a � �a1, a2 � � a1 i � a2 j3

�1, �2, 6 � � i � 2 j � 6k

kjiV3

 a � a1 i � a2 j � a3 k2

 � a1 �1, 0, 0 � � a2 �0, 1, 0 � � a3 �0, 0, 1 �

 a � �a1, a2, a3 � � �a1, 0, 0 � � �0, a2, 0 � � �0, 0, a3 �

a � �a1, a2, a3 �

FIGURE 17
Standard basis vectors in V™ and V£ (a)

0

y

x

j

(1, 0)

i

(0, 1)

(b)

z

x
y

j

i

k

j � �0, 1 �i � �1, 0 �
zyx

1kji
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FIGURE 18

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

a

y

x

z

x
y



EXAMPLE 6 Find the unit vector in the direction of the vector .

SOLUTION The given vector has length

so, by Equation 4, the unit vector with the same direction is

M

APPLICATIONS

Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see
how they describe the velocity and acceleration of objects moving in space. Here we look
at forces.

A force is represented by a vector because it has both a magnitude (measured in pounds
or newtons) and a direction. If several forces are acting on an object, the resultant force
experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100-lb weight hangs from two wires as shown in Figure 19. Find the
tensions (forces) and in both wires and their magnitudes.

SOLUTION We first express and in terms of their horizontal and vertical components.
From Figure 20 we see that

.

The resultant of the tensions counterbalances the weight and so we must have

Thus

Equating components, we get

Solving the first of these equations for and substituting into the second, we get

So the magnitudes of the tensions are

and

Substituting these values in (5) and (6), we obtain the tension vectors

MT2 � 55.05 i � 34.40 jT1 � �55.05 i � 65.60 j

 � T2 � � � T1 � cos 50�

cos 32�
� 64.91 lb

 � T1 � �
100

sin 50� � tan 32� cos 50�
� 85.64 lb

� T1 � sin 50� � � T1� cos 50�

cos 32�
 sin 32� � 100

� T2 �
 � T1 � sin 50� � � T2 � sin 32� � 100

 �� T1 � cos 50� � � T2 � cos 32� � 0

(�� T1 � cos 50� � � T2 � cos 32�) i � (� T1 � sin 50� � � T2 � sin 32�) j � 100 j

T1 � T2 � �w � 100 j

wT1 � T2

 T2 � � T2 � cos 32� i � � T2 � sin 32� j6

 T1 � �� T1 � cos 50� i � � T1 � sin 50� j5

T2T1

T2T1

1
3 �2 i � j � 2k� � 2

3 i �
1
3 j �

2
3 k

� 2 i � j � 2k � � s2 2 � ��1�2 � ��2�2 � s9 � 3

2 i � j � 2k

776 | | | | CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

FIGURE 20

50°

w

T¡

50° 32°

32°

T™

FIGURE 19

100

T¡

50° 32°

T™
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9. , 10. ,

, 12. ,

13–16 Find the sum of the given vectors and illustrate 
geometrically.

13. , 14. ,

15. , 16. ,

17–20 Find a � b, 2a � 3b, , and .

17. ,

18. ,

19. ,

20. ,

21–23 Find a unit vector that has the same direction as the given
vector.

21. 22.

24. Find a vector that has the same direction as but has
length 6.

If lies in the first quadrant and makes an angle with the
positive -axis and , find in component form.

26. If a child pulls a sled through the snow on a level path with a
force of 50 N exerted at an angle of above the horizontal,
find the horizontal and vertical components of the force.

27. A quarterback throws a football with angle of elevation and
speed . Find the horizontal and vertical components of
the velocity vector.

28–29 Find the magnitude of the resultant force and the angle it
makes with the positive -axis.

28. 29.

30. The magnitude of a velocity vector is called speed. Suppose
that a wind is blowing from the direction N W at a speed of
50 km�h. (This means that the direction from which the wind
blows is west of the northerly direction.) A pilot is steering 45�

45�

300 N

200 N

60°
0

y

x

20 lb

16 lb

45°
0

y

x30°

x

60 ft�s
40 �

38 �

v� v � � 4x
��3v25.

��2, 4, 2 �

8 i � j � 4k23.

��4, 2, 4 ��3 i � 7j

b � 2 j � ka � 2 i � 4 j � 4 k

b � �2 i � j � 5ka � i � 2 j � 3k

b � i � 2 ja � 4 i � j

b � ��3, �6 �a � �5, �12 �
� a � b �� a �

�0, 4, 0 ���1, 0, 2 ��0, 0, �3 ��0, 1, 2 �

�5, 7 ���2, �1 ��6, �2 ���1, 4 �

B�4, 2, 1�A�4, 0, �2�B�2, 3, �1�A�0, 3, 1�11.

B�0, 6�A�2, 1�B�2, 2�A��1, 3�1. Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket
(b) The current in a river
(c) The initial flight path from Houston to Dallas
(d) The population of the world

2. What is the relationship between the point (4, 7) and the 
vector ? Illustrate with a sketch.

Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.

(a) PQ
l

QR
l

(b) RP
l

PS
l

(c) QS
l

PS
l

(d) RS
l

SP
l

PQ
l

5. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)

6. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f)

7–12 Find a vector with representation given by the directed line
segment AB

l
. Draw AB

l
and the equivalent representation starting at 

the origin.

7. , 8. , B�5, 3�A��2, �2�B��2, 1�A�2, 3�

a

a b

b � 3a2a � b
�

1
2 b2a

a � ba � b

wvu

w � v � uv � w
u � vu � v

Q

R
S

P

���

��

B

E

A

D C

3.

�4, 7 �

EXERCISES12.2



(a) Draw the vectors , , and 

(b) Show, by means of a sketch, that there are scalars and 
such that .

(c) Use the sketch to estimate the values of and .
(d) Find the exact values of and .

40. Suppose that and are nonzero vectors that are not parallel
and is any vector in the plane determined by and . Give 
a geometric argument to show that can be written as

for suitable scalars and Then give an argu-
ment using components.

If and , describe the set of all
points such that .

42. If , , and , describe the 
set of all points such that ,
where .

43. Figure 16 gives a geometric demonstration of Property 2 of 
vectors. Use components to give an algebraic proof of this 
fact for the case .

44. Prove Property 5 of vectors algebraically for the case .
Then use similar triangles to give a geometric proof.

Use vectors to prove that the line joining the midpoints of 
two sides of a triangle is parallel to the third side and half 
its length.

46. Suppose the three coordinate planes are all mirrored and a 
light ray given by the vector first strikes the 

-plane, as shown in the figure. Use the fact that the angle of
incidence equals the angle of reflection to show that the direc-
tion of the reflected ray is given by . Deduce
that, after being reflected by all three mutually perpendicular
mirrors, the resulting ray is parallel to the initial ray. (American
space scientists used this principle, together with laser beams
and an array of corner mirrors on the moon, to calculate very
precisely the distance from the earth to the moon.)

b
a

z

x

y

b � �a1, �a2, a3 �

xz
a � �a1, a2, a3 �

45.

n � 3

n � 2

k � � r1 � r2 �
� r � r1 � � � r � r2 � � k�x, y�

r2 � �x2, y2 �r1 � �x1, y1 �r � �x, y�

� r � r0 � � 1�x, y, z�
r0 � �x0, y0, z0 �r � �x, y, z�41.

t.sc � sa � tb
c

bac
ba

ts
ts

c � sa � tb
ts

c � �7, 1 � .
b � �2, �1 �a � �3, 2 �39.a plane in the direction N E at an airspeed (speed in still air)

of 250 km�h. The true course, or track, of the plane is the
direction of the resultant of the velocity vectors of the plane
and the wind. The ground speed of the plane is the magnitude
of the resultant. Find the true course and the ground speed of
the plane.

31. A woman walks due west on the deck of a ship at 3 mi�h. The
ship is moving north at a speed of 22 mi�h. Find the speed and
direction of the woman relative to the surface of the water.

32. Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has a
mass of 5 kg. The ropes, fastened at different heights, make
angles of and with the horizontal. Find the tension in
each wire and the magnitude of each tension.

33. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the midpoint 
is pulled down 8 cm. Find the tension in each half of the
clothesline.

34. The tension T at each end of the chain has magnitude 25 N.
What is the weight of the chain?

35. Find the unit vectors that are parallel to the tangent line to the
parabola at the point .

36. (a) Find the unit vectors that are parallel to the tangent line to
the curve at the point .

(b) Find the unit vectors that are perpendicular to the tangent
line.

(c) Sketch the curve and the vectors in parts (a) 
and (b), all starting at .

37. If , , and are the vertices of a triangle, find 

AB
l

� BC
l

� CA
l

.

38. Let be the point on the line segment that is twice 
as far from as it is from . If OA

l
, OB

l
, and 

OC
l

, show that .c � 2
3 a �

1
3 bc �

b �a �AB
ABC

CBA

���6, 1�
y � 2 sin x

���6, 1�y � 2 sin x

�2, 4�y � x 2

37° 37°

3 m 5 m

52°
40°

40�52�

60�
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THE DOT PRODUCT

So far we have added two vectors and multiplied a vector by a scalar. The question arises:
Is it possible to multiply two vectors so that their product is a useful quantity? One such
product is the dot product, whose definition follows. Another is the cross product, which
is discussed in the next section.

DEFINITION If and , then the dot product of
and is the number given by

Thus, to find the dot product of and , we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot
product is sometimes called the scalar product (or inner product). Although Definition 1
is given for three-dimensional vectors, the dot product of two-dimensional vectors is
defined in a similar fashion:

EXAMPLE 1

M

The dot product obeys many of the laws that hold for ordinary products of real num-
bers. These are stated in the following theorem.

PROPERTIES OF THE DOT PRODUCT If , , and are vectors in and is a
scalar, then

1. 2.

3. 4.

5.

These properties are easily proved using Definition 1. For instance, here are the proofs
of Properties 1 and 3:

1.

3.

The proofs of the remaining properties are left as exercises. M

The dot product can be given a geometric interpretation in terms of the angle 
between and , which is defined to be the angle between the representations of and aba

�a � b

 � a � b � a � c

 � �a1b1 � a2b2 � a3b3� � �a1c1 � a2c2 � a3c3 �

 � a1b1 � a1c1 � a2b2 � a2c2 � a3b3 � a3c3

 � a1�b1 � c1� � a2�b2 � c2� � a3�b3 � c3�

 a � �b � c� � �a1, a2, a3 � � �b1 � c1, b2 � c2, b3 � c3 �

a � a � a 2
1 � a 2

2 � a 2
3 � � a �2

0 � a � 0

�ca� � b � c�a � b� � a � �cb�a � �b � c� � a � b � a � c

a � b � b � aa � a � � a �2

cV3cba2

 �i � 2 j � 3k� � �2 j � k� � 1�0� � 2�2� � ��3���1� � 7

 ��1, 7, 4 � � �6, 2, � 1
2 � � ��1��6� � 7�2� � 4(� 1

2 ) � 6

 �2, 4 � � �3, �1 � � 2�3� � 4��1� � 2
V

�a1, a2 � � �b1, b2 � � a1b1 � a2b2

ba

a � b � a1b1 � a2b2 � a3b3

a � bba
b � �b1, b2, b3 �a � �a1, a2, a3 �1

12.3
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that start at the origin, where . In other words, is the angle between the 
line segments OA

l
and OB

l
in Figure 1. Note that if and are parallel vectors, then 

or .
The formula in the following theorem is used by physicists as the definition of the dot

product.

THEOREM If is the angle between the vectors and , then

PROOF If we apply the Law of Cosines to triangle in Figure 1, we get

(Observe that the Law of Cosines still applies in the limiting cases when or , or
or .) But , , and , so Equation 4

becomes

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this equa-
tion as follows:

Therefore Equation 5 gives

Thus

or M

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between them is
, find .

SOLUTION Using Theorem 3, we have

M

The formula in Theorem 3 also enables us to find the angle between two vectors.

COROLLARY If is the angle between the nonzero vectors and , then

EXAMPLE 3 Find the angle between the vectors and .

SOLUTION Since

and � b � � s52 � ��3�2 � 22 � s38 � a � � s22 � 22 � ��1�2 � 3

b � �5, �3, 2 �a � �2, 2, �1 �V

cos � �
a � b

� a � � b �

ba�6

a � b � � a � � b � cos���3� � 4 � 6 � 1
2 � 12

a � b��3

 a � b � � a � � b � cos �

 �2a � b � �2 � a � � b � cos �

 � a �2 � 2a � b � � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �

 � � a �2 � 2a � b � � b �2

 � a � a � a � b � b � a � b � b

 � a � b �2 � �a � b� � �a � b�

� a � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �5

� AB � � � a � b �� OB � � � b �� OA � � � a �b � 0a � 0
�� � 0

� AB �2 � � OA �2 � � OB �2 � 2 � OA � � OB � cos �4

OAB

a � b � � a � � b � cos �

ba�3

� � �
� � 0ba

�0 � � � �b
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and since

we have, from Corollary 6,

So the angle between and is

M

Two nonzero vectors and are called perpendicular or orthogonal if the angle
between them is . Then Theorem 3 gives

and conversely if , then , so . The zero vector is considered
to be perpendicular to all vectors. Therefore we have the following method for determin-
ing whether two vectors are orthogonal.

Two vectors 

EXAMPLE 4 Show that is perpendicular to .

SOLUTION Since

these vectors are perpendicular by (7). M

Because if and if , we see that 
is positive for and negative for . We can think of as measuring 
the extent to which a and b point in the same direction. The dot product is positive
if a and b point in the same general direction, 0 if they are perpendicular, and negative if
they point in generally opposite directions (see Figure 2). In the extreme case where a and
b point in exactly the same direction, we have , so and

If a and b point in exactly opposite directions, then and so and
.

DIRECTION ANGLES AND DIRECTION COSINES

The direction angles of a nonzero vector are the angles , , and (in the interval
that makes with the positive -, -, and -axes. (See Figure 3.)

The cosines of these direction angles, , , and , are called the direction
cosines of the vector . Using Corollary 6 with replaced by , we obtain

(This can also be seen directly from Figure 3.) 

cos 	 �
a � i

� a � � i � �
a1

� a �8

iba
cos 
cos �cos 	

zyxa
	0, �
�
�	a

a � b � �� a � � b �
cos � � �1� � �

a � b � � a � � b �
cos � � 1� � 0

a � b
a � b� � ��2� � ��2

a � b��2 � � � �cos � � 00 � � � ��2cos � � 0

�2 i � 2 j � k� � �5 i � 4 j � 2k� � 2�5� � 2��4� � ��1��2� � 0

5 i � 4 j � 2k2 i � 2 j � k

a and b are orthogonal if and only if a � b � 0.7

0� � ��2cos � � 0a � b � 0

a � b � � a � � b � cos���2� � 0

� � ��2
ba

�or 84��� � cos�1� 2

3s38 � � 1.46

ba

cos � �
a � b

� a � � b � �
2

3s38 

a � b � 2�5� � 2��3� � ��1��2� � 2
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FIGURE 2

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0
¨

Visual 12.3A shows an animation 
of Figure 2.
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Similarly, we also have

By squaring the expressions in Equations 8 and 9 and adding, we see that

We can also use Equations 8 and 9 to write

Therefore

which says that the direction cosines of are the components of the unit vector in the direc-
tion of .

EXAMPLE 5 Find the direction angles of the vector .

SOLUTION Since , Equations 8 and 9 give

and so

M

PROJECTIONS

Figure 4 shows representations PQ
l

and PR
l

of two vectors and with the same initial
point . If is the foot of the perpendicular from to the line containing PQ

l
, then the 

vector with representation PS
l

is called the vector projection of onto and is denoted
by . (You can think of it as a shadow of .)

The scalar projection of onto (also called the component of along ) is defined
to be the signed magnitude of the vector projection, which is the number , where � b � cos �

abab

FIGURE 4
Vector projections

Q

R

P
S

b
a

R

S
P

Q

a

proja b

b

proja b

bproja b
ab

RSP
ba


 � cos�1� 3

s14 � � 37�� � cos�1� 2

s14 � � 58�	 � cos�1� 1

s14 � � 74�

cos 
 �
3

s14 cos � �
2

s14 cos 	 �
1

s14 

� a � � s12 � 22 � 32 � s14 

a � �1, 2, 3 �

a
a

1

� a�  a � �cos 	, cos �, cos 
 �11

 � � a � �cos 	, cos �, cos 
 �

 a � �a1, a2, a3 � � �� a � cos 	, � a � cos �, � a � cos 
�

cos2	 � cos2� � cos2
 � 110

cos 
 �
a3

� a �cos � �
a2

� a �9
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Visual 12.3B shows how Figure 4
changes when we vary .a and b
TEC



is the angle between and . (See Figure 5.) This is denoted by . Observe that
it is negative if . The equation

shows that the dot product of and can be interpreted as the length of times the scalar
projection of onto . Since

the component of along can be computed by taking the dot product of with the unit
vector in the direction of . We summarize these ideas as follows.

Scalar projection of onto :

Vector projection of onto :

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

EXAMPLE 6 Find the scalar projection and vector projection of onto
.

SOLUTION Since , the scalar projection of onto is

The vector projection is this scalar projection times the unit vector in the direction of :

M

One use of projections occurs in physics in calculating work. In Section 6.4 we defined
the work done by a constant force in moving an object through a distance as ,
but this applies only when the force is directed along the line of motion of the object.
Suppose, however, that the constant force is a vector PR

l
pointing in some other direc-

tion, as in Figure 6. If the force moves the object from to , then the displacement 
vector is PQ

l
. The work done by this force is defined to be the product of the com-

ponent of the force along and the distance moved:

But then, from Theorem 3, we have

W � � F � � D � cos � � F � D12

W � (� F � cos �) � D �
D

D �
QP

F �

W � FddF

proja b �
3

s14  
a

� a � �
3

14
 a � 
�

3

7
, 

9

14
, 

3

14�
a

compa b �
a � b

� a � �
��2��1� � 3�1� � 1�2�

s14 �
3

s14 

ab� a � � s��2�2 � 32 � 12 � s14 

a � ��2, 3, 1 �
b � �1, 1, 2 �V

proja b � �a � b

� a � � 
a

� a � �
a � b

� a �2  aab

compa b �
a � b

� a �ab

a
bab

� b � cos � �
a � b

� a � �
a

� a � � b

ab
aba

a � b � � a � � b � cos � � � a �(� b � cos �)

��2 � � � �
compa bba�
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FIGURE 5
Scalar projection
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Thus the work done by a constant force is the dot product , where is the displace-
ment vector.

EXAMPLE 7 A wagon is pulled a distance of 100 m along a horizontal path by a constant
force of 70 N. The handle of the wagon is held at an angle of above the horizontal.
Find the work done by the force.

SOLUTION If are the force and displacement vectors, as pictured in Figure 7, then
the work done is

M

EXAMPLE 8 A force is given by a vector and moves a particle from
the point to the point . Find the work done.

SOLUTION The displacement vector is PQ
l

, so by Equation 12, the work
done is

If the unit of length is meters and the magnitude of the force is measured in newtons,
then the work done is 36 joules. M

 � 6 � 20 � 10 � 36

 W � F � D � �3, 4, 5 � � �2, 5, 2 �

� �2, 5, 2 �D �

Q�4, 6, 2�P�2, 1, 0�
F � 3 i � 4 j � 5k

 � �70��100� cos 35� � 5734 N�m � 5734 J

W � F � D � � F � � D � cos 35�

F and D

35�

DF � DF
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D
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35°

35°

FIGURE 7

11–12 If u is a unit vector, find and .

12.

13. (a) Show that .
(b) Show that .

14. A street vendor sells hamburgers, hot dogs, and soft
drinks on a given day. He charges $2 for a hamburger, $1.50
for a hot dog, and $1 for a soft drink. If and

, what is the meaning of the dot product ?

15–20 Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

15. ,

16. , b � �0, 5 �a � �s3 , 1 �
b � �s7 , 3 �a � ��8, 6 �

A � PP � �2, 1.5, 1 �
A � �a, b, c�

cba

i � i � j � j � k � k � 1
i � j � j � k � k � i � 0

w

u

v

w

u v

11.

u � wu � v1. Which of the following expressions are meaningful? Which are
meaningless? Explain.
(a) (b)

(c) (d)

(e) (f)

2. Find the dot product of two vectors if their lengths are 6 
and and the angle between them is .

3–10 Find .

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

9. , , the angle between and is 

10. , , the angle between and is 45�ba� b � � s6 � a � � 3

2��3ba� b � � 5� a � � 6

b � 2 i � 4 j � 6ka � 4 j � 3k

b � 5 i � 9ka � i � 2 j � 3k

b � � t, �t, 5t�a � �s, 2s, 3s�

b � �6, �3, �8 �a � �4, 1, 1
4 �

b � �0.7, 1.2 �a � ��2, 3�

b � ��5, 12 �a � ��2, 13 �
a � b

��41
3

� a � � �b � c�a � b � c

a � �b � c�� a � �b � c�
�a � b�c�a � b� � c

EXERCISES12.3
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39. ,

40. ,

Show that the vector is orthogonal to .
(It is called an orthogonal projection of .)

42. For the vectors in Exercise 36, find and illustrate by
drawing the vectors , , , and .

If , find a vector such that .

44. Suppose that and are nonzero vectors.
(a) Under what circumstances is ?
(b) Under what circumstances is ?

45. Find the work done by a force that moves
an object from the point to the point along
a straight line. The distance is measured in meters and the force
in newtons.

46. A tow truck drags a stalled car along a road. The chain makes
an angle of with the road and the tension in the chain is
1500 N. How much work is done by the truck in pulling the 
car 1 km?

47. A sled is pulled along a level path through snow by a rope. A
30-lb force acting at an angle of above the horizontal
moves the sled 80 ft. Find the work done by the force.

48. A boat sails south with the help of a wind blowing in the direc-
tion S E with magnitude 400 lb. Find the work done by the
wind as the boat moves 120 ft.

Use a scalar projection to show that the distance from a point
to the line is

Use this formula to find the distance from the point to
the line .

50. If , and , show
that the vector equation represents a
sphere, and find its center and radius.

Find the angle between a diagonal of a cube and one of its
edges.

52. Find the angle between a diagonal of a cube and a diagonal of
one of its faces.

53. A molecule of methane, , is structured with the four hydro-
gen atoms at the vertices of a regular tetrahedron and the car-
bon atom at the centroid. The bond angle is the angle formed
by the H— C—H combination; it is the angle between the
lines that join the carbon atom to two of the hydrogen atoms.
Show that the bond angle is about . Hint: Take the
vertices of the tetrahedron to be the points , , �0, 1, 0��1, 0, 0�

[109.5�

CH4

51.

�r � a� � �r � b� � 0
b � �b1, b2, b3 �r � �x, y, z � , a � �a1, a2, a3 �

3x � 4y � 5 � 0
��2, 3�

� ax1 � by1 � c �
sa 2 � b 2 

ax � by � c � 0P1�x1, y1�
49.

36�

40�

30�

�6, 12, 20��0, 10, 8�
F � 8 i � 6 j � 9k

proja b � projb a
comp a b � comp b a

ba

comp a b � 2ba � �3, 0, �1 �43.

orth a bproja bba
orth a b

b
aorth a b � b � proja b41.

b � i � j � ka � i � j � k

b � j �
1
2 ka � 2 i � j � 4k17. ,

18. ,

,

20. ,

21–22 Find, correct to the nearest degree, the three angles of the
triangle with the given vertices.

21. , ,

22. , ,

23–24 Determine whether the given vectors are orthogonal, 
parallel, or neither.

23. (a) ,
(b) ,
(c) ,
(d) ,

24. (a) ,
(b) ,
(c) ,

25. Use vectors to decide whether the triangle with vertices
, , and is right-angled.

26. For what values of are the vectors and 
orthogonal?

Find a unit vector that is orthogonal to both and .

28. Find two unit vectors that make an angle of with
.

29–33 Find the direction cosines and direction angles of the 
vector. (Give the direction angles correct to the nearest degree.)

29. 30.

31. 32.

33. , where 

34. If a vector has direction angles and , find the
third direction angle .

35–40 Find the scalar and vector projections of onto .

35. ,

36. ,

37. ,

38. , b � �5, �1, 4 �a � ��2, 3, �6 �

b � �1, 2, 3 �a � �3, 6, �2 �

b � ��4, 1 �a � �1, 2 �

b � �5, 0 �a � �3, �4 �

ab

�
� � ��3	 � ��4

c 
 0�c, c, c�

2 i � j � 2k2 i � 3 j � 6k

�1, �2, �1 ��3, 4, 5 �

v � �3, 4 �
60�

i � ki � j27.

�b, b2, b ���6, b, 2 �b

R�6, �2, �5�Q�2, 0, �4�P�1, �3, �2�

v � ��b, a, 0 �u � �a, b, c�
v � 2 i � j � ku � i � j � 2k
v � �4, �12, �8 �u � ��3, 9, 6 �

b � �3 i � 9 j � 6ka � 2 i � 6 j � 4k
b � 3 i � 4 j � ka � �i � 2 j � 5k

b � ��3, 2 �a � �4, 6 �
b � �6, �8, 2 �a � ��5, 3, 7 �

F�1, 2, �1�E��2, 4, 3�D�0, 1, 1�

C��1, 4�B�3, 6�A�1, 0�

b � 4 i � 3ka � i � 2 j � 2k

b � i � 2 j � 3ka � j � k19.

b � �2, �1, 0 �a � �4, 0, 2 �

b � ��2, 4, 3 �a � �3, �1, 5 �



Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

58. The Triangle Inequality for vectors is

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 57 to

prove the Triangle Inequality. [Hint: Use the fact that
and use Property 3 of the

dot product.]

59. The Parallelogram Law states that 

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. (See the hint in Exercise 58.)

60. Show that if and are orthogonal, then the vectors
and must have the same length.vu

u � vu � v

� a � b �2 � � a � b �2 � 2 � a �2 � 2 � b �2

� a � b �2 � �a � b� � �a � b�

� a � b � � � a � � � b �

� a � b � � � a � � b �
57., and as shown in the figure. Then the centroid

is .

54. If , where , , and are all nonzero 
vectors, show that bisects the angle between and .

55. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

56. Suppose that all sides of a quadrilateral are equal in length and
opposite sides are parallel. Use vector methods to show that the
diagonals are perpendicular.

bac
cbac � � a � b � � b � a

H

H
H

H

C

x

y

z

]( 1
2 , 12 , 12 )

�1, 1, 1��0, 0, 1�
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THE CROSS PRODUCT

The cross product of two vectors and , unlike the dot product, is a vector. For
this reason it is also called the vector product. Note that is defined only when and

are three-dimensional vectors.

DEFINITION If and , then the cross product
of and is the vector

This may seem like a strange way of defining a product. The reason for the particular
form of Definition 1 is that the cross product defined in this way has many useful proper-
ties, as we will soon see. In particular, we will show that the vector is perpendicu-
lar to both and .

In order to make Definition 1 easier to remember, we use the notation of determinants.
A determinant of order 2 is defined by

For example,

A determinant of order 3 can be defined in terms of second-order determinants as 
follows:

� a1

b1

c1

a2

b2

c2

a3

b3

c3 � � a1 	 b2

c2

b3

c3
	 � a2 	 b1

c1

b3

c3
	 � a3 	 b1

c1

b2

c2
	2

	 2

�6

1

4 	 � 2�4� � 1��6� � 14

	 a

c

b

d 	 � ad � bc

ba
a � b

a � b � �a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 �

ba
b � �b1, b2, b3 �a � �a1, a2, a3 �1

b
aa � b

baa � b

12.4



Observe that each term on the right side of Equation 2 involves a number in the first row
of the determinant, and is multiplied by the second-order determinant obtained from the
left side by deleting the row and column in which appears. Notice also the minus sign
in the second term. For example,

If we now rewrite Definition 1 using second-order determinants and the standard basis
vectors , , and , we see that the cross product of the vectors and

is

In view of the similarity between Equations 2 and 3, we often write

Although the first row of the symbolic determinant in Equation 4 consists of vectors, if we
expand it as if it were an ordinary determinant using the rule in Equation 2, we obtain
Equation 3. The symbolic formula in Equation 4 is probably the easiest way of remember-
ing and computing cross products.

EXAMPLE 1 If and , then

M

EXAMPLE 2 Show that for any vector in .

SOLUTION If , then

M � 0 i � 0 j � 0 k � 0

 � �a2a3 � a3a2� i � �a1a3 � a3a1� j � �a1a2 � a2a1� k

 a � a � � i
a1

a1

j
a2

a2

k
a3

a3 �
a � �a1, a2, a3 �

V3aa � a � 0V

 � ��15 � 28� i � ��5 � 8� j � �7 � 6� k � �43 i � 13 j � k

 � 	 3

7

4

�5 	  i � 	 1

2

4

�5 	  j � 	 1

2

3

7 	  k
 a � b � � i

1

2

j
3

7

k
4

�5 �
b � �2, 7, �5 �a � �1, 3, 4 �V

a � b � � i
a1

b1

j
a2

b2

k
a3

b3 �4

a � b � 	 a2

b2

a3

b3
	  i � 	 a1

b1

a3

b3
	  j � 	 a1

b1

a2

b2
	  k3

b � b1 i � b2 j � b3 k
a � a1 i � a2 j � a3 kkji

 � 1�0 � 4� � 2�6 � 5� � ��1��12 � 0� � �38

 � 1

3

�5

2

0

4

�1

1

2 � � 1 	 0

4

1

2 	 � 2 	 3

�5

1

2 	 � ��1� 	 3

�5

0

4 	

ai

ai

ai
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One of the most important properties of the cross product is given by the following 
theorem.

THEOREM The vector is orthogonal to both and .

PROOF In order to show that is orthogonal to , we compute their dot product as
follows:

A similar computation shows that . Therefore is orthogonal to
both and . M

If and are represented by directed line segments with the same initial point (as in
Figure 1), then Theorem 5 says that the cross product points in a direction perpen-
dicular to the plane through and . It turns out that the direction of is given by the
right-hand rule: If the fingers of your right hand curl in the direction of a rotation (through
an angle less than ) from to , then your thumb points in the direction of .

Now that we know the direction of the vector , the remaining thing we need to
complete its geometric description is its length . This is given by the following 
theorem.

THEOREM If is the angle between and (so ), then

PROOF From the definitions of the cross product and length of a vector, we have

(by Theorem 12.3.3)

Taking square roots and observing that because when
, we have

M

Since a vector is completely determined by its magnitude and direction, we can now say
that is the vector that is perpendicular to both and , whose orientation is deter-baa � b

� a � b � � � a � � b � sin 


0 � 
 � �
sin 
 � 0ssin 2
 � sin 


 � � a �2� b �2 sin2


 � � a �2� b �2 �1 � cos2
�

 � � a �2� b �2 � � a �2� b �2 cos2


 � � a �2� b �2 � �a � b�2

 � �a 2
1 � a 2

2 � a 2
3 ��b 2

1 � b 2
2 � b 2

3 � � �a1b1 � a2b2 � a3b3 �2

� a 2
1 b 2

2 � 2a1a2b1b2 � a 2
2b 2

1

 � a 2
2b 2

3 � 2a2a3b2b3 � a 2
3b 2

2 � a 2
3b 2

1 � 2a1a3b1b3 � a 2
1 b2

3

 � a � b �2 � �a2b3 � a3b2�2 � �a3b1 � a1b3�2 � �a1b2 � a2b1�2

� a � b � � � a � � b � sin 


0 � 
 � �ba
6

� a � b �
a � b

a � bba180�

a � bba
a � b

ba

ba
a � b�a � b� � b � 0

 � 0

 � a1a2b3 � a1b2a3 � a1a2b3 � b1a2a3 � a1b2a3 � b1a2a3

 � a1�a2b3 � a3b2 � � a2�a1b3 � a3b1� � a3�a1b2 � a2b1�

 �a � b� � a � 	 a2

b2

a3

b3
	  a1 � 	 a1

b1

a3

b3
	  a2 � 	 a1

b1

a2

b2
	  a3

aa � b

baa � b5
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FIGURE 1

a b

axb

¨

Visual 12.4 shows how 
changes as changes.b

a � bTEC

Geometric characterization of a � b



mined by the right-hand rule, and whose length is . In fact, that is exactly how
physicists define .

COROLLARY Two nonzero vectors and are parallel if and only if

PROOF Two nonzero vectors and are parallel if and only if or . In either case
, so and therefore . M

The geometric interpretation of Theorem 6 can be seen by looking at Figure 2. If and
are represented by directed line segments with the same initial point, then they determine

a parallelogram with base , altitude , and area

Thus we have the following way of interpreting the magnitude of a cross product.

The length of the cross product is equal to the area of the parallelogram
determined by and .

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points
, , and .

SOLUTION The vector PQ
l

PR
l

is perpendicular to both PQ
l

and PR
l

and is therefore per-
pendicular to the plane through , , and . We know from (12.2.1) that

PQ
l

PR
l

We compute the cross product of these vectors:

PQ
l

PR
l

So the vector is perpendicular to the given plane. Any nonzero scalar
multiple of this vector, such as , is also perpendicular to the plane. M

EXAMPLE 4 Find the area of the triangle with vertices , , 
and .

SOLUTION In Example 3 we computed that PQ
l

PR
l

. The area of the
parallelogram with adjacent sides and is the length of this cross product:

PQ
l

PR
l

The area of the triangle is half the area of this parallelogram, that is, . M

5
2 s82 PQRA

� s��40�2 � ��15�2 � 152 � 5s82 ���
PRPQ

� ��40, �15, 15 ��

R�1, �1, 1�
Q��2, 5, �1�P�1, 4, 6�

��8, �3, 3 �
��40, �15, 15 �

 � ��5 � 35� i � �15 � 0� j � �15 � 0� k � �40 i � 15 j � 15k

� � i
�3

0

j
1

�5

k
�7

�5 ��

� �1 � 1� i � ��1 � 4� j � �1 � 6� k � �5 j � 5k

� ��2 � 1� i � �5 � 4� j � ��1 � 6� k � �3 i � j � 7k

RQP
�

R�1, �1, 1�Q��2, 5, �1�P�1, 4, 6�

ba
a � b

A � � a �(� b � sin 
) � � a � b �
� b � sin 
� a �

b
a

a � b � 0� a � b � � 0sin 
 � 0
�
 � 0ba

a � b � 0

ba7

a � b
� a � � b � sin 
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a

b

¨

�b � sin ¨

FIGURE 2



If we apply Theorems 5 and 6 to the standard basis vectors , , and using ,
we obtain

Observe that

| Thus the cross product is not commutative. Also

whereas

| So the associative law for multiplication does not usually hold; that is, in general,

However, some of the usual laws of algebra do hold for cross products. The following the-
orem summarizes the properties of vector products.

THEOREM If , , and are vectors and is a scalar, then

1. a � b � �b � a

2. (ca) � b � c(a � b) � a � (cb)

3. a � (b � c) � a � b � a � c

4. (a � b) � c � a � c � b � c

5.

6.

These properties can be proved by writing the vectors in terms of their components 
and using the definition of a cross product. We give the proof of Property 5 and leave the
remaining proofs as exercises.

PROOF OF PROPERTY 5 If , , and , then

M

TRIPLE PRODUCTS

The product that occurs in Property 5 is called the scalar triple product of the
vectors , , and . Notice from Equation 9 that we can write the scalar triple product as a
determinant:

a � �b � c� � � a1

b1

c1

a2

b2

c2

a3

b3

c3 �10

cba
a � �b � c�

 � �a � b� � c

 � �a2b3 � a3b2 �c1 � �a3b1 � a1b3 �c2 � �a1b2 � a2b1�c3

 � a1b2c3 � a1b3c2 � a2b3c1 � a2b1c3 � a3b1c2 � a3b2c1

 a � �b � c� � a1�b2c3 � b3c2� � a2�b3c1 � b1c3� � a3�b1c2 � b2c1�9

c � �c1, c2, c3 �b � �b1, b2, b3 �a � �a1, a2, a3 �

a � �b � c� � �a � c�b � �a � b�c

a � �b � c� � �a � b� � c

ccba8

�a � b� � c � a � �b � c�

 �i � i� � j � 0 � j � 0

 i � �i � j� � i � k � �j

i � j � j � i

 i � k � �j  k � j � �i j � i � �k

 k � i � j j � k � i i � j � k


 � ��2kji
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The geometric significance of the scalar triple product can be seen by considering the
parallelepiped determined by the vectors , , and . (See Figure 3.) The area of the base 
parallelogram is . If is the angle between and , then the height 
of the parallelepiped is . (We must use instead of in case

.) Therefore the volume of the parallelepiped is

Thus we have proved the following formula.

The volume of the parallelepiped determined by the vectors , , and is the
magnitude of their scalar triple product:

If we use the formula in (11) and discover that the volume of the parallelepiped 
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they are
coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors ,
, and are coplanar.

SOLUTION We use Equation 10 to compute their scalar triple product:

Therefore, by (11), the volume of the parallelepiped determined by , , and is 0. This
means that , , and are coplanar. M

The product that occurs in Property 6 is called the vector triple product
of , , and . Property 6 will be used to derive Kepler’s First Law of planetary motion in
Chapter 13. Its proof is left as Exercise 46.

TORQUE

The idea of a cross product occurs often in physics. In particular, we consider a force 
acting on a rigid body at a point given by a position vector . (For instance, if we tighten
a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The
torque (relative to the origin) is defined to be the cross product of the position and force
vectors

and measures the tendency of the body to rotate about the origin. The direction of the
torque vector indicates the axis of rotation. According to Theorem 6, the magnitude of the

� � r � F

�

r
F

cba
a � �b � c�

cba
cba

 � 1�18� � 4�36� � 7��18� � 0

 � 1 	 �1

�9

4

18 	 � 4 	 2

0

4

18 	 � 7 	 2

0

�1

�9 	
 a � �b � c� � � 1

2

0

4

�1

�9

�7

4

18 �
c � �0, �9, 18 �b � �2, �1, 4 �

a � �1, 4, �7 �V

V � � a � �b � c� �

cba11

V � Ah � � b � c � � a � � cos 
 � � � a � �b � c� �


 
 ��2
cos 
� cos 
 �h � � a � � cos 
 �

hb � ca
A � � b � c �
cba
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¨



torque vector is

where is the angle between the position and force vectors. Observe that the only com-
ponent of that can cause a rotation is the one perpendicular to , that is, . The
magnitude of the torque is equal to the area of the parallelogram determined by and .

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown
in Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

If the bolt is right-threaded, then the torque vector itself is

where is a unit vector directed down into the page. Mn

� � � � � n � 9.66 n

 � 10 sin 75� � 9.66 N�m

 � � � � � r � F � � � r � � F � sin 75� � �0.25��40� sin 75�

Fr
� F � sin 
rF




� � � � � r � F � � � r � � F � sin 
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14–15 Find and determine whether u � v is directed into
the page or out of the page.

14. 15.

The figure shows a vector in the -plane and a vector in
the direction of . Their lengths are and 
(a) Find .
(b) Use the right-hand rule to decide whether the components

of are positive, negative, or 0.

17. If and , find and .

18. If , , and , show
that .

Find two unit vectors orthogonal to both and
.�0, 4, 4 �

�1, �1, 1 �19.

a � �b � c� � �a � b� � c
c � �0, 0, �4 �b � ��1, 1, 0 �a � �3, 1, 2 �

b � aa � bb � �0, 1, 3 �a � �1, 2, 1 �

x

z

y

b

a

a � b

� a � b �
� b � � 2.� a � � 3k

bxya16.

|v |=8
150°

|u |=6

60°
|u |=5

|v |=10

� u � v �1–7 Find the cross product and verify that it is orthogonal
to both a and b.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

,

8. If a � i � 2k and b � j � k, find a � b. Sketch a, b, and 
a � b as vectors starting at the origin.

9–12 Find the vector, not with determinants, but by using proper-
ties of cross products.

9. 10.

11. 12.

State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.
(a) (b)
(c) (d)
(e) (f) �a � b� � �c � d��a � b� � �c � d�

�a � b� � ca � �b � c�
a � �b � c�a � �b � c�

13.

�i � j� � �i � j�� j � k� � �k � i�

k � �i � 2 j��i � j� � k

b � �1, 2t, 3t 2 �a � � t, t 2, t 3 �7.

b � 2 i � et j � e�t ka � i � et j � e�t k

b � 1
2 i � j �

1
2 ka � i � j � k

b � 2 i � j � 4ka � j � 7k

b � �i � 5ka � i � 3 j � 2k

b � �2, 4, 6 �a � �1, 1, �1 �

b � �0, 8, 0 �a � �6, 0, �2 �

a � b

EXERCISES12.4

FIGURE 5

75°

40 N
0.25 m
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40. Find the magnitude of the torque about if a 36-lb force is
applied as shown.

41. A wrench 30 cm long lies along the positive -axis and grips a
bolt at the origin. A force is applied in the direction 
at the end of the wrench. Find the magnitude of the force
needed to supply of torque to the bolt.

42. Let v � 5 j and let u be a vector with length 3 that starts at 
the origin and rotates in the -plane. Find the maximum and
minimum values of the length of the vector u � v. In what
direction does u � v point?

(a) Let be a point not on the line that passes through the
points and . Show that the distance from the point 
to the line is

where QR
l

and QP
l

.
(b) Use the formula in part (a) to find the distance from 

the point to the line through and
.

44. (a) Let be a point not on the plane that passes through the
points , , and . Show that the distance from to the
plane is

where QR
l

, QS
l

, and QP
l

.
(b) Use the formula in part (a) to find the distance from the

point to the plane through the points ,
, and .

Prove that .

46. Prove Property 6 of Theorem 8, that is,

47. Use Exercise 46 to prove that

48. Prove that

Suppose that .
(a) If , does it follow that ?b � ca � b � a � c

a � 049.

�a � b� � �c � d� � 	 a � c
a � d

b � c
b � d 	

a � �b � c� � b � �c � a� � c � �a � b� � 0

a � �b � c� � �a � c�b � �a � b�c

�a � b� � �a � b� � 2�a � b�45.

S�0, 0, 3�R�0, 2, 0�
Q�1, 0, 0�P�2, 1, 4�

c �b �a �

d � �� a � b� � c �
� a � b �

PdSRQ
P

R��1, 4, 7�
Q�0, 6, 8�P�1, 1, 1�

b �a �

d � � a � b �
� a �

L
PdRQ

LP43.

xy

100 N�m

�0, 3, �4 �
y

30°
36 lb

4 ft

4 ft
P

P20. Find two unit vectors orthogonal to both 
and .

21. Show that for any vector in .

22. Show that for all vectors and in .

23. Prove Property 1 of Theorem 8.

24. Prove Property 2 of Theorem 8.

25. Prove Property 3 of Theorem 8.

26. Prove Property 4 of Theorem 8.

27. Find the area of the parallelogram with vertices ,
, , and .

28. Find the area of the parallelogram with vertices ,
, , and .

29–32 (a) Find a nonzero vector orthogonal to the plane through
the points , , and , and (b) find the area of triangle .

, ,

30. , ,

, ,

32. , ,

33–34 Find the volume of the parallelepiped determined by the
vectors , , and .

33. , ,

34. , ,

35–36 Find the volume of the parallelepiped with adjacent edges
, , and .

35. , , ,

36. , , ,

37. Use the scalar triple product to verify that the vectors
, , and 

are coplanar.

38. Use the scalar triple product to determine whether the points
, , , and lie in the

same plane.

39. A bicycle pedal is pushed by a foot with a 60-N force as
shown. The shaft of the pedal is 18 cm long. Find the
magnitude of the torque about .

10°

70°
60 N

P

P

D�3, 6, �4�C�5, 2, 0�B�3, �1, 6�A�1, 3, 2�

w � 5 i � 9 j � 4 kv � 3 i � ju � i � 5 j � 2 k

S�0, 4, 2�R�5, 1, �1�Q��1, 2, 5�P�3, 0, 1�

S�2, �2, 2�R�3, �1, 1�Q�4, 1, 0�P�2, 0, �1�

PSPRPQ

c � � i � j � kb � i � j � ka � i � j � k

c � �4, �2, 5 �b � �0, 1, 2 �a � �6, 3, �1 �

cba

R�4, 3, �1�Q�0, 5, 2�P��1, 3, 1�

R�5, 3, 1�Q�4, 1, �2�P�0, �2, 0�31.

R�3, 0, 6�Q��1, 3, 4�P�2, 1, 5�

R�0, 0, 3�Q�0, 2, 0�P�1, 0, 0�29.

PQRRQP

N�3, 7, 3�M�3, 8, 6�L�1, 3, 6�
K�1, 2, 3�

D�2, �1�C�4, 2�B�0, 4�
A��2, 1�

V3ba�a � b� � b � 0

V3a0 � a � 0 � a � 0

2 i � k
i � j � k
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(These vectors occur in the study of crystallography. Vectors 
of the form , where each is an integer,
form a lattice for a crystal. Vectors written similarly in terms of

, , and form the reciprocal lattice.)
(a) Show that is perpendicular to if .
(b) Show that for .

(c) Show that .k1 � �k2 � k3 � �
1

v1 � �v2 � v3 �

i � 1, 2, 3k i � vi � 1
i � jvjk i

k3k2k1

nin1 v1 � n2 v2 � n3 v3

(b) If , does it follow that ?
(c) If and , does it follow 

that ?

50. If , , and are noncoplanar vectors, let

k3 �
v1 � v2

v1 � �v2 � v3 �

k2 �
v3 � v1

v1 � �v2 � v3 �
k1 �

v2 � v3

v1 � �v2 � v3 �

v3v2v1

b � c
a � b � a � ca � b � a � c

b � ca � b � a � c

A tetrahedron is a solid with four vertices, , , , and , and four triangular faces as shown in
the figure.

1. Let , , , and be vectors with lengths equal to the areas of the faces opposite the
vertices , , , and , respectively, and directions perpendicular to the respective faces and
pointing outward. Show that

2. The volume of a tetrahedron is one-third the distance from a vertex to the opposite face,
times the area of that face.
(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices 

, , , and .
(b) Find the volume of the tetrahedron whose vertices are , , ,

and .

3. Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the three
angles at S are all right angles.) Let A, B, and C be the areas of the three faces that meet at S,
and let D be the area of the opposite face PQR. Using the result of Problem 1, or otherwise,
show that

(This is a three-dimensional version of the Pythagorean Theorem.)

D 2 � A2 � B 2 � C 2

S�3, �1, 2�
R�1, 1, 2�Q�1, 2, 3�P�1, 1, 1�

SRQP

V

v1 � v2 � v3 � v4 � 0

SRQP
v4v3v2v1

SRQP

THE GEOMETRY OF A TETRAHEDROND I S C O V E R Y
P R O J E C T

P

S

R
Q

EQUATIONS OF LINES AND PLANES

A line in the -plane is determined when a point on the line and the direction of the line
(its slope or angle of inclination) are given. The equation of the line can then be written
using the point-slope form.

Likewise, a line in three-dimensional space is determined when we know a point
on and the direction of . In three dimensions the direction of a line is con-

veniently described by a vector, so we let be a vector parallel to . Let be an
arbitrary point on and let and be the position vectors of and (that is, they have
representations OPA and OPA). If is the vector with representation P PA, as in Figure 1,
then the Triangle Law for vector addition gives . But, since and are parallel
vectors, there is a scalar such that . Thus 

r � r0 � tv1

a � tvt
var � r0 � a

0a0

PP0rr0L
P�x, y, z�Lv

LLP0�x0, y0, z0�
L

xy

12.5

x

O

z

y

a

v
r

r¸L

P¸(x¸, y¸, z¸)

P(x, y, z)

FIGURE 1



which is a vector equation of . Each value of the parameter gives the position vector
of a point on . In other words, as varies, the line is traced out by the tip of the vec-

tor . As Figure 2 indicates, positive values of correspond to points on that lie on one
side of , whereas negative values of correspond to points that lie on the other side of 

If the vector that gives the direction of the line is written in component form as
, then we have . We can also write and

, so the vector equation (1) becomes

Two vectors are equal if and only if corresponding components are equal. Therefore we
have the three scalar equations:

where . These equations are called parametric equations of the line through the
point and parallel to the vector . Each value of the parameter 
gives a point on .

EXAMPLE 1
(a) Find a vector equation and parametric equations for the line that passes through the
point and is parallel to the vector .
(b) Find two other points on the line.

SOLUTION
(a) Here and , so the vector equa-
tion (1) becomes

or

Parametric equations are

(b) Choosing the parameter value gives , , and so is a
point on the line. Similarly, gives the point . M

The vector equation and parametric equations of a line are not unique. If we change the
point or the parameter or choose a different parallel vector, then the equations change. For
instance, if, instead of , we choose the point in Example 1, then the para-
metric equations of the line become

Or, if we stay with the point but choose the parallel vector , we
arrive at the equations

In general, if a vector is used to describe the direction of a line , then
the numbers , , and are called direction numbers of . Since any vector parallel to vLcba

Lv � �a, b, c�

z � 3 � 4ty � 1 � 8tx � 5 � 2t

2 i � 8 j � 4k�5, 1, 3�

z � 1 � 2ty � 5 � 4tx � 6 � t

�6, 5, 1��5, 1, 3�

�4, �3, 5�t � �1
�6, 5, 1�z � 1, y � 5x � 6t � 1

z � 3 � 2ty � 1 � 4tx � 5 � t

 r � �5 � t� i � �1 � 4t� j � �3 � 2t� k

 r � �5 i � j � 3k� � t�i � 4 j � 2k�

v � i � 4 j � 2kr0 � �5, 1, 3 � � 5 i � j � 3k

i � 4 j � 2k�5, 1, 3�

L�x, y, z�
tv � �a, b, c�P0�x0, y0, z0�

Lt � �

z � z0 � cty � y0 � btx � x0 � at2

�x, y, z� � �x0 � ta, y0 � tb, z0 � tc �

r0 � �x0, y0, z0 �
r � �x, y, z�tv � � ta, tb, tc �v � �a, b, c�

Lv
P0.tP0

Ltr
tLr

tL
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x

z

y

L
t=0 t>0

t<0

r¸

FIGURE 2

N Figure 3 shows the line in Example 1 and its
relation to the given point and to the vector that
gives its direction.

L

(5, 1, 3)
r¸

v=i+4j-2k

x

z

y

L

FIGURE 3



could also be used, we see that any three numbers proportional to , , and could also be
used as a set of direction numbers for .

Another way of describing a line is to eliminate the parameter from Equations 2. If
none of , , or is , we can solve each of these equations for , equate the results, and
obtain

These equations are called symmetric equations of . Notice that the numbers , , and
that appear in the denominators of Equations 3 are direction numbers of , that is, com-

ponents of a vector parallel to . If one of , , or is , we can still eliminate . For
instance, if , we could write the equations of as

This means that lies in the vertical plane .

EXAMPLE 2
(a) Find parametric equations and symmetric equations of the line that passes through
the points and .
(b) At what point does this line intersect the -plane?

SOLUTION
(a) We are not explicitly given a vector parallel to the line, but observe that the vector 
with representation is parallel to the line and

Thus direction numbers are , , and . Taking the point as 
, we see that parametric equations (2) are

and symmetric equations (3) are

(b) The line intersects the -plane when , so we put in the symmetric equa-
tions and obtain

This gives and , so the line intersects the -plane at the point . M

In general, the procedure of Example 2 shows that direction numbers of the line
through the points and are , , and and so
symmetric equations of are

x � x0

x1 � x0
�

y � y0

y1 � y0
�

z � z0

z1 � z0

L
z1 � z0y1 � y0x1 � x0P1�x1, y1, z1�P0�x0, y0, z0 �

L

( 11
4 , 1

4 , 0)xyy � 1
4x � 11

4

x � 2

1
�

y � 4

�5
�

3

4

z � 0z � 0xy

x � 2

1
�

y � 4

�5
�

z � 3

4

z � �3 � 4ty � 4 � 5tx � 2 � t

P0

�2, 4, �3�c � 4b � �5a � 1

v � �3 � 2, �1 � 4, 1 � ��3�� � �1, �5, 4 �

AB
l

v

xy
B�3, �1, 1�A�2, 4, �3�

x � x0L

y � y0

b
�

z � z0

c
x � x0

La � 0
t0cbaL

Lc
baL

x � x0

a
�

y � y0

b
�

z � z0

c
3

t0cba
tL

L
cba
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N Figure 4 shows the line in Example 2 and
the point where it intersects the -plane.xyP

L

FIGURE 4
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Often, we need a description, not of an entire line, but of just a line segment. How, for
instance, could we describe the line segment in Example 2? If we put in the para-
metric equations in Example 2(a), we get the point and if we put we get

. So the line segment is described by the parametric equations

or by the corresponding vector equation

In general, we know from Equation 1 that the vector equation of a line through the (tip
of the) vector in the direction of a vector is . If the line also passes through
(the tip of) , then we can take and so its vector equation is

The line segment from to is given by the parameter interval .

The line segment from to is given by the vector equation

EXAMPLE 3 Show that the lines and with parametric equations

are skew lines; that is, they do not intersect and are not parallel (and therefore do not lie
in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors and
are not parallel. (Their components are not proportional.) If and had a

point of intersection, there would be values of and such that

But if we solve the first two equations, we get and , and these values don’t
satisfy the third equation. Therefore there are no values of and that satisfy the three
equations, so and do not intersect. Thus and are skew lines. M

PLANES

Although a line in space is determined by a point and a direction, a plane in space is 
more difficult to describe. A single vector parallel to a plane is not enough to convey the
“direction” of the plane, but a vector perpendicular to the plane does completely specify
its direction. Thus a plane in space is determined by a point in the plane and
a vector that is orthogonal to the plane. This orthogonal vector is called a normal 
vector. Let be an arbitrary point in the plane, and let and be the position
vectors of and . Then the vector is represented by P PA. (See Figure 6.) The nor-
mal vector is orthogonal to every vector in the given plane. In particular, is orthogonalnn

0r � r0PP0

rr0P�x, y, z�
nn

P0�x0, y0, z0�

L 2L1L 2L1

st
s � 8

5t � 11
5

 4 �   t � �3 � 4s

 �2 �  3t � 3 � s

 1 �  t � 2s

st
L 2L1�2, 1, 4 �

�1, 3, �1 �

 x � 2s  y � 3 � s  z � �3 � 4s

 x � 1 � t y � �2 � 3t z � 4 � t

L 2L1V

0 � t � 1r�t� � �1 � t�r0 � tr1

r1r04

0 � t � 1r1r0

r � r0 � t�r1 � r0� � �1 � t�r0 � tr1

v � r1 � r0r1

r � r0 � tvvr0

0 � t � 1r�t� � �2 � t, 4 � 5t, �3 � 4 t�

 x � 2 � t y � 4 � 5t z � �3 � 4t    0 � t � 1

AB�3, �1, 1�
t � 1�2, 4, �3�

t � 0AB
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N The lines and in Example 3, shown in
Figure 5, are skew lines.

L 2L1
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to and so we have

which can be rewritten as

Either Equation 5 or Equation 6 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write , , and

. Then the vector equation (5) becomes

or

Equation 7 is the scalar equation of the plane through with normal vector
.

EXAMPLE 4 Find an equation of the plane through the point with normal
vector . Find the intercepts and sketch the plane.

SOLUTION Putting , , , , , and in Equation 7, we
see that an equation of the plane is

or

To find the -intercept we set in this equation and obtain . Similarly, 
the -intercept is 4 and the -intercept is 3. This enables us to sketch the portion of the
plane that lies in the first octant (see Figure 7). M

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation
of a plane as

where . Equation 8 is called a linear equation in , , and .
Conversely, it can be shown that if , , and are not all 0, then the linear equation (8) rep-
resents a plane with normal vector . (See Exercise 77.)

EXAMPLE 5 Find an equation of the plane that passes through the points ,
, and .

SOLUTION The vectors and corresponding to PQ
l

and PR
l

are

b � �4, �1, �2 �a � �2, �4, 4 �

ba

R�5, 2, 0�Q�3, �1, 6�
P�1, 3, 2�

�a, b, c�
cba

zyxd � ��ax0 � by0 � cz0 �

ax � by � cz � d � 08

zy
x � 6y � z � 0x

 2x � 3y � 4z � 12

 2�x � 2� � 3�y � 4� � 4�z � 1� � 0

z0 � �1y0 � 4x0 � 2c � 4b � 3a � 2

n � �2, 3, 4 �
�2, 4, �1�V

n � �a, b, c�
P0�x0, y0, z0 �

a�x � x0 � � b�y � y0 � � c�z � z0 � � 07

�a, b, c� � �x � x0, y � y0, z � z0 � � 0

r0 � �x0, y0, z0 �
r � �x, y, z �n � �a, b, c�

n � r � n � r06

n � �r � r0 � � 05

r � r0
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Since both and lie in the plane, their cross product is orthogonal to the plane
and can be taken as the normal vector. Thus

With the point and the normal vector , an equation of the plane is

or M

EXAMPLE 6 Find the point at which the line with parametric equations ,
, intersects the plane .

SOLUTION We substitute the expressions for , , and from the parametric equations into
the equation of the plane:

This simplifies to , so . Therefore the point of intersection occurs
when the parameter value is . Then , ,

and so the point of intersection is M

Two planes are parallel if their normal vectors are parallel. For instance, the planes
and are parallel because their normal vectors are

and and . If two planes are not parallel, then
they intersect in a straight line and the angle between the two planes is defined as the acute
angle between their normal vectors (see angle in Figure 9).

EXAMPLE 7
(a) Find the angle between the planes and .
(b) Find symmetric equations for the line of intersection of these two planes.

SOLUTION
(a) The normal vectors of these planes are

and so, if is the angle between the planes, Corollary 12.3.6 gives

(b) We first need to find a point on . For instance, we can find the point where the line
intersects the -plane by setting in the equations of both planes. This gives the
equations and , whose solution is , . So the point

lies on .L�1, 0, 0�
y � 0x � 1x � 2y � 1x � y � 1

z � 0xy
L

 � � cos�1� 2

s42 � � 72�

 cos � �
n1 � n2

	 n1 	 	 n2 	 �
1�1� � 1��2� � 1�3�

s1 � 1 � 1 
s1 � 4 � 9 �

2

s42 

�

n2 � �1, �2, 3 �n1 � �1, 1, 1 �

L
x � 2y � 3z � 1x � y � z � 1

V

�

n2 � 2n1n2 � �2, 4, �6 �n1 � �1, 2, �3 �
2x � 4y � 6z � 3x � 2y � 3z � 4

��4, 8, 3�.z � 5 � 2 � 3
y � �4��2� � 8x � 2 � 3��2� � �4t � �2

t � �2�10t � 20

4�2 � 3t� � 5��4t� � 2�5 � t� � 18

zyx

4x � 5y � 2z � 18z � 5 � ty � �4t
x � 2 � 3t

 6x � 10y � 7z � 50

 12�x � 1� � 20�y � 3� � 14�z � 2� � 0

nP�1, 3, 2�

n � a � b � 	 i
2

4

j
�4

�1

k
4

�2 	 � 12 i � 20 j � 14 k

a � bba
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N Figure 8 shows the portion of the plane in
Example 5 that is enclosed by triangle .PQR

FIGURE 8
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N Figure 10 shows the planes in Example 7 and
their line of intersection .L
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L

FIGURE 10

z

y x

6

4

2

0

_2

_4

0
2

_2 0
2

_2



Now we observe that, since lies in both planes, it is perpendicular to both of the
normal vectors. Thus a vector parallel to is given by the cross product

and so the symmetric equations of can be written as

M

Since a linear equation in , , and represents a plane and two nonparallel
planes intersect in a line, it follows that two linear equations can represent a line. The
points that satisfy both and 
lie on both of these planes, and so the pair of linear equations represents the line of inter-
section of the planes (if they are not parallel). For instance, in Example 7 the line was
given as the line of intersection of the planes and . The
symmetric equations that we found for could be written as

which is again a pair of linear equations. They exhibit as the line of intersection of the
planes and . (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

we can regard the line as the line of intersection of the two planes

EXAMPLE 8 Find a formula for the distance from a point to the 
plane .

SOLUTION Let be any point in the given plane and let be the vector
corresponding to P PA. Then

From Figure 12 you can see that the distance from to the plane is equal to the
absolute value of the scalar projection of onto the normal vector . 
(See Section 12.3.) Thus

 � 	 �ax1 � by1 � cz1� � �ax0 � by0 � cz0 � 	
sa 2 � b 2 � c 2 

 � 	 a�x1 � x0 � � b�y1 � y0 � � c�z1 � z0 � 	
sa 2 � b 2 � c 2 

 D � 	 compn b 	 � 	 n � b 	
	 n 	

n � �a, b, c�b
P1D

b � �x1 � x0, y1 � y0, z1 � z0 �
10

bP0�x0, y0, z0 �

ax � by � cz � d � 0
P1�x1, y1, z1�D

y � y0

b
�

z � z0

c
and

x � x0

a
�

y � y0

b

x � x0

a
�

y � y0

b
�

z � z0

c

y
��2� � z
��3��x � 1�
5 � y
��2�
L

y

�2
�

z

�3
and

x � 1

5
�

y

�2

L
x � 2y � 3z � 1x � y � z � 1

L

a2x � b2y � c2z � d2 � 0a1x � b1y � c1z � d1 � 0�x, y, z�

zyxNOTE

x � 1

5
�

 y

�2
�

z

�3

L

v � n1 � n2 � 	 i
1

1

j
1

�2

k
1

3 	 � 5 i � 2 j � 3 k

Lv
L
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N Another way to find the line of intersection is
to solve the equations of the planes for two of
the variables in terms of the third, which can be
taken as the parameter.

FIGURE 11
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N Figure 11 shows how the line in Example 7
can also be regarded as the line of intersection
of planes derived from its symmetric equations.
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Since lies in the plane, its coordinates satisfy the equation of the plane and so we
have . Thus the formula for can be written as

M

EXAMPLE 9 Find the distance between the parallel planes 
and .

SOLUTION First we note that the planes are parallel because their normal vectors
and are parallel. To find the distance between the planes, 

we choose any point on one plane and calculate its distance to the other plane. In par-
ticular, if we put in the equation of the first plane, we get and so

is a point in this plane. By Formula 9, the distance between and the
plane is

So the distance between the planes is . M

EXAMPLE 10 In Example 3 we showed that the lines

are skew. Find the distance between them.

SOLUTION Since the two lines and are skew, they can be viewed as lying on two 
parallel planes and . The distance between and is the same as the distance
between and , which can be computed as in Example 9. The common normal 
vector to both planes must be orthogonal to both (the direction of )
and (the direction of ). So a normal vector is

If we put in the equations of , we get the point on and so an equa-
tion for is

If we now set in the equations for , we get the point on . So 
the distance between and is the same as the distance from to

. By Formula 9, this distance is

MD � 	 13�1� � 6��2� � 5�4� � 3 	
s132 � ��6�2 � ��5�2 

�
8

s230 � 0.53

13x � 6y � 5z � 3 � 0
�1, �2, 4�L2L1

P1�1, �2, 4�L1t � 0

13x � 6y � 5z � 3 � 0or13�x � 0� � 6�y � 3� � 5�z � 3� � 0

P2

L2�0, 3, �3�L2s � 0

n � v1 � v2 � 	 i
1

2

j
3

1

k
�1

4 	 � 13 i � 6 j � 5k

L2v2 � �2, 1, 4 �
L1v1 � �1, 3, �1 �

P2P1

L2L1P2P1

L2L1

 L2: x � 2s  y � 3 � s  z � �3 � 4s

 L1: x � 1 � t y � �2 � 3t z � 4 � t

s3 
6

D � 	 5(1
2 ) � 1�0� � 1�0� � 1 	
s52 � 12 � ��1�2 

�
3
2

3s3 �
s3 

6

5x � y � z � 1 � 0
(1

2, 0, 0)( 1
2, 0, 0)

10x � 5y � z � 0

D�5, 1, �1 ��10, 2, �2 �

5x � y � z � 1
10x � 2y � 2z � 5

D � 	 ax1 � by1 � cz1 � d 	
sa 2 � b 2 � c 2 

9

Dax0 � by0 � cz0 � d � 0
P0
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16. (a) Find parametric equations for the line through that
is perpendicular to the plane .

(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from 
to .

18. Find parametric equations for the line segment from 
to .

19–22 Determine whether the lines and are parallel, skew, or
intersecting. If they intersect, find the point of intersection.

: , ,

: , ,

20. : , ,

: , ,

21. :

:

22. :

:

23–38 Find an equation of the plane.

23. The plane through the point and perpendicular to the
vector 

24. The plane through the point and with normal 
vector 

25. The plane through the point and with normal 
vector 

26. The plane through the point and perpendicular to
the line , , 

27. The plane through the origin and parallel to the plane

28. The plane through the point and parallel to the
plane 

29. The plane through the point and parallel to the plane

30. The plane that contains the line , , 
and is parallel to the plane 

The plane through the points , , and 

32. The plane through the origin and the points 
and �5, 1, 3�

�2, �4, 6�

�1, 1, 0��1, 0, 1��0, 1, 1�31.

2x � 4y � 8z � 17
z � 8 � ty � tx � 3 � 2t

3x � 7z � 12
�4, �2, 3�

x � y � z � 2 � 0
��1, 6, �5�

2x � y � 3z � 1

z � 4 � 3ty � 2tx � 1 � t
��2, 8, 10�

i � j � k
�1, �1, 1�

j � 2k
�4, 0, �3�

��2, 1, 5�
�6, 3, 2�

x � 2

1
�

y � 6

�1
�

z � 2

3
L2

x � 1

2
�

y � 3

2
�

z � 2

�1
L1

x � 3

�4
�

y � 2

�3
�

z � 1

2
L2

x

1
�

y � 1

2
�

z � 2

3
L1

z � 1 � 3sy � 4 � sx � �1 � sL2

z � 2 � ty � 3tx � 1 � 2tL1

z � sy � 4 � 3sx � 1 � 2sL2

z � �3ty � 1 � 9tx � �6tL119.

L2L1

�5, 6, �3�
�10, 3, 1�

�4, 6, 1�
�2, �1, 4�

x � y � 3z � 7
�2, 4, 6�1. Determine whether each statement is true or false.

(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

2. The line through the point and parallel to the 
vector 

3. The line through the point and parallel to the 
vector 

4. The line through the point and parallel to the line
, , 

The line through the point (1, 0, 6) and perpendicular to the
plane 

6–12 Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point 

7. The line through the points and 

8. The line through the points and 

The line through the points and 

10. The line through and perpendicular to both 
and 

11. The line through and parallel to the line

12. The line of intersection of the planes 
and 

Is the line through and parallel to the
line through and ?

14. Is the line through and perpendicular to the
line through and ?

15. (a) Find symmetric equations for the line that passes through
the point and is parallel to the vector

.
(b) Find the points in which the required line in part (a) inter-

sects the coordinate planes.

��1, 2, �3 �
�1, �5, 6�

�5, 1, 4���3, 2, 0�
�2, 5, 3��4, 1, �1�

�5, 3, 14��10, 18, 4�
��2, 0 �3���4, �6, 1�13.

x � z � 0
x � y � z � 1

x � 2 � 1
2 y � z � 3

�1, �1, 1�

j � k
i � j�2, 1, 0�

�2, 1, �3�(0, 12 , 1)9.

�2, 4, 5��6, 1, �3�

��4, 3, 0��1, 3, 2�

�1, 2, 3�

x � 3y � z � 5
5.

z � 3 � 9ty � 6 � 3tx � �1 � 2t
�0, 14, �10�

3 i � 2 j � k
�2, 2.4, 3.5�

�1, 3, �2
3 �

�6, �5, 2�

EXERCISES12.5
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57–58 Find symmetric equations for the line of intersection of the
planes.

57. ,

58. ,

59. Find an equation for the plane consisting of all points that are
equidistant from the points and .

60. Find an equation for the plane consisting of all points that are
equidistant from the points and .

Find an equation of the plane with -intercept , -intercept ,
and -intercept .

62. (a) Find the point at which the given lines intersect:

(b) Find an equation of the plane that contains these lines.

63. Find parametric equations for the line through the point
that is parallel to the plane and 

perpendicular to the line , , .

64. Find parametric equations for the line through the point
that is perpendicular to the line , 

, and intersects this line.

65. Which of the following four planes are parallel? Are any of
them identical?

66. Which of the following four lines are parallel? Are any of them
identical?

, ,

67–68 Use the formula in Exercise 43 in Section 12.4 to find the
distance from the point to the given line.

67. ; , ,

68. ; , ,

69–70 Find the distance from the point to the given plane.

69. ,

70. ,

71–72 Find the distance between the given parallel planes.

71. , 4x � 6y � 2z � 32x � 3y � z � 4

x � 2y � 4z � 8��6, 3, 5�

3x � 2y � 6z � 5�1, �2, 4�

z � 3 � ty � 6 � 2tx � 2t�0, 1, 3�

z � 4 � 3ty � 3 � 2tx � 1 � t�4, 1, �2�

L4: r � �2, 1, �3 � � t �2, 2, �10 �

L3: x � 1 � t, y � 4 � t, z � 1 � t

L2: x � 1 � y � 2 � 1 � z

z � 2 � 5ty � tL1: x � 1 � t

 P3: �6x � 3y � 9z � 5 P4: z � 2x � y � 3

 P1:  4x � 2y � 6z � 3  P2:  4x � 2y � 2z � 6

z � 2ty � 1 � t
x � 1 � t�0, 1, 2�

z � 2ty � 1 � tx � 1 � t
x � y � z � 2�0, 1, 2�

 r � �2, 0, 2 � � s��1, 1, 0 �

 r � �1, 1, 0 � � t �1, �1, 2 �

cz
byax61.

��6, 3, 1��2, 5, 5�

�3, 4, 0��1, 0, �2�

z � 4x � 3y � 5z � 2x � y � 5

4x � y � z � 65x � 2y � 2z � 1

33. The plane through the points , , and

34. The plane that passes through the point and contains
the line , , 

35. The plane that passes through the point and contains
the line , , 

36. The plane that passes through the point and 
contains the line with symmetric equations 

37. The plane that passes through the point and contains
the line of intersection of the planes and

38. The plane that passes through the line of intersection of the
planes and and is perpendicular to the
plane 

39–42 Use intercepts to help sketch the plane.

39. 40.

41. 42.

43–45 Find the point at which the line intersects the given plane.

43. , , ;

44. , , ;

45. ;

46. Where does the line through and intersect
the plane ?

47. Find direction numbers for the line of intersection of the planes
and .

48. Find the cosine of the angle between the planes 
and .

49–54 Determine whether the planes are parallel, perpendicular, or
neither. If neither, find the angle between them.

,

50. ,

51. ,

52. ,

53. ,

54. ,

55–56 (a) Find parametric equations for the line of intersection of
the planes and (b) find the angle between the planes.

55. ,

56. , 2x � y � 3z � 33x � 2y � z � 1

x � 2y � 2z � 1x � y � z � 1

2x � y � 2z � 1x � 2y � 2z � 1

8y � 1 � 2x � 4zx � 4y � 2z

x � 6y � 4z � 32x � 3y � 4z � 5

x � y � z � 1x � y � z � 1

3x � 12y � 6z � 12z � 4y � x

�3x � 6y � 7z � 0x � 4y � 3z � 149.

x � 2y � 3z � 1
x � y � z � 0

x � z � 0x � y � z � 1

x � y � z � 6
�4, �2, 2��1, 0, 1�

4x � y � 3z � 8x � y � 1 � 2z

x � 2y � z � 1 � 0z � 2 � 3ty � 4tx � 1 � 2t

x � y � 2z � 9z � 5ty � 2 � tx � 3 � t

6x � 5y � 3z � 156x � 3y � 4z � 6

3x � y � 2z � 62x � 5y � z � 10

x � y � 2z � 1
y � 2z � 3x � z � 1

2x � y � 3z � 1
x � y � z � 2

��1, 2, 1�

x � 2y � 3z
�1, �1, 1�

z � 7 � 4 ty � 3 � 5tx � 4 � 2t
�6, 0, �2�

z � 2 � ty � 1 � tx � 3t
�1, 2, 3�

��1, �2, �3�
�8, 2, 4��3, �1, 2�
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76. Find the distance between the skew lines with para-
metric equations , , , and

, , .

77. If , , and are not all 0, show that the equation
represents a plane and is 

a normal vector to the plane.
Hint: Suppose and rewrite the equation in the form

78. Give a geometric description of each family of planes.
(a) (b)
(c) y cos � � z sin � � 1

x � y � cz � 1x � y � z � c

a�x �
d

a� � b�y � 0� � c�z � 0� � 0

a � 0

�a, b, c�ax � by � cz � d � 0
cba

z � �2 � 6sy � 5 � 15sx � 1 � 2s
z � 2ty � 1 � 6tx � 1 � t

72. ,

Show that the distance between the parallel planes
and is

74. Find equations of the planes that are parallel to the plane
and two units away from it.

75. Show that the lines with symmetric equations and
are skew, and find the distance between

these lines.
x � 1 � y�2 � z�3

x � y � z

x � 2y � 2z � 1

D � 	 d1 � d2 	
sa 2 � b 2 � c 2 

ax � by � cz � d2 � 0ax � by � cz � d1 � 0
73.

9z � 1 � 3x � 6y6z � 4y � 2x

Computer graphics programmers face the same challenge as the great painters of the past: how 
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume––the portion of space that will be visible––is the region contained by the four planes that
pass through the viewpoint and an edge of the screen window. If objects in the scene extend
beyond these four planes, they must be truncated before pixel data are sent to the screen. These
planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the -plane with vertices 
and , and the camera is placed at . A line in the scene passes
through the points and . At what points should be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line
segment.

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. A rectangle with vertices , , , and
is added to the scene. The line intersects this rectangle. To make the rect-

angle appear opaque, a programmer can use hidden line rendering, which removes portions
of objects that are behind other objects. Identify the portion of that should be removed.L

L�599, 67, 122�
�657, �111, 86��563, 31, 242��621, �147, 206�

L�860, 105, 264��230, �285, 102�
L�1000, 0, 0��0, �400, 600�

�0, �400, 0�yz

PUTTING 3D IN PERSPECTIVEL A B O R AT O R Y
P R O J E C T

CYLINDERS AND QUADRIC SURFACES

We have already looked at two special types of surfaces: planes (in Section 12.5) and
spheres (in Section 12.1). Here we investigate two other types of surfaces: cylinders and
quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersec-
tion of the surface with planes parallel to the coordinate planes. These curves are called
traces (or cross-sections) of the surface.

12.6



CYLINDERS

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given
line and pass through a given plane curve.

EXAMPLE 1 Sketch the graph of the surface .

SOLUTION Notice that the equation of the graph, , doesn’t involve y. This means that
any vertical plane with equation (parallel to the -plane) intersects the graph in a
curve with equation . So these vertical traces are parabolas. Figure 1 shows how
the graph is formed by taking the parabola in the -plane and moving it in the
direction of the y-axis. The graph is a surface, called a parabolic cylinder, made up of
infinitely many shifted copies of the same parabola. Here the rulings of the cylinder are
parallel to the y-axis. M

We noticed that the variable y is missing from the equation of the cylinder in Exam-
ple 1. This is typical of a surface whose rulings are parallel to one of the coordinate axes.
If one of the variables x, y, or is missing from the equation of a surface, then the surface
is a cylinder.

EXAMPLE 2 Identify and sketch the surfaces.
(a) (b)

SOLUTION
(a) Since is missing and the equations , represent a circle with
radius 1 in the plane , the surface is a circular cylinder whose axis is
the -axis. (See Figure 2.) Here the rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the x-axis.
(See Figure 3.) It is obtained by taking the circle , in the -plane and
moving it parallel to the x-axis.

M

| When you are dealing with surfaces, it is important to recognize that an equa-
tion like represents a cylinder and not a circle. The trace of the cylinder

in the -plane is the circle with equations , .

QUADRIC SURFACES

A quadric surface is the graph of a second-degree equation in three variables , , and .
The most general such equation is

Ax 2 � By 2 � Cz2 � Dxy � Eyz � Fxz � Gx � Hy � Iz � J � 0

zyx

z � 0x 2 � y 2 � 1xyx 2 � y 2 � 1
x 2 � y 2 � 1

NOTE

FIGURE 2    ≈+¥=1 FIGURE 3    ¥+z@=1

z

y

x
0

z

y
x

yzx � 0y 2 � z2 � 1

z
x 2 � y 2 � 1z � k

z � kx 2 � y 2 � 1z

y 2 � z 2 � 1x 2 � y 2 � 1

z

xzz � x 2
z � x 2

xzy � k
z � x 2

z � x 2V
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FIGURE 1

x y

0

z

The surface z=≈ is a  
parabolic cylinder.



where , , are constants, but by translation and rotation it can be brought into
one of the two standard forms

or

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane.
(See Section 10.5 for a review of conic sections.)

EXAMPLE 3 Use traces to sketch the quadric surface with equation

SOLUTION By substituting , we find that the trace in the xy-plane is ,
which we recognize as an equation of an ellipse. In general, the horizontal trace in the
plane is

which is an ellipse, provided that , that is, .
Similarly, the vertical traces are also ellipses:

Figure 4 shows how drawing some traces indicates the shape of the surface. It’s called an
ellipsoid because all of its traces are ellipses. Notice that it is symmetric with respect to
each coordinate plane; this is a reflection of the fact that its equation involves only even
powers of x, y, and . M

EXAMPLE 4 Use traces to sketch the surface .

SOLUTION If we put , we get , so the -plane intersects the surface in a
parabola. If we put (a constant), we get . This means that if we 
slice the graph with any plane parallel to the -plane, we obtain a parabola that opens
upward. Similarly, if , the trace is , which is again a parabola that
opens upward. If we put , we get the horizontal traces , which we
recognize as a family of ellipses. Knowing the shapes of the traces, we can sketch the
graph in Figure 5. Because of the elliptical and parabolic traces, the quadric surface

is called an elliptic paraboloid.

M

FIGURE 5  
The surface z=4≈+¥  is an elliptic

paraboloid. Horizontal traces are ellipses;
vertical traces are parabolas. x y

0

z

z � 4x 2 � y 2

4x 2 � y 2 � kz � k
z � 4x 2 � k 2y � k

yz
z � y 2 � 4k 2x � k
yzz � y 2x � 0

z � 4x 2 � y 2

z

 x 2 �
z2

4
� 1 �

k 2

9
 y � k �if �3 � k � 3�

 
y 2

9
�

z2

4
� 1 � k 2  x � k �if �1 � k � 1�

�2 � k � 2k 2 � 4

z � kx 2 �
y 2

9
� 1 �

k 2

4

z � k

x 2 � y 2�9 � 1z � 0

x 2 �
y 2

9
�

z2

4
� 1

Ax 2 � By 2 � Iz � 0Ax 2 � By 2 � Cz2 � J � 0

C, . . . , JBA
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FIGURE 4
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EXAMPLE 5 Sketch the surface .

SOLUTION The traces in the vertical planes are the parabolas , which
open upward. The traces in are the parabolas , which open down-
ward. The horizontal traces are , a family of hyperbolas. We draw the fami-
lies of traces in Figure 6, and we show how the traces appear when placed in their 
correct planes in Figure 7.

In Figure 8 we fit together the traces from Figure 7 to form the surface , 
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles
that of a saddle. This surface will be investigated further in Section 14.7 when we dis-
cuss saddle points.

M

EXAMPLE 6 Sketch the surface .

SOLUTION The trace in any horizontal plane is the ellipse

x 2

4
� y 2 � 1 �

k 2

4
z � k

z � k

x 2

4
� y 2 �

z 2

4
� 1

x
y

0

z

FIGURE 8
The surface z=¥-≈ is a

hyperbolic paraboloid.

z � y 2 � x 2

FIGURE 6
Vertical traces are parabolas;
horizontal traces are hyperbolas.
All traces are labeled with the
value of k.

FIGURE 7
Traces moved to their
correct planes

Traces in x=k are z=¥-k@

0

�1

�2

Traces in z=k are ¥-≈=k

_1

1

1

0

_1

Traces in x=k

x

y

z

1

0

_1

Traces in y=k are z=_≈+k@

0

�1

�2

Traces in y=k

1

x
y

    
z

_1
0

Traces in z=k

x
y

z

1

0

_1

z

y

y

x

z

x

y 2 � x 2 � k
z � �x 2 � k 2y � k

z � y 2 � k 2x � k

z � y 2 � x 2V
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In Module 12.6A you can investi-
gate how traces determine the shape of a 
surface.

TEC



but the traces in the - and -planes are the hyperbolas

This surface is called a hyperboloid of one sheet and is sketched in Figure 9. M

The idea of using traces to draw a surface is employed in three-dimensional graphing
software for computers. In most such software, traces in the vertical planes and

are drawn for equally spaced values of , and parts of the graph are eliminated using
hidden line removal. Table 1 shows computer-drawn graphs of the six basic types of
quadric surfaces in standard form. All surfaces are symmetric with respect to the -axis. If
a quadric surface is symmetric about a different axis, its equation changes accordingly.

z

ky � k
x � k

x 2

4
�

z2

4
� 1 y � 0 and y2 �

z2

4
� 1 x � 0

yzxz
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FIGURE 9 

(0, 1, 0)(2, 0, 0)

yx

z

Surface Equation Surface Equation

Ellipsoid Cone

Elliptic Paraboloid Hyperboloid of One Sheet

Hyperbolic Paraboloid Hyperboloid of Two Sheets
z

yx

z

y

x

z

yx

z

y
x

z

yx

z

yx

Horizontal traces are ellipses.

Vertical traces in the planes
and are

hyperbolas if but are
pairs of lines if .k � 0

k � 0
y � kx � k

z 2

c 2 �
x 2

a 2 �
y 2

b 2

All traces are ellipses.

If , the ellipsoid is
a sphere.

a � b � c

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry
corresponds to the variable
whose coefficient is negative.

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the
first power indicates the axis
of the paraboloid.

z

c
�

x 2

a 2 �
y 2

b 2

Horizontal traces in are
ellipses if or .

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.

k � �ck � c
z � k

�
x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are
hyperbolas.

Vertical traces are parabolas.

The case where is
illustrated.

c � 0

z

c
�

x 2

a 2 �
y 2

b 2

TABLE 1 Graphs of quadric surfaces



EXAMPLE 7 Identify and sketch the surface .

SOLUTION Dividing by , we first put the equation in standard form:

Comparing this equation with Table 1, we see that it represents a hyperboloid of two
sheets, the only difference being that in this case the axis of the hyperboloid is the 
-axis. The traces in the - and -planes are the hyperbolas

The surface has no trace in the -plane, but traces in the vertical planes for
are the ellipses

which can be written as

These traces are used to make the sketch in Figure 10. M

EXAMPLE 8 Classify the quadric surface .

SOLUTION By completing the square we rewrite the equation as

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid.
Here, however, the axis of the paraboloid is parallel to the -axis, and it has been shifted
so that its vertex is the point . The traces in the plane are the
ellipses

The trace in the -plane is the parabola with equation , . The
paraboloid is sketched in Figure 11.

M

FIGURE 11
≈+2z@-6x-y+10=0

0

y

x
(3, 1, 0)

z

z � 0y � 1 � �x � 3�2xy

y � k�x � 3�2 � 2z2 � k � 1

y � k �k � 1��3, 1, 0�
y

y � 1 � �x � 3�2 � 2z2

x 2 � 2z2 � 6x � y � 10 � 0

y � k
x 2

k 2

4
� 1

�
z 2

2� k 2

4
� 1� � 1

y � kx 2 �
z2

2
�

k 2

4
� 1

	 k 	 � 2
y � kxz

 x � 0
y 2

4
�

z2

2
� 1and z � 0�x 2 �

 y 2

4
� 1

yzxyy

�x 2 �
y 2

4
�

z2

2
� 1

�4

4x 2 � y 2 � 2z2 � 4 � 0V
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FIGURE 10
4≈-¥+2z@+4=0

0

z

y

x (0, 2, 0)

(0, _2, 0)

In Module 12.6B you can see how
changing , , and in Table 1 affects the
shape of the quadric surface.
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APPLICATIONS OF QUADRIC SURFACES

Examples of quadric surfaces can be found in the world around us. In fact, the world itself
is a good example. Although the earth is commonly modeled as a sphere, a more accurate
model is an ellipsoid because the earth’s rotation has caused a flattening at the poles. (See
Exercise 47.)

Circular paraboloids, obtained by rotating a parabola about its axis, are used to collect
and reflect light, sound, and radio and television signals. In a radio telescope, for instance,
signals from distant stars that strike the bowl are reflected to the receiver at the focus and
are therefore amplified. (The idea is explained in Problem 18 on page 268.) The same prin-
ciple applies to microphones and satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids
of one sheet for reasons of structural stability. Pairs of hyperboloids are used to transmit
rotational motion between skew axes. (The cogs of gears are the generating lines of the
hyperboloids. See Exercise 49.)
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A satellite dish reflects signals to 
the focus of a paraboloid.

Nuclear reactors have cooling towers 
in the shape of hyperboloids.

Hyperboloids produce gear transmission.

5. 6.

7. 8.

(a) Find and identify the traces of the quadric surface
and explain why the graph looks like the

graph of the hyperboloid of one sheet in Table 1.
(b) If we change the equation in part (a) to ,

how is the graph affected?
(c) What if we change the equation in part (a) to

?x 2 � y2 � 2y � z2 � 0

x 2 � y2 � z2 � 1

x 2 � y2 � z2 � 1
9.

x 2 � y 2 � 1z � cos x

yz � 4x � y 2 � 01. (a) What does the equation represent as a curve in ?
(b) What does it represent as a surface in ?
(c) What does the equation represent?

2. (a) Sketch the graph of as a curve in .
(b) Sketch the graph of as a surface in .
(c) Describe and sketch the surface .

3–8 Describe and sketch the surface.

3. 4. z � 4 � x 2y 2 � 4z2 � 4

z � e y
�3y � e x

�2y � e x

z � y 2
�3

�2y � x 2

EXERCISES12.6
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29–36 Reduce the equation to one of the standard forms, classify
the surface, and sketch it.

29. 30.

31. 32.

33.

34.

35.

36.

; 37–40 Use a computer with three-dimensional graphing software
to graph the surface. Experiment with viewpoints and with domains
for the variables until you get a good view of the surface.

37. 38.

39. 40.

41. Sketch the region bounded by the surfaces 
and for .

42. Sketch the region bounded by the paraboloids 
and .

43. Find an equation for the surface obtained by rotating the
parabola about the -axis.

44. Find an equation for the surface obtained by rotating the line
about the -axis.

45. Find an equation for the surface consisting of all points that 
are equidistant from the point and the plane .
Identify the surface.

46. Find an equation for the surface consisting of all points for
which the distance from to the -axis is twice the distance
from to the -plane. Identify the surface.

47. Traditionally, the earth’s surface has been modeled as a sphere,
but the World Geodetic System of 1984 (WGS-84) uses an
ellipsoid as a more accurate model. It places the center of the
earth at the origin and the north pole on the positive -axis. 
The distance from the center to the poles is 6356.523 km and
the distance to a point on the equator is 6378.137 km.
(a) Find an equation of the earth’s surface as used by 

WGS-84.
(b) Curves of equal latitude are traces in the planes .

What is the shape of these curves?
(c) Meridians (curves of equal longitude) are traces in 

planes of the form . What is the shape of these
meridians?

48. A cooling tower for a nuclear reactor is to be constructed in 
the shape of a hyperboloid of one sheet (see the photo on 
page 810). The diameter at the base is 280 m and the minimum 

y � mx

z � k

z

yzP
xP

P

x � 1��1, 0, 0�

xx � 3y

yy � x 2

z � 2 � x 2 � y 2
z � x 2 � y 2

1 � z � 2x 2 � y 2 � 1
z � sx 2 � y 2 

x 2 � 6x � 4y 2 � z � 0�4x 2 � y 2 � z2 � 0

x 2 � y 2 � z � 0�4x 2 � y 2 � z2 � 1

x 2 � y 2 � z2 � 2x � 2y � 4z � 2 � 0

x 2 � y 2 � z2 � 4x � 2y � 2z � 4 � 0

4y 2 � z2 � x � 16y � 4z � 20 � 0

4x 2 � y 2 � 4z2 � 4y � 24z � 36 � 0

4x � y 2 � 4z2 � 0x � 2y 2 � 3z2

x 2 � 2y 2 � 3z2z2 � 4x 2 � 9y2 � 36

10. (a) Find and identify the traces of the quadric surface
and explain why the graph looks like

the graph of the hyperboloid of two sheets in Table 1.
(b) If the equation in part (a) is changed to ,

what happens to the graph? Sketch the new graph.

11–20 Use traces to sketch and identify the surface.

11. 12.

13. 14.

15. 16.

17. 18.

20.

21–28 Match the equation with its graph (labeled I–VIII). Give
reasons for your choices.

21. 22.

23. 24.

25. 26.

27. 28. y � x 2 � z2x 2 � 2z2 � 1

y 2 � x 2 � 2z2y � 2x 2 � z2

�x 2 � y 2 � z2 � 1x 2 � y 2 � z2 � 1

9x 2 � 4y 2 � z2 � 1x 2 � 4y 2 � 9z2 � 1

x � y 2 � z2y � z2 � x 219.

4x 2 � 16y 2 � z2 � 1636x 2 � y 2 � 36z2 � 36

4x 2 � 9y 2 � z � 0�x 2 � 4y 2 � z2 � 4

25x 2 � 4y 2 � z2 � 100x 2 � y 2 � 4z 2

9x 2 � y 2 � z2 � 0x � y 2 � 4z2

x 2 � y2 � z2 � 1

�x 2 � y2 � z2 � 1

I

III

V

z

yx

z

y
x

z

y
x

z

y

x

z

yx

z

y
x

z

yx

z

y

x

II
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VI

VII VIII



generating lines. The only other quadric surfaces that are ruled
surfaces are cylinders, cones, and hyperboloids of one sheet.)

50. Show that the curve of intersection of the surfaces
and 

lies in a plane.

; 51. Graph the surfaces and on a common
screen using the domain , and observe the
curve of intersection of these surfaces. Show that the projection
of this curve onto the -plane is an ellipse.xy

	 y 	 � 1.2	 x 	 � 1.2
z � 1 � y 2z � x 2 � y 2

2x 2 � 4y 2 � 2z2 � 5y � 0x 2 � 2y 2 � z2 � 3x � 1

diameter, 500 m above the base, is 200 m. Find an equation 
for the tower.

49. Show that if the point lies on the hyperbolic paraboloid
, then the lines with parametric equations

, , and ,
, both lie entirely on this parabo-

loid. (This shows that the hyperbolic paraboloid is what is
called a ruled surface; that is, it can be generated by the
motion of a straight line. In fact, this exercise shows that
through each point on the hyperbolic paraboloid there are two 

z � c � 2�b � a�ty � b � t
x � a � tz � c � 2�b � a�ty � b � tx � a � t

z � y 2 � x 2
�a, b, c�
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11. How do you find a vector perpendicular to a plane?

12. How do you find the angle between two intersecting planes?

13. Write a vector equation, parametric equations, and symmetric
equations for a line.

14. Write a vector equation and a scalar equation for a plane.

15. (a) How do you tell if two vectors are parallel?
(b) How do you tell if two vectors are perpendicular?
(c) How do you tell if two planes are parallel?

16. (a) Describe a method for determining whether three points 
, , and lie on the same line.

(b) Describe a method for determining whether four points 
, , , and lie in the same plane.

17. (a) How do you find the distance from a point to a line?
(b) How do you find the distance from a point to a plane?
(c) How do you find the distance between two lines?

18. What are the traces of a surface? How do you find them?

19. Write equations in standard form of the six types of quadric
surfaces.

SRQP

RQP

1. What is the difference between a vector and a scalar?

2. How do you add two vectors geometrically? How do you add
them algebraically?

3. If a is a vector and c is a scalar, how is ca related to a
geometrically? How do you find ca algebraically?

4. How do you find the vector from one point to another?

5. How do you find the dot product of two vectors if you
know their lengths and the angle between them? What if you
know their components?

6. How are dot products useful?

7. Write expressions for the scalar and vector projections of b
onto a. Illustrate with diagrams.

8. How do you find the cross product a 	 b of two vectors if you
know their lengths and the angle between them? What if you
know their components?

9. How are cross products useful?

10. (a) How do you find the area of the parallelogram determined
by a and b?

(b) How do you find the volume of the parallelepiped
determined by a, b, and c?

a � b

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. For any vectors and in , .

2. For any vectors and in , .

3. For any vectors and in , .

4. For any vectors and in and any scalar ,
.

5. For any vectors and in and any scalar ,
.k�u 	 v� � �ku� 	 v

kV3vu

k�u � v� � �ku� � v
kV3vu

	 u 	 v 	 � 	 v 	 u 	V3vu

u 	 v � v 	 uV3vu

u � v � v � uV3vu

6. For any vectors , , and in ,
.

7. For any vectors , , and in , 
.

8. For any vectors , , and in ,
.

9. For any vectors and in , .

10. For any vectors and in , .�u � v� 	 v � u 	 vV3vu

�u 	 v� � u � 0V3vu

u 	 �v 	 w� � �u 	 v� 	 w
V3wvu

u � �v 	 w� � �u 	 v� � w
V3wvu

�u � v� 	 w � u 	 w � v 	 w
V3wvu

T R U E - F A L S E  Q U I Z
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15. If , then or .

16. If , then or .

17. If , and , then or .

18. If and are in , then .	 u � v 	 � 	 u 	 	 v 	V3vu

v � 0u � 0u 	 v � 0u � v � 0

v � 0u � 0u 	 v � 0

v � 0u � 0u � v � 011. The cross product of two unit vectors is a unit vector.

12. A linear equation represents a line 
in space.

13. The set of points is a circle.

14. If and , then .u � v � �u1v1, u2v2 �v � �v1, v2 �u � �u1, u2 �

{�x, y, z� 	 x 2 � y 2 � 1}

Ax � By � Cz � D � 0

1. (a) Find an equation of the sphere that passes through the point
and has center .

(b) Find the curve in which this sphere intersects the 
-plane.

(c) Find the center and radius of the sphere

2. Copy the vectors in the figure and use them to draw each of the
following vectors.
(a) (b) (c) (d)

3. If u and v are the vectors shown in the figure, find and
. Is u 	 v directed into the page or out of it?

4. Calculate the given quantity if

(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) ( j)
(k) The angle between and (correct to the nearest degree)

5. Find the values of such that the vectors and
are orthogonal.

6. Find two unit vectors that are orthogonal to both 
and .i � 2 j � 3k

j � 2k

�2x, 4, x�
�3, 2, x�x

ba
proja bcomp a b
a 	 �b 	 c�c 	 c
a � �b 	 c�	 b 	 c 	
a 	 ba � b
	 b 	2a � 3b

c � j � 5kb � 3 i � 2 j � ka � i � j � 2k

45°

|v |=3

|u |=2

	 u 	 v 	
u � v

a
b

2a � b�
1
2 aa � ba � b

x 2 � y2 � z2 � 8x � 2y � 6z � 1 � 0

yz

��1, 2, 1��6, �2, 3�
7. Suppose that . Find

(a) (b)

(c) (d)

8. Show that if , , and are in , then

9. Find the acute angle between two diagonals of a cube.

10. Given the points , , , and
, find the volume of the parallelepiped with adjacent

edges , , and .

11. (a) Find a vector perpendicular to the plane through the points
, , and .

(b) Find the area of triangle .

12. A constant force moves an object along
the line segment from to . Find the work done
if the distance is measured in meters and the force in newtons.

13. A boat is pulled onto shore using two ropes, as shown in the
diagram. If a force of 255 N is needed, find the magnitude of
the force in each rope.

14. Find the magnitude of the torque about if a 50-N force is
applied as shown.

P

40 cm

50 N
30°

P

20°

30°

255 N

�5, 3, 8��1, 0, 2�
F � 3 i � 5 j � 10k

ABC
C�1, 4, 3�B�2, 0, �1�A�1, 0, 0�

ADACAB
D�0, 3, 2�

C��1, 1, 4�B�2, 3, 0�A�1, 0, 1�

�a 	 b� � 
�b 	 c� 	 �c 	 a�� � 
a � �b 	 c��2

V3cba

�u 	 v� � vv � �u 	 w�
u � �w 	 v��u 	 v� � w

u � �v 	 w� � 2

E X E R C I S E S
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(b) Find, correct to the nearest degree, the angle between these
planes.

25. Find an equation of the plane through the line of intersection of
the planes and and perpendicular to the
plane .

26. (a) Find an equation of the plane that passes through the points
, , and .

(b) Find symmetric equations for the line through that is 
perpendicular to the plane in part (a).

(c) A second plane passes through and has normal
vector . Show that the acute angle between the
planes is approximately .

(d) Find parametric equations for the line of intersection of the
two planes.

27. Find the distance between the planes 
and .

28–36 Identify and sketch the graph of each surface.

28. 29.

30. 31.

32. 33.

34.

35.

36.

37. An ellipsoid is created by rotating the ellipse 
about the -axis. Find an equation of the ellipsoid.

38. A surface consists of all points such that the distance from 
to the plane is twice the distance from to the point

. Find an equation for this surface and identify it.�0, �1, 0�
Py � 1

PP

x
4x 2 � y 2 � 16

x � y2 � z2 � 2y � 4z � 5

4x 2 � 4y 2 � 8y � z2 � 0

y 2 � z2 � 1 � x 2

�4x 2 � y 2 � 4z2 � 44x � y � 2z � 4

x 2 � y 2 � 4z2y � z2

x � zx � 3

3x � y � 4z � 24
3x � y � 4z � 2

43�
�2, �4, �3 �

�2, 0, 4�

B
C�1, 3, �4�B��1, �1, 10�A�2, 1, 1�

x � y � 2z � 1
y � 2z � 3x � z � 1

15–17 Find parametric equations for the line.

15. The line through and 

16. The line through and parallel to the line

17. The line through and perpendicular to the 
plane 

18–20 Find an equation of the plane.

18. The plane through and parallel to 

19. The plane through , , and 

20. The plane through that contains the line 
, , 

21. Find the point in which the line with parametric equations
, , intersects the plane

.

22. Find the distance from the origin to the line 
, , .

23. Determine whether the lines given by the symmetric 
equations

and

are parallel, skew, or intersecting.

24. (a) Show that the planes and
are neither parallel nor perpendicular.2x � 3y � 4z � 5

x � y � z � 1

 
x � 1

6
�

y � 3

�1
�

z � 5

2

 
x � 1

2
�

y � 2

3
�

z � 3

4

z � �1 � 2ty � 2 � tx � 1 � t

2x � y � z � 2
z � 4ty � 1 � 3tx � 2 � t

z � 1 � 3ty � 3 � tx � 2t
�1, 2, �2�

�6, 3, 1��4, 0, 2��3, �1, 1�

x � 4y � 3z � 1�2, 1, 0�

2x � y � 5z � 12
��2, 2, 4�

1
3�x � 4� � 1

2 y � z � 2
�1, 0, �1�

�1, 1, 5��4, �1, 2�
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1. Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the
same radius . The center of one ball is at the center of the cube and it touches the other eight
balls. Each of the other eight balls touches three sides of the box. Thus the balls are tightly
packed in the box. (See the figure.) Find . (If you have trouble with this problem, read about
the problem-solving strategy entitled Use Analogy on page 76.)

2. Let be a solid box with length , width , and height . Let be the set of all points that
are a distance at most 1 from some point of . Express the volume of in terms of , , 
and .

3. Let be the line of intersection of the planes and , 
where is a real number.
(a) Find symmetric equations for .
(b) As the number varies, the line sweeps out a surface . Find an equation for the curve

of intersection of with the horizontal plane (the trace of in the plane ).
(c) Find the volume of the solid bounded by and the planes and .

4. A plane is capable of flying at a speed of 180 km�h in still air. The pilot takes off from an
airfield and heads due north according to the plane’s compass. After 30 minutes of flight time,
the pilot notices that, due to the wind, the plane has actually traveled 80 km at an angle 5° east
of north.
(a) What is the wind velocity?
(b) In what direction should the pilot have headed to reach the intended destination?

5. Suppose a block of mass is placed on an inclined plane, as shown in the figure. The block’s
descent down the plane is slowed by friction; if is not too large, friction will prevent the
block from moving at all. The forces acting on the block are the weight , where 
( is the acceleration due to gravity); the normal force (the normal component of the reac-
tionary force of the plane on the block), where ; and the force F due to friction,
which acts parallel to the inclined plane, opposing the direction of motion. If the block is at
rest and is increased, must also increase until ultimately reaches its maximum,
beyond which the block begins to slide. At this angle , it has been observed that is
proportional to . Thus, when is maximal, we can say that , where is 
called the coefficient of static friction and depends on the materials that are in contact.
(a) Observe that N � F � W � 0 and deduce that .
(b) Suppose that, for , an additional outside force is applied to the block, horizontally

from the left, and let . If is small, the block may still slide down the plane; if 
is large enough, the block will move up the plane. Let be the smallest value of that
allows the block to remain motionless (so that is maximal).

By choosing the coordinate axes so that lies along the -axis, resolve each force into
components parallel and perpendicular to the inclined plane and show that

and

(c) Show that

Does this equation seem reasonable? Does it make sense for ? As ?
Explain.

(d) Let be the largest value of that allows the block to remain motionless. (In which
direction is heading?) Show that

Does this equation seem reasonable? Explain.

hmax � mt tan�� � �s�

F
hhmax

� l 90�� � �s

hmin � mt tan�� � �s�

hmin cos � � �s n � mt sin �hmin sin � � mt cos � � n

xF
� F �

hhmin

hh� H � � h
H� � �s

�s � tan��s�

�s� F � � �s n� F �n
� F ��s

� F �� F ��

� N � � n
Nt

� W � � mtW
�

m

z � 1z � 0S
z � tSz � tS

SLc
L

c
x � cy � cz � �1cx � y � z � cL

H
WLSB

SHWLB

r

r

P R O B L E M S  P L U S

1 m

1 m
1 m1 m

F IGURE FOR PROBLEM 1

N F

W

F IGURE FOR PROBLEM 5

¨
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VECTOR 
FUNCTIONS

13

The functions that we have been using so far have been real-valued functions. We now

study functions whose values are vectors because such functions are needed to describe

curves and surfaces in space. We will also use vector-valued functions to describe the

motion of objects through space. In particular, we will use them to derive Kepler’s laws

of planetary motion.

Tangent vectors show the direction in 
which a space curve proceeds at any point.



VECTOR FUNCTIONS AND SPACE CURVES

In general, a function is a rule that assigns to each element in the domain an element in the
range. A vector-valued function, or vector function, is simply a function whose domain
is a set of real numbers and whose range is a set of vectors. We are most interested in vec-
tor functions whose values are three-dimensional vectors. This means that for every num-
ber in the domain of there is a unique vector in denoted by . If , , and 
are the components of the vector , then , , and are real-valued functions called the
component functions of and we can write

We usually use the letter to denote the independent variable because it represents time in
most applications of vector functions.

EXAMPLE 1 If

then the component functions are

By our usual convention, the domain of consists of all values of for which the expres-
sion for is defined. The expressions , , and are all defined when

and . Therefore the domain of is the interval . M

The limit of a vector function is defined by taking the limits of its component func-
tions as follows.

If , then

provided the limits of the component functions exist.

Equivalently, we could have used an definition (see Exercise 45). Limits of vector
functions obey the same rules as limits of real-valued functions (see Exercise 43).

EXAMPLE 2 Find , where .

SOLUTION According to Definition 1, the limit of r is the vector whose components are the
limits of the component functions of r:

(by Equation 3.3.2) M� i � k

 lim
t l 0

 r�t� � �limt l 0
 �1 � t 3 �� i � �limt l 0

 te�t� j � �lim
t l 0

 
sin t

t � k

r�t� � �1 � t 3 � i � te�t j �
sin t

t
 klim 

t l 0
 r�t�

�-�

lim 
t l a

 r�t� � � lim 
t l a

 f �t�, lim 
t l a

 t�t�, lim 
t l a

 h�t�	

r�t� � � f �t�, t�t�, h�t�	1

r

�0, 3�rt � 03 � t � 0
st ln�3 � t�t 3r�t�

tr

h�t� � st 
t�t� � ln�3 � t�f �t� � t 3

r�t� � �t3, ln�3 � t�, st 	

t

r�t� � � f �t�, t�t�, h�t�	 � f �t� i � t�t� j � h�t� k

r
htfr�t�

h�t�t�t�f �t�r�t�V3rt
r
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N If , this definition is equiva-
lent to saying that the length and direction of the
vector approach the length and direction of
the vector .L

r�t�

lim t la r�t� � L



A vector function is continuous at a if

In view of Definition 1, we see that is continuous at if and only if its component func-
tions , , and are continuous at .

There is a close connection between continuous vector functions and space curves.
Suppose that , , and are continuous real-valued functions on an interval . Then the set

of all points in space, where

and varies throughout the interval , is called a space curve. The equations in (2) are
called parametric equations of C and is called a parameter. We can think of as being
traced out by a moving particle whose position at time is . If we now con-
sider the vector function , then is the position vector of the
point on . Thus any continuous vector function defines a space curve

that is traced out by the tip of the moving vector , as shown in Figure 1.

EXAMPLE 3 Describe the curve defined by the vector function

SOLUTION The corresponding parametric equations are

which we recognize from Equations 12.5.2 as parametric equations of a line passing
through the point and parallel to the vector . Alternatively, we could
observe that the function can be written as , where and

, and this is the vector equation of a line as given by Equation 12.5.1. M

Plane curves can also be represented in vector notation. For instance, the curve given
by the parametric equations and (see Example 1 in Section 10.1)
could also be described by the vector equation

where and .

EXAMPLE 4 Sketch the curve whose vector equation is

SOLUTION The parametric equations for this curve are

Since , the curve must lie on the circular cylinder
. The point lies directly above the point , which moves 

counterclockwise around the circle in the xy-plane. (See Example 2 in
Section 10.1.) Since , the curve spirals upward around the cylinder as increases.
The curve, shown in Figure 2, is called a helix. M

tz � t
x 2 � y 2 � 1

�x, y, 0��x, y, z�x 2 � y 2 � 1
x 2 � y 2 � cos2t � sin2t � 1

z � ty � sin tx � cos t

r�t� � cos t i � sin t j � t k

V

j � �0, 1 	i � �1, 0 	

r�t� � � t 2 � 2t, t � 1 	 � �t 2 � 2t� i � �t � 1� j

y � t � 1x � t 2 � 2t

v � �1, 5, 6 	
r0 � �1, 2, �1 	r � r0 � tv

�1, 5, 6 	�1, 2, �1�

z � �1 � 6ty � 2 � 5tx � 1 � t

r�t� � �1 � t, 2 � 5t, �1 � 6t	

V

r�t�C
rCP( f �t�, t�t�, h�t�)

r�t�r�t� � � f �t�, t�t�, h�t�	
( f �t�, t�t�, h�t�)t

Ct
It

z � h�t�y � t�t�x � f �t�2

�x, y, z�C
Ihtf

ahtf
ar

lim 
t l a

 r�t� � r�a�

r
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FIGURE 1
C is traced out by the tip of a moving
position vector r(t).

C

0

z

x
y

P{f(t), g(t), h(t)}

r(t)=kf(t), g(t), h(t)l

Visual 13.1A shows several curves
being traced out by position vectors,
including those in Figures 1 and 2.

TEC

FIGURE 2

 ”0, 1,    ’
π
2

(1, 0, 0)

z

x

y



The corkscrew shape of the helix in Example 4 is familiar from its occurrence in coiled
springs. It also occurs in the model of DNA (deoxyribonucleic acid, the genetic material
of living cells). In 1953 James Watson and Francis Crick showed that the structure of the
DNA molecule is that of two linked, parallel helixes that are intertwined as in Figure 3.

In Examples 3 and 4 we were given vector equations of curves and asked for a geo-
metric description or sketch. In the next two examples we are given a geometric descrip-
tion of a curve and are asked to find parametric equations for the curve.

EXAMPLE 5 Find a vector equation and parametric equations for the line segment that
joins the point to the point .

SOLUTION In Section 12.5 we found a vector equation for the line segment that joins the tip
of the vector to the tip of the vector :

(See Equation 12.5.4.) Here we take and to obtain a
vector equation of the line segment from to :

or

The corresponding parametric equations are

M

EXAMPLE 6 Find a vector function that represents the curve of intersection of the
cylinder and the plane .

SOLUTION Figure 5 shows how the plane and the cylinder intersect, and Figure 6 shows the
curve of intersection C, which is an ellipse.

FIGURE 5 FIGURE 6

C

(0, _1, 3)

(1, 0, 2)

(_1, 0, 2)

(0, 1, 1)

y+z=2

≈+¥=1

z

y

0

x

z

yx

y � z � 2x 2 � y 2 � 1
V

0 � t � 1z � �2 � 5ty � 3 � 4tx � 1 � t

0 � t � 1r�t� � �1 � t, 3 � 4t, �2 � 5t	

0 � t � 1r�t� � �1 � t��1, 3, �2 	 � t�2, �1, 3 	

QP
r1 � �2, �1, 3 	r 0 � �1, 3, �2 	

0 � t � 1r�t� � �1 � t�r 0 � tr1

r1r 0

Q�2, �1, 3�P�1, 3, �2�
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FIGURE 3

N Figure 4 shows the line segment in 
Example 5.

PQ

FIGURE 4

Q(2, _1, 3)

P(1, 3, _2)

z

x y



The projection of C onto the xy-plane is the circle . So we know
from Example 2 in Section 10.1 that we can write

From the equation of the plane, we have

So we can write parametric equations for C as

The corresponding vector equation is

This equation is called a parametrization of the curve C. The arrows in Figure 6 indicate
the direction in which C is traced as the parameter t increases. M

USING COMPUTERS TO DRAW SPACE CURVES

Space curves are inherently more difficult to draw by hand than plane curves; for an accu-
rate representation we need to use technology. For instance, Figure 7 shows a computer-
generated graph of the curve with parametric equations

It’s called a toroidal spiral because it lies on a torus. Another interesting curve, the tre-
foil knot, with equations

is graphed in Figure 8. It wouldn’t be easy to plot either of these curves by hand.
Even when a computer is used to draw a space curve, optical illusions make it difficult

to get a good impression of what the curve really looks like. (This is especially true in
Figure 8. See Exercise 44.) The next example shows how to cope with this problem.

EXAMPLE 7 Use a computer to draw the curve with vector equation 
This curve is called a twisted cubic.

SOLUTION We start by using the computer to plot the curve with parametric equations
, , for . The result is shown in Figure 9(a), but it’s hard to

see the true nature of the curve from that graph alone. Most three-dimensional computer
graphing programs allow the user to enclose a curve or surface in a box instead of dis-
playing the coordinate axes. When we look at the same curve in a box in Figure 9(b), we
have a much clearer picture of the curve. We can see that it climbs from a lower corner
of the box to the upper corner nearest us, and it twists as it climbs.

�2 � t � 2z � t 3y � t 2x � t

r�t� � � t, t 2, t 3 	.

z � sin 1.5ty � �2 � cos 1.5t� sin tx � �2 � cos 1.5t� cos t

z � cos 20ty � �4 � sin 20t� sin tx � �4 � sin 20t� cos t

0 � t � 2	r�t� � cos t i � sin t j � �2 � sin t� k

0 � t � 2	z � 2 � sin ty � sin tx � cos t

z � 2 � y � 2 � sin t

0 � t � 2	y � sin tx � cos t

x 2 � y 2 � 1, z � 0
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FIGURE 7 A toroidal spiral
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FIGURE 8 A trefoil knot
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We get an even better idea of the curve when we view it from different vantage
points. Part (c) shows the result of rotating the box to give another viewpoint. Parts (d),
(e), and (f) show the views we get when we look directly at a face of the box. In par-
ticular, part (d) shows the view from directly above the box. It is the projection of the
curve on the -plane, namely, the parabola . Part (e) shows the projection on 
the -plane, the cubic curve . It’s now obvious why the given curve is called a
twisted cubic. M

Another method of visualizing a space curve is to draw it on a surface. For instance, the
twisted cubic in Example 7 lies on the parabolic cylinder . (Eliminate the parame-
ter from the first two parametric equations, and .) Figure 10 shows both the
cylinder and the twisted cubic, and we see that the curve moves upward from the origin
along the surface of the cylinder. We also used this method in Example 4 to visualize the
helix lying on the circular cylinder (see Figure 2).

A third method for visualizing the twisted cubic is to realize that it also lies on the cylin-
der . So it can be viewed as the curve of intersection of the cylinders and

. (See Figure 11.)

FIGURE 11
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FIGURE 9 Views of the twisted cubic
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In Visual 13.1B you can rotate the
box in Figure 9 to see the curve from any
viewpoint.

TEC

FIGURE 10

z

x
y

Visual 13.1C shows how curves
arise as intersections of surfaces.
TEC



We have seen that an interesting space curve, the helix, occurs in the model of DNA.
Another notable example of a space curve in science is the trajectory of a positively
charged particle in orthogonally oriented electric and magnetic fields E and B. Depending
on the initial velocity given the particle at the origin, the path of the particle is either a
space curve whose projection on the horizontal plane is the cycloid we studied in Section
10.1 [Figure 12(a)] or a curve whose projection is the trochoid investigated in Exercise 40
in Section 10.1 [Figure 12(b)].

For further details concerning the physics involved and animations of the trajectories of
the particles, see the following websites:

N www.phy.ntnu.edu.tw/java/emField/emField.html

N www.physics.ucla.edu/plasma-exp/Beam/

(a)  r(t) = kt-sin t, 1-cos t, tl

B

E

t

(b)  r(t) = kt-    sin t, 1-    cos t, tl3
2

3
2

B

E

t
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N Some computer algebra systems provide us
with a clearer picture of a space curve by enclos-
ing it in a tube. Such a plot enables us to see
whether one part of a curve passes in front of or
behind another part of the curve. For example,
Figure 13 shows the curve of Figure 12(b) as ren-
dered by the tubeplot command in Maple.

9. 10.

11. 12.

14.

15–18 Find a vector equation and parametric equations for the line
segment that joins to .

15. ,

16. ,

17. ,

18. ,

19–24 Match the parametric equations with the graphs 
(labeled I–VI). Give reasons for your choices.

, ,

20. , , z � e�ty � t 2x � t

z � sin 4ty � tx � cos 4t19.

Q�6, �1, 2�P��2, 4, 0�

Q�4, 1, 7�P�1, �1, 2�

Q�2, 3, 1�P�1, 0, 1�

Q�1, 2, 3�P�0, 0, 0�

QP

r�t� � cos t i � cos t j � sin t k

r�t� � t 2 i � t 4 j � t 6 k13.

r�t� � t 2 i � t j � 2kr�t� � �1, cos t, 2 sin t	

r�t� � �1 � t, 3t, �t	r�t� � � t, cos 2t, sin 2t	1–2 Find the domain of the vector function.

1.

2.

3–6 Find the limit.

3.

4.

5.

6.

7–14 Sketch the curve with the given vector equation. Indicate
with an arrow the direction in which increases.

7. 8. r�t� � � t 3, t 2 	r�t� � �sin t, t	

t

lim
t l 


 
arctan t, e�2t, 
ln t

t �
lim
t l 0

 �e�3 t i �
t 2

sin2t
j � cos 2t k


lim
t l 0

 
 e t � 1

t
, 

s1 � t � 1

t
, 

3

1 � t�
lim
t l 0�

 �cos t, sin t, t ln t	

r�t� �
t � 2

t � 2
 i � sin t j � ln�9 � t2� k 

r�t� � �s4 � t 2 , e�3 t, ln�t � 1� 	
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FIGURE 12
Motion of a charged particle in 
orthogonally oriented electric 
and magnetic fields

FIGURE 13



; 33. Graph the curve with parametric equations
, ,

. Explain the appearance of the graph by 
showing that it lies on a cone.

; 34. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies on
a sphere.

35. Show that the curve with parametric equations ,
, passes through the points (1, 4, 0)

and (9, �8, 28) but not through the point (4, 7, �6).

36–38 Find a vector function that represents the curve of
intersection of the two surfaces.

36. The cylinder and the surface 

The cone and the plane 

38. The paraboloid and the parabolic 
cylinder 

; Try to sketch by hand the curve of intersection of the circular
cylinder and the parabolic cylinder . 
Then find parametric equations for this curve and use these
equations and a computer to graph the curve.

; 40. Try to sketch by hand the curve of intersection of the 
parabolic cylinder and the top half of the ellipsoid

. Then find parametric equations for 
this curve and use these equations and a computer to graph 
the curve.

41. If two objects travel through space along two different curves,
it’s often important to know whether they will collide. (Will a
missile hit its moving target? Will two aircraft collide?) The
curves might intersect, but we need to know whether the
objects are in the same position at the same time. Suppose the
trajectories of two particles are given by the vector functions

for .  Do the particles collide?

42. Two particles travel along the space curves

Do the particles collide? Do their paths intersect?

43. Suppose and are vector functions that possess limits as
and let be a constant. Prove the following properties

of limits.

(a) lim
t l a

 �u�t� � v�t�� � lim
t l a

 u�t� � lim
t l a

 v�t�

ct l a
vu

r2 �t� � �1 � 2t, 1 � 6t, 1 � 14t	r1 �t� � � t, t 2, t 3 	

t � 0

r2 �t� � �4t � 3, t 2, 5t � 6 	r1 �t� � � t 2, 7t � 12, t 2 	

x 2 � 4y 2 � 4z2 � 16
y � x 2

z � x 2x 2 � y 2 � 4
39.

y � x 2
z � 4x 2 � y 2

z � 1 � yz � sx 2 � y 2 37.

z � xyx 2 � y 2 � 4

z � 1 � t 3y � 1 � 3t
x � t 2

 z � 0.5 cos 10t

 y � s1 � 0.25 cos 2 10t  sin t

 x � s1 � 0.25 cos 2 10t  cos t

z � 1 � cos 16t
y � �1 � cos 16t� sin tx � �1 � cos 16t� cos t

, ,

22. , ,

23. , ,

24. , ,

Show that the curve with parametric equations ,
, lies on the cone , and use this

fact to help sketch the curve.

26. Show that the curve with parametric equations ,
, is the curve of intersection of the

surfaces and . Use this fact to help sketch
the curve.

27. At what points does the curve inter-
sect the paraboloid ?

28. At what points does the helix intersect
the sphere ?

; 29–32 Use a computer to graph the curve with the given vector
equation. Make sure you choose a parameter domain and view-
points that reveal the true nature of the curve.

29.

30.

31.

32. r�t� � � t, e t, cos t	

r�t� � � t, t sin t, t cos t	

r�t� � � t 2, ln t, t	

r�t� � �cos t sin 2t, sin t sin 2t, cos 2t 	

x 2 � y 2 � z2 � 5
r�t� � �sin t, cos t, t	

z � x 2 � y 2
r�t� � t i � �2t � t 2� k

x 2 � y 2 � 1z � x 2
z � sin2ty � cos t

x � sin t

z2 � x 2 � y 2z � ty � t sin t
x � t cos t25.

III IV

I II

V VI z

x y

z

x
y

z

x

y

z

x y

z

x y

z

x y

z � ln ty � sin tx � cos t

z � sin 5ty � sin tx � cos t

z � e�ty � e�t sin 10tx � e�t cos 10t

z � t 2y � 1��1 � t 2 �x � t21.
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that the projection of the curve onto the -plane has polar
coordinates and , so varies between 1
and 3. Then show that has maximum and minimum values
when the projection is halfway between and .

; When you have finished your sketch, use a computer to draw
the curve with viewpoint directly above and compare with your
sketch. Then use the computer to draw the curve from several
other viewpoints. You can get a better impression of the curve
if you plot a tube with radius 0.2 around the curve. (Use the
tubeplot command in Maple.)

45. Show that if and only if for every 
there is a number such that 

if then � r�t� � b � � �0 � � t � a � � �

� � 0
� � 0lim t l a r�t� � b

r � 3r � 1
z

r� � tr � 2 � cos 1.5t
xy(b)

(c)

(d)

44. The view of the trefoil knot shown in Figure 8 is accurate, but
it doesn’t reveal the whole story. Use the parametric equations

to sketch the curve by hand as viewed from above, with gaps
indicating where the curve passes over itself. Start by showing 

 z � sin 1.5t

 y � �2 � cos 1.5t� sin t

 x � �2 � cos 1.5t� cos t

lim
t l a

 �u�t� 
 v�t�� � lim
t l a

 u�t� 
 lim
t l a

 v�t�

lim
t l a

 �u�t� � v�t�� � lim
t l a

 u�t� � lim
t l a

 v�t�

lim
t l a

 cu�t� � c lim
t l a

 u�t�
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DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Later in this chapter we are going to use vector functions to describe the motion of plan-
ets and other objects through space. Here we prepare the way by developing the calculus
of vector functions.

DERIVATIVES

The derivative of a vector function is defined in much the same way as for real-
valued functions:

if this limit exists. The geometric significance of this definition is shown in Figure 1. If the
points and have position vectors and , then PQ

l
represents the vector

, which can therefore be regarded as a secant vector. If , the scalar
multiple has the same direction as . As , it
appears that this vector approaches a vector that lies on the tangent line. For this reason,
the vector is called the tangent vector to the curve defined by at the point , pro-
vided that exists and . The tangent line to at is defined to be the line
through parallel to the tangent vector . We will also have occasion to consider the
unit tangent vector, which is

The following theorem gives us a convenient method for computing the derivative of a
vector function : just differentiate each component of .

THEOREM If , where , , and
are differentiable functions, then

r��t� � � f ��t�, t��t�, h��t�	 � f ��t� i � t��t� j � h��t� k

h
tfr�t� � � f �t�, t�t�, h�t�	 � f �t� i � t�t� j � h�t� k2

rr

T�t� �
r��t�

� r��t� �

r��t�P
PCr��t� � 0r��t�

Prr��t�

h l 0r�t � h� � r�t��1�h��r�t � h� � r�t��
h � 0r�t � h� � r�t�

r�t � h�r�t�QP

dr
dt

� r��t� � lim 
h l 0

 
r�t � h� � r�t�

h
1

rr�

13.2

(b) The tangent vector

(a) The secant vector

0

P

C

Q

r(t+h)-r(t)

r(t)
r(t+h)

r(t+h)-r(t)

h

0

C

P
Q

r(t+h)
r(t)

rª(t)

y

z

x

x

z

y

FIGURE 1

Visual 13.2 shows an animation of 
Figure 1.
TEC



PROOF

M

EXAMPLE 1
(a) Find the derivative of .
(b) Find the unit tangent vector at the point where .

SOLUTION
(a) According to Theorem 2, we differentiate each component of r:

(b) Since and , the unit tangent vector at the point is

M

EXAMPLE 2 For the curve , find and sketch the position 
vector and the tangent vector .

SOLUTION We have

The curve is a plane curve and elimination of the parameter from the equations ,
gives , . In Figure 2 we draw the position vector 

starting at the origin and the tangent vector starting at the corresponding point .
M

EXAMPLE 3 Find parametric equations for the tangent line to the helix with para-
metric equations

at the point .

SOLUTION The vector equation of the helix is , so

r��t� � ��2 sin t, cos t, 1 	

r�t� � �2 cos t, sin t, t	

�0, 1, 	�2�

z � ty � sin tx � 2 cos t

V

�1, 1�r��1�
r�1� � i � jx � 0y � 2 � x 2y � 2 � t

x � st 

r��1� �
1

2
 i � jandr��t� �

1

2st  i � j

r��1�r�1�
r��t�r�t� � st  i � �2 � t� j

T�0� �
r��0�

� r��0� � �
j � 2k
s1 � 4 �

1

s5  j �
2

s5  k

�1, 0, 0�r��0� � j � 2kr�0� � i

r��t� � 3t 2 i � �1 � t�e�t j � 2 cos 2t k

t � 0
r�t� � �1 � t 3 �

 

i � te�t j � sin 2t k
V

 � � f ��t�, t��t�, h��t�	

 � 
 lim 
�t l 0

 
 f �t � �t� � f �t�

�t
, lim 

�t l 0
 
t�t � �t� � t�t�

�t
, lim 

�t l 0
 
h�t � �t� � h�t�

�t �
 � lim 

�t l 0
 
  f �t � �t� � f �t�

�t
, 

t�t � �t� � t�t�
�t

, 
h�t � �t� � h�t�

�t �
 � lim 

�t l 0
 

1

�t
 �� f �t � �t�, t�t � �t�, h�t � �t�	 � � f �t�, t�t�, h�t�	�

 r��t� � lim 
�t l 0

 
1

�t
 �r�t � �t� � r�t��
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The parameter value corresponding to the point is , so the tangent
vector there is . The tangent line is the line through 
parallel to the vector , so by Equations 12.5.2 its parametric equations are

M

Just as for real-valued functions, the second derivative of a vector function r is the
derivative of , that is, . For instance, the second derivative of the function in
Example 3 is

DIFFERENTIATION RULES

The next theorem shows that the differentiation formulas for real-valued functions have
their counterparts for vector-valued functions.

THEOREM Suppose and are differentiable vector functions, is a scalar,
and is a real-valued function. Then

1.

2.

3.

4.

5.

6. (Chain Rule)

This theorem can be proved either directly from Definition 1 or by using Theorem 2 and
the corresponding differentiation formulas for real-valued functions. The proof of Formula 4
follows; the remaining proofs are left as exercises.

d

dt
 �u� f �t��� � f ��t�u�� f �t��

d

dt
 �u�t� � v�t�� � u��t� � v�t� � u�t� � v��t�

d

dt
 �u�t� � v�t�� � u��t� � v�t� � u�t� � v��t�

d

dt
 � f �t�u�t�� � f ��t�u�t� � f �t�u��t�

d

dt
 �cu�t�� � cu��t�

d

dt
 �u�t� � v�t�� � u��t� � v��t�

f
cvu3

r��t� � ��2 cos t, �sin t, 0 �

r� � �r���r�

FIGURE 3

z

0

12

1
0

_1
2

0
_2

y
x

8

4

_0.5
0.5

z �
�

2
� ty � 1x � �2t

��2, 0, 1 �
�0, 1, ��2�r����2� � ��2, 0, 1 �

t � ��2�0, 1, ��2�

826 | | | | CHAPTER 13 VECTOR FUNCTIONS

N The helix and the tangent line in Example 3
are shown in Figure 3.

N In Section 13.4 we will see how and
can be interpreted as the velocity and

acceleration vectors of a particle moving through
space with position vector at time .tr�t�

r��t�
r��t�



PROOF OF FORMULA 4 Let

Then

so the ordinary Product Rule gives

M

EXAMPLE 4 Show that if (a constant), then is orthogonal to for 
all .

SOLUTION Since

and is a constant, Formula 4 of Theorem 3 gives

Thus , which says that is orthogonal to .
Geometrically, this result says that if a curve lies on a sphere with center the origin,

then the tangent vector is always perpendicular to the position vector . M

INTEGRALS

The definite integral of a continuous vector function can be defined in much the same
way as for real-valued functions except that the integral is a vector. But then we can
express the integral of in terms of the integrals of its component functions , , and as
follows. (We use the notation of Chapter 5.)

and so

y
b

a
 r�t� dt � 	y

b

a
 f �t� dt
 i � 	y

b

a
 t�t� dt
 j � 	y

b

a
 h�t� dt
 k

 � lim 
n l �

 �	�
n

i�1
 f �t*i � 	t
 i � 	�

n

i�1
 t�t*i � 	t
 j � 	�

n

i�1
 h�t*i � 	t
 k


 y
b

a
 r�t� dt � lim 

n l �
 �

n

i�1
 r�t*i � 	t

htfr

r�t�

r�t�r��t�

r�t�r��t�r��t� � r�t� � 0

0 �
d

dt
 �r�t� � r�t�� � r��t� � r�t� � r�t� � r��t� � 2r��t� � r�t�

c 2

r�t� � r�t� � � r�t� �2 � c 2

t
r�t�r��t�� r�t� � � cV

 � u��t� � v�t� � u�t� � v��t�

 � �
3

i�1
 f �i �t� ti�t� � �

3

i�1
 fi�t� t�i�t�

 � �
3

i�1
 � f �i �t� ti�t� � fi�t� t�i�t��

 
d

dt
 �u�t� � v�t�� �

d

dt
 �

3

i�1
 fi�t� ti�t� � �

3

i�1
 

d

dt
 � fi�t� ti�t��

u�t� � v�t� � f1�t� t1�t� � f2�t� t2�t� � f3�t� t3�t� � �
3

i�1
 fi�t� ti�t�

v�t� � � t1�t�, t2�t�, t3�t��u�t� � � f1�t�, f2�t�, f3�t��
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This means that we can evaluate an integral of a vector function by integrating each com-
ponent function.

We can extend the Fundamental Theorem of Calculus to continuous vector functions as
follows:

where is an antiderivative of , that is, . We use the notation for
indefinite integrals (antiderivatives).

EXAMPLE 5 If , then

where is a vector constant of integration, and

My
��2

0
 r�t� dt � [2 sin t i � cos t j � t 2 k]0

��2
� 2 i � j �

� 2

4
 k

C

 � 2 sin t i � cos t j � t 2 k � C

 y r�t� dt � 	y 2 cos t dt
 i � 	y sin t dt
 j � 	y 2t dt
 k

r�t� � 2 cos t i � sin t j � 2t k

x r�t� dtR��t� � r�t�rR

y
b

a
 r�t� dt � R�t�]b

a � R�b� � R�a�
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(b) Draw the vector starting at (1, 1) and compare it with
the vector

Explain why these vectors are so close to each other in
length and direction.

3–8
(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector for

the given value of .

,

4. ,

5. ,

6. ,

7. ,

8. ,

9–16 Find the derivative of the vector function.

9. r�t� � � t sin t, t 2, t cos 2t�

t � ��6r�t� � �1 � cos t� i � �2 � sin t� j

t � 0r�t� � e t i � e 3 t j

t � 0r�t� � e t i � e �t j

t � ��4r�t� � sin t i � 2 cos t j

t � 1r�t� � �1 � t, st �
t � �1r�t� � � t � 2, t 2 � 1 �3.

t
r��t�r�t�

r��t�

r�1.1� � r�1�
0.1

r��1�The figure shows a curve given by a vector function .
(a) Draw the vectors and .
(b) Draw the vectors

(c) Write expressions for and the unit tangent vector T(4).
(d) Draw the vector T(4).

2. (a) Make a large sketch of the curve described by the vector
function , , and draw the vectors
r(1), r(1.1), and r(1.1) � r(1).

0 
 t 
 2r�t� � � t 2, t�

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

r��4�

r�4.2� � r�4�
0.2

and
r�4.5� � r�4�

0.5

r�4.2� � r�4�r�4.5� � r�4�
r�t�C1.

EXERCISES13.2



33–38 Evaluate the integral.

33.

34.

35.

36.

37.

38.

39. Find if and .

40. Find if and .

41. Prove Formula 1 of Theorem 3.

42. Prove Formula 3 of Theorem 3.

43. Prove Formula 5 of Theorem 3.

44. Prove Formula 6 of Theorem 3.

45. If and , use 
Formula 4 of Theorem 3 to find 

46. If and are the vector functions in Exercise 45, use
Formula 5 of Theorem 3 to find 

47. Show that if is a vector function such that exists, then

48. Find an expression for .

If , show that .

[Hint: ]

50. If a curve has the property that the position vector is
always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

51. If , show that

u��t� � r�t� � �r��t� � r��t��

u�t� � r�t� � �r��t� � r��t��

r��t�
r�t�

� r�t� �2 � r�t� � r�t�

d

dt
 � r�t� � �

1

� r�t� �  r�t� � r��t�r�t� � 049.

d

dt
 �u�t� � �v�t� � w�t���

d

dt
 �r�t� � r��t�� � r�t� � r��t�

r�r

d

dt
�u�t� � v�t��

vu

d

dt
�u�t� � v�t��

v�t� � � t, cos t, sin t�u�t� � �sin t, cos t, t�

r�0� � i � j � kr��t� � t i � e t j � te t kr�t�

r�1� � i � jr��t� � 2t i � 3t 2 j � st  kr�t�

y �cos � t i � sin � t j � t k� dt

y �e t i � 2t j � ln t k� dt

y
2

1
 (t 2 i � tst � 1 j � t sin � t k) dt

y
��2

0
 �3 sin 2t cos t i � 3 sin t cos 2t j � 2 sin t cos t k� dt

y
1

0
 	 4

1 � t 2  j �
2t

1 � t 2  k
 dt

y
1

0
 �16t3 i � 9t2 j � 25t 4 k� dt

10.

11.

12.

13.

14.

16.

17–20 Find the unit tangent vector at the point with the
given value of the parameter .

17. ,

18. ,

,

20. ,

21. If , find and 

22. If , find , , and 

23–26 Find parametric equations for the tangent line to the curve
with the given parametric equations at the specified point.

23. , , ;

24. , , ;

, , ;

26. , , ;

; 27–29 Find parametric equations for the tangent line to the 
curve with the given parametric equations at the specified point.
Illustrate by graphing both the curve and the tangent line on a
common screen.

27. , , ;

28. , , ;

29. , , ;

30. (a) Find the point of intersection of the tangent lines to the
curve at the points
where and .

; (b) Illustrate by graphing the curve and both tangent lines.

31. The curves and 
intersect at the origin. Find their angle of intersection correct
to the nearest degree.

32. At what point do the curves and
intersect? Find their angle of

intersection correct to the nearest degree.
r2�s� � �3 � s, s � 2, s 2 �

r1�t� � � t, 1 � t, 3 � t 2 �

r2�t� � �sin t, sin 2t, t�r1�t� � � t, t 2, t 3 �

t � 0.5t � 0
r�t� � �sin � t, 2 sin � t, cos � t �

���, �, 0�z � t sin ty � tx � t cos t

(s3 , 1, 2)z � 4 cos 2ty � 2 sin tx � 2 cos t

�0, 1, 0�z � 2t � t 2y � e�tx � t

�0, 2, 1�z � t 2y � 2st x � ln t

�1, 0, 1�z � e�ty � e�t sin tx � e�t cos t25.

�1, 0, 0�z � tet2

y � tetx � et

�3, 0, 2�z � t 3 � ty � t 3 � tx � 1 � 2st 

r��t� � r��t�.r��0�T�0�r�t� � �e 2 t, e�2 t, te 2 t�

r��t� � r��t�.r��t�, T�1�, r��t�, r�t� � � t, t 2, t 3 �

t � ��4r�t� � 2 sin t i � 2 cos t j � tan t k

t � 0r�t� � cos t i � 3t j � 2 sin 2t k19.

t � 1r�t� � 4st i � t 2 j � t k

t � 0r�t� � � te�t, 2 arctan t, 2e t �

t
T�t�

r�t� � t a � �b � t c�

r�t� � a � t b � t 2 c15.

r�t� � at cos 3t i � b sin3t j � c cos 3t k

r�t� � et 2

i � j � ln�1 � 3t� k

r�t� � sin�1t i � s1 � t 2  j � k

r�t� � i � j � e 4 t k

r�t� � � tan t, sec t, 1�t 2 �
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ARC LENGTH AND CURVATURE

In Section 10.2 we defined the length of a plane curve with parametric equations ,
, , as the limit of lengths of inscribed polygons and, for the case where

and are continuous, we arrived at the formula

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose
that the curve has the vector equation , , or, equivalently,
the parametric equations , , , where , , and are continuous.
If the curve is traversed exactly once as increases from to , then it can be shown that
its length is

Notice that both of the arc length formulas (1) and (2) can be put into the more com-
pact form

because, for plane curves ,

and for space curves ,

EXAMPLE 1 Find the length of the arc of the circular helix with vector equation
from the point to the point .

SOLUTION Since , we have

The arc from to is described by the parameter interval 
and so, from Formula 3, we have

M

A single curve can be represented by more than one vector function. For instance, the
twisted cubic

1 
 t 
 2r1�t� � � t, t 2, t 3 �4

C

L � y
2�

0
 � r��t� � dt � y

2�

0
 s2  dt � 2s2 �

0 
 t 
 2��1, 0, 2���1, 0, 0�

� r��t� � � s��sin t�2 � cos2t � 1 � s2 

r��t� � �sin t i � cos t j � k

�1, 0, 2���1, 0, 0�r�t� � cos t i � sin t j � t k
V

� r��t� � � � f ��t� i � t��t� j � h��t� k � � s� f ��t��2 � �t��t��2 � �h��t��2 

r�t� � f �t� i � t�t� j � h�t� k

� r��t� � � � f ��t� i � t��t� j � � s� f ��t��2 � �t��t��2 

r�t� � f �t� i � t�t� j

L � y
b

a
 � r��t� � dt3

 � y
b

a
 �	dx

dt 
2

� 	dy

dt 
2

� 	dz

dt 
2 

 dt

 L � y
b

a
 s� f ��t��2 � �t��t��2 � �h��t��2  dt2

bat
h�t�f �z � h�t�y � t�t�x � f �t�

a 
 t 
 br�t� � � f �t�, t�t�, h�t��

L � y
b

a
 s� f ��t��2 � �t��t��2  dt � y

b

a
 �	dx

dt 
2

� 	dy

dt 
2 

 dt1

t�f �
a 
 t 
 by � t�t�

x � f �t�

13.3
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FIGURE 1
The length of a space curve is the limit
of lengths of inscribed polygons.
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N Figure 2 shows the arc of the helix 
whose length is computed in Example 1.
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could also be represented by the function

where the connection between the parameters and is given by . We say that
Equations 4 and 5 are parametrizations of the curve . If we were to use Equation 3 to
compute the length of using Equations 4 and 5, we would get the same answer. In gen-
eral, it can be shown that when Equation 3 is used to compute arc length, the answer is
independent of the parametrization that is used.

Now we suppose that is a curve given by a vector function

where is continuous and is traversed exactly once as increases from to . We define
its arc length function by

Thus is the length of the part of between and . (See Figure 3.) If we differ-
entiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Calculus, we
obtain

It is often useful to parametrize a curve with respect to arc length because arc length
arises naturally from the shape of the curve and does not depend on a particular coordinate
system. If a curve is already given in terms of a parameter and is the arc length
function given by Equation 6, then we may be able to solve for as a function of :
Then the curve can be reparametrized in terms of by substituting for : . Thus,
if for instance, is the position vector of the point 3 units of length along the
curve from its starting point.

EXAMPLE 2 Reparametrize the helix with respect to arc
length measured from in the direction of increasing .

SOLUTION The initial point corresponds to the parameter value . From 
Example 1 we have

and so

Therefore and the required reparametrization is obtained by substituting for :

M

CURVATURE

A parametrization is called smooth on an interval if is continuous and 
on . A curve is called smooth if it has a smooth parametrization. A smooth curve has no
sharp corners or cusps; when the tangent vector turns, it does so continuously.

I
r��t� � 0r�Ir�t�

r�t�s�� � cos(s�s2 ) i � sin(s�s2 ) j � (s�s2 ) k

tt � s�s2 

s � s�t� � y
t

0
 � r��u� � du � y

t

0
 s2  du � s2 t

ds

dt
� � r��t� � � s2 

t � 0�1, 0, 0�

t�1, 0, 0�
r�t� � cos t i � sin t j � t k

r�t�3��s � 3
r � r�t�s��ts

t � t�s�.st
s�t�tr�t�

ds

dt
� � r��t� �7

r�t�r�a�Cs�t�

s�t� � y
t

a
 � r��u� � du � y

t

a
 �	 dx

du
2

� 	 dy

du
2

� 	 dz

du
2 

 du6

s
batCr�

a 
 t 
 br�t� � f �t� i � t�t�j � h�t�k

C

C
C

t � euut

0 
 u 
 ln 2r2�u� � �eu, e 2u, e 3u �5
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If is a smooth curve defined by the vector function , recall that the unit tangent vec-
tor is given by

and indicates the direction of the curve. From Figure 4 you can see that changes direc-
tion very slowly when is fairly straight, but it changes direction more quickly when 
bends or twists more sharply.

The curvature of at a given point is a measure of how quickly the curve changes direc-
tion at that point. Specifically, we define it to be the magnitude of the rate of change of the
unit tangent vector with respect to arc length. (We use arc length so that the curvature will
be independent of the parametrization.)

DEFINITION The curvature of a curve is

where is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter instead
of , so we use the Chain Rule (Theorem 13.2.3, Formula 6) to write

But from Equation 7, so

EXAMPLE 3 Show that the curvature of a circle of radius is .

SOLUTION We can take the circle to have center the origin, and then a parametrization is

Therefore

so

and

This gives , so using Equation 9, we have

M

The result of Example 3 shows that small circles have large curvature and large circles
have small curvature, in accordance with our intuition. We can see directly from the defi-

��t� � � T��t��
� r��t� � �

1

a

� T��t� � � 1

T��t� � �cos t i � sin t j

T�t� �
r��t�

� r��t� � � �sin t i � cos t j

� r��t� � � aandr��t� � �a sin t i � a cos t j

r�t� � a cos t i � a sin t j

1�aaV

��t� � � T��t� �
� r��t� �9

ds�dt � � r��t� �

� � � dT
ds � � � dT�dt

ds�dt �and
dT
dt

�
dT
ds

 
ds

dt

s
t

T

� � � dT
ds �

8

C

CC
T�t�

T�t� �
r��t�

� r��t� �  

T�t�
rC
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FIGURE 4
Unit tangent vectors at equally spaced
points on C
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Visual 13.3A shows animated unit 
tangent vectors, like those in Figure 4, for 
a variety of plane curves and space curves.
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nition of curvature that the curvature of a straight line is always 0 because the tangent vec-
tor is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula
given by the following theorem is often more convenient to apply.

THEOREM The curvature of the curve given by the vector function is

PROOF Since and , we have

so the Product Rule (Theorem 13.2.3, Formula 3) gives

Using the fact that (see Example 2 in Section 12.4), we have

Now for all , so and are orthogonal by Example 4 in Section 13.2.
Therefore, by Theorem 12.4.6,

Thus

and M

EXAMPLE 4 Find the curvature of the twisted cubic at a general point
and at .

SOLUTION We first compute the required ingredients:

 � r��t� � r��t� � � s36t 4 � 36t 2 � 4 � 2s9t 4 � 9t 2 � 1

 r��t� � r��t� � � i
1

0

j
2t

2

k
3t 2

6t � � 6t 2 i � 6t j � 2 k

 � r��t� � � s1 � 4t 2 � 9t 4 

r��t� � �0, 2, 6t� r��t� � �1, 2t, 3t 2 �

�0, 0, 0�
r�t� � � t, t 2, t 3 �

� � � T� �
� r� � � � r� � r� �

� r� �3

� T� � � � r� � r� �
�ds�dt�2 � � r� � r� �

� r� �2

� r� � r� � � 	ds

dt
2

� T � T� � � 	ds

dt
2

� T � � T� � � 	ds

dt
2

� T� �

T�Tt� T�t� � � 1

r� � r� � 	ds

dt
2

�T � T��

T � T � 0

r� �
d 2s

dt 2  T �
ds

dt
 T�

r� � � r��T �
ds

dt
 T

� r�� � ds�dtT � r��� r��

��t� � � r��t� � r��t� �
� r��t� �3

r10
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Theorem 10 then gives

At the origin, where , the curvature is . M

For the special case of a plane curve with equation , we choose as the 
parameter and write . Then and .
Since and , we have . We also have

and so, by Theorem 10,

EXAMPLE 5 Find the curvature of the parabola at the points , , 
and .

SOLUTION Since and , Formula 11 gives

The curvature at is . At it is . At it is
. Observe from the expression for or the graph of in Fig-

ure 5 that as . This corresponds to the fact that the parabola appears
to become flatter as . M

THE NORMAL AND BINORMAL VECTORS

At a given point on a smooth space curve , there are many vectors that are orthogonal
to the unit tangent vector . We single out one by observing that, because 
for all , we have by Example 4 in Section 13.2, so is orthogonal to

. Note that is itself not a unit vector. But if is also smooth, we can define the
principal unit normal vector (or simply unit normal) as

The vector is called the binormal vector. It is perpendicular to both 
and and is also a unit vector. (See Figure 6.)

EXAMPLE 6 Find the unit normal and binormal vectors for the circular helix

r�t� � cos t i � sin t j � t k

N
TB�t� � T�t� � N�t�

N�t� �
T��t�

� T��t� �

N�t�
r�T��t�T�t�

T��t�T�t� � T��t� � 0t
� T�t� � � 1T�t�

r�t�

x l 
�
x l 
���x� l 0

���x���2� � 2�173�2 � 0.03
�2, 4���1� � 2�53�2 � 0.18�1, 1���0� � 2�0, 0�

��x� � � y� �
�1 � �y��2 �3�2 �

2

�1 � 4x 2 �3�2

y� � 2y� � 2x

�2, 4�
�1, 1��0, 0�y � x 2

��x� � � f ��x� �
�1 � � f ��x��2 �3�211

� r��x� � � s1 � � f ��x��2 

r��x� � r��x� � f ��x� kj � j � 0i � j � k
r��x� � f ��x� jr��x� � i � f ��x� jr�x� � x i � f �x� j

xy � f �x�

��0� � 2t � 0

��t� � � r��t� � r��t� �
� r��t� �3 �

2s1 � 9t 2 � 9t 4 

�1 � 4t 2 � 9t 4 �3�2
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FIGURE 5
The parabola y=≈ and its
curvature function
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SOLUTION We first compute the ingredients needed for the unit normal vector:

This shows that the normal vector at a point on the helix is horizontal and points toward
the -axis. The binormal vector is

M

The plane determined by the normal and binormal vectors and at a point on a
curve is called the normal plane of at . It consists of all lines that are orthogonal 
to the tangent vector . The plane determined by the vectors and is called the oscu-
lating plane of at . The name comes from the Latin osculum, meaning “kiss.” It is the
plane that comes closest to containing the part of the curve near . (For a plane curve, the
osculating plane is simply the plane that contains the curve.)

The circle that lies in the osculating plane of at , has the same tangent as at , lies
on the concave side of (toward which points), and has radius (the reciprocal
of the curvature) is called the osculating circle (or the circle of curvature) of at . It is
the circle that best describes how behaves near ; it shares the same tangent, normal,
and curvature at .

EXAMPLE 7 Find the equations of the normal plane and osculating plane of the helix
in Example 6 at the point .

SOLUTION The normal plane at has normal vector , so an equation
is

The osculating plane at contains the vectors and , so its normal vector is
. From Example 6 we have

A simpler normal vector is , so an equation of the osculating plane is

Mz � �x �
�

2
or1�x � 0� � 0�y � 1� � 1	z �

�

2 
 � 0

�1, 0, 1 �

B	�

2 
 � � 1

s2 , 0, 
1

s2 �B�t� �
1

s2  �sin t, �cos t, 1 �

T � N � B
NTP

z � x �
�

2
or�1�x � 0� � 0�y � 1� � 1	z �

�

2 
 � 0

r����2� � ��1, 0, 1 �P

P�0, 1, ��2�
V

P
PC

PC
� � 1��NC

PCPC

P
PC

NTT
PCC

PBN

�
1

s2  �sin t, �cos t, 1 �B�t� � T�t� � N�t� �
1

s2  � i
�sin t

�cos t

j
cos t

�sin t

k
1

0



z

 N�t� �
T��t�

� T��t� � � �cos t i � sin t j � ��cos t, �sin t, 0 �

� T��t� � �
1

s2  T��t� �
1

s2  ��cos t i � sin t j�

 T�t� �
r��t�

� r��t� � �
1

s2  ��sin t i � cos t j � k�

� r��t� � � s2  r��t� � �sin t i � cos t j � k
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N Figure 7 illustrates Example 6 by showing 
the vectors , , and at two locations on the
helix. In general, the vectors , , and , start-
ing at the various points on a curve, form a set of
orthogonal vectors, called the frame, that
moves along the curve as varies. This 
frame plays an important role in the branch of
mathematics known as differential geometry and
in its applications to the motion of spacecraft.
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FIGURE 7
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Visual 13.3B shows how the TNB
frame moves along several curves.
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FIGURE 8
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N Figure 8 shows the helix and the osculating
plane in Example 7.



EXAMPLE 8 Find and graph the osculating circle of the parabola at the origin.

SOLUTION From Example 5 the curvature of the parabola at the origin is . So the
radius of the osculating circle at the origin is and its center is . Its equation
is therefore

For the graph in Figure 9 we use parametric equations of this circle:

M

We summarize here the formulas for unit tangent, unit normal and binormal vectors,
and curvature.

� � � dT
ds � � � T��t� �

� r��t� � � � r��t� � r��t� �
� r��t� �3

B�t� � T�t� � N�t�N�t� �
T��t�

� T��t� �T�t� �
r��t�

� r��t� �

y � 1
2 �

1
2 sin tx � 1

2 cos t

x 2 � (y �
1
2 )2

� 1
4

(0, 12 )1�� � 1
2

��0� � 2

y � x 2
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Visual 13.3C shows how the oscu-
lating circle changes as a point moves along
a curve.
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12. Find, correct to four decimal places, the length of the curve 
of intersection of the cylinder and the plane

.

13–14 Reparametrize the curve with respect to arc length mea-
sured from the point where in the direction of increasing .

13.

14.

15. Suppose you start at the point and move 5 units
along the curve , , in the positive
direction. Where are you now?

16. Reparametrize the curve

with respect to arc length measured from the point (1, 0) in
the direction of increasing . Express the reparametrization in
its simplest form. What can you conclude about the curve?

17–20
(a) Find the unit tangent and unit normal vectors and .
(b) Use Formula 9 to find the curvature.

r�t� � �2 sin t, 5t, 2 cos t�17.

N�t�T�t�

t

r�t� � 	 2

t 2 � 1
� 1
 i �

2t

t 2 � 1
 j

z � 3 cos ty � 4tx � 3 sin t
�0, 0, 3�

r�t� � e 2 t cos 2t i � 2 j � e 2 t sin 2t k

r�t� � 2t i � �1 � 3t� j � �5 � 4t� k

tt � 0

x � y � z � 2
4x 2 � y 2 � 4

1–6 Find the length of the curve.

1. ,

2. ,

,

4. ,

,

6. ,

7–9 Find the length of the curve correct to four decimal places.
(Use your calculator to approximate the integral.)

7. ,

8. ,

9. ,

; 10. Graph the curve with parametric equations ,
, . Find the total length of this curve 

correct to four decimal places.

11. Let be the curve of intersection of the parabolic cylinder
and the surface . Find the exact length of 

from the origin to the point .�6, 18, 36�
C3z � xyx 2 � 2y

C

z � sin 3ty � sin 2t
x � sin t

0 � t � 	�4r�t� � �sin t, cos t, tan t�

1 � t � 2r�t� � � t, ln t, t ln t�

1 � t � 4r�t� � �st , t, t 2 �

0 � t � 1r�t� � 12t i � 8t 3�2 j � 3t 2 k

0 � t � 1r�t� �  i � t 2 j � t 3 k5.

0 � t � 	�4r�t� � cos t i � sin t j � ln cos t k

0 � t � 1r�t� � s2 t i � e t j � e�t k3.

0 � t � 1r�t� � �2t, t 2, 13 t 3 �
�10 � t � 10r�t� � �2 sin t, 5t, 2 cos t�

EXERCISES13.3



36–37 Two graphs, and , are shown. One is a curve 
and the other is the graph of its curvature function .
Identify each curve and explain your choices.

36.

38. (a) Graph the curve . At how
many points on the curve does it appear that the curvature
has a local or absolute maximum?

(b) Use a CAS to find and graph the curvature function. Does
this graph confirm your conclusion from part (a)?

39. The graph of is shown in
Figure 12(b) in Section 13.1. Where do you think the curva-
ture is largest? Use a CAS to find and graph the curvature
function. For which values of is the curvature largest?

40. Use Theorem 10 to show that the curvature of a plane para-
metric curve , is

where the dots indicate derivatives with respect to .

41–42 Use the formula in Exercise 40 to find the curvature.

41. ,

42. ,

43–44 Find the vectors , , and at the given point.

,

44. ,

45–46 Find equations of the normal plane and osculating plane
of the curve at the given point.

45. , , ;

46. , , ;

; 47. Find equations of the osculating circles of the ellipse
at the points and . Use a graphing

calculator or computer to graph the ellipse and both oscu-
lating circles on the same screen.

�0, 3��2, 0�9x 2 � 4y 2 � 36

�1, 1, 1�z � t 3y � t 2x � t

�0, 	, �2�z � 2 cos 3ty � tx � 2 sin 3t

�1, 0, 0�r�t� � �cos t, sin t, ln cos t�

(1, 23 , 1)r�t� � � t 2, 23 t 3, t�43.

BNT

y � t � t 2x � 1 � t 3

y � et sin tx � et cos t

t

� � � x�y�� � y�x�� �
�x� 2 � y� 2 �3�2

y � t�t�x � f �t�

t

r�t� � � t �
3
2 sin t, 1 �

3
2 cos t, t�CAS

r�t� � �sin 3t, sin 2t, sin 3t�CAS

y

x

a

b

y

x

a

b

37.

y � ��x�
y � f �x�ba18. ,

19.

20.

21–23 Use Theorem 10 to find the curvature.

21.

22.

23.

24. Find the curvature of at the 
point (1, 0, 0).

25. Find the curvature of at the point (1, 1, 1).

; 26. Graph the curve with parametric equations

and find the curvature at the point .

27–29 Use Formula 11 to find the curvature.

27. 28. 29.

30–31 At what point does the curve have maximum curvature?
What happens to the curvature as ?

30.

32. Find an equation of a parabola that has curvature 4 at the 
origin.

(a) Is the curvature of the curve shown in the figure greater
at or at ? Explain.

(b) Estimate the curvature at and at by sketching the 
osculating circles at those points.

; 34–35 Use a graphing calculator or computer to graph both the
curve and its curvature function on the same screen. Is the
graph of what you would expect?

34. 35. y � x�2y � x 4 � 2x 2

�
��x�

1

1 x0

y P

Q

C

QP
QP

C33.

y � e x31.y � ln x

x l 


y � 4x 5�2y � cos xy � 2x � x 2

�1, 4, �1�

z � �t 2y � 4t 3�2x � t

r�t� � � t, t 2, t 3 �

r�t� � �e t cos t, e t sin t, t�

r�t� � 3t i � 4 sin t j � 4 cos t k

r�t� � t i � t j � �1 � t 2 � k

r�t� � t 2 i � t k

r�t� � � t, 12 t 2, t 2�
r�t� � �s2 t, e t, e �t�

t � 0r�t� � � t 2, sin t � t cos t, cos t � t sin t�
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55. Use the Frenet-Serret formulas to prove each of the following.
(Primes denote derivatives with respect to . Start as in the
proof of Theorem 10.)
(a) (b)

(c)

(d)

56. Show that the circular helix , 
where and are positive constants, has constant curvature
and constant torsion. [Use the result of Exercise 55(d).]

57. Use the formula in Exercise 55(d) to find the torsion of the
curve .

58. Find the curvature and torsion of the curve ,
, at the point .

59. The DNA molecule has the shape of a double helix (see 
Figure 3 on page 819). The radius of each helix is about
10 angstroms (1 ). Each helix rises about 
during each complete turn, and there are about 
complete turns. Estimate the length of each helix.

60. Let’s consider the problem of designing a railroad track to
make a smooth transition between sections of straight track.
Existing track along the negative -axis is to be joined
smoothly to a track along the line for .
(a) Find a polynomial of degree 5 such that the

function defined by

is continuous and has continuous slope and continuous
curvature.

; (b) Use a graphing calculator or computer to draw the graph
of .F

F�x� � 
0

P�x�
1

if x � 0

if 0 � x � 1

if x 
 1

F
P � P�x�

x 
 1y � 1
x

2.9 � 108
34 ÅÅ � 10�8 cm

�0, 1, 0�z � ty � cosh t
x � sinh t

r�t� � �t, 12 t 2, 13 t 3 �

ba
r�t� � �a cos t, a sin t, bt�

� �
�r� � r�� � r�

� r� � r� �2

r� � �s� � �2�s��3 � T � �3�s�s� � ���s��2 � N � �� �s��3 B

r� � r� � ��s��3 Br� � s�T � ��s��2 N

t
; 48. Find equations of the osculating circles of the parabola

at the points and . Graph both osculating
circles and the parabola on the same screen.

At what point on the curve , , is the 
normal plane parallel to the plane ?

50. Is there a point on the curve in Exercise 49 where the 
osculating plane is parallel to the plane ?
[Note: You will need a CAS for differentiating, for simplify-
ing, and for computing a cross product.]

Show that the curvature is related to the tangent and 
normal vectors by the equation

52. Show that the curvature of a plane curve is ,
where is the angle between and ; that is, is the angle
of inclination of the tangent line. (This shows that the defini-
tion of curvature is consistent with the definition for plane
curves given in Exercise 69 in Section 10.2.)

53. (a) Show that is perpendicular to .
(b) Show that is perpendicular to .
(c) Deduce from parts (a) and (b) that for

some number called the torsion of the curve. (The
torsion measures the degree of twisting of a curve.)

(d) Show that for a plane curve the torsion is .

54. The following formulas, called the Frenet-Serret formulas,
are of fundamental importance in differential geometry:

1.
2.

3.
(Formula 1 comes from Exercise 51 and Formula 3 comes
from Exercise 53.) Use the fact that to deduce
Formula 2 from Formulas 1 and 3.

N � B � T

dB�ds � ��N

dN�ds � ��T � �B

dT�ds � �N

� �s� � 0

��s�
dB�ds � ���s�N

TdB�ds
BdB�ds

�iT�
� � � d��ds �

dT
ds

� �N

�51.

x � y � z � 1
CAS

6x � 6y � 8z � 1
z � t 4y � 3tx � t 349.

(1, 12 )�0, 0�y � 1
2 x 2
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MOTION IN SPACE: VELOCITY AND ACCELERATION

In this section we show how the ideas of tangent and normal vectors and curvature can be
used in physics to study the motion of an object, including its velocity and acceleration,
along a space curve. In particular, we follow in the footsteps of Newton by using these
methods to derive Kepler’s First Law of planetary motion.

Suppose a particle moves through space so that its position vector at time is .
Notice from Figure 1 that, for small values of , the vector

approximates the direction of the particle moving along the curve . Its magnitude mea-
sures the size of the displacement vector per unit time. The vector (1) gives the average

r�t�

r�t � h� � r�t�
h

1

h
r�t�t

13.4

FIGURE 1

r(t+h)-r(t)

h

O

C

P

Q
rª(t)

r(t+h)
r(t)

x

z

y



velocity over a time interval of length and its limit is the velocity vector at time :

Thus the velocity vector is also the tangent vector and points in the direction of the tangent
line.

The speed of the particle at time is the magnitude of the velocity vector, that is, .
This is appropriate because, from (2) and from Equation 13.3.7, we have

As in the case of one-dimensional motion, the acceleration of the particle is defined as the
derivative of the velocity:

EXAMPLE 1 The position vector of an object moving in a plane is given by
Find its velocity, speed, and acceleration when and illustrate

geometrically.

SOLUTION The velocity and acceleration at time are

and the speed is

When , we have

These velocity and acceleration vectors are shown in Figure 2. M

EXAMPLE 2 Find the velocity, acceleration, and speed of a particle with position vector
.

SOLUTION

M

The vector integrals that were introduced in Section 13.2 can be used to find position
vectors when velocity or acceleration vectors are known, as in the next example.

 � v�t� � � s4t 2 � e 2t � �1 � t�2e 2t 

 a�t� � v��t� � �2, e t, �2 � t�e t �

 v�t� � r��t� � �2t, e t, �1 � t�e t �

r�t� � � t 2, e t, te t �

� v�1� � � s13 a�1� � 6 i � 2 jv�1� � 3 i � 2 j

t � 1

� v�t� � � s�3t 2 �2 � �2t�2 � s9t 4 � 4t 2 

 a�t� � r��t� � 6t i � 2 j

 v�t� � r��t� � 3t 2 i � 2t j

t

t � 1r�t� � t 3 i � t 2 j.

a�t� � v��t� � r��t�

� v�t� � � � r��t� � �
ds

dt
� rate of change of distance with respect to time

� v�t� �t

v�t� � lim 
h l 0

 
r�t � h� � r�t�

h
� r��t�2

tv�t�h
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N Figure 3 shows the path of the particle in
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EXAMPLE 3 A moving particle starts at an initial position with initial
velocity . Its acceleration is . Find its velocity
and position at time .

SOLUTION Since , we have

To determine the value of the constant vector , we use the fact that .
The preceding equation gives , so and

Since , we have

Putting , we find that , so the position at time is given by

M

In general, vector integrals allow us to recover velocity when acceleration is known and
position when velocity is known:

If the force that acts on a particle is known, then the acceleration can be found from
Newton’s Second Law of Motion. The vector version of this law states that if, at any time
, a force acts on an object of mass producing an acceleration , then

EXAMPLE 4 An object with mass that moves in a circular path with constant angular
speed has position vector . Find the force acting on the
object and show that it is directed toward the origin.

SOLUTION To find the force, we first need to know the acceleration:

Therefore Newton’s Second Law gives the force as

F�t� � ma�t� � �m�2�a cos �t i � a sin �t j�

 a�t� � v��t� � �a�2 cos �t i � a�2 sin �t j

 v�t� � r��t� � �a� sin �t i � a� cos �t j

r�t� � a cos �t i � a sin �t j�
m

F�t� � ma�t�

a�t�mF�t�t

r�t� � r�t0� � y
t

t0

 v�u� duv�t� � v�t0� � y
t

t0

 a�u� du

r�t� � ( 2
3 t 3 � t � 1) i � �t 3 � t� j � ( 1

2 t 2 � t) k

tD � r�0� � it � 0

 � ( 2
3 t 3 � t) i � �t 3 � t� j � ( 1

2 t 2 � t) k � D

 � y ��2t 2 � 1� i � �3t 2 � 1� j � �t � 1� k� dt

 r�t� � y v�t� dt

v�t� � r��t�

 � �2t 2 � 1� i � �3t 2 � 1� j � �t � 1� k

 v�t� � 2t 2 i � 3t 2 j � t k � i � j � k

C � i � j � kv�0� � C
v�0� � i � j � kC

 � 2t 2 i � 3t 2 j � t k � C

 v�t� � y a�t� dt � y �4t i � 6t j � k� dt

a�t� � v��t�

t
a�t� � 4t i � 6t j � kv�0� � i � j � k

r�0� � �1, 0, 0 �V
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N The expression for that we obtained in
Example 3 was used to plot the path of the 
particle in Figure 4 for .0 � t � 3

r�t�
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N The angular speed of the object moving with
position is , where is the angle
shown in Figure 5.
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Notice that . This shows that the force acts in the direction opposite to
the radius vector and therefore points toward the origin (see Figure 5). Such a force
is called a centripetal (center-seeking) force. M

EXAMPLE 5 A projectile is fired with angle of elevation and initial velocity . (See
Figure 6.) Assuming that air resistance is negligible and the only external force is due to
gravity, find the position function of the projectile. What value of maximizes the
range (the horizontal distance traveled)?

SOLUTION We set up the axes so that the projectile starts at the origin. Since the force due
to gravity acts downward, we have

where m�s . Thus

Since , we have

where . Therefore

Integrating again, we obtain

But , so the position vector of the projectile is given by

If we write (the initial speed of the projectile), then

and Equation 3 becomes

The parametric equations of the trajectory are therefore 

The horizontal distance is the value of when . Setting , we obtain 
or . This second value of then gives

Clearly, has its maximum value when , that is, . M� � 	�4sin 2� � 1d

d � x � �v0 cos �� 
2v0 sin �

t
�

v 2
0 �2 sin � cos ��

t
�

v 2
0  sin 2�

t

tt � �2v0 sin ���t

t � 0y � 0y � 0xd

y � �v0  sin ��t �
1
2 tt 2x � �v0 cos ��t4

r�t� � �v0 cos ��t i � [�v0 sin ��t �
1
2 tt 2 ] j

v0 � v0 cos � i � v0 sin � j

� v0 � � v0

r�t� � �
1
2 tt 2 j � t v03

D � r�0� � 0

r�t� � �
1
2 tt 2 j � t v0 � D

r��t� � v�t� � �tt j � v0

C � v�0� � v0

v�t� � �tt j � C

v��t� � a

a � �t j

2
t � � a � � 9.8

F � ma � �mt j

�r�t�

v0�V

r�t�
F�t� � �m�2r�t�
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EXAMPLE 6 A projectile is fired with muzzle speed and angle of elevation
from a position 10 m above ground level. Where does the projectile hit the ground,

and with what speed?

SOLUTION If we place the origin at ground level, then the initial position of the projectile 
is (0, 10) and so we need to adjust Equations 4 by adding 10 to the expression for .
With , , and , we have

Impact occurs when , that is, . Solving this quadratic
equation (and using only the positive value of ), we get

Then , so the projectile hits the ground about 2306 m away.
The velocity of the projectile is

So its speed at impact is

M

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

When we study the motion of a particle, it is often useful to resolve the acceleration into
two components, one in the direction of the tangent and the other in the direction of the
normal. If we write for the speed of the particle, then

and so

If we differentiate both sides of this equation with respect to , we get

If we use the expression for the curvature given by Equation 13.3.9, then we have

The unit normal vector was defined in the preceding section as , so (6) gives

and Equation 5 becomes

a � v�T � �v2N7

T� � � T��N � �vN

N � T��� T��

� T�� � �vso� � � T��
� r�� � � T��

v
6

a � v� � v�T � vT�5

t

v � vT

T�t� �
r��t�

� r��t� � �
v�t�

� v�t� � �
v
v

v � � v �

� v�21.74� � � s(75s2 )2
� (75s2 � 9.8 � 21.74)2 � 151 m�s

v�t� � r��t� � 75s2  i � (75s2 � 9.8t) j

x � 75s2 �21.74� � 2306

t �
75s2 � s11,250 � 196  

9.8
� 21.74

t
4.9t 2 � 75s2 t � 10 � 0y � 0

y � 10 � 150 sin�	�4� t �
1
2 �9.8�t 2 � 10 � 75s2 t � 4.9t 2

x � 150 cos�	�4�t � 75s2 t

t � 9.8 m�s2� � 45�v0 � 150 m�s
y

45�
150 m�sV
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Writing and for the tangential and normal components of acceleration, we have

where

This resolution is illustrated in Figure 7.
Let’s look at what Formula 7 says. The first thing to notice is that the binormal vector

B is absent. No matter how an object moves through space, its acceleration always lies in
the plane of T and N (the osculating plane). (Recall that T gives the direction of motion
and N points in the direction the curve is turning.) Next we notice that the tangential com-
ponent of acceleration is , the rate of change of speed, and the normal component of
acceleration is , the curvature times the square of the speed. This makes sense if we
think of a passenger in a car—a sharp turn in a road means a large value of the curvature

, so the component of the acceleration perpendicular to the motion is large and the pas-
senger is thrown against a car door. High speed around the turn has the same effect; in fact,
if you double your speed, is increased by a factor of 4.

Although we have expressions for the tangential and normal components of accelera-
tion in Equations 8, it’s desirable to have expressions that depend only on , , and . To
this end we take the dot product of with as given by Equation 7:

(since and )

Therefore

Using the formula for curvature given by Theorem 13.3.10, we have

EXAMPLE 7 A particle moves with position function . Find the tangen-
tial and normal components of acceleration.

SOLUTION

Therefore Equation 9 gives the tangential component as

aT �
r��t� � r��t�

� r��t� � �
8t � 18t 3

s8t 2 � 9t 4 

 � r��t� � � s8t 2 � 9t 4 

 r��t� � 2 i � 2 j � 6t k

 r��t� � 2t i � 2t j � 3t 2 k

 r�t� � t 2 i � t 2 j � t 3 k

r�t� � � t 2, t 2, t 3 �

aN � �v2 � � r��t� � r���t� �
� r��t� �3 � r��t� �2 � � r��t� � r���t� �

� r��t� �10

aT � v� �
v � a

v
�

r��t� � r��t�

� r��t� �  9

T � N � 0T � T � 1 � vv�

 � vv�T � T � �v3 T � N

 v � a � vT � �v�T � �v2N�

av � vT
r�r�r

aN

�

�v2
v�

aN � �v2andaT � v�8

a � aT T � aN N

aNaT
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Since

Equation 10 gives the normal component as

M

KEPLER’S LAWS OF PLANETARY MOTION

We now describe one of the great accomplishments of calculus by showing how the mate-
rial of this chapter can be used to prove Kepler’s laws of planetary motion. After 20 years
of studying the astronomical observations of the Danish astronomer Tycho Brahe, the
German mathematician and astronomer Johannes Kepler (1571–1630) formulated the fol-
lowing three laws.

KEPLER’S LAWS

1. A planet revolves around the sun in an elliptical orbit with the sun at one 
focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of
the length of the major axis of its orbit.

In his book Principia Mathematica of 1687, Sir Isaac Newton was able to show that
these three laws are consequences of two of his own laws, the Second Law of Motion and
the Law of Universal Gravitation. In what follows we prove Kepler’s First Law. The 
remaining laws are proved as exercises (with hints).

Since the gravitational force of the sun on a planet is so much larger than the forces
exerted by other celestial bodies, we can safely ignore all bodies in the universe except the
sun and one planet revolving about it. We use a coordinate system with the sun at the ori-
gin and we let be the position vector of the planet. (Equally well, could be the
position vector of the moon or a satellite moving around the earth or a comet moving
around a star.) The velocity vector is and the acceleration vector is . We use
the following laws of Newton:

where is the gravitational force on the planet, and are the masses of the planet and
the sun, is the gravitational constant, , and is the unit vector in the
direction of .

We first show that the planet moves in one plane. By equating the expressions for in
Newton’s two laws, we find that

a � �
GM

r 3  r

F
r

u � �1�r�rr � � r �G
MmF

 Law of Gravitation:  F � �
GMm

r 3  r � �
GMm

r 2  u

 Second Law of Motion: F � ma

a � r�v � r�

rr � r�t�

aN � � r��t� � r��t� �
� r��t� � �

6s2 t 2

s8t 2 � 9t 4 

r��t� � r��t� � � i
2t

2

j
2t

2

k
3t 2

6t � � 6t 2 i � 6t 2 j
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and so is parallel to . It follows that . We use Formula 5 in Theorem 13.2.3
to write

Therefore

where is a constant vector. (We may assume that ; that is, and are not parallel.)
This means that the vector is perpendicular to for all values of t, so the planet
always lies in the plane through the origin perpendicular to . Thus the orbit of the planet
is a plane curve.

To prove Kepler’s First Law we rewrite the vector as follows:

Then

(by Theorem 12.4.8, Property 6)

But and, since , it follows from Example 4 in Section 13.2 that
. Therefore

and so

Integrating both sides of this equation, we get

where is a constant vector.
At this point it is convenient to choose the coordinate axes so that the standard basis

vector points in the direction of the vector . Then the planet moves in the -plane.
Since both and are perpendicular to , Equation 11 shows that lies in the 

-plane. This means that we can choose the - and -axes so that the vector lies in the
direction of , as shown in Figure 8.

If is the angle between and , then are polar coordinates of the planet. From
Equation 11 we have

 � GMr u � u � � r � � c � cos � � GMr � rc cos �

 r � �v � h� � r � �GM u � c� � GM r � u � r � c

�r, ��rc�
c

iyxxy
chuv � h

xyhk

c

v � h � GM u � c11

 �v � h�� � v� � h � a � h � GM u�

 a � h � GM u�

u � u� � 0
� u�t� � � 1u � u � � u �2 � 1

 � �GM ��u � u��u � �u � u�u��

 a � h �
�GM

r 2  u � �r 2u � u�� � �GM u � �u � u��

 � r 2�u � u��

 � r u � �r u� � r�u� � r 2�u � u�� � rr��u � u�

 h � r � v � r � r� � r u � �r u��

h

h
hr � r�t�

vrh � 0h

r � v � h

 � v � v � r � a � 0 � 0 � 0

 
d

dt
 �r � v� � r� � v � r � v�

r � a � 0ra
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where . Then

where . But

where . So

Writing , we obtain the equation

Comparing with Theorem 10.6.6, we see that Equation 12 is the polar equation of a conic
section with focus at the origin and eccentricity . We know that the orbit of a planet is a
closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. We will guide you through the der-
ivation of the Second and Third Laws in the Applied Project on page 848. The proofs of
these three laws show that the methods of this chapter provide a powerful tool for describ-
ing some of the laws of nature.

e

r �
ed

1 � e cos �
12

d � h 2�c

r �
h 2��GM�

1 � e cos �
�

eh 2�c

1 � e cos �

h � � h �

r � �v � h� � �r � v� � h � h � h � � h �2 � h 2

e � c��GM�

r �
r � �v � h�

GM � c cos �
�

1

GM
 
r � �v � h�
1 � e cos �

c � � c �
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(d) Draw an approximation to the vector v(2) and estimate the
speed of the particle at .

3–8 Find the velocity, acceleration, and speed of a particle with
the given position function. Sketch the path of the particle and
draw the velocity and acceleration vectors for the specified value 
of .

3. ,

4. , t � 1r�t� � �2 � t, 4st �
t � 2r�t� � ��1

2 t 2, t �
t

y

x0 21

2

1

r(2.4)

r(2)

r(1.5)

t � 2
1. The table gives coordinates of a particle moving through space

along a smooth curve.
(a) Find the average velocities over the time intervals [0, 1],

[0.5, 1], [1, 2], and [1, 1.5].
(b) Estimate the velocity and speed of the particle at .

2. The figure shows the path of a particle that moves with position
vector at time .
(a) Draw a vector that represents the average velocity of the

particle over the time interval .
(b) Draw a vector that represents the average velocity over the

time interval .
(c) Write an expression for the velocity vector v(2).

1.5 � t � 2

2 � t � 2.4

tr�t�

t � 1

EXERCISES13.4

t x y

0 2.7 9.8 3.7
0.5 3.5 7.2 3.3
1.0 4.5 6.0 3.0
1.5 5.9 6.4 2.8
2.0 7.3 7.8 2.7

z



26. A gun is fired with angle of elevation . What is the 
muzzle speed if the maximum height of the shell is 500 m?

27. A gun has muzzle speed . Find two angles of eleva-
tion that can be used to hit a target 800 m away.

28. A batter hits a baseball 3 ft above the ground toward the 
center field fence, which is 10 ft high and 400 ft from home
plate. The ball leaves the bat with speed at an 
angle above the horizontal. Is it a home run? (In other
words, does the ball clear the fence?)

29. A medieval city has the shape of a square and is protected 
by walls with length 500 m and height 15 m. You are the
commander of an attacking army and the closest you can get
to the wall is 100 m. Your plan is to set fire to the city by cat-
apulting heated rocks over the wall (with an initial speed of

). At what range of angles should you tell your men to
set the catapult? (Assume the path of the rocks is perpendicu-
lar to the wall.)

30. A ball with mass 0.8 kg is thrown southward into the air with
a speed of at an angle of to the ground. A west
wind applies a steady force of 4 N to the ball in an easterly
direction. Where does the ball land and with what speed?

; 31. Water traveling along a straight portion of a river normally
flows fastest in the middle, and the speed slows to almost
zero at the banks. Consider a long straight stretch of river
flowing north, with parallel banks 40 m apart. If the maxi-
mum water speed is 3 , we can use a quadratic function
as a basic model for the rate of water flow units from the
west bank: .
(a) A boat proceeds at a constant speed of from a point

on the west bank while maintaining a heading perpen-
dicular to the bank. How far down the river on the oppo-
site bank will the boat touch shore? Graph the path of the
boat.

(b) Suppose we would like to pilot the boat to land at the
point on the east bank directly opposite . If we main-
tain a constant speed of and a constant heading,
find the angle at which the boat should head. Then graph
the actual path the boat follows. Does the path seem 
realistic?

32. Another reasonable model for the water speed of the river in
Exercise 31 is a sine function: . If a
boater would like to cross the river from to with con-
stant heading and a constant speed of , determine the
angle at which the boat should head.

33–38 Find the tangential and normal components of the acceler-
ation vector.

33.

34.

36. r�t� � t i � t 2 j � 3t k

r�t� � cos t i � sin t j � t k35.

r�t� � �1 � t� i � �t 2 � 2t� j

r�t� � �3t � t 3 � i � 3t 2 j

5 m�s
BA

f �x� � 3 sin��x�40�

5 m�s
AB

A
5 m�s

f �x� � 3
400 x�40 � x�

x
m�s

30�30 m�s

80 m�s

50�
115 ft�s

150 m�s

30�5. ,

6. ,

7. ,

8. ,

9–14 Find the velocity, acceleration, and speed of a particle with
the given position function.

9.

10.

12.

13.

14.

15–16 Find the velocity and position vectors of a particle that has
the given acceleration and the given initial velocity and position.

15. , ,

16. , ,

17–18
(a) Find the position vector of a particle that has the given accel-

eration and the specified initial velocity and position.

; (b) Use a computer to graph the path of the particle.

17. , ,

18. , ,

The position function of a particle is given by
. When is the speed a minimum?

20. What force is required so that a particle of mass has the
position function ?

21. A force with magnitude 20 N acts directly upward from the
-plane on an object with mass 4 kg. The object starts at the

origin with initial velocity . Find its position
function and its speed at time .

Show that if a particle moves with constant speed, then the
velocity and acceleration vectors are orthogonal.

23. A projectile is fired with an initial speed of 500 m�s and
angle of elevation . Find (a) the range of the projectile, 
(b) the maximum height reached, and (c) the speed at impact.

24. Rework Exercise 23 if the projectile is fired from a position
200 m above the ground.

A ball is thrown at an angle of to the ground. If the ball
lands 90 m away, what was the initial speed of the ball?

45�25.

30�

22.

t
v�0� � i � j

xy

r�t� � t 3 i � t 2 j � t 3 k
m

r�t� � � t 2, 5t, t 2 � 16t�
19.

r�0� � j � kv�0� � ka�t� � t i � e t j � e�t k

r�0� � jv�0� � ia�t� � 2t i � sin t j � cos 2t k

r�0� � j � kv�0� � ia�t� � 2 i � 6t j � 12t 2 k

r�0� � iv�0� � ka�t� � i � 2 j

r�t� � t sin t i � t cos t j � t 2 k

r�t� � e t�cos t i � sin t j � t k�

r�t� � t 2 i � ln t j � t k

r�t� � s2 t i � e t j � e�t k11.

r�t� � �2 cos t, 3t, 2 sin t �

r�t� � � t 2 � 1, t 3,  t 2 � 1�

t � 0r�t� � t i � 2 cos t j � sin t k

t � 1r�t� � t i � t 2 j � 2 k

t � 0r�t� � e t i � e 2 t j

t � ��3r�t� � 3 cos t i � 2 sin t j
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41. The position function of a spaceship is

and the coordinates of a space station are . The captain
wants the spaceship to coast into the space station. When
should the engines be turned off?

42. A rocket burning its onboard fuel while moving through space
has velocity and mass at time . If the exhaust gases
escape with velocity relative to the rocket, it can be deduced
from Newton’s Second Law of Motion that

(a) Show that .

(b) For the rocket to accelerate in a straight line from rest to
twice the speed of its own exhaust gases, what fraction of
its initial mass would the rocket have to burn as fuel?

v�t� � v�0� � ln 
m�0�
m�t�

 ve

m 
dv
dt

�
dm

dt
 ve 

ve

tm�t�v�t�

�6, 4, 9�

r�t� � �3 � t� i � �2 � ln t� j � �7 �
4

t 2 � 1	 k

37.

38.

39. The magnitude of the acceleration vector is . Use the
figure to estimate the tangential and normal components of .

40. If a particle with mass moves with position vector , then
its angular momentum is defined as and
its torque as . Show that .
Deduce that if for all , then is constant. (This is
the law of conservation of angular momentum.)

L�t�t� �t� � 0
L	�t� � ��t�� �t� � mr�t� � a�t�

L�t� � mr�t� � v�t�
r�t�m

y

x0

a

a
10 cm�s2a

r�t� � t i � cos2t j � sin2t k

r�t� � e t i � s2 t j � e�t k
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Johannes Kepler stated the following three laws of planetary motion on the basis of masses of
data on the positions of the planets at various times.

KEPLER’S LAWS

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of the length
of the major axis of its orbit.

Kepler formulated these laws because they fitted the astronomical data. He wasn’t able to see 
why they were true or how they related to each other. But Sir Isaac Newton, in his Principia 
Mathematica of 1687, showed how to deduce Kepler’s three laws from two of Newton’s own 
laws, the Second Law of Motion and the Law of Universal Gravitation. In Section 13.4 we 
proved Kepler’s First Law using the calculus of vector functions. In this project we guide you
through the proofs of Kepler’s Second and Third Laws and explore some of their consequences.

1. Use the following steps to prove Kepler’s Second Law. The notation is the same as in 
the proof of the First Law in Section 13.4. In particular, use polar coordinates so that

.

(a) Show that .

(b) Deduce that .

(c) If is the area swept out by the radius vector in the time interval 
as in the figure, show that

dA

dt
� 1

2 r 2 
d�

dt


t0, t�r � r�t�A � A�t�

r 2 
d�

dt
� h

h � r 2 
d�

dt
 k

r � �r cos �� i � �r sin �� j

KEPLER’S LAWSA P P L I E D
P R O J E C T

0

r(t)

r(t¸)A(t)

x

y



(d) Deduce that

This says that the rate at which is swept out is constant and proves Kepler’s Second
Law.

2. Let be the period of a planet about the sun; that is, is the time required for it to travel once
around its elliptical orbit. Suppose that the lengths of the major and minor axes of the ellipse
are and .

(a) Use part (d) of Problem 1 to show that .

(b) Show that .

(c) Use parts (a) and (b) to show that .

This proves Kepler’s Third Law. [Notice that the proportionality constant is 
independent of the planet.]

3. The period of the earth’s orbit is approximately 365.25 days. Use this fact and Kepler’s 
Third Law to find the length of the major axis of the earth’s orbit. You will need the mass of
the sun, kg, and the gravitational constant, �kg .

4. It’s possible to place a satellite into orbit about the earth so that it remains fixed above a 
given location on the equator. Compute the altitude that is needed for such a satellite. The
earth’s mass is ; its radius is . (This orbit is called the Clarke
Geosynchronous Orbit after Arthur C. Clarke, who first proposed the idea in 1945. The first
such satellite, Syncom 2, was launched in July 1963.)

6.37 � 106 m5.98 � 1024 kg

2G � 6.67 � 10�11 N
m2M � 1.99 � 1030

4� 2��GM�

T 2 �
4� 2

GM
 a 3

h 2

GM
� ed �

b 2

a

T � 2�ab�h

2b2a

TT

A

dA

dt
� 1

2 h � constant
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6. (a) What is the definition of curvature?
(b) Write a formula for curvature in terms of and .
(c) Write a formula for curvature in terms of and .
(d) Write a formula for the curvature of a plane curve with

equation .

7. (a) Write formulas for the unit normal and binormal vectors of
a smooth space curve .

(b) What is the normal plane of a curve at a point? What is the
osculating plane? What is the osculating circle?

8. (a) How do you find the velocity, speed, and acceleration of a
particle that moves along a space curve?

(b) Write the acceleration in terms of its tangential and normal
components.

9. State Kepler’s Laws.

r�t�

y � f �x�

r��t�r	�t�
T	�t�r	�t�

1. What is a vector function? How do you find its derivative and
its integral?

2. What is the connection between vector functions and space
curves?

3. How do you find the tangent vector to a smooth curve at a
point? How do you find the tangent line? The unit tangent 
vector?

4. If and are differentiable vector functions, is a scalar, and
is a real-valued function, write the rules for differentiating

the following vector functions.
(a) (b) (c)
(d) (e) (f)

5. How do you find the length of a space curve given by a vector
function r�t�?

u� f �t��u�t� � v�t�u�t� � v�t�
f �t� u�t�cu�t�u�t� � v�t�

f
cvu



Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. The curve with vector equation is 
a line.

2. The derivative of a vector function is obtained by differen-
tiating each component function.

3. If and are differentiable vector functions, then

4. If is a differentiable vector function, then

d

dt � r�t� � � � r	�t� �

r�t�

d

dt
 
u�t� � v�t�� � u	�t� � v	�t�

v�t�u�t�

r�t� � t 3 i � 2t 3 j � 3t 3 k

5. If is the unit tangent vector of a smooth curve, then the
curvature is .

6. The binormal vector is .

7. Suppose is twice continuously differentiable. At an inflection
point of the curve , the curvature is 0.

8. If for all , the curve is a straight line.

9. If for all , then is a constant.

10. If for all , then is orthogonal to for all .

11. The osculating circle of a curve C at a point has the same 
tangent vector, normal vector, and curvature as C at that 
point.

12. Different parametrizations of the same curve result in identical
tangent vectors at a given point on the curve.

tr�t�r	�t�t� r�t� � � 1

� r	�t� �t� r�t� � � 1

t��t� � 0

y � f �x�
f

B�t� � N�t� � T�t�

� � � dT�dt �
T�t�

T R U E - F A L S E  Q U I Z

1. (a) Sketch the curve with vector function

(b) Find and .

2. Let .
(a) Find the domain of .
(b) Find .
(c) Find .

3. Find a vector function that represents the curve of intersection
of the cylinder and the plane .

; 4. Find parametric equations for the tangent line to the curve
, , at the point .

Graph the curve and the tangent line on a common screen.

5. If , evaluate .

6. Let be the curve with equations , ,
. Find (a) the point where intersects the -plane,

(b) parametric equations of the tangent line at , and
(c) an equation of the normal plane to at .

7. Use Simpson’s Rule with to estimate the length of 
the arc of the curve with equations , , ,

.

8. Find the length of the curve ,
.

9. The helix intersects the curve
at the point . Find the

angle of intersection of these curves.

10. Reparametrize the curve 
with respect to arc length measured from the point in
the direction of increasing .t

�1, 0, 1�
r�t� � e t i � e t sin t j � e t cos t k

�1, 0, 0�r2�t� � �1 � t� i � t 2 j � t 3 k
r1�t� � cos t i � sin t j � t k

0 � t � 1
r�t� � �2t 3�2, cos 2t, sin 2t�

0 � t � 3
z � t 4y � t 3x � t 2

n � 6

�1, 1, 0�C
�1, 1, 0�

xzCz � ln t
y � 2t � 1x � 2 � t 3C

x
1
0  r�t� dtr�t� � t 2 i � t cos � t j � sin � t k

(1, s3, 2)z � 2 sin 3ty � 2 sin 2tx � 2 sin t

x � z � 5x 2 � y 2 � 16

r	�t�
lim t l 0 r�t�

r
r�t� � �s2 � t , �et � 1��t, ln�t � 1��

r��t�r	�t�

t 
 0r�t� � t i � cos � t j � sin � t k

11. For the curve given by , find
(a) the unit tangent vector 
(b) the unit normal vector
(c) the curvature

12. Find the curvature of the ellipse , at the
points and .

13. Find the curvature of the curve at the point .

; 14. Find an equation of the osculating circle of the curve
at the origin. Graph both the curve and its oscu-

lating circle.

15. Find an equation of the osculating plane of the curve
, , at the point .

16. The figure shows the curve traced by a particle with posi-
tion vector at time .
(a) Draw a vector that represents the average velocity of the

particle over the time interval .
(b) Write an expression for the velocity v(3).
(c) Write an expression for the unit tangent vector T(3) and

draw it.

y

x0

C

r(3.2)

r(3)

1

1

3 � t � 3.2

tr�t�
C

�0, �, 1�z � cos 2ty � tx � sin 2t

y � x 4 � x 2

�1, 1�y � x 4

�0, 4��3, 0�
y � 4 sin tx � 3 cos t

r�t� � � 1
3 t 3, 12 t 2, t�

E X E R C I S E S
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(c) Determine the Coriolis acceleration of a particle that moves
on a rotating disk according to the equation

22. In designing transfer curves to connect sections of straight rail-
road tracks, it’s important to realize that the acceleration of the
train should be continuous so that the reactive force exerted by
the train on the track is also continuous. Because of the formu-
las for the components of acceleration in Section 13.4, this will
be the case if the curvature varies continuously.
(a) A logical candidate for a transfer curve to join existing

tracks given by for and for 
might be the function ,

, whose graph is the arc of the circle shown
in the figure. It looks reasonable at first glance. Show that
the function

is continuous and has continuous slope, but does not have
continuous curvature. Therefore is not an appropriate
transfer curve.

; (b) Find a fifth-degree polynomial to serve as a transfer curve
between the following straight line segments: for

and for . Could this be done with a
fourth-degree polynomial? Use a graphing calculator or
computer to sketch the graph of the “connected” function
and check to see that it looks like the one in the figure.

y

x0

y=x

y=0
transfer curve

1

y

x0

y=F(x)
1

1

œ„2

x 
 1y � xx � 0
y � 0

f

F�x� � �1

s1 � x 2 

s2 � x

if x � 0

if 0 � x � 1�s2 

if x 
 1�s2 

0 � x � 1�s2
f �x� � s1 � x 2x 
 1�s2

y � s2 � xx � 0y � 1

r�t� � e�t cos �t i � e�t sin �t j

17. A particle moves with position function
. Find the velocity, speed, and 

acceleration of the particle.

18. A particle starts at the origin with initial velocity .
Its acceleration is . Find its position
function.

19. An athlete throws a shot at an angle of to the horizontal 
at an initial speed of 43 ft�s. It leaves his hand 7 ft above the
ground.
(a) Where is the shot 2 seconds later?
(b) How high does the shot go?
(c) Where does the shot land?

20. Find the tangential and normal components of the acceleration
vector of a particle with position function

21. A disk of radius is rotating in the counterclockwise direction
at a constant angular speed . A particle starts at the center of
the disk and moves toward the edge along a fixed radius so that
its position at time , , is given by , where

(a) Show that the velocity of the particle is

where is the velocity of a point on the edge of
the disk.

(b) Show that the acceleration of the particle is

where is the acceleration of a point on the rim
of the disk. The extra term is called the Coriolis accel-
eration; it is the result of the interaction of the rotation of
the disk and the motion of the particle. One can obtain a
physical demonstration of this acceleration by walking
toward the edge of a moving merry-go-round.

2vd

ad � R��t�

a � 2vd � t ad

a

vd � R	�t�

v � cos �t i � sin �t j � tvd

v

R�t� � cos �t i � sin �t j

r�t� � tR�t�t 
 0t

�
1

r�t� � t i � 2t j � t 2 k

45�

a�t� � 6t i � 12t 2 j � 6t k
i � j � 3k

r�t� � t ln t i � t  j � e�t k
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1. A particle moves with constant angular speed around a circle whose center is at the origin
and whose radius is . The particle is said to be in uniform circular motion. Assume that the
motion is counterclockwise and that the particle is at the point when . The position
vector at time is .
(a) Find the velocity vector and show that . Conclude that is tangent to the circle

and points in the direction of the motion.
(b) Show that the speed of the particle is the constant . The period of the particle is

the time required for one complete revolution. Conclude that

(c) Find the acceleration vector . Show that it is proportional to and that it points toward
the origin. An acceleration with this property is called a centripetal acceleration. Show
that the magnitude of the acceleration vector is .

(d) Suppose that the particle has mass . Show that the magnitude of the force that is
required to produce this motion, called a centripetal force, is

2. A circular curve of radius on a highway is banked at an angle so that a car can safely
traverse the curve without skidding when there is no friction between the road and the tires.
The loss of friction could occur, for example, if the road is covered with a film of water or ice.
The rated speed of the curve is the maximum speed that a car can attain without skidding.
Suppose a car of mass is traversing the curve at the rated speed Two forces are acting on
the car: the vertical force, , due to the weight of the car, and a force exerted by, and
normal to, the road. (See the figure.)

The vertical component of balances the weight of the car, so that . The
horizontal component of produces a centripetal force on the car so that, by Newton’s Sec-
ond Law and part (d) of Problem 1,

(a) Show that .
(b) Find the rated speed of a circular curve with radius 400 ft that is banked at an angle of 
(c) Suppose the design engineers want to keep the banking at , but wish to increase the

rated speed by . What should the radius of the curve be?

3. A projectile is fired from the origin with angle of elevation and initial speed . Assuming
that air resistance is negligible and that the only force acting on the projectile is gravity, , we
showed in Example 5 in Section 13.4 that the position vector of the projectile is

We also showed that the maximum horizontal distance of the projectile is achieved when
and in this case the range is .

(a) At what angle should the projectile be fired to achieve maximum height and what is the
maximum height?

(b) Fix the initial speed and consider the parabola , whose graph is
shown in the figure. Show that the projectile can hit any target inside or on the boundary
of the region bounded by the parabola and the -axis, and that it can’t hit any target out-
side this region.

(c) Suppose that the gun is elevated to an angle of inclination in order to aim at a target that
is suspended at a height directly over a point units downrange. The target is released
at the instant the gun is fired. Show that the projectile always hits the target, regardless of
the value , provided the projectile does not hit the ground “before” .Dv0

Dh
�

x

x 2 � 2Ry � R2 � 0v0

R � v 2
0 �t� � 45�

r�t� � �v0 cos ��t i � [�v0 sin ��t �
1
2 tt 2 ] j

t

v0�

50%
12�

12�.
v 2

R � Rt tan �

� F � sin � �
mv 2

R

R

F
� F � cos � � mtF

Fmt

vR.m
vR

�R

� F � �
m� v �2

R

Fm
� a � � R�2

ra

T �
2�R

� v � �
2�

�

T�R� v �

vv � r � 0v
r�t� � R cos �t i � R sin �t jt 
 0

t � 0�R, 0�
R

�P
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4. (a) A projectile is fired from the origin down an inclined plane that makes an angle with the
horizontal. The angle of elevation of the gun and the initial speed of the projectile are 
and , respectively. Find the position vector of the projectile and the parametric equations
of the path of the projectile as functions of the time . (Ignore air resistance.)

(b) Show that the angle of elevation that will maximize the downhill range is the angle
halfway between the plane and the vertical.

(c) Suppose the projectile is fired up an inclined plane whose angle of inclination is . Show
that, in order to maximize the (uphill) range, the projectile should be fired in the direction
halfway between the plane and the vertical.

(d) In a paper presented in 1686, Edmond Halley summarized the laws of gravity and projectile
motion and applied them to gunnery. One problem he posed involved firing a projectile to
hit a target a distance up an inclined plane. Show that the angle at which the projectile
should be fired to hit the target but use the least amount of energy is the same as the angle
in part (c). (Use the fact that the energy needed to fire the projectile is proportional to the
square of the initial speed, so minimizing the energy is equivalent to minimizing the initial
speed.)

5. A ball rolls off a table with a speed of 2 ft�s. The table is 3.5 ft high.
(a) Determine the point at which the ball hits the floor and find its speed at the instant of

impact.
(b) Find the angle between the path of the ball and the vertical line drawn through the point

of impact. (See the figure.)
(c) Suppose the ball rebounds from the floor at the same angle with which it hits the floor, but

loses of its speed due to energy absorbed by the ball on impact. Where does the ball
strike the floor on the second bounce?

6. Find the curvature of the curve with parametric equations

; 7. If a projectile is fired with angle of elevation and initial speed , then parametric equations
for its trajectory are

(See Example 5 in Section 13.4.) We know that the range (horizontal distance traveled) 
is maximized when . What value of maximizes the total distance traveled by the
projectile? (State your answer correct to the nearest degree.)

8. A cable has radius and length and is wound around a spool with radius without over-
lapping. What is the shortest length along the spool that is covered by the cable?

RLr

�� � 45�

x � �v cos ��t    y � �v sin ��t �
1
2 tt 2

v�

y � y
t

0
 cos(1

2 �� 2) d�x � y
t

0
 sin(1

2 �� 2) d�

20%

�

R

�

�
t

v0

�
�
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PARTIAL 
DERIVATIVES

14

So far we have dealt with the calculus of functions of a single variable. But, in the real

world, physical quantities often depend on two or more variables, so in this chapter 

we turn our attention to functions of several variables and extend the basic ideas of

differential calculus to such functions.

Functions of two variables can be visualized by means of level curves, which con-
nect points where the function takes on a given value. Atmospheric pressure at a
given time is a function of longitude and latitude and is measured in millibars. Here
the level curves are called isobars and those pictured join locations that had the
same pressure on March 7, 2007. (The curves labeled 1028, for instance, connect
points with pressure 1028 mb.) Surface winds tend to flow from areas of high
pressure across the isobars toward areas of low pressure, and are strongest
where the isobars are tightly packed.



FUNCTIONS OF SEVERAL VARIABLES

In this section we study functions of two or more variables from four points of view:

N verbally (by a description in words)

N numerically (by a table of values)

N algebraically (by an explicit formula)

N visually (by a graph or level curves)

FUNCTIONS OF TWO VARIABLES

The temperature at a point on the surface of the earth at any given time depends on the
longitude and latitude of the point. We can think of as being a function of the two
variables and , or as a function of the pair . We indicate this functional dependence
by writing .

The volume of a circular cylinder depends on its radius and its height . In fact, we
know that . We say that is a function of and , and we write .

DEFINITION A function of two variables is a rule that assigns to each ordered
pair of real numbers in a set a unique real number denoted by . The
set is the domain of and its range is the set of values that takes on, that is,

.

We often write to make explicit the value taken on by at the general point
. The variables and are independent variables and is the dependent variable.

[Compare this with the notation for functions of a single variable.]
A function of two variables is just a function whose domain is a subset of and whose

range is a subset of . One way of visualizing such a function is by means of an arrow dia-
gram (see Figure 1), where the domain is represented as a subset of the -plane.

If a function is given by a formula and no domain is specified, then the domain of 
is understood to be the set of all pairs for which the given expression is a well-
defined real number.

EXAMPLE 1 For each of the following functions, evaluate and find the domain.

(a) (b)

SOLUTION

(a) f �3, 2� �
s3 � 2 � 1

3 � 1
�

s6 

2

f �x, y� � x ln�y 2 � x�f �x, y� �
sx � y � 1

x � 1

f �3, 2�

�x, y�
ff

FIGURE 1
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xyD
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zyx�x, y�
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ffD
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f

V�r, h� � �r 2hhrVV � �r 2h
hrV

T � f �x, y�
�x, y�yx

Tyx
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The expression for makes sense if the denominator is not 0 and the quantity under the
square root sign is nonnegative. So the domain of is

The inequality , or , describes the points that lie on or above
the line , while means that the points on the line must be
excluded from the domain. (See Figure 2.)

(b)

Since is defined only when , that is, , the domain of is
. This is the set of points to the left of the parabola . (See

Figure 3.) M

Not all functions are given by explicit formulas. The function in the next example is
described verbally and by numerical estimates of its values.

EXAMPLE 2 In regions with severe winter weather, the wind-chill index is often used to
describe the apparent severity of the cold. This index W is a subjective temperature that
depends on the actual temperature T and the wind speed . So W is a function of T and ,
and we can write . Table 1 records values of W compiled by the NOAA
National Weather Service of the US and the Meteorological Service of Canada.

For instance, the table shows that if the temperature is and the wind speed is
50 km�h, then subjectively it would feel as cold as a temperature of about with
no wind. So

M

EXAMPLE 3 In 1928 Charles Cobb and Paul Douglas published a study in which they
modeled the growth of the American economy during the period 1899–1922. They con-
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FIGURE 2
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TABLE 1
Wind-chill index as a function of 

air temperature and wind speed

N THE NEW WIND-CHILL INDEX

A new wind-chill index was introduced in
November of 2001 and is more accurate than the
old index at measuring how cold it feels when
it’s windy. The new index is based on a model of
how fast a human face loses heat. It was devel-
oped through clinical trials in which volunteers
were exposed to a variety of temperatures and
wind speeds in a refrigerated wind tunnel.



sidered a simplified view of the economy in which production output is determined by
the amount of labor involved and the amount of capital invested. While there are many
other factors affecting economic performance, their model proved to be remarkably
accurate. The function they used to model production was of the form

where P is the total production (the monetary value of all goods produced in a year), 
L is the amount of labor (the total number of person-hours worked in a year), and K is
the amount of capital invested (the monetary worth of all machinery, equipment, and
buildings). In Section 14.3 we will show how the form of Equation 1 follows from cer-
tain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain
Table 2. They took the year 1899 as a baseline, and P, L, and K for 1899 were each
assigned the value 100. The values for other years were expressed as percentages of 
the 1899 figures.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to the
function

(See Exercise 75 for the details.)
If we use the model given by the function in Equation 2 to compute the production in

the years 1910 and 1920, we get the values

which are quite close to the actual values, 159 and 231.
The production function (1) has subsequently been used in many settings, ranging

from individual firms to global economic questions. It has become known as the 
Cobb-Douglas production function. Its domain is because 
L and K represent labor and capital and are therefore never negative. M

EXAMPLE 4 Find the domain and range of .

SOLUTION The domain of is

which is the disk with center and radius 3. (See Figure 4.) The range of is

Since is a positive square root, . Also

So the range is

M�z � 0 	 z 	 3� � �0, 3	

s9 � x 2 � y 2 	 3?9 � x 2 � y 2 	 9

z � 0z

�z � z � s9 � x 2 � y 2 , �x, y� � D�

t�0, 0�

D � ��x, y�  �  9 � x 2 � y 2 � 0� � ��x, y� � x 2 � y 2 	 9�

t

t�x, y� � s9 � x 2 � y 2 

��L, K� � L � 0, K � 0�

 P�194, 407� � 1.01�194�0.75�407�0.25 
 235.8

 P�147, 208� � 1.01�147�0.75�208�0.25 
 161.9

P�L, K � � 1.01L0.75K 0.252

P�L, K � � bL
K 1�
1
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TABLE 2

. Year P L K

1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431

≈+¥=9

3_3

FIGURE 4
Domain of g(x, y)=œ„„„„„„„„„9-≈-¥

x

y



GRAPHS

Another way of visualizing the behavior of a function of two variables is to consider its
graph.

DEFINITION If is a function of two variables with domain D, then the graph of
is the set of all points in such that and is in D.

Just as the graph of a function of one variable is a curve with equation so
the graph of a function of two variables is a surface with equation . We can
visualize the graph of as lying directly above or below its domain in the -plane.
(See Figure 5.)

EXAMPLE 5 Sketch the graph of the function .

SOLUTION The graph of has the equation , or , which
represents a plane. To graph the plane we first find the intercepts. Putting in
the equation, we get as the -intercept. Similarly, the -intercept is 3 and the 
-intercept is 6. This helps us sketch the portion of the graph that lies in the first octant.

(See Figure 6.)

M

The function in Example 5 is a special case of the function

which is called a linear function. The graph of such a function has the equation

or

so it is a plane. In much the same way that linear functions of one variable are important
in single-variable calculus, we will see that linear functions of two variables play a central
role in multivariable calculus.

EXAMPLE 6 Sketch the graph of .

SOLUTION The graph has equation . We square both sides of this equa-
tion to obtain , or , which we recognize as an equa-
tion of the sphere with center the origin and radius 3. But, since , the graph of is
just the top half of this sphere (see Figure 7). M

tz � 0
x 2 � y 2 � z2 � 9z2 � 9 � x 2 � y 2

z � s9 � x 2 � y 2 

t�x, y� � s9 � x 2 � y 2 V

ax � by � z � c � 0z � ax � by � c

f �x, y� � ax � by � c

FIGURE 6
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yxx � 2

y � z � 0
3x � 2y � z � 6z � 6 � 3x � 2yf

f �x, y� � 6 � 3x � 2y

xyDfS
z � f �x, y�Sf

y � f �x�,Cf

�x, y�z � f �x, y��3�x, y, z�f
f

858 | | | | CHAPTER 14 PARTIAL DERIVATIVES

FIGURE 5
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An entire sphere can’t be represented by a single function of and . As we saw
in Example 6, the upper hemisphere of the sphere is represented by the
function . The lower hemisphere is represented by the function

.

EXAMPLE 7 Use a computer to draw the graph of the Cobb-Douglas production function
.

SOLUTION Figure 8 shows the graph of P for values of the labor L and capital K that lie
between 0 and 300. The computer has drawn the surface by plotting vertical traces. 
We see from these traces that the value of the production P increases as either L or K
increases, as is to be expected.

M

EXAMPLE 8 Find the domain and range and sketch the graph of .

SOLUTION Notice that is defined for all possible ordered pairs of real numbers ,
so the domain is , the entire xy-plane. The range of h is the set of all nonnega-
tive real numbers. [Notice that and , so for all x and y.]

The graph of h has the equation , which is the elliptic paraboloid that
we sketched in Example 4 in Section 12.6. Horizontal traces are ellipses and vertical
traces are parabolas (see Figure 9).

M

Computer programs are readily available for graphing functions of two variables. In
most such programs, traces in the vertical planes and are drawn for equally
spaced values of and parts of the graph are eliminated using hidden line removal.k

y � kx � k

FIGURE 9
Graph of h(x, y)=4≈+¥
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Figure 10 shows computer-generated graphs of several functions. Notice that we get an
especially good picture of a function when rotation is used to give views from different
vantage points. In parts (a) and (b) the graph of is very flat and close to the -plane
except near the origin; this is because is very small when or is large.

LEVEL CURVES

So far we have two methods for visualizing functions: arrow diagrams and graphs. A third
method, borrowed from mapmakers, is a contour map on which points of constant eleva-
tion are joined to form contour curves, or level curves.

DEFINITION The level curves of a function of two variables are the curves with
equations , where is a constant (in the range of ).

A level curve is the set of all points in the domain of at which takes on
a given value . In other words, it shows where the graph of has height .

You can see from Figure 11 the relation between level curves and horizontal traces. The
level curves are just the traces of the graph of in the horizontal plane 
projected down to the -plane. So if you draw the level curves of a function and visual-
ize them being lifted up to the surface at the indicated height, then you can mentally piece

xy
z � kff �x, y� � k

kfk
fff �x, y� � k

fkf �x, y� � k
f

FIGURE 10

(c) f(x, y)=sin x+sin y
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x y
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sin x  sin y

xy
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xyf
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together a picture of the graph. The surface is steep where the level curves are close 
together. It is somewhat flatter where they are farther apart.

One common example of level curves occurs in topographic maps of mountainous
regions, such as the map in Figure 12. The level curves are curves of constant elevation
above sea level. If you walk along one of these contour lines, you neither ascend nor descend.
Another common example is the temperature function introduced in the opening paragraph
of this section. Here the level curves are called isothermals and join locations with the
same temperature. Figure 13 shows a weather map of the world indicating the average
January temperatures. The isothermals are the curves that separate the colored bands. The
isobars in the atmospheric pressure map on page 854 provide another example of level
curves.

FIGURE 13
World mean sea-level temperatures

in January in degrees Celsius
Tarbuck, Atmosphere: Introduction to Meteorology, 4th Edition, 
© 1989. Reprinted by permission of Pearson Education, Inc., 
Upper Saddle River, NJ.

FIGURE 11
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Visual 14.1A animates Figure 11 
by showing level curves being lifted up 
to graphs of functions.
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EXAMPLE 9 A contour map for a function is shown in Figure 14. Use it to estimate the
values of and .

SOLUTION The point (1, 3) lies partway between the level curves with -values 70 and 80.
We estimate that

Similarly, we estimate that

M

EXAMPLE 10 Sketch the level curves of the function for the 
values , , , .

SOLUTION The level curves are

This is a family of lines with slope . The four particular level curves with 
, , , and are , , , and

. They are sketched in Figure 15. The level curves are equally spaced
parallel lines because the graph of is a plane (see Figure 6). M

EXAMPLE 11 Sketch the level curves of the function

SOLUTION The level curves are

This is a family of concentric circles with center and radius . The cases
, , , are shown in Figure 16. Try to visualize these level curves lifted up to

form a surface and compare with the graph of (a hemisphere) in Figure 7. (See TEC
Visual 14.1A.)

M

EXAMPLE 12 Sketch some level curves of the function .

SOLUTION The level curves are

x 2
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FIGURE 16
Contour map of g(x, y)=œ„„„„„„„„„9-≈-¥
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FIGURE 14

FIGURE 15
Contour map of  
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which, for , describes a family of ellipses with semiaxes and . Figure 17(a)
shows a contour map of h drawn by a computer with level curves corresponding to

. Figure 17(b) shows these level curves lifted up to the graph
of h (an elliptic paraboloid) where they become horizontal traces. We see from Figure 17
how the graph of h is put together from the level curves.

M

EXAMPLE 13 Plot level curves for the Cobb-Douglas production function of Example 3.

SOLUTION In Figure 18 we use a computer to draw a contour plot for the Cobb-Douglas
production function

Level curves are labeled with the value of the production P. For instance, the level curve
labeled 140 shows all values of the labor L and capital investment K that result in a pro-
duction of . We see that, for a fixed value of P, as L increases K decreases, and
vice versa. M

For some purposes, a contour map is more useful than a graph. That is certainly true in
Example 13. (Compare Figure 18 with Figure 8.) It is also true in estimating function val-
ues, as in Example 9.

P � 140

FIGURE 18 100
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Visual 14.1B demonstrates the 
connection between surfaces and their 
contour maps.
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Figure 19 shows some computer-generated level curves together with the corresponding
computer-generated graphs. Notice that the level curves in part (c) crowd together near the
origin. That corresponds to the fact that the graph in part (d) is very steep near the origin.

FUNCTIONS OF THREE OR MORE VARIABLES

A function of three variables, , is a rule that assigns to each ordered triple in a
domain a unique real number denoted by . For instance, the temperature

at a point on the surface of the earth depends on the longitude x and latitude y of the
point and on the time t, so we could write .

EXAMPLE 14 Find the domain of if

SOLUTION The expression for is defined as long as , so the domain of 
is

This is a half-space consisting of all points that lie above the plane . Mz � y

D � ��x, y, z� � � 3 � z � y�

fz � y � 0f �x, y, z�

f �x, y, z� � ln�z � y� � xy sin z

f

T � f �x, y, t�
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FIGURE 19
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It’s very difficult to visualize a function of three variables by its graph, since that
would lie in a four-dimensional space. However, we do gain some insight into by exam-
ining its level surfaces, which are the surfaces with equations , where is 
a constant. If the point moves along a level surface, the value of remains
fixed.

EXAMPLE 15 Find the level surfaces of the function

SOLUTION The level surfaces are , where . These form a family of
concentric spheres with radius . (See Figure 20.) Thus, as varies over any
sphere with center , the value of remains fixed. M

Functions of any number of variables can be considered. A function of n variables
is a rule that assigns a number to an -tuple of real
numbers. We denote by the set of all such n-tuples. For example, if a company uses 
different ingredients in making a food product, is the cost per unit of the ingredient,
and units of the ingredient are used, then the total cost of the ingredients is a func-
tion of the variables :

The function is a real-valued function whose domain is a subset of . Sometimes we
will use vector notation to write such functions more compactly: If ,
we often write in place of . With this notation we can rewrite the
function defined in Equation 3 as

where and denotes the dot product of the vectors c and x in .
In view of the one-to-one correspondence between points in and

their position vectors in , we have three ways of looking at a func-
tion f defined on a subset of :

1. As a function of real variables 

2. As a function of a single point variable 

3. As a function of a single vector variable 

We will see that all three points of view are useful.
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FIGURE 20
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(c) Describe in words the meaning of the question “For what
value of T is ?” Then answer the question.

(d) What is the meaning of the function ?
Describe the behavior of this function.

(e) What is the meaning of the function ?
Describe the behavior of this function.

W � f �T, 50�

W � f ��5, v�
f �T, 20� � �49

In Example 2 we considered the function , where
W is the wind-chill index, T is the actual temperature, and is
the wind speed. A numerical representation is given in Table 1.
(a) What is the value of ? What is its meaning?
(b) Describe in words the meaning of the question “For what

value of is ?” Then answer the question.f ��20, v� � �30v

f ��15, 40�

v
W � f �T, v�1.

EXERCISES14.1
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TABLE 4

6. Let .
(a) Evaluate . (b) Evaluate .
(c) Find and sketch the domain of .
(d) Find the range of .

7. Let .
(a) Evaluate . (b) Find the domain of .
(c) Find the range of .

8. Find and sketch the domain of the function
. What is the range of ?

9. Let .
(a) Evaluate . (b) Find the domain of .
(c) Find the range of .

10. Let .
(a) Evaluate . (b) Find the domain of .
(c) Find the range of .

11–20 Find and sketch the domain of the function.

11.

12.

14.

15.

16.

18.

19.

20. f �x, y, z� � ln�16 � 4x 2 � 4y2 � z2 �

f �x, y, z� � s1 � x 2 � y 2 � z2 

f �x, y� � arcsin�x 2 � y 2 � 2�

f �x, y� �
sy � x 2 

1 � x 2
17.

f �x, y� � sy � s25 � x 2 � y 2  

f �x, y� � s1 � x 2 � s1 � y 2  

f �x, y� � sy � x  ln�y � x�

f �x, y� � ln�9 � x 2 � 9y2 �13.

f �x, y� � sxy 

f �x, y� � sx � y 

t

tt�2, �2, 4�
t�x, y, z� � ln�25 � x 2 � y2 � z2�

f
ff �2, �1, 6�

f �x, y, z� � esz�x2�y2 

ff �x, y� � s1 � x � y 2 

f
ff �2, 0�

f �x, y� � x 2e3xy

f
f

f �e, 1�f �1, 1�
f �x, y� � ln�x � y � 1�

2
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2. The temperature-humidity index (or humidex, for short) is the
perceived air temperature when the actual temperature is and
the relative humidity is , so we can write . The fol-
lowing table of values of is an excerpt from a table compiled
by the National Oceanic & Atmospheric Administration.

TABLE 3 Apparent temperature as a function
of temperature and humidity

(a) What is the value of ? What is its meaning?
(b) For what value of is ?
(c) For what value of is ?
(d) What are the meanings of the functions 

and ? Compare the behavior of these two
functions of .

3. Verify for the Cobb-Douglas production function

discussed in Example 3 that the production will be doubled 
if both the amount of labor and the amount of capital are 
doubled. Determine whether this is also true for the general
production function

4. The wind-chill index discussed in Example 2 has been 
modeled by the following function:

Check to see how closely this model agrees with the values in
Table 1 for a few values of and .

The wave heights h in the open sea depend on the speed 
of the wind and the length of time t that the wind has been
blowing at that speed. Values of the function are
recorded in feet in Table 4.
(a) What is the value of ? What is its meaning?
(b) What is the meaning of the function ? Describe

the behavior of this function.
(c) What is the meaning of the function ? Describe

the behavior of this function.
h � f �v, 30�

h � f �30, t�
f �40, 15�

h � f �v, t�

v5.

vT

W�T, v� � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

W

P�L, K � � bL�K 1��

P�L, K � � 1.01L 0.75K 0.25

h
I � f �100, h�

I � f �80, h�
f �T, 50� � 88T
f �90, h� � 100h

f �95, 70�

77

82

87

93

99

78

84

90

96

104
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86
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110
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88

96

107

120
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90

100

114

132
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106

124

144
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I
I � f �T, h�h
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32. Two contour maps are shown. One is for a function whose
graph is a cone. The other is for a function t whose graph is a
paraboloid. Which is which, and why?

Locate the points and in the map of Lonesome Mountain
(Figure 12). How would you describe the terrain near ? 
Near ?

34. Make a rough sketch of a contour map for the function whose
graph is shown.

35–38 A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

35. 36.

37. 38.

_3
_2

_1

0
1

2

3

y

x

00

0

5

5

4

4

3

3

2

2

1

1

y

x

_8

_6

_4

8

y

x

13

14

12
11

y

x

f

z

y
x

B
A

BA33.

I II

x x

y y

f21–29 Sketch the graph of the function.

21. 22.

24.

25. 26.

27.

28.

29.

30. Match the function with its graph (labeled I–VI).Give reasons
for your choices.
(a)

(d)

(e)

31. A contour map for a function is shown. Use it to estimate the
values of and . What can you say about the
shape of the graph?

y

x0 1

1
70 60 50 40

30

20

10

f �3, �2�f ��3, 3�
f

V VIz

yx

z

yx

III IV z

yx

z

y

x

I II z

yx

z

yx

f �x, y� � sin(�x � � � y �)(f)f �x, y� � �x � y�2

f �x, y� � �x 2 � y 2 �2f �x, y� �
1

1 � x 2 � y 2
(c)

f �x, y� � � xy �(b)f �x, y� � � x � � � y �

f �x, y� � sx 2 � y 2 

f �x, y� � s16 � x 2 � 16y 2 

f �x, y� � 4x 2 � y 2 � 1

f �x, y� � 3 � x 2 � y 2f �x, y� � y 2 � 1

f �x, y� � cos xf �x, y� � 10 � 4x � 5y23.

f �x, y� � yf �x, y� � 3
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61–64 Describe the level surfaces of the function.

62.

63.

64.

65–66 Describe how the graph of is obtained from the graph 
of .

(a) (b)
(c) (d)

66. (a) (b)
(c)

; 67–68 Use a computer to graph the function using various
domains and viewpoints. Get a printout that gives a good view of
the “peaks and valleys.” Would you say the function has a maxi-
mum value? Can you identify any points on the graph that you
might consider to be “local maximum points”? What about “local
minimum points”?

67.

68.

; 69–70 Use a computer to graph the function using various
domains and viewpoints. Comment on the limiting behavior of 
the function. What happens as both and become large? What
happens as approaches the origin?

69. 70.

; 71. Use a computer to investigate the family of functions
. How does the shape of the graph depend 

on ?

; 72. Use a computer to investigate the family of surfaces

How does the shape of the graph depend on the numbers 
and ?

; 73. Use a computer to investigate the family of surfaces
. In particular, you should determine the

transitional values of for which the surface changes from
one type of quadric surface to another.

c
z � x 2 � y 2 � cxy

b
a

z � �ax 2 � by 2 �e�x 2�y 2

c
f �x, y� � e cx2�y2

f �x, y� �
xy

x 2 � y 2f �x, y� �
x � y

x 2 � y 2

�x, y�
yx

f �x, y� � xye�x 2�y 2

f �x, y� � 3x � x 4 � 4y 2 � 10xy

t�x, y� � f �x � 3, y � 4�
t�x, y� � f �x, y � 2�t�x, y� � f �x � 2, y�

t�x, y� � 2 � f �x, y�t�x, y� � �f �x, y�
t�x, y� � 2 f �x, y�t�x, y� � f �x, y� � 265.

f
t

f �x, y, z� � x 2 � y 2

f �x, y, z� � x 2 � y 2 � z2

f �x, y, z� � x 2 � 3y 2 � 5z2

f �x, y, z� � x � 3y � 5z61.

39–46 Draw a contour map of the function showing several level
curves.

39. 40.

41. 42.

44.

45. 46.

47–48 Sketch both a contour map and a graph of the function
and compare them.

47.

48.

49. A thin metal plate, located in the -plane, has temperature
at the point . The level curves of are called

isothermals because at all points on an isothermal the temper-
ature is the same. Sketch some isothermals if the temperature
function is given by

50. If is the electric potential at a point in the 
-plane, then the level curves of are called equipotential

curves because at all points on such a curve the electric 
potential is the same. Sketch some equipotential curves if

, where is a positive constant.

; 51–54 Use a computer to graph the function using various
domains and viewpoints. Get a printout of one that, in your opin-
ion, gives a good view. If your software also produces level
curves, then plot some contour lines of the same function and
compare with the graph.

51.

52.

53. (monkey saddle)

54. (dog saddle)

55–60 Match the function (a) with its graph (labeled A–F on
page 869) and (b) with its contour map (labeled I–VI). Give 
reasons for your choices.

56.

57. 58.

59. 60. z �
x � y

1 � x 2 � y 2z � �1 � x 2��1 � y 2�

z � sin x � sin yz � sin�x � y�

z � e x cos yz � sin�xy�55.

f �x, y� � xy 3 � yx 3

f �x, y� � xy 2 � x 3

f �x, y� � �1 � 3x 2 � y2�e1�x2�y2

f �x, y� � e�x2

� e�2y2

cV�x, y� � c	sr 2 � x 2 � y 2 

Vxy
�x, y�V�x, y�

T�x, y� � 100	�1 � x 2 � 2y 2 �

T�x, y�T�x, y�
xy

f �x, y� � s36 � 9x 2 � 4y 2 

f �x, y� � x 2 � 9y 2

f �x, y� � y	�x 2 � y2�f �x, y� � sy 2 � x 2 

f �x, y� � y sec xf �x, y� � ye x43.

f �x, y� � e y	xf �x, y� � y � ln x

f �x, y� � x 3 � yf �x, y� � �y � 2x�2
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Graphs and Contour Maps for Exercises 55–60



; 75. (a) Show that, by taking logarithms, the general Cobb-
Douglas function can be expressed as

(b) If we let and , the equation in
part (a) becomes the linear equation . Use
Table 2 (in Example 3) to make a table of values of

and for the years 1899–1922. Then use a
graphing calculator or computer to find the least squares
regression line through the points .

(c) Deduce that the Cobb-Douglas production function is
.P � 1.01L0.75K 0.25

�ln�L	K�, ln�P	K��

ln�P	K�ln�L	K�

y � �x � ln b
y � ln�P	K �x � ln�L	K �

ln 
P

K
� ln b � � ln 

L

K

P � bL�K 1��
; 74. Graph the functions

and

In general, if t is a function of one variable, how is the graph
of

obtained from the graph of t?

f �x, y� � t(sx 2 � y 2 )

f �x, y� �
1

sx 2 � y 2 

f �x, y� � sin(sx 2 � y 2 )f �x, y� � lnsx 2 � y 2 

f �x, y� � esx2�y2 f �x, y� � sx 2 � y 2 
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LIMITS AND CONTINUITY

Let’s compare the behavior of the functions

as x and y both approach 0 [and therefore the point approaches the origin].

TABLE 1 Values of TABLE 2 Values of 

Tables 1 and 2 show values of and , correct to three decimal places, for
points near the origin. (Notice that neither function is defined at the origin.) It
appears that as approaches (0, 0), the values of are approaching 1 whereas the
values of aren’t approaching any number. It turns out that these guesses based on
numerical evidence are correct, and we write

and does not exist

In general, we use the notation

 
lim

� x, y� l � a, b�
 
 f �x, y� � L

lim
� x, y� l � 0, 0�

 
 
x 2 � y 2

x 2 � y 2lim
� x, y� l � 0, 0�

 
 
sin�x 2 � y 2 �

x 2 � y 2 � 1

t�x, y�
f �x, y��x, y�

�x, y�
t�x, y�f �x, y�

0.000

�0.600

�0.923

�1.000

�0.923

�0.600

0.000

0.600

0.000

�0.724

�1.000

�0.724

0.000

0.600

0.923

0.724

0.000

�1.000

0.000

0.724

0.923

1.000

1.000

1.000

1.000

1.000

1.000

0.923

0.724

0.000

�1.000

0.000

0.724

0.923

0.600

0.000

�0.724

�1.000

�0.724

0.000

0.600

0.000

�0.600

�0.923

�1.000

�0.923

�0.600

0.000

x
y �1.0 �0.5 �0.2 0 0.2 0.5   1.0

�1.0

�0.5

�0.2

0

0.2

0.5

1.0

0.455

0.759

0.829

0.841

0.829

0.759

0.455

0.759

0.959

0.986

0.990

0.986

0.959

0.759

0.829

0.986

0.999

1.000

0.999

0.986

0.829

0.841

0.990

1.000

1.000

0.990

0.841

0.829

0.986

0.999

1.000

0.999

0.986

0.829

0.759

0.959

0.986

0.990

0.986

0.959

0.759

0.455

0.759

0.829

0.841

0.829

0.759

0.455

x
y �1.0 �0.5 �0.2 0 0.2 0.5 1.0

�1.0

�0.5

�0.2

0

0.2

0.5

1.0

t�x, y�f �x, y�

�x, y�

t�x, y� �
x 2 � y 2

x 2 � y 2andf �x, y� �
sin�x 2 � y 2 �

x 2 � y 2

14.2



to indicate that the values of approach the number L as the point approaches
the point along any path that stays within the domain of . In other words, we can
make the values of as close to L as we like by taking the point sufficiently
close to the point , but not equal to . A more precise definition follows.

DEFINITION Let be a function of two variables whose domain D includes
points arbitrarily close to . Then we say that the limit of as 
approaches is and we write

if for every number there is a corresponding number such that

and then

Other notations for the limit in Definition 1 are

and

Notice that is the distance between the numbers and , and
is the distance between the point and the point . Thus

Definition 1 says that the distance between and can be made arbitrarily small by
making the distance from to sufficiently small (but not 0). Figure 1 illustrates
Definition 1 by means of an arrow diagram. If any small interval is given
around , then we can find a disk with center and radius such that maps
all the points in [except possibly ] into the interval .

Another illustration of Definition 1 is given in Figure 2 where the surface is the graph
of . If is given, we can find such that if is restricted to lie in the disk

and , then the corresponding part of lies between the horizontal planes
and .

For functions of a single variable, when we let approach , there are only two pos-
sible directions of approach, from the left or from the right. We recall from Chapter 2 that
if , then does not exist.

For functions of two variables the situation is not as simple because we can let 
approach from an infinite number of directions in any manner whatsoever (see
Figure 3) as long as stays within the domain of .f�x, y�

�a, b�
�x, y�

limx l a f �x� limx l a� f �x� � limx l a� f �x�

ax
z � L � �z � L � �

S�x, y� � �a, b�D	

�x, y�	 � 0� � 0f
S

y

0 x zL L+∑L-∑0

f
)(

D

(x, y)

(a, b)

∂

FIGURE 1  FIGURE 2 

x
y

z

0

L+∑
L

L-∑

(a, b)

D
∂

S

�L � �, L � ���a, b�D	

f	 � 0�a, b�D	L
�L � �, L � ��

�a, b��x, y�
Lf �x, y�

�a, b��x, y�s�x � a� 2 � �y � b� 2 

Lf �x, y�� f �x, y� � L �

f �x, y� l L  as  �x, y� l �a, b�lim 
x l a
y l b

 f �x, y� � L

� f �x, y� � L � 
 �0 
 s�x � a�2 � �y � b�2 
 	�x, y� � Dif

	 � 0� � 0

lim 
�x, y� l �a, b�

 f �x, y� � L

L�a, b�
�x, y�f �x, y��a, b�

f1

�a, b��a, b�
�x, y�f �x, y�

f�a, b�
�x, y�f �x, y�
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Definition 1 says that the distance between and L can be made arbitrarily small
by making the distance from to sufficiently small (but not 0). The definition
refers only to the distance between and . It does not refer to the direction of
approach. Therefore, if the limit exists, then must approach the same limit no mat-
ter how approaches . Thus if we can find two different paths of approach along
which the function has different limits, then it follows that does
not exist.

If as along a path and as
along a path , where , then does 

not exist.

EXAMPLE 1 Show that does not exist.

SOLUTION Let . First let’s approach along the -axis.
Then gives for all , so

We now approach along the -axis by putting . Then for 
all , so

(See Figure 4.) Since has two different limits along two different lines, the given limit
does not exist. (This confirms the conjecture we made on the basis of numerical evidence
at the beginning of this section.) M

EXAMPLE 2 If , does exist?

SOLUTION If , then . Therefore

If , then , so

Although we have obtained identical limits along the axes, that does not show that the
given limit is 0. Let’s now approach along another line, say . For all ,

Therefore

(See Figure 5.) Since we have obtained different limits along different paths, the given
limit does not exist. M

�x, y� l �0, 0� along y � xasf �x, y� l 1
2

f �x, x� �
x 2

x 2 � x 2 �
1

2

x � 0y � x�0, 0�

�x, y� l �0, 0� along the y-axisasf �x, y� l 0

f �0, y� � 0	y 2 � 0x � 0

�x, y� l �0, 0� along the x-axisasf �x, y� l 0

f �x, 0� � 0	x 2 � 0y � 0

lim 
�x, y� l �0, 0�

 f �x, y�f �x, y� �
xy

x 2 � y 2

f

�x, y� l �0, 0� along the y-axisasf �x, y� l �1

y � 0
f �0, y� �

�y 2

y 2 � �1x � 0y

�x, y� l �0, 0� along the x-axisasf �x, y� l 1

x � 0f �x, 0� � x 2	x 2 � 1y � 0
x�0, 0�f �x, y� � �x 2 � y 2 �	�x 2 � y 2 �

lim
� x, y� l � 0, 0�

 
 
x 2 � y 2

x 2 � y 2
V

lim�x, y� l �a, b� f �x, y�L1 � L2C2�x, y� l �a, b�
f �x, y� l L2C1�x, y� l �a, b�f �x, y� l L1

lim�x, y� l �a, b� f �x, y�f �x, y�
�a, b��x, y�

f �x, y�
�a, b��x, y�

�a, b��x, y�
f �x, y�
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Figure 6 sheds some light on Example 2. The ridge that occurs above the line cor-
responds to the fact that for all points on that line except the origin.

EXAMPLE 3 If , does exist?

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting
along any nonvertical line through the origin. Then , where 

is the slope, and

So

Thus has the same limiting value along every nonvertical line through the origin. But
that does not show that the given limit is 0, for if we now let along the
parabola , we have

so

Since different paths lead to different limiting values, the given limit does not exist. M

Now let’s look at limits that do exist. Just as for functions of one variable, the calcula-
tion of limits for functions of two variables can be greatly simplified by the use of proper-
ties of limits. The Limit Laws listed in Section 2.3 can be extended to functions of two
variables: The limit of a sum is the sum of the limits, the limit of a product is the product
of the limits, and so on. In particular, the following equations are true.

The Squeeze Theorem also holds.

EXAMPLE 4 Find if it exists.

SOLUTION As in Example 3, we could show that the limit along any line through the 
origin is 0. This doesn’t prove that the given limit is 0, but the limits along the parabolas

lim
�x, y� l �0, 0�

 
 

3x 2y

x 2 � y 2

lim
�x, y� l �a, b�

 
 c � clim

�x, y� l �a, b�
 
 y � blim

�x, y� l �a, b�
 
 x � a2

�x, y� l �0, 0� along x � y 2asf �x, y� l 1
2

f �x, y� � f �y 2, y� �
y 2 � y 2

�y 2 �2 � y 4 �
y 4

2y 4 �
1

2

x � y 2
�x, y� l �0, 0�

f

�x, y� l �0, 0� along y � mxasf �x, y� l 0

f �x, y� � f �x, mx� �
x�mx�2

x 2 � �mx�4 �
m 2x 3

x 2 � m 4x 4 �
m 2x

1 � m 4x 2

my � mx�x, y� l �0, 0�

lim
� x, y� l �0, 0�

 
 f �x, y�f �x, y� �

xy 2

x 2 � y 4
V

FIGURE 6
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x
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In Visual 14.2 a rotating line on the
surface in Figure 6 shows different limits at
the origin from different directions.
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N Figure 7 shows the graph of the function in
Example 3. Notice the ridge above the parabola
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and also turn out to be 0, so we begin to suspect that the limit does exist
and is equal to 0.

Let . We want to find such that

if

that is, if

But since , so and therefore

Thus if we choose and let , then

Hence, by Definition 1,

M

CONTINUITY

Recall that evaluating limits of continuous functions of a single variable is easy. It can be
accomplished by direct substitution because the defining property of a continuous function
is . Continuous functions of two variables are also defined by the direct
substitution property.

DEFINITION A function of two variables is called continuous at if

We say is continuous on if is continuous at every point in .

The intuitive meaning of continuity is that if the point changes by a small amount,
then the value of changes by a small amount. This means that a surface that is the
graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and quo-
tients of continuous functions are continuous on their domains. Let’s use this fact to give
examples of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of terms
of the form , where is a constant and and are nonnegative integers. A rational
function is a ratio of polynomials. For instance,

f �x, y� � x 4 � 5x 3y 2 � 6xy 4 � 7y � 6

nmccxmyn

f �x, y�
�x, y�

D�a, b�fDf

lim
�x, y� l �a, b�

 
 f �x, y� � f �a, b�

�a, b�f4

limx l a f �x� � f �a�

lim
�x, y� l �0, 0�

 
 

3x 2y

x 2 � y 2 � 0

� 3x 2y

x 2 � y 2 � 0 � � 3sx 2 � y 2 � 3� � 3��

3� � �

0 � sx 2 � y 2 � �� � ��3

3x 2� y �
x 2 � y 2 � 3 � y � � 3sy 2 � 3sx 2 � y 2 3

x 2��x 2 � y 2 � � 1y 2 � 0x 2 � x 2 � y 2

3x 2� y �
x 2 � y 2 � �then0 � sx 2 � y 2 � �

� 3x 2y

x 2 � y 2 � 0 � � �then0 � sx 2 � y 2 � �

� 	 0� 	 0

x � y 2y � x 2
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N Another way to do Example 4 is to use the
Squeeze Theorem instead of Definition 1. From
(2) it follows that

and so the first inequality in (3) shows that the
given limit is 0.

lim 
�x, y� l �0, 0�

 3� y � � 0



is a polynomial, whereas

is a rational function.
The limits in (2) show that the functions , , and are

continuous. Since any polynomial can be built up out of the simple functions , , and 
by multiplication and addition, it follows that all polynomials are continuous on .
Likewise, any rational function is continuous on its domain because it is a quotient of 
continuous functions.

EXAMPLE 5 Evaluate .

SOLUTION Since is a polynomial, it is continuous every-
where, so we can find the limit by direct substitution:

M

EXAMPLE 6 Where is the function continuous?

SOLUTION The function is discontinuous at because it is not defined there. 
Since is a rational function, it is continuous on its domain, which is the set

. M

EXAMPLE 7 Let

Here is defined at but is still discontinuous there because 
does not exist (see Example 1). M

EXAMPLE 8 Let

We know is continuous for since it is equal to a rational function there.
Also, from Example 4, we have

Therefore is continuous at , and so it is continuous on . M

Just as for functions of one variable, composition is another way of combining two con-
tinuous functions to get a third. In fact, it can be shown that if is a continuous function
of two variables and is a continuous function of a single variable that is defined on the
range of , then the composite function defined by is also a
continuous function.

h�x, y� � t� f �x, y��h � t � ff
t

f

� 2�0, 0�f

lim
�x, y� l �0, 0�

 
 f �x, y� � lim

�x, y� l �0, 0�
 
 

3x 2y

x 2 � y 2 � 0 � f �0, 0�

�x, y� � �0, 0�f

f �x, y� � 	
0

3x 2y

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

lim�x, y� l �0, 0� t�x, y�t�0, 0�t

t�x, y� � 	
0

x 2 � y 2

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

D � 
�x, y� � �x, y� � �0, 0��
f

�0, 0�f

f �x, y� �
x 2 � y 2

x 2 � y 2

lim
�x, y� l �1, 2�

 
 �x 2y 3 � x 3y 2 � 3x � 2y� � 12 � 23 � 13 � 22 � 3 � 1 � 2 � 2 � 11

f �x, y� � x 2y 3 � x 3y 2 � 3x � 2y

lim
�x, y� l �1, 2�

 
 �x 2y 3 � x 3y 2 � 3x � 2y�V

� 2
htf

h�x, y� � ct�x, y� � yf �x, y� � x

t�x, y� �
2xy � 1

x 2 � y 2

SECTION 14.2 LIMITS AND CONTINUITY | | | | 875

FIGURE 8

z

y

x

N Figure 8 shows the graph of the continuous
function in Example 8.



EXAMPLE 9 Where is the function continuous?

SOLUTION The function is a rational function and therefore continuous
except on the line . The function is continuous everywhere. So the
composite function

is continuous except where . The graph in Figure 9 shows the break in the graph of
above the -axis. M

FUNCTIONS OF THREE OR MORE VARIABLES

Everything that we have done in this section can be extended to functions of three or more
variables. The notation

means that the values of approach the number L as the point approaches
the point along any path in the domain of f. Because the distance between two
points and in is given by , we can
write the precise definition as follows: For every number there is a corresponding
number such that

if and

then

The function f is continuous at if

For instance, the function

is a rational function of three variables and so is continuous at every point in except
where . In other words, it is discontinuous on the sphere with center the
origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write
the definitions of a limit for functions of two or three variables in a single compact form
as follows.

If is defined on a subset D of , then means that for
every number there is a corresponding number such that

if and then

Notice that if , then and , and (5) is just the definition of a limit for
functions of a single variable. For the case , we have , , 
and , so (5) becomes Definition 1. If , then

, , and (5) becomes the definition of a limit of a function of
three variables. In each case the definition of continuity can be written as

lim 
x l a

 f �x� � f �a�

a � �a, b, c
x � �x, y, z

n � 3�x � a � � s�x � a� 2 � �y � b� 2 

a � �a, b 
x � �x, y
n � 2
a � ax � xn � 1

� f �x� � L � � �0 � � x � a � � �x � D

� 	 0� 	 0
lim x l a f �x� � L�nf5

x 2 � y 2 � z2 � 1
� 3

f �x, y, z� �
1

x 2 � y 2 � z2 � 1

lim
�x, y, z� l �a, b, c�

 
 f �x, y, z� � f �a, b, c�

�a, b, c�

� f �x, y, z� � L � � �

0 � s�x � a� 2 � �y � b� 2 � �z � c� 2 � ��x, y, z� is in the domain of f

� 	 0
� 	 0

s�x � a� 2 � �y � b� 2 � �z � c� 2 � 3�a, b, c��x, y, z�
�a, b, c�

�x, y, z�f �x, y, z�

lim 
�x, y, z� l �a, b, c�

 f �x, y, z� � L

yh
x � 0

t� f �x, y�� � arctan�y�x� � h�x, y�

t�t� � arctan tx � 0
f �x, y� � y�x

h�x, y� � arctan�y�x�
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FIGURE 9
The function h(x, y)=arctan(y/x)

is discontinuous where x=0.
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24.

25–26 Find and the set on which is 
continuous.

,

26. ,

; 27–28 Graph the function and observe where it is discontinuous.
Then use the formula to explain what you have observed.

27.

29–38 Determine the set of points at which the function is 
continuous.

29. 30.

31. 32.

33. 34.

35.

36.

38.

39–41 Use polar coordinates to find the limit. [If are 
polar coordinates of the point with , note that 
as .]

40.

41. lim
�x, y� l �0, 0�

 
 
e�x2�y2

� 1

x 2 � y 2

lim
�x, y� l �0, 0�

 
 �x2 � y2 � ln�x2 � y2 �

lim
�x, y� l �0, 0�

 
 
x3 � y3

x2 � y239.

�x, y� l �0, 0�
r l 0�r � 0�x, y�

�r, 
�

f �x, y� � 	
0

xy

x 2 � xy � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � 	
1

x 2 y 3

2x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�
37.

f �x, y, z� � sx � y � z 

f �x, y, z� �
sy 

x 2 � y 2 � z 2

G�x, y� � tan�1(�x � y��2)G�x, y� � ln�x 2 � y 2 � 4 �

F�x, y� � ex2y � sx � y 2 F�x, y� � arctan(x � sy )

F�x, y� �
x � y

1 � x 2 � y 2F�x, y� �
sin�xy�
e x � y2

f �x, y� �
1

1 � x 2 � y 2
28.f �x, y� � e 1��x�y�

f �x, y� �
1 � xy

1 � x 2 y 2t�t� � t � ln t

f �x, y� � 2x � 3y � 6t�t� � t 2 � st  25.

hh�x, y� � t� f �x, y��

lim
�x, y� l �0, 0�

 
 

xy 3

x 2 � y6

1. Suppose that . What can you say 
about the value of ? What if is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude, 

latitude, and time
(b) Elevation (height above sea level) as a function of longi-

tude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled 

and time

3–4 Use a table of numerical values of for near the
origin to make a conjecture about the value of the limit of 
as . Then explain why your guess is correct.

3. 4.

5–22 Find the limit, if it exists, or show that the limit does 
not exist.

5. 6.

7. 8.

10.

11. 12.

14.

15. 16.

17. 18.

19.

20.

22.

; 23–24 Use a computer graph of the function to explain why the
limit does not exist.

23. lim
�x, y� l �0, 0�

 
 
2x 2 � 3xy � 4y 2

3x 2 � 5y 2

lim
�x, y, z� l �0, 0, 0�

 
 

yz

x 2 � 4y 2 � 9z2

lim
�x, y, z� l �0, 0, 0�

 
 
xy � yz 2 � xz2

x 2 � y 2 � z 4
21.

lim
�x, y, z� l �0, 0, 0�

 
 
x 2 � 2y 2 � 3z2

x 2 � y 2 � z2

lim 
�x, y, z� l �3, 0, 1�

 e�xy sin��z�2�

lim
�x, y� l �0, 0�

 
 

xy 4

x 2 � y 8lim
�x, y� l �0, 0�

 
 

x 2 � y 2

sx 2 � y 2 � 1 � 1

lim
�x, y� l �0, 0�

 
 

x 2 sin2 y

x 2 � 2y 2lim
�x, y� l �0, 0�

 
 

x 2ye y

x 4 � 4y 2

lim
�x, y� l �0, 0�

 
 
x 4 � y 4

x 2 � y 2lim
�x, y� l �0, 0�

 
 

xy

sx 2 � y 2 
13.

lim
�x, y� l �0, 0�

 
 

6x 3y

2x 4 � y 4lim
�x, y� l �0, 0�

 
 

xy cos y

3x 2 � y 2

lim
�x, y� l �0, 0�

 
 
x 2 � sin2 y

2x 2 � y 2lim
�x, y� l �0, 0�

 
 

y 4

x 4 � 3y 4
9.

lim
�x, y� l �1, 0�

 
 ln� 1 � y 2

x 2 � xy�lim
�x, y� l �2, 1�

 
 

4 � xy

x 2 � 3y 2

lim
�x, y� l �1, �1�

 
 e�xy cos�x � y�lim

�x, y� l �1, 2�
 
 �5x 3 � x 2y 2�

f �x, y� �
2xy

x 2 � 2y 2f �x, y� �
x 2y 3 � x 3y 2 � 5

2 � xy

�x, y� l �0, 0�
f �x, y�

�x, y�f �x, y�

ff �3, 1�
lim�x, y� l �3, 1� f �x, y� � 6
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44. Let

(a) Show that as along any path
through of the form with .

(b) Despite part (a), show that is discontinuous at .
(c) Show that is discontinuous on two entire curves.

45. Show that the function given by is continuous
on . [Hint: Consider .]

46. If , show that the function f given by is
continuous on .� n

f �x� � c � xc � Vn

� x � a �2 � �x � a� � �x � a�� n
f �x� � � x �f

f
�0, 0�f

a � 4y � mx a�0, 0�
�x, y� l �0, 0�f �x, y� l 0

f �x, y� � 	0  if y � 0  or  y � x 4

1  if 0 � y � x 4

; 42. At the beginning of this section we considered the function

and guessed that as on the basis
of numerical evidence. Use polar coordinates to confirm the
value of the limit. Then graph the function.

; 43. Graph and discuss the continuity of the function

f �x, y� � 	
1

sin xy

xy
if

if

xy � 0

xy � 0

�x, y� l �0, 0�f �x, y� l 1

f �x, y� �
sin�x2 � y2 �

x2 � y2
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PARTIAL DERIVATIVES

On a hot day, extreme humidity makes us think the temperature is higher than it really 
is, whereas in very dry air we perceive the temperature to be lower than the thermom-
eter indicates. The National Weather Service has devised the heat index (also called the
temperature-humidity index, or humidex, in some countries) to describe the combined
effects of temperature and humidity. The heat index I is the perceived air temperature when
the actual temperature is T and the relative humidity is H. So I is a function of T and H and
we can write The following table of values of I is an excerpt from a table
compiled by the National Weather Service.

If we concentrate on the highlighted column of the table, which corresponds to a rela-
tive humidity of H � 70%, we are considering the heat index as a function of the single
variable T for a fixed value of H. Let’s write . Then describes how the
heat index I increases as the actual temperature T increases when the relative humidity is
70%. The derivative of t when is the rate of change of I with respect to T when

:

t��96� � lim
h l 0

 
t�96 � h� � t�96�

h
� lim

h l 0
 
 f �96 � h, 70� � f �96, 70�

h

T � 96
F
T � 96
F

t�T�t�T� � f �T, 70�

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

I � f �T, H�.

14.3

TABLE 1
Heat index as a function of 

temperature and humidity
I



We can approximate using the values in Table 1 by taking and :

Averaging these values, we can say that the derivative is approximately 3.75. This
means that, when the actual temperature is and the relative humidity is 70%, the
apparent temperature (heat index) rises by about for every degree that the actual
temperature rises!

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed temper-
ature of . The numbers in this row are values of the function ,
which describes how the heat index increases as the relative humidity H increases when
the actual temperature is . The derivative of this function when H � 70% is the
rate of change of I with respect to H when H � 70%:

By taking h � 5 and �5, we approximate using the tabular values:

By averaging these values we get the estimate . This says that, when the tem-
perature is and the relative humidity is 70%, the heat index rises about for
every percent that the relative humidity rises.

In general, if is a function of two variables and , suppose we let only vary while
keeping fixed, say , where is a constant. Then we are really considering a func-
tion of a single variable , namely, . If has a derivative at , then we call it
the partial derivative of with respect to x at and denote it by . Thus

By the definition of a derivative, we have

and so Equation 1 becomes

fx�a, b� � lim
h l 0

 
 f �a � h, b� � f �a, b�

h
2

t��a� � lim
h l 0

 
t�a � h� � t�a�

h

t�x� � f �x, b�wherefx�a, b� � t��a�1

fx�a, b��a, b�f
att�x� � f �x, b�x

by � by
xyxf

0.9
F96
F
G��70� � 0.9

 G��70� �
G�65� � G�70�

�5
�

 f �96, 65� � f �96, 70�
�5

�
121 � 125

�5
� 0.8

 G��70� �
G�75� � G�70�

5
�

 f �96, 75� � f �96, 70�
5

�
130 � 125

5
� 1

G��70�

G��70� � lim
h l 0

 
G�70 � h� � G�70�

h
� lim

h l 0
 
 f �96, 70 � h� � f �96, 70�

h

T � 96
F

G�H� � f �96, H �T � 96
F

3.75
F
96
F

t��96�

 t��96� �
t�94� � t�96�

�2
�

 f �94, 70� � f �96, 70�
�2

�
118 � 125

�2
� 3.5

 t��96� �
t�98� � t�96�

2
�

 f �98, 70� � f �96, 70�
2

�
133 � 125

2
� 4

�2h � 2t��96�
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Similarly, the partial derivative of with respect to y at , denoted by , is
obtained by keeping fixed and finding the ordinary derivative at of the func-
tion :

With this notation for partial derivatives, we can write the rates of change of the heat
index I with respect to the actual temperature T and relative humidity H when 
and H � 70% as follows:

If we now let the point vary in Equations 2 and 3, and become functions of
two variables.

If is a function of two variables, its partial derivatives are the functions 
and defined by

There are many alternative notations for partial derivatives. For instance, instead of 
we can write or (to indicate differentiation with respect to the first variable) or

. But here can’t be interpreted as a ratio of differentials.

NOTATIONS FOR PARTIAL DERIVATIVES If , we write

To compute partial derivatives, all we have to do is remember from Equation 1 that 
the partial derivative with respect to is just the ordinary derivative of the function of a
single variable that we get by keeping fixed. Thus we have the following rule.

RULE FOR FINDING PARTIAL DERIVATIVES OF z ��

1. To find , regard as a constant and differentiate with respect to .

2. To find , regard as a constant and differentiate with respect to .yf �x, y�xfy

xf �x, y�yfx

f �x, y�

y
tx

 fy�x, y� � fy �
�f

�y
�

�

�y
 f �x, y� �

�z

�y
� f2 � D2 f � Dy f

 fx�x, y� � fx �
�f

�x
�

�

�x
 f �x, y� �

�z

�x
� f1 � D1 f � Dx f

z � f �x, y�

�f��x�f��x
D1 ff1fx

 fy�x, y� � lim
h l 0

 
 f �x, y � h� � f �x, y�

h

 fx�x, y� � lim
h l 0

 
 f �x � h, y� � f �x, y�

h

fy

fxf4

fyfx�a, b�

fH�96, 70� � 0.9fT �96, 70� � 3.75

T � 96
F

fy�a, b� � lim
h l 0

 
 f �a, b � h� � f �a, b�

h
3

G�y� � f �a, y�
b�x � a�x

fy�a, b��a, b�f
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EXAMPLE 1 If , find and .

SOLUTION Holding constant and differentiating with respect to , we get

and so

Holding constant and differentiating with respect to , we get

M

INTERPRETATIONS OF PARTIAL DERIVATIVES

To give a geometric interpretation of partial derivatives, we recall that the equation
represents a surface (the graph of ). If , then the point 

lies on . By fixing , we are restricting our attention to the curve in which the ver-
tical plane intersects S. (In other words, is the trace of in the plane .)
Likewise, the vertical plane intersects in a curve . Both of the curves and 
pass through the point . (See Figure 1.)

Notice that the curve is the graph of the function , so the slope of its
tangent at is . The curve is the graph of the function ,
so the slope of its tangent at is .

Thus the partial derivatives and can be interpreted geometrically as the
slopes of the tangent lines at to the traces and of in the planes 
and .

As we have seen in the case of the heat index function, partial derivatives can also be
interpreted as rates of change. If , then represents the rate of change of 
with respect to when is fixed. Similarly, represents the rate of change of with
respect to when is fixed.

EXAMPLE 2 If , find and and interpret these num-
bers as slopes.

SOLUTION We have

 fy�1, 1� � �4 fx�1, 1� � �2

 fy�x, y� � �4y fx�x, y� � �2x

fy�1, 1�fx�1, 1�f �x, y� � 4 � x 2 � 2y 2

xy
z�z��yyx

z�z��xz � f �x, y�

x � a
y � bSC2C1P�a, b, c�

fy �a, b�fx�a, b�
G��b� � fy�a, b�PT2

G�y� � f �a, y�C2t��a� � fx�a, b�PT1

t�x� � f �x, b�C1

FIGURE 1
The partial derivatives of f at (a, b) are
the slopes of the tangents to C¡  and C™.

0

(a, b, 0)

C™

C¡

T¡

P(a, b, c)

S T™

z

yx

P
C2C1C2Sx � a

y � bSC1y � b
C1y � bS

P�a, b, c�f �a, b� � cfSz � f �x, y�

 fy�2, 1� � 3 � 22 � 12 � 4 � 1 � 8

 fy�x, y� � 3x 2y 2 � 4y

yx

 fx�2, 1� � 3 � 22 � 2 � 2 � 13 � 16

 fx�x, y� � 3x 2 � 2xy 3

xy

fy�2, 1�fx�2, 1�f �x, y� � x 3 � x 2y 3 � 2y 2
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The graph of is the paraboloid and the vertical plane inter-
sects it in the parabola , . (As in the preceding discussion, we label 
it in Figure 2.) The slope of the tangent line to this parabola at the point is

. Similarly, the curve in which the plane intersects the parabo-
loid is the parabola , , and the slope of the tangent line at is

. (See Figure 3.)

M

Figure 4 is a computer-drawn counterpart to Figure 2. Part (a) shows the plane 
intersecting the surface to form the curve and part (b) shows and . [We have used
the vector equations for and for .]
Similarly, Figure 5 corresponds to Figure 3.

FIGURE 4

FIGURE 5
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0
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0
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2z

1
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T1r�t� � �1 � t, 1, 1 � 2t
C1r�t� � � t, 1, 2 � t 2 
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FIGURE 2
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z

y

x

z

y

x

fy�1, 1� � �4
�1, 1, 1�x � 1z � 3 � 2y 2

x � 1C2fx�1, 1� � �2
�1, 1, 1�C1

y � 1z � 2 � x 2
y � 1z � 4 � x 2 � 2y 2f
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EXAMPLE 3 If , calculate and .

SOLUTION Using the Chain Rule for functions of one variable, we have

M

EXAMPLE 4 Find and if is defined implicitly as a function of and 
by the equation

SOLUTION To find , we differentiate implicitly with respect to , being careful to treat
as a constant:

Solving this equation for , we obtain

Similarly, implicit differentiation with respect to gives

M

FUNCTIONS OF MORE THAN TWO VARIABLES

Partial derivatives can also be defined for functions of three or more variables. For example,
if is a function of three variables , , and , then its partial derivative with respect to 
is defined as

and it is found by regarding and as constants and differentiating with respect
to . If , then can be interpreted as the rate of change of with
respect to x when y and are held fixed. But we can’t interpret it geometrically because the
graph of f lies in four-dimensional space.

In general, if is a function of variables, , its partial derivative
with respect to the ith variable is

�u

�xi
� lim

h l 0
 
 f �x1, . . . , xi�1, xi � h, xi�1, . . . , xn � � f �x1, . . . , xi , . . . , xn�

h

xi

u � f �x1, x2, . . . , xn �nu

z
wfx � �w��xw � f �x, y, z�x

f �x, y, z�zy

fx�x, y, z� � lim
h l 0

 
 f �x � h, y, z� � f �x, y, z�

h

xzyxf

�z

�y
� �

y 2 � 2xz

z 2 � 2xy

y

�z

�x
� �

x 2 � 2yz

z 2 � 2xy

�z��x

3x 2 � 3z2 
�z

�x
� 6yz � 6xy 

�z

�x
� 0

y
x�z��x

x 3 � y 3 � z3 � 6xyz � 1

yxz�z��y�z��xV

 
�f

�y
� cos� x

1 � y� �
�

�y
 � x

1 � y� � �cos� x

1 � y� �
x

�1 � y�2

 
�f

�x
� cos� x

1 � y� �
�

�x
 � x

1 � y� � cos� x

1 � y� �
1

1 � y

�f

�y

�f

�x
f �x, y� � sin� x

1 � y�V
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FIGURE 6

N Some computer algebra systems can plot 
surfaces defined by implicit equations in three
variables. Figure 6 shows such a plot of the 
surface defined by the equation in Example 4.



and we also write

EXAMPLE 5 Find , , and if .

SOLUTION Holding and constant and differentiating with respect to , we have

Similarly, M

HIGHER DERIVATIVES

If is a function of two variables, then its partial derivatives and are also functions of
two variables, so we can consider their partial derivatives , , , and ,
which are called the second partial derivatives of . If , we use the following
notation:

Thus the notation (or ) means that we first differentiate with respect to and
then with respect to , whereas in computing the order is reversed.

EXAMPLE 6 Find the second partial derivatives of

SOLUTION In Example 1 we found that

Therefore

M fyy �
�

�y
 �3x 2y 2 � 4y� � 6x 2y � 4 fyx �

�

�x
 �3x 2y 2 � 4y� � 6xy 2

 fxy �
�

�y
 �3x 2 � 2xy 3 � � 6xy 2 fxx �

�

�x
 �3x 2 � 2xy 3 � � 6x � 2y 3

fy�x, y� � 3x 2y 2 � 4yfx�x, y� � 3x 2 � 2xy 3

f �x, y� � x 3 � x 2y 3 � 2y 2

fyxy
x�2f��y �xfx y

 � fy�y � fyy � f22 �
�

�y
 � �f

�y� �
�2f

�y 2 �
�2z

�y 2

 � fy�x � fyx � f21 �
�

�x
 � �f

�y� �
�2f

�x �y
�

�2z

�x �y

 � fx�y � fxy � f12 �
�

�y
 � �f

�x� �
�2f

�y �x
�

�2z

�y �x

 � fx�x � fxx � f11 �
�

�x
 � �f

�x� �
�2f

�x 2 �
�2z

�x 2

z � f �x, y�f
� fy�y� fy �x� fx�y� fx�x

fyfxf

fz �
exy

z
andfy � xex y ln z

fx � yex y ln z

xzy

f �x, y, z� � ex y ln zfzfyfx

�u

�xi
�

�f

�xi
� fxi � fi � Di f
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Notice that in Example 6. This is not just a coincidence. It turns out that the
mixed partial derivatives and are equal for most functions that one meets in practice.
The following theorem, which was discovered by the French mathematician Alexis Clairaut
(1713–1765), gives conditions under which we can assert that The proof is given
in Appendix F.

CLAIRAUT’S THEOREM Suppose is defined on a disk that contains the point
. If the functions and are both continuous on , then

Partial derivatives of order 3 or higher can also be defined. For instance,

fx yy � � fx y�y �
�

�y
 � �2f

�y �x� �
�3f

�y 2 �x

fx y�a, b� � fyx�a, b�

Dfyxfx y�a, b�
Df

fx y � fyx.

fyxfx y

fx y � fyx

_1
_2

2
1

2
_2

20

_20

_1 0 1
0

y

x

z 0

f

fxx

FIGURE 7
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N Figure 7 shows the graph of the function 
in Example 6 and the graphs of its first- and 
second-order partial derivatives for ,

. Notice that these graphs are con-
sistent with our interpretations of and as
slopes of tangent lines to traces of the graph of .
For instance, the graph of decreases if we start
at and move in the positive -direction.
This is reflected in the negative values of . You
should compare the graphs of and with the
graph of to see the relationships.fy

fyyfyx

fx

x�0, �2�
f

f
fyfx

�2 � y � 2
�2 � x � 2

f

N Alexis Clairaut was a child prodigy in 
mathematics: he read l’Hospital’s textbook 
on calculus when he was ten and presented a
paper on geometry to the French Academy of 
Sciences when he was 13. At the age of 18,
Clairaut published Recherches sur les courbes à
double courbure, which was the first systematic
treatise on three-dimensional analytic geometry
and included the calculus of space curves.



and using Clairaut’s Theorem it can be shown that if these functions are
continuous.

EXAMPLE 7 Calculate if .

SOLUTION

M

PARTIAL DIFFERENTIAL EQUATIONS

Partial derivatives occur in partial differential equations that express certain physical laws.
For instance, the partial differential equation

is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equation
are called harmonic functions; they play a role in problems of heat conduction, fluid flow,
and electric potential.

EXAMPLE 8 Show that the function is a solution of Laplace’s 
equation.

SOLUTION

Therefore satisfies Laplace’s equation. M

The wave equation

describes the motion of a waveform, which could be an ocean wave, a sound wave, a light
wave, or a wave traveling along a vibrating string. For instance, if represents the dis-
placement of a vibrating violin string at time and at a distance from one end of the
string (as in Figure 8), then satisfies the wave equation. Here the constant depends
on the density of the string and on the tension in the string.

EXAMPLE 9 Verify that the function satisfies the wave equation.

SOLUTION

So satisfies the wave equation. Mu

 utt � �a 2 sin�x � at� � a 2uxx ut � �a cos�x � at�

 uxx � �sin�x � at� ux � cos�x � at�

u�x, t� � sin�x � at�

au�x, t�
xt

u�x, t�

�2u

�t 2 � a2 
�2u

�x 2

u

uxx � uyy � ex sin y � ex sin y � 0

 uyy � �ex sin y uxx � ex sin y

 uy � ex cos y ux � ex sin y

u�x, y� � ex sin y

�2u

�x 2 �
�2u

�y 2 � 0

 fxx yz � �9 cos�3x � yz� � 9yz sin�3x � yz�

 fxx y � �9z cos�3x � yz�

 fxx � �9 sin�3x � yz�

 fx � 3 cos�3x � yz�

f �x, y, z� � sin�3x � yz�fxx yzV

fx yy � fyx y � fyyx
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FIGURE 8

u(x, t)

x



THE COBB-DOUGLAS PRODUCTION FUNCTION

In Example 3 in Section 14.1 we described the work of Cobb and Douglas in modeling the
total production P of an economic system as a function of the amount of labor L and the
capital investment K. Here we use partial derivatives to show how the particular form of
their model follows from certain assumptions they made about the economy.

If the production function is denoted by , then the partial derivative 
is the rate at which production changes with respect to the amount of labor. Economists
call it the marginal production with respect to labor or the marginal productivity of labor.
Likewise, the partial derivative is the rate of change of production with respect to
capital and is called the marginal productivity of capital. In these terms, the assumptions
made by Cobb and Douglas can be stated as follows.

(i) If either labor or capital vanishes, then so will production.

(ii) The marginal productivity of labor is proportional to the amount of production
per unit of labor.

(iii) The marginal productivity of capital is proportional to the amount of production
per unit of capital.

Because the production per unit of labor is , assumption (ii) says that

for some constant . If we keep K constant , then this partial differential equa-
tion becomes an ordinary differential equation:

If we solve this separable differential equation by the methods of Section 9.3 (see also
Exercise 79), we get

Notice that we have written the constant as a function of because it could depend on
the value of .

Similarly, assumption (iii) says that

and we can solve this differential equation to get

Comparing Equations 6 and 7, we have

P�L, K � � bL�K �8

P�L0, K� � C2�L0 �K �7

�P

�K
� � 

P

K

K0

K0C1

P�L, K0 � � C1�K0 �L�6

dP

dL
� � 

P

L
5

�K � K0 ��

�P

�L
� � 

P

L

P�L

�P��K

�P��LP � P�L, K �
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where b is a constant that is independent of both L and K. Assumption (i) shows that 
and .

Notice from Equation 8 that if labor and capital are both increased by a factor m, then

If , then , which means that production is also increased
by a factor of m. That is why Cobb and Douglas assumed that and therefore

This is the Cobb-Douglas production function that we discussed in Section 14.1.

P�L, K � � bL�K 1��

� � � � 1
P�mL, mK � � mP�L, K �� � � � 1

P�mL, mK � � b�mL���mK �� � m���bL�K � � m���P�L, K�

� 	 0
� 	 0
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(b) In general, what can you say about the signs of 
and ?

(c) What appears to be the value of the following limit?

4. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table.

(a) What are the meanings of the partial derivatives 
and ?

(b) Estimate the values of and . What are
the practical interpretations of these values?

(c) What appears to be the value of the following limit?

lim
t l 


 
�h

�t

ft�40, 15�fv�40, 15�
�h��t

�h��v

2

4

5

9

14

19

24

2

4

7

13

21

29

37

2

5

8

16

25

36

47

2

5

8

17

28

40

54

2

5

9

18

31

45

62

2

5

9

19

33

48

67

2

5

9

19

33

50

69

v
t

10

15

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

5 10 15 20 30 40 50

h � f �v, t�
t

vh

lim
v l 


 
�W

�v

�W��v
�W��TThe temperature at a location in the Northern Hemisphere

depends on the longitude , latitude , and time , so we can
write . Let’s measure time in hours from the
beginning of January.
(a) What are the meanings of the partial derivatives 

, and ?
(b) Honolulu has longitude and latitude .

Suppose that at 9:00 AM on January 1 the wind is blowing
hot air to the northeast, so the air to the west and south is
warm and the air to the north and east is cooler. Would you
expect , and to be
positive or negative? Explain.

2. At the beginning of this section we discussed the function
, where is the heat index, is the temperature,

and is the relative humidity. Use Table 1 to estimate
and . What are the practical interpretations

of these values?

3. The wind-chill index is the perceived temperature when the
actual temperature is and the wind speed is , so we can
write . The following table of values is an excerpt
from Table 1 in Section 14.1.

(a) Estimate the values of and . What
are the practical interpretations of these values?

fv��15, 30�fT ��15, 30�

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
)

70

�23

�30

�37

�44

Wind speed (km/h)

W � f �T, v�
vT

W

fH �92, 60�fT �92, 60�
H

TII � f �T, H �

ft�158, 21, 9�fx�158, 21, 9�, fy�158, 21, 9�

21� N158� W
�T��t�T��y

�T��x,

T � f �x, y, t�
tyx

T1.

EXERCISES14.3
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10. A contour map is given for a function . Use it to estimate
and .

11. If , find and and inter-
pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

12. If , find and and
interpret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.

; 13–14 Find and and graph , , and with domains and
viewpoints that enable you to see the relationships between them.

13. 14.

15–38 Find the first partial derivatives of the function.

15. 16.

17. 18.

19. 20.

22.

23. 24.

25. 26.

27. 28.

29. 30.

32.

33. 34.

35. 36.

37.

38.

39–42 Find the indicated partial derivatives.

39. ;

40. ;

41. ; fy �2, 1, �1�f �x, y, z� �
y

x � y � z

fx �2, 3�f �x, y� � arctan�y�x�

fx �3, 4�f �x, y� � ln(x � sx 2 � y 2 )

u � sin�x1 � 2x2 � � � � � nxn �

u � sx 2
1 � x 2

2 � � � � � x 2
n

             

f �x, y, z, t� �
xy 2

t � 2z
f �x, y, z, t� � xyz 2 tan�yt�

u � x y�zu � xy sin�1�yz�

w � ze xyzw � ln�x � 2y � 3z�31.

f �x, y, z� � x sin�y � z�f �x, y, z� � xz � 5x 2y 3z4

f �x, y� � y
x

y
 cos�t 2 � dtu � te w�t

f �x, t� � arctan(xst )f �r, s� � r ln�r 2 � s 2�

w � ev��u � v 2�w � sin � cos �

f �x, y� � x yf �x, y� �
x � y

x � y
21.

z � tan xyz � �2x � 3y�10

f �x, t� � sx  ln tf �x, t� � e�t cos 
x

f �x, y� � x 4y 3 � 8x 2yf �x, y� � y 5 � 3xy

f �x, y� � xe�x 2�y2

f �x, y� � x 2 � y 2 � x 2 y

fyfxffyfx

fy�1, 0�fx�1, 0�f �x, y� � s4 � x 2 � 4y 2 

fy�1, 2�fx�1, 2�f �x, y� � 16 � 4x 2 � y 2

3 x

y

3

_2
0

6 8

10

14

16

12

18

2

4

_4

1

fy�2, 1�fx�2, 1�
f5–8 Determine the signs of the partial derivatives for the function

whose graph is shown.

(a) (b)

6. (a) (b)

7. (a) (b)

8. (a) (b)

The following surfaces, labeled , , and , are graphs of a
function and its partial derivatives and . Identify each
surface and give reasons for your choices.

b_4

_3 _1 0 1 3

0
_2

y
x

z 0

2

4

2
_2

a

8

_8

_4

_3 _1 0 1 3

0
_2

y
x

z 0

2

4

2
_2

c

8

_8

_3 _1 0 1 3

0
_2

y
x

z 0

2

4

2
_2

_4

fyfxf
cba9.

fxy��1, 2�fxy�1, 2�

fyy��1, 2�fxx��1, 2�

fy��1, 2�fx��1, 2�

fy�1, 2�fx�1, 2�5.

1x

y

z

2

f
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Use the table of values of to estimate the values of
, , and .

70. Level curves are shown for a function . Determine whether
the following partial derivatives are positive or negative at the
point .
(a) (b) (c)
(d) (e)

71. Verify that the function is a solution of the
heat conduction equation .

72. Determine whether each of the following functions is a solution
of Laplace’s equation .
(a) (b)
(c) (d)
(e)
(f)

73. Verify that the function is a solution of
the three-dimensional Laplace equation .

74. Show that each of the following functions is a solution of the
wave equation .
(a) (b)
(c)
(d)

75. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 74.

76. If , where , 
show that

77. Verify that the function is a solution of the 
differential equations

�z

�x
�

�z

�y
� 1

z � ln�e x � e y�

�2u

�x 2
1

�
�2u

�x 2
2

� � � � �
�2u

�x 2
n

� u

a 2
1 � a 2

2 � � � � � a 2
n � 1u � e a1x1�a2 x2�����an xn

u�x, t� � f �x � at� � t�x � at�

tf

u � sin�x � at� � ln�x � at�
u � �x � at�6 � �x � at�6

u � t��a 2t 2 � x 2 �u � sin�kx� sin�akt�
ut t � a 2uxx

uxx � u yy � uzz � 0
u � 1�sx 2 � y 2 � z 2 

u � e�x cos y � e�y cos x
u � sin x cosh y � cos x sinh y

u � ln sx 2 � y 2 u � x 3 � 3xy 2

u � x 2 � y 2u � x 2 � y 2
uxx � uyy � 0

ut � �2uxx

u � e��2k2 t sin kx

10 8 6 4 2

y

x

P

fyyfxy

fxxfyfx

P

f

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

x
y

2.5

3.0

3.5

1.8 2.0 2.2

fx y�3, 2�fx�3, 2.2�fx�3, 2�
f �x, y�69.42. ;

43–44 Use the definition of partial derivatives as limits (4) to find
and .

43. 44.

45–48 Use implicit differentiation to find and .

45. 46.

47. 48.

49–50 Find and .

49. (a) (b)

(a) (b)
(c)

51–56 Find all the second partial derivatives.

51. 52.

53. 54.

55. 56.

57–60 Verify that the conclusion of Clairaut’s Theorem holds, that
is, .

57. 58.

59. 60.

61–68 Find the indicated partial derivative.

61. ; ,

62. ; ,

63. ; ,

64. ; ,

65. ;

66. ;

67. ; ,

68. ;
�6u

�x �y 2 �z 3u � x a y bz c

� 3w

�x 2 �y

� 3w

�z �y �x
w �

x

y � 2z

� 3z

�u �v �w
z � usv � w 

� 3u

�r 2 ��
u � e r� sin �

frstfrssf �r, s, t� � r ln�rs 2t 3�

fyzzfxy zf �x, y, z� � cos�4x � 3y � 2z�

ftxxftt tf �x, t� � x 2e�ct

fyyyfxxyf �x, y� � 3xy 4 � x 3y 2

u � xye yu � ln sx 2 � y 2 

u � x 4y 2 � 2xy 5u � x sin�x � 2y�

ux y � uyx

v � e xey
z � arctan 

x � y

1 � xy

v �
xy

x � y
w � su 2 � v 2 

f �x, y� � sin2�mx � ny�f �x, y� � x 3y 5 � 2x 4y

z � f �x�y�
z � f �xy�z � f �x�t�y�50.

z � f �x � y�z � f �x� � t�y�

�z��y�z��x

sin�xyz� � x � 2y � 3zx � z � arctan�yz�

yz � ln�x � z�x 2 � y 2 � z2 � 3xyz

�z��y�z��x

f �x, y� �
x

x � y 2f �x, y� � xy 2 � x 3y

fy�x, y�fx�x, y�

fz �0, 0, 
�4�f �x, y, z� � ssin2x � sin2y � sin2z 
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You are told that there is a function whose partial derivatives
are and . Should you
believe it?

; 88. The paraboloid intersects the plane
in a parabola. Find parametric equations for the tangent

line to this parabola at the point . Use a computer to
graph the paraboloid, the parabola, and the tangent line on the
same screen.

89. The ellipsoid intersects the plane 
in an ellipse. Find parametric equations for the tangent line to
this ellipse at the point .

90. In a study of frost penetration it was found that the temperature
at time (measured in days) at a depth (measured in feet)

can be modeled by the function

where and is a positive constant.
(a) Find . What is its physical significance?
(b) Find . What is its physical significance?
(c) Show that satisfies the heat equation for a cer-

tain constant .

; (d) If , , and , use a computer to 
graph .

(e) What is the physical significance of the term in the
expression ?

91. Use Clairaut’s Theorem to show that if the third-order partial
derivatives of are continuous, then

92. (a) How many th-order partial derivatives does a function of
two variables have?

(b) If these partial derivatives are all continuous, how many of
them can be distinct?

(c) Answer the question in part (a) for a function of three 
variables.

93. If , find .
[Hint: Instead of finding first, note that it’s easier to 
use Equation 1 or Equation 2.]

94. If , find .

95. Let

; (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict Clairaut’s Theorem?

Use graphs of and to illustrate your answer.fyxfxy

CAS

fyx�0, 0� � 1fxy�0, 0� � �1
fy�0, 0�fx�0, 0�

�x, y� � �0, 0�fy�x, y�fx�x, y�
f

f �x, y� � �
0

x 3y � xy 3

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fx�0, 0�f �x, y� � s
3 x 3 � y 3 

fx�x, y�
fx�1, 0�f �x, y� � x�x 2 � y 2 ��3�2e sin�x2y�

n

fx yy � fyx y � fyyx

f

sin��t � �x�
��x

T�x, t�
T1 � 10T0 � 0� � 0.2

k
Tt � kTxxT

�T��t
�T��x

�� � 2
�365

T�x, t� � T0 � T1e��x sin��t � �x�

xtT

�1, 2, 2�

y � 24x 2 � 2y 2 � z2 � 16

�1, 2, �4�
x � 1

z � 6 � x � x 2 � 2y 2

fy�x, y� � 3x � yfx�x, y� � x � 4y
f87.and

78. Show that the Cobb-Douglas production function 
satisfies the equation

79. Show that the Cobb-Douglas production function satisfies
by solving the differential equation

(See Equation 5.)

80. The temperature at a point on a flat metal plate is given
by , where is measured in C
and in meters. Find the rate of change of temperature with
respect to distance at the point in (a) the -direction and
(b) the -direction.

The total resistance produced by three conductors with resis-
tances , , connected in a parallel electrical circuit is
given by the formula

Find .

82. The gas law for a fixed mass of an ideal gas at absolute tem-
perature , pressure , and volume is , where is
the gas constant. Show that

83. For the ideal gas of Exercise 82, show that

84. The wind-chill index is modeled by the function

where is the temperature and is the wind speed
. When and , by how much

would you expect the apparent temperature to drop if the 
actual temperature decreases by ? What if the wind speed
increases by ?

85. The kinetic energy of a body with mass and velocity is
. Show that

If , , are the sides of a triangle and , , are the opposite
angles, find , , by implicit differentiation of
the Law of Cosines.

�A��c�A��b�A��a
CBAcba86.

�K

�m
 
�2K

�v2 � K

K � 1
2 mv2

vm

1 km�h
1�C

W
v � 30 km�hT � �15�C�km�h�

v��C�T

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16 

T
�P

�T
 
�V

�T
� mR

�P

�V
 
�V

�T
 
�T

�P
� �1

RPV � mRTVPT
m

�R��R1

1

R
�

1

R1
�

1

R2
�

1

R3

R3R2R1

R81.

y
x�2, 1�

x, y
�TT�x, y� � 60��1 � x 2 � y 2 �

�x, y�

dP

dL
� � 

P

L

P�L, K0 � � C1�K0 �L�

L 
�P

�L
� K 

�P

�K
� �� � ��P

P � bL�K �

�2z

�x 2  
�2z

�y 2 � � �2z

�x �y�2

� 0
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TANGENT PLANES AND LINEAR APPROXIMATIONS

One of the most important ideas in single-variable calculus is that as we zoom in toward a
point on the graph of a differentiable function, the graph becomes indistinguishable from
its tangent line and we can approximate the function by a linear function. (See Sec-
tion 3.10.) Here we develop similar ideas in three dimensions. As we zoom in toward a
point on a surface that is the graph of a differentiable function of two variables, the surface
looks more and more like a plane (its tangent plane) and we can approximate the function
by a linear function of two variables. We also extend the idea of a differential to functions
of two or more variables.

TANGENT PLANES

Suppose a surface has equation , where has continuous first partial deriva-
tives, and let be a point on . As in the preceding section, let and be the
curves obtained by intersecting the vertical planes and with the surface .
Then the point lies on both and . Let and be the tangent lines to the curves 
and at the point . Then the tangent plane to the surface at the point is defined to
be the plane that contains both tangent lines and . (See Figure 1.)

We will see in Section 14.6 that if is any other curve that lies on the surface and
passes through , then its tangent line at also lies in the tangent plane. Therefore you 
can think of the tangent plane to at as consisting of all possible tangent lines at to
curves that lie on and pass through . The tangent plane at is the plane that most 
closely approximates the surface near the point .

We know from Equation 12.5.7 that any plane passing through the point has
an equation of the form

By dividing this equation by and letting and , we can write it in
the form

If Equation 1 represents the tangent plane at , then its intersection with the plane 
must be the tangent line . Setting in Equation 1 gives

and we recognize these as the equations (in point-slope form) of a line with slope . 
But from Section 14.3 we know that the slope of the tangent is . Therefore

.
Similarly, putting in Equation 1, we get , which must repre-

sent the tangent line , so .

Suppose has continuous partial derivatives. An equation of the tangent plane
to the surface at the point is

z � z0 � fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 �

P�x0, y0, z0 �z � f �x, y�
f2

b � fy�x0, y0 �T2

z � z0 � b�y � y0 �x � x0

a � fx�x0, y0 �
fx�x0, y0 �T1

a

y � y0z � z0 � a�x � x0 �

y � y0T1

y � y0P

z � z0 � a�x � x0� � b�y � y0 �1

b � �B�Ca � �A�CC

A�x � x0 � � B�y � y0 � � C�z � z0 � � 0

P�x0, y0, z0 �
PS

PPS
PPS

PP
SC

T2T1

PSPC2

C1T2T1C2C1P
Sx � x0y � y0

C2C1SP�x0, y0, z0 �
fz � f �x, y�S

14.4

FIGURE 1
The tangent plane contains the
tangent lines T¡TT and T™TT .

y

x

z

TTTTT¡¡¡

TTTTT™™™

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC¡¡¡¡¡¡¡

CCCCCCCCCCCCCCCCCCCCCC™™™™™™™™™™™™™
PPPPPPPPPPPPPPPPPPPPP

000000000000

N Note the similarity between the equation of a
tangent plane and the equation of a tangent line:

y � y0 � f ��x0 ��x � x0 �



EXAMPLE 1 Find the tangent plane to the elliptic paraboloid at the
point .

SOLUTION Let . Then

Then (2) gives the equation of the tangent plane at as

or M

Figure 2(a) shows the elliptic paraboloid and its tangent plane at that we found
in Example 1. In parts (b) and (c) we zoom in toward the point by restricting the
domain of the function . Notice that the more we zoom in, the flatter
the graph appears and the more it resembles its tangent plane.

In Figure 3 we corroborate this impression by zooming in toward the point on a
contour map of the function . Notice that the more we zoom in, the
more the level curves look like equally spaced parallel lines, which is characteristic of a
plane.

FIGURE 3
Zooming in toward (1, 1)

on a contour map of
f(x, y)=2≈+¥ 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

f �x, y� � 2x 2 � y 2
�1, 1�

FIGURE 2  The elliptic paraboloid z=2≈+¥ appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).
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f �x, y� � 2x 2 � y 2
�1, 1, 3�

�1, 1, 3�

 z � 4x � 2y � 3

 z � 3 � 4�x � 1� � 2�y � 1�

�1, 1, 3�

 fx�1, 1� � 4  fy�1, 1� � 2

 fx�x, y� � 4x fy�x, y� � 2y

f �x, y� � 2x 2 � y 2

�1, 1, 3�
z � 2x 2 � y 2V
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Visual 14.4 shows an animation of
Figures 2 and 3.
TEC



LINEAR APPROXIMATIONS

In Example 1 we found that an equation of the tangent plane to the graph of the function
at the point is . Therefore, in view of the

visual evidence in Figures 2 and 3, the linear function of two variables

is a good approximation to when is near . The function L is called the
linearization of f at and the approximation

is called the linear approximation or tangent plane approximation of f at .
For instance, at the point (1.1, 0.95) the linear approximation gives

which is quite close to the true value of . But if
we take a point farther away from , such as , we no longer get a good approxi-
mation. In fact, whereas .

In general, we know from (2) that an equation of the tangent plane to the graph of a
function f of two variables at the point is

The linear function whose graph is this tangent plane, namely

is called the linearization of f at and the approximation

is called the linear approximation or the tangent plane approximation of at
We have defined tangent planes for surfaces , where has continuous first

partial derivatives. What happens if and are not continuous? Figure 4 pictures such a
function; its equation is

You can verify (see Exercise 46) that its partial derivatives exist at the origin and, in fact,
and , but and are not continuous. The linear approximation

would be , but at all points on the line . So a function of two
variables can behave badly even though both of its partial derivatives exist. To rule out
such behavior, we formulate the idea of a differentiable function of two variables.

Recall that for a function of one variable, , if x changes from a to we
defined the increment of as

�y � f �a � �x� � f �a�

y
a � �x,y � f �x�

y � xf �x, y� � 1
2f �x, y� � 0

fyfxfy�0, 0� � 0fx�0, 0� � 0

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fyfx

fz � f �x, y�
�a, b�.f

f �x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�4

�a, b�

L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�3

z � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b, f �a, b��

f �2, 3� � 17L�2, 3� � 11
�2, 3��1, 1�

f �1.1, 0.95� � 2�1.1�2 � �0.95�2 � 3.3225

f �1.1, 0.95� � 4�1.1� � 2�0.95� � 3 � 3.3

�1, 1�

f �x, y� � 4x � 2y � 3

�1, 1�
�1, 1��x, y�f �x, y�

L�x, y� � 4x � 2y � 3

z � 4x � 2y � 3�1, 1, 3�f �x, y� � 2x 2 � y 2

894 | | | | CHAPTER 14 PARTIAL DERIVATIVES

z y

x

f(x, y)=
xy

≈+¥
 if (x, y)≠(0, 0),

f(0, 0)=0

FIGURE 4



In Chapter 3 we showed that if is differentiable at a, then

Now consider a function of two variables, , and suppose x changes from a to
and y changes from b to . Then the corresponding increment of is

Thus the increment represents the change in the value of when changes from
to . By analogy with (5) we define the differentiability of a func-

tion of two variables as follows.

DEFINITION If , then is differentiable at if can be
expressed in the form

where and as .

Definition 7 says that a differentiable function is one for which the linear approxima-
tion (4) is a good approximation when is near . In other words, the tangent
plane approximates the graph of f well near the point of tangency.

It’s sometimes hard to use Definition 7 directly to check the differentiability of a func-
tion, but the next theorem provides a convenient sufficient condition for differentiability.

THEOREM If the partial derivatives and exist near and are continu-
ous at , then is differentiable at .

EXAMPLE 2 Show that is differentiable at (1, 0) and find its lineariza-
tion there. Then use it to approximate .

SOLUTION The partial derivatives are

Both and are continuous functions, so is differentiable by Theorem 8. The 
linearization is

The corresponding linear approximation is

so

Compare this with the actual value of . Mf �1.1, �0.1� � 1.1e�0.11 � 0.98542

 f �1.1, �0.1� � 1.1 � 0.1 � 1

 xexy � x � y

 � 1 � 1�x � 1� � 1 � y � x � y

 L�x, y� � f �1, 0� � fx�1, 0��x � 1� � fy�1, 0��y � 0�

ffyfx

 fy�1, 0� � 1 fx�1, 0� � 1

 fy�x, y� � x 2exy fx�x, y� � exy � xyexy

f �1.1, �0.1�
f �x, y� � xexyV

�a, b�f�a, b�
�a, b�fyfx8

�a, b��x, y�

��x, �y� l �0, 0��2 l 0�1

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�z�a, b�fz � f �x, y�7

�a � �x, b � �y��a, b�
�x, y�f�z

�z � f �a � �x, b � �y� � f �a, b�6

zb � �ya � �x
z � f �x, y�

where  � l 0  as  �x l 0�y � f ��a� �x � � �x5

f
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N This is Equation 3.4.7.

N Theorem 8 is proved in Appendix F.

FIGURE 5
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N Figure 5 shows the graphs of the function 
and its linearization in Example 2.L
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EXAMPLE 3 At the beginning of Section 14.3 we discussed the heat index (perceived
temperature) as a function of the actual temperature and the relative humidity and
gave the following table of values from the National Weather Service.

Find a linear approximation for the heat index when is near and is
near 70%. Use it to estimate the heat index when the temperature is and the relative
humidity is 72%.

SOLUTION We read from the table that . In Section 14.3 we used the tabu-
lar values to estimate that and . (See pages 878–79.)
So the linear approximation is

In particular,

Therefore, when and H � 72%, the heat index is

M

DIFFERENTIALS

For a differentiable function of one variable, , we define the differential dx to be
an independent variable; that is, dx can be given the value of any real number. The differ-
ential of is then defined as

(See Section 3.10.) Figure 6 shows the relationship between the increment and the dif-
ferential : represents the change in height of the curve and represents the
change in height of the tangent line when changes by an amount 

For a differentiable function of two variables, , we define the differentials
and to be independent variables; that is, they can be given any values. Then the dif-

ferential , also called the total differential, is defined by

(Compare with Equation 9.) Sometimes the notation is used in place of .dzd f

dz � fx�x, y� dx � fy�x, y� dy �
�z

�x
 dx �

�z

�y
 dy10

dz
dydx

z � f �x, y�
dx � �x.x

dyy � f �x��ydy
�y

dy � f ��x� dx9

y

y � f �x�

I � 131�F

T � 97�F

f �97, 72� � 125 � 3.75�1� � 0.9�2� � 130.55

 � 125 � 3.75�T � 96� � 0.9�H � 70�

 f �T, H � � f �96, 70� � fT �96, 70��T � 96� � fH�96, 70��H � 70�

fH�96, 70� � 0.9fT �96, 70� � 3.75
f �96, 70� � 125

97�F
H96�FTI � f �T, H�

96

100

104

109

114

119

98

103

107

113

118
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100
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xa a+Îx

y

0

dx=Îx

y=ƒ

dy

Îy

y=f(a)+fª(a)(x-a)

tangent line

FIGURE 6



If we take and in Equation 10, then the differen-
tial of is

So, in the notation of differentials, the linear approximation (4) can be written as

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential and the increment : represents the change in height of
the tangent plane, whereas represents the change in height of the surface 
when changes from to .

EXAMPLE 4
(a) If , find the differential .
(b) If changes from 2 to and changes from 3 to , compare the values 
of and .

SOLUTION
(a) Definition 10 gives

(b) Putting , , , and , we get

The increment of is

Notice that but is easier to compute. M

EXAMPLE 5 The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as cm in 0.1

dz�z � dz

 � 0.6449

 � ��2.05�2 � 3�2.05��2.96� � �2.96�2 � � �22 � 3�2��3� � 32 �

 �z � f �2.05, 2.96� � f �2, 3�

z

� 0.65 dz � �2�2� � 3�3��0.05 � �3�2� � 2�3����0.04�

dy � �y � �0.04y � 3dx � �x � 0.05x � 2

dz �
�z

�x
 dx �

�z

�y
 dy � �2x � 3y� dx � �3x � 2y� dy

dz�z
2.96y2.05x
dzz � f �x, y� � x 2 � 3xy � y 2

V

y

x

z

Îx=
dx

0

{a,{ b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{a+Îx, b+Îy, f (a+Îx, b+Îy)}

f(a, b)

f(a, b)

Îy=dy
tangent plane

z-f(a, b)=fxff (a, b)(x-a)+fyff (a, b)(y-b)

surface z=f(x, y)

dz

Îz

FIGURE 7

�a � �x, b � �y��a, b��x, y�
z � f �x, y��z

dz�zdz

f �x, y� � f �a, b� � dz

dz � fx�a, b��x � a� � fy�a, b��y � b�
z

dy � �y � y � bdx � �x � x � a
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FIGURE 8
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N In Example 4, is close to because the
tangent plane is a good approximation to the 
surface near .
(See Figure 8.)

�2, 3, 13�z � x 2 � 3xy � y 2

�zdz



each. Use differentials to estimate the maximum error in the calculated volume of the
cone.

SOLUTION The volume of a cone with base radius and height is . So the
differential of is

Since each error is at most cm, we have , . To find the largest
error in the volume we take the largest error in the measurement of and of . Therefore
we take and along with , . This gives

Thus the maximum error in the calculated volume is about cm cm . M

FUNCTIONS OF THREE OR MORE VARIABLES

Linear approximations, differentiability, and differentials can be defined in a similar man-
ner for functions of more than two variables. A differentiable function is defined by an
expression similar to the one in Definition 7. For such functions the linear approximation
is

and the linearization is the right side of this expression.
If , then the increment of is

The differential is defined in terms of the differentials , , and of the independ-
ent variables by

EXAMPLE 6 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within cm. Use differentials to esti-
mate the largest possible error when the volume of the box is calculated from these
measurements.

SOLUTION If the dimensions of the box are , , and , its volume is and so

We are given that , , and . To find the largest error in
the volume, we therefore use , , and together with ,

, and :

Thus an error of only cm in measuring each dimension could lead to an error of as
much as 1980 cm in the calculated volume! This may seem like a large error, but it’s
only about 1% of the volume of the box. M

3
0.2

 �V � dV � �60��40��0.2� � �75��40��0.2� � �75��60��0.2� � 1980

z � 40y � 60
x � 75dz � 0.2dy � 0.2dx � 0.2

� �z � 	 0.2� �y � 	 0.2� �x � 	 0.2

dV �
�V

�x
 dx �

�V

�y
 dy �

�V

�z
 dz � yz dx � xz dy � xy dz

V � xyzzyx

0.2

dw �
�w

�x
 dx �

�w

�y
 dy �

�w

�z
 dz

dzdydxdw

�w � f �x � �x, y � �y, z � �z� � f �x, y, z�

ww � f �x, y, z�
L�x, y, z�

f �x, y, z� � f �a, b, c� � fx�a, b, c��x � a� � fy�a, b, c��y � b� � fz�a, b, c��z � c�

33 � 6320


dV �
500


3
 �0.1� �

100


3
 �0.1� � 20


h � 25r � 10dh � 0.1dr � 0.1
hr

� �h � 	 0.1� �r � 	 0.10.1

dV �
�V

�r
 dr �

�V

�h
 dh �

2
rh

3
 dr �


r 2

3
 dh

V
V � 
r 2h	3hrV
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19. Find the linear approximation of the function
at and use it to

approximate .

; 20. Find the linear approximation of the function
at and use it to approximate

. Illustrate by graphing and the tangent plane.

Find the linear approximation of the function
at and use it to 

approximate the number .

22. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table.

Use the table to find a linear approximation to the wave
height function when is near 40 knots and is near
20 hours. Then estimate the wave heights when the wind has
been blowing for 24 hours at 43 knots.

23. Use the table in Example 3 to find a linear approximation to
the heat index function when the temperature is near 
and the relative humidity is near 80%. Then estimate the heat
index when the temperature is and the relative humidity
is 78%.

24. The wind-chill index is the perceived temperature when the
actual temperature is and the wind speed is , so we can
write . The following table of values is an excerpt
from Table 1 in Section 14.1.

Use the table to find a linear approximation to the wind-chill 

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
) 70

�23

�30

�37

�44

Wind speed (km/h)

W � f �T, v�
vT

W

95�F

94�F

tv

5

9

14

19

24

7

13

21

29

37

8

16

25

36

47

8

17

28

40

54

9

18

31

45

62

9

19

33

48

67

9

19

33

50

69

v
t 5 10 15 20 30 40 50

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

h � f �v, t�
t

vh

s�3.02� 2 � �1.97� 2 � �5.99� 2 

�3, 2, 6�f �x, y, z� � sx 2 � y 2 � z 2 

21.

ff �6.9, 2.06�
�7, 2�f �x, y� � ln�x � 3y�

f �1.95, 1.08�
�2, 1�f �x, y� � s20 � x 2 � 7y 2 

1–6 Find an equation of the tangent plane to the given surface at
the specified point.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

; 7–8 Graph the surface and the tangent plane at the given point.
(Choose the domain and viewpoint so that you get a good view of
both the surface and the tangent plane.) Then zoom in until the
surface and the tangent plane become indistinguishable.

7. ,

8. ,

9–10 Draw the graph of and its tangent plane at the given
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become 
indistinguishable.

9.

10.

11–16 Explain why the function is differentiable at the given
point. Then find the linearization of the function at 
that point.

,

12. ,

13. ,

14. ,

15. ,

16. ,

17–18 Verify the linear approximation at .

17. 18. sy � cos2 x � 1 �
1
2 y

2x � 3

4y � 1
� 3 � 2x � 12y

�0, 0�

��3, 2�f �x, y� � sin�2x � 3y�

�
, 0�f �x, y� � e�xy cos y

�3, 0�f �x, y� � sx � e 4y 

�2, 1�f �x, y� �
x

x � y

�1, 1�f �x, y� � x 3y 4

�1, 4�f �x, y� � xsy 11.

L�x, y�

f �x, y� � e�xy	10 (sx � sy � sxy ),  �1, 1, 3e�0.1�

f �x, y� �
xy sin�x � y�
1 � x 2 � y 2 ,  �1, 1, 0�

fCAS

�1, 1, 
	4�z � arctan�xy 2�

�1, 1, 5�z � x 2 � xy � 3y 2

�1, �1, 1�z � ex2�y2

�2, 2, 2�z � y cos�x � y�

�1, 4, 0�z � y ln x

�1, 1, 1�z � sxy 

�2, �2, 12�z � 3�x � 1�2 � 2�y � 3�2 � 7

��1, 2, 4�z � 4x 2 � y 2 � 2y
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39. If is the total resistance of three resistors, connected in par-
allel, with resistances , , , then

If the resistances are measured in ohms as ,
, and , with a possible error of in

each case, estimate the maximum error in the calculated value
of .

40. Four positive numbers, each less than 50, are rounded to the
first decimal place and then multiplied together. Use differen-
tials to estimate the maximum possible error in the computed
product that might result from the rounding.

41. A model for the surface area of a human body is given by
, where is the weight (in pounds), is

the height (in inches), and is measured in square feet. If the
errors in measurement of and are at most 2%, use differ-
entials to estimate the maximum percentage error in the 
calculated surface area.

42. Suppose you need to know an equation of the tangent plane to
a surface at the point . You don’t have an equation
for but you know that the curves

both lie on . Find an equation of the tangent plane at .

43–44 Show that the function is differentiable by finding values 
of and that satisfy Definition 7.

44.

Prove that if is a function of two variables that is differen-
tiable at , then is continuous at .

Hint: Show that

46. (a) The function

was graphed in Figure 4. Show that and 
both exist but is not differentiable at . [Hint: Use
the result of Exercise 45.]

(b) Explain why and are not continuous at .�0, 0�fyfx

�0, 0�f
fy�0, 0�fx�0, 0�

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

lim
��x, �y� l �0, 0�

 
 f �a � �x, b � �y� � f �a, b�

�a, b�f�a, b�
f45.

f �x, y� � xy � 5y 2f �x, y� � x 2 � y 243.

�2�1

PS

r2�u� � 
1 � u2, 2u3 � 1, 2u � 1 �

r1�t� � 
2 � 3t, 1 � t 2, 3 � 4t � t 2 �

S
P�2, 1, 3�S

hw
S

hwS � 0.1091w 0.425h 0.725

R

0.5%R3 � 50 �R2 � 40 �
R1 � 25 �

1

R
�

1

R1
�

1

R2
�

1

R3

R3R2R1

Rindex function when is near and is near .
Then estimate the wind-chill index when the temperature is

and the wind speed is 55 km	h.

25–30 Find the differential of the function.

25. 26.

27. 28.

29. 30.

If and changes from to 
compare the values of and .

32. If and changes from to
, compare the values of and .

33. The length and width of a rectangle are measured as 30 cm and
24 cm, respectively, with an error in measurement of at most

cm in each. Use differentials to estimate the maximum
error in the calculated area of the rectangle.

34. The dimensions of a closed rectangular box are measured as
80 cm, 60 cm, and 50 cm, respectively, with a possible error 
of cm in each dimension. Use differentials to estimate the
maximum error in calculating the surface area of the box.

Use differentials to estimate the amount of tin in a closed tin
can with diameter 8 cm and height 12 cm if the tin is cm
thick.

36. Use differentials to estimate the amount of metal in a closed
cylindrical can that is 10 cm high and 4 cm in diameter if the
metal in the top and bottom is cm thick and the metal in the
sides is cm thick.

A boundary stripe 3 in. wide is painted around a rectangle
whose dimensions are 100 ft by 200 ft. Use differentials to
approximate the number of square feet of paint in the stripe.

38. The pressure, volume, and temperature of a mole of an ideal
gas are related by the equation , where is mea-
sured in kilopascals, in liters, and in kelvins. Use differen-
tials to find the approximate change in the pressure if the
volume increases from 12 L to 12.3 L and the temperature
decreases from 310 K to 305 K.

TV
PPV � 8.31T

37.

0.05
0.1

0.04
35.

0.2

0.1

dz�z�2.96, �0.95�
�3, �1��x, y�z � x 2 � xy � 3y 2

dz�z
�1.05, 2.1�,�1, 2��x, y�z � 5x 2 � y 231.

w � xye xzR � �
 2 cos �

T �
v

1 � uvw
m � p5q3

v � y cos xyz � x 3 ln�y 2�

�17�C

50 km	hv�15�CT
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THE CHAIN RULE

Recall that the Chain Rule for functions of a single variable gives the rule for differenti-
ating a composite function: If and , where and are differentiable func-
tions, then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each of
them giving a rule for differentiating a composite function. The first version (Theorem 2)
deals with the case where and each of the variables and is, in turn, a func-
tion of a variable . This means that is indirectly a function of , , and the
Chain Rule gives a formula for differentiating as a function of . We assume that is dif-
ferentiable (Definition 14.4.7). Recall that this is the case when and are continuous
(Theorem 14.4.8).

THE CHAIN RULE (CASE 1) Suppose that is a differentiable func-
tion of and , where and are both differentiable functions of .
Then is a differentiable function of and

PROOF A change of in produces changes of in and in . These, in turn, pro-
duce a change of in , and from Definition 14.4.7 we have

where and as . [If the functions and are not
defined at , we can define them to be 0 there.] Dividing both sides of this equation
by , we have

If we now let , then because is differentiable and
therefore continuous. Similarly, . This, in turn, means that and , so

M �
�f

�x
 
dx

dt
�

�f

�y
 
dy

dt

 �
�f

�x
 
dx

dt
�

�f

�y
 
dy

dt
� 0 �

dx

dt
� 0 �

dy

dt

 �
�f

�x
 lim
�t l 0

 
�x

�t
�

�f

�y
 lim
�t l 0

 
�y

�t
� � lim

�t l 0
 �1
 lim

�t l 0
 
�x

�t
� � lim

�t l 0
 �2
 lim

�t l 0
 
�y

�t

 
dz

dt
� lim

�t l 0
 
�z

�t

�2 l 0�1 l 0�y l 0
t�x � t�t � �t� � t�t� l 0�t l 0

�z

�t
�

�f

�x
 
�x

�t
�

�f

�y
 
�y

�t
� �1 

�x

�t
� �2 

�y

�t

�t
�0, 0�

�2�1��x, �y� l �0, 0��2 l 0�1 l 0

�z �
�f

�x
�x �

�f

�y
�y � �1 �x � �2 �y

z�z
y�yx�xt�t

dz

dt
�

�f

�x
 
dx

dt
�

�f

�y
 
dy

dt

tz
ty � h�t�x � t�t�yx

z � f �x, y�2

fyfx

ftz
z � f �t�t�, h�t��tzt

yxz � f �x, y�

dy

dt
�

dy

dx
 
dx

dt
1

ty
tfx � t�t�y � f �x�
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Since we often write in place of , we can rewrite the Chain Rule in the form

EXAMPLE 1 If , where and , find when .

SOLUTION The Chain Rule gives

It’s not necessary to substitute the expressions for and in terms of . We simply
observe that when , we have x � sin 0 � 0 and y � cos 0 � 1. Therefore

M

The derivative in Example 1 can be interpreted as the rate of change of with respect
to as the point moves along the curve with parametric equations ,

. (See Figure 1.) In particular, when , the point is and 
is the rate of increase as we move along the curve through . If, for instance,

represents the temperature at the point , then the compos-
ite function represents the temperature at points on and the deriva-
tive represents the rate at which the temperature changes along .

EXAMPLE 2 The pressure (in kilopascals), volume (in liters), and temperature 
(in kelvins) of a mole of an ideal gas are related by the equation . Find the
rate at which the pressure is changing when the temperature is and increasing at a
rate of and the volume is 100 L and increasing at a rate of .

SOLUTION If represents the time elapsed in seconds, then at the given instant we have
, , , . Since

the Chain Rule gives

The pressure is decreasing at a rate of about kPa	s. M

We now consider the situation where but each of and is a function of two
variables and : , . Then is indirectly a function of and and we tszy � h�s, t�x � t�s, t�ts

yxz � f �x, y�

0.042

 �
8.31

100
 �0.1� �

8.31�300�
1002  �0.2� � �0.04155

 
dP

dt
�

�P

�T
 
dT

dt
�

�P

�V
 
dV

dt
�

8.31

V
 
dT

dt
�

8.31T

V 2  
dV

dt

P � 8.31
T

V

dV	dt � 0.2V � 100dT	dt � 0.1T � 300
t

0.2 L	s0.1 K	s
300 K

PV � 8.31T
TVPV

Cdz	dt
Cz � T�sin 2t, cos t�

�x, y�z � T�x, y� � x 2y � 3xy 4
�0, 1�C

dz	dt � 6�0, 1��x, y�t � 0y � cos t
x � sin 2tC�x, y�t

z

dz

dt �
t�0

� �0 � 3��2 cos 0� � �0 � 0���sin 0� � 6

t � 0
tyx

 � �2xy � 3y 4 ��2 cos 2t� � �x 2 � 12xy 3 ���sin t�

 
dz

dt
�

�z

�x
 
dx

dt
�

�z

�y
 
dy

dt

t � 0dz	dty � cos tx � sin 2tz � x 2y � 3xy4

dz

dt
�

�z

�x
 
dx

dt
�

�z

�y
 
dy

dt

�f	�x�z	�x
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N Notice the similarity to the definition of the
differential:

dz �
�z

�x
 dx �

�z

�y
 dy

FIGURE 1
The curve x=sin 2t, y=cos t

x

(0, 1)

y

C



wish to find and . Recall that in computing we hold fixed and compute
the ordinary derivative of with respect to . Therefore we can apply Theorem 2 to obtain

A similar argument holds for and so we have proved the following version of the
Chain Rule.

THE CHAIN RULE (CASE 2) Suppose that is a differentiable func-
tion of and , where and are differentiable functions of s
and t. Then

EXAMPLE 3 If , where and , find and .

SOLUTION Applying Case 2 of the Chain Rule, we get

M

Case 2 of the Chain Rule contains three types of variables: and are independent
variables, and are called intermediate variables, and is the dependent variable.
Notice that Theorem 3 has one term for each intermediate variable and each of these terms
resembles the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule, it’s helpful to draw the tree diagram in Figure 2. We draw
branches from the dependent variable to the intermediate variables and to indicate
that is a function of and . Then we draw branches from and to the independent
variables and . On each branch we write the corresponding partial derivative. To find

, we find the product of the partial derivatives along each path from to and then
add these products:

Similarly, we find by using the paths from to .
Now we consider the general situation in which a dependent variable is a function of

intermediate variables , , each of which is, in turn, a function of independent
variables , . Notice that there are terms, one for each intermediate variable. The
proof is similar to that of Case 1.

ntm. . . ,t1

mxn. . . ,x1n
u

tz�z	�t

�z

�s
�

�z

�x
 
�x

�s
�

�z

�y
 
�y

�s

sz�z	�s
ts

yxyxz
yxz

zyx
ts

 � 2ste st 2

sin �s 2t� � s 2est 2

cos�s 2t�

 
�z

�t
�

�z

�x
 
�x

�t
�

�z

�y
 
�y

�t
� �ex sin y��2st� � �ex cos y��s 2 �

 � t 2est 2

sin �s 2t� � 2ste st 2

cos�s 2t�

 
�z

�s
�

�z

�x
 
�x

�s
�

�z

�y
 
�y

�s
� �ex sin y��t 2 � � �ex cos y��2st�

�z	�t�z	�sy � s 2tx � st 2z � ex sin y

 
�z

�t
�

�z

�x
 
�x

�t
�

�z

�y
 
�y

�t
 
�z

�s
�

�z

�x
 
�x

�s
�

�z

�y
 
�y

�s

y � h�s, t�x � t�s, t�yx
z � f �x, y�3

�z	�s

�z

�t
�

�z

�x
 
�x

�t
�

�z
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�y

�t
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THE CHAIN RULE (GENERAL VERSION) Suppose that is a differentiable func-
tion of the variables , , and each is a differentiable function of the

variables , , . Then is a function of , , and

for each , , .

EXAMPLE 4 Write out the Chain Rule for the case where and
, , , and .

SOLUTION We apply Theorem 4 with and . Figure 3 shows the tree diagram.
Although we haven’t written the derivatives on the branches, it’s understood that if a
branch leads from to , then the partial derivative for that branch is . With the aid
of the tree diagram, we can now write the required expressions:

M

EXAMPLE 5 If , where , , and , find the
value of when , , .

SOLUTION With the help of the tree diagram in Figure 4, we have

When , , and , we have , , and , so

M

EXAMPLE 6 If and is differentiable, show that satisfies
the equation

SOLUTION Let and . Then and the Chain Rule
gives

Therefore

Mt 
�t

�s
� s 

�t

�t
� �2st 

�f

�x
� 2st 

�f

�y� � ��2st 
�f

�x
� 2st 

�f

�y� � 0
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�x
 
�x

�t
�
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�f

�x
 ��2t� �
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�
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�x
 �2s� �

�f
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 ��2s�

t�s, t� � f �x, y�y � t 2 � s 2x � s 2 � t 2

t 
�t

�s
� s 

�t

�t
� 0

tft�s, t� � f �s 2 � t 2, t 2 � s 2 �

�u

�s
� �64��2� � �16��4� � �0��0� � 192

z � 0y � 2x � 2t � 0s � 1r � 2

 � �4x 3y��re t� � �x 4 � 2yz3 ��2rse�t � � �3y 2z2 ��r 2 sin t�
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�s
�
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�x
 
�x
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�
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t � 0s � 1r � 2�u��s
z � r 2s sin ty � rs 2e�tx � rse tu � x 4y � y 2z3V
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m � 2n � 4

t � t�u, v�z � z�u, v�y � y�u, v�x � x�u, v�
w � f �x, y, z, t�V

m. . . ,2i � 1
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EXAMPLE 7 If has continuous second-order partial derivatives and
and , find (a) and (b) .

SOLUTION
(a) The Chain Rule gives

(b) Applying the Product Rule to the expression in part (a), we get

But, using the Chain Rule again (see Figure 5), we have

Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

M

IMPLICIT DIFFERENTIATION

The Chain Rule can be used to give a more complete description of the process of implicit
differentiation that was introduced in Sections 3.5 and 14.3. We suppose that an equa-
tion of the form defines implicitly as a differentiable function of , that is,

, where for all in the domain of . If is differentiable, we can
apply Case 1 of the Chain Rule to differentiate both sides of the equation with
respect to . Since both and are functions of , we obtain

But , so if we solve for and obtain

dy

dx
� �

�F

�x

�F

�y

� �
Fx

Fy

6

dy�dx�F��y � 0dx�dx � 1

�F

�x
 
dx

dx
�

�F
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dx
� 0

xyxx
F�x, y� � 0

FfxF�x, f �x�� � 0y � f �x�
xyF�x, y� � 0

 � 2 
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� 4r 2 

�2z
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�2z
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�y 2�

�
�2z

�x �y
 �2r� �

�2z

�y 2  �2s� 
�

�r
 � �z

�y� �
�

�x
 � �z

�y� 
�x

�r
�

�

�y
 � �z

�y� 
�y

�r

�
�2z

�x 2  �2r� �
�2z

�y �x
 �2s� 

�

�r
 � �z

�x� �
�

�x
 � �z

�x� 
�x

�r
�

�

�y
 � �z

�x� 
�y

�r

 � 2 
�z

�x
� 2r 

�

�r
 � �z

�x� � 2s 
�

�r
 � �z

�y�
    
�2z

�r 2 �
�

�r�2r 
�z

�x
� 2s 

�z

�y�
5

�z

�r
�

�z

�x
 
�x

�r
�

�z

�y
 
�y

�r
�

�z

�x
 �2r� �

�z

�y
 �2s�

�2z��r 2�z��ry � 2rsx � r 2 � s 2
z � f �x, y�
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To derive this equation we assumed that defines implicitly as a function
of . The Implicit Function Theorem, proved in advanced calculus, gives conditions
under which this assumption is valid: It states that if is defined on a disk containing

where , , and and are continuous on the disk, then the
equation defines as a function of near the point and the derivative of
this function is given by Equation 6.

EXAMPLE 8 Find if .

SOLUTION The given equation can be written as

so Equation 6 gives

M

Now we suppose that is given implicitly as a function by an equation of
the form . This means that for all in the domain 
of . If and are differentiable, then we can use the Chain Rule to differentiate the equa-
tion as follows:

But

so this equation becomes

If , we solve for and obtain the first formula in Equations 7. The formula
for is obtained in a similar manner.

Again, a version of the Implicit Function Theorem gives conditions under which 
our assumption is valid: If is defined within a sphere containing , where

, , and , , and are continuous inside the sphere, then the
equation defines as a function of and near the point and this
function is differentiable, with partial derivatives given by (7).

�a, b, c�yxzF�x, y, z� � 0
FzFyFxFz�a, b, c� � 0F�a, b, c� � 0

�a, b, c�F

�z

�y
� �

�F

�y

�F

�z

�z

�x
� �

�F

�x

�F

�z

7

�z��y
�z��x�F��z � 0

�F

�x
�

�F

�z
 
�z

�x
� 0

�

�x
 �y� � 0and

�

�x
 �x� � 1

�F

�x
 
�x

�x
�

�F

�y
 
�y

�x
�

�F

�z
 
�z

�x
� 0

F�x, y, z� � 0
fFf

�x, y�F�x, y, f �x, y�� � 0F�x, y, z� � 0
z � f �x, y�z

dy

dx
� �

Fx

Fy
� �

3x 2 � 6y

3y 2 � 6x
� �

x 2 � 2y

y 2 � 2x

F�x, y� � x 3 � y 3 � 6xy � 0

x 3 � y 3 � 6xyy�

�a, b�xyF�x, y� � 0
FyFxFy�a, b� � 0F�a, b� � 0�a, b�,

F
x

yF�x, y� � 0
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N The solution to Example 8 should be 
compared to the one in Example 2 in 
Section 3.5.



EXAMPLE 9 Find and if .

SOLUTION Let . Then, from Equations 7, we have

M 
�z

�y
� �

Fy

Fz
� �

3y 2 � 6xz

3z2 � 6xy
� �

y 2 � 2xz

z2 � 2xy

 
�z

�x
� �

Fx

Fz
� �

3x 2 � 6yz

3z2 � 6xy
� �

x 2 � 2yz

z2 � 2xy

F�x, y, z� � x 3 � y 3 � z3 � 6xyz � 1

x 3 � y 3 � z3 � 6xyz � 1
�z

�y

�z

�x
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N The solution to Example 9 should be 
compared to the one in Example 4 in 
Section 14.3.

14. Let , where are 
differentiable, and

Find and .

15. Suppose is a differentiable function of and , and
. Use the table of values 

to calculate 

16. Suppose is a differentiable function of and , and
Use the table of values in

Exercise 15 to calculate and 

17–20 Use a tree diagram to write out the Chain Rule for the given
case. Assume all functions are differentiable.

, where ,

18. , where , ,
,

19. , where , ,

20. , where , ,
w � w�p, q, r, s�

v � v�p, q, r, s�u � u�p, q, r, s�t � f �u, v, w�

t � t�x, y�s � s�x, y�r � r�x, y�w � f �r, s, t�

t � t�u, v, w�z � z�u, v, w�
y � y�u, v, w�x � x�u, v, w�R � f �x, y, z, t�

y � y�r, s, t�x � x�r, s, t�u � f �x, y�17.

ts�1, 2�.tr�1, 2�
t�r, s� � f �2r � s, s 2 � 4r�.

yxf

tu�0, 0� and tv�0, 0�.
t�u, v� � f �e u � sin v, e u � cos v�

yxf

Wt�1, 0�Ws�1, 0�

Fv�2, 3� � 10Fu�2, 3� � �1

vt�1, 0� � 4ut�1, 0� � 6

vs�1, 0� � 5us�1, 0� � �2

v�1, 0� � 3u�1, 0� � 2

F, u, and vW�s, t� � F�u�s, t�, v�s, t��1–6 Use the Chain Rule to find or .

1. , ,

2. , ,

3. , ,

4. , ,

, , ,

6. , , ,

7–12 Use the Chain Rule to find and .

7. , ,

8. , ,

9. , ,

10. , ,

, ,

12. , ,

13. If , where is differentiable, and

find when .t � 3dz�dt

fy�2, 7� � �8fx�2, 7� � 6

h��3� � �4t��3� � 5

h�3� � 7t�3� � 2

y � h�t�x � t�t�

fz � f �x, y�

v � 3s � 2tu � 2s � 3tz � tan�u�v�

� � ss 2 � t 2 r � stz � e r cos �11.

y � t�sx � s�tz � e x�2y

� � s 2t� � st 2z � sin � cos �

y � 1 � 2stx � s 2 � t 2z � arcsin�x � y�

y � s sin tx � s cos tz � x 2y 3

�z��t�z��s

z � tan ty � cos tx � sin tw � lnsx 2 � y 2 � z2 

z � 1 � 2ty � 1 � tx � t 2w � xe y�z5.

y � 1 � e�tx � e tz � tan�1�y�x�

y � cos tx � ln tz � s1 � x 2 � y 2 

y � 1�tx � 5t 4z � cos�x � 4y�

y � e tx � sin tz � x 2 � y 2 � xy

dw�dtdz�dt

EXERCISES14.5

3 6 4 8

6 3 2 5�1, 2�

�0, 0�

fyfxtf
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37. The speed of sound traveling through ocean water with salinity
35 parts per thousand has been modeled by the equation

where is the speed of sound (in meters per second), is the
temperature (in degrees Celsius), and is the depth below the
ocean surface (in meters). A scuba diver began a leisurely dive
into the ocean water; the diver’s depth and the surrounding
water temperature over time are recorded in the following
graphs. Estimate the rate of change (with respect to time) of 
the speed of sound through the ocean water experienced by the
diver 20 minutes into the dive. What are the units?

38. The radius of a right circular cone is increasing at a rate of 
in�s while its height is decreasing at a rate of in�s. At

what rate is the volume of the cone changing when the radius is
120 in. and the height is 140 in.?

The length �, width , and height of a box change with 
time. At a certain instant the dimensions are and 

m, and � and are increasing at a rate of 2 m�s
while is decreasing at a rate of 3 m�s. At that instant find the
rates at which the following quantities are changing.
(a) The volume
(b) The surface area
(c) The length of a diagonal

40. The voltage in a simple electrical circuit is slowly decreasing
as the battery wears out. The resistance is slowly increasing
as the resistor heats up. Use Ohm’s Law, , to find how
the current is changing at the moment when ,

A, V�s, and .

41. The pressure of 1 mole of an ideal gas is increasing at a rate 
of kPa�s and the temperature is increasing at a rate of 

K�s. Use the equation in Example 2 to find the rate of
change of the volume when the pressure is 20 kPa and the 
temperature is 320 K.

42. Car A is traveling north on Highway 16 and car B is traveling
west on Highway 83. Each car is approaching the intersection
of these highways. At a certain moment, car A is 0.3 km from
the intersection and traveling at 90 km�h while car B is 0.4 km
from the intersection and traveling at 80 km�h. How fast is the
distance between the cars changing at that moment?

43. One side of a triangle is increasing at a rate of and a
second side is decreasing at a rate of . If the area of the 2 cm�s

3 cm�s

0.15
0.05

dR�dt � 0.03 	�sdV�dt � �0.01I � 0.08
R � 400 	I

V � IR
R

V

h
ww � h � 2

� � 1 m
hw39.

2.51.8

t

(min)

T

10

12

10 20 30 40

14

16

8

t

(min)

D

5

10

10 20 30 40

15

20

D
TC

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3 � 0.016D

21–26 Use the Chain Rule to find the indicated partial derivatives.

21. , , ;

, , when , , 

22. , , ;

, , when , , 

23. ,
, , ;

, when 

24. , , , ;

, when 

25. , , , ;

, , when 

26. , , , ;

, , when 

27–30 Use Equation 6 to find .

27. 28.

29. 30.

31–34 Use Equations 7 to find and .

31.

33. 34.

The temperature at a point is , measured in degrees
Celsius. A bug crawls so that its position after seconds is
given by , where and are measured
in centimeters. The temperature function satisfies 
and . How fast is the temperature rising on the
bug’s path after 3 seconds?

36. Wheat production in a given year depends on the average
temperature and the annual rainfall . Scientists estimate 
that the average temperature is rising at a rate of 0.15°C�year
and rainfall is decreasing at a rate of 0.1 cm�year. They also
estimate that, at current production levels, 
and .
(a) What is the significance of the signs of these partial 

derivatives?
(b) Estimate the current rate of change of wheat production,

.dW�dt

�W��R � 8
�W��T � �2

RT
W

Ty�2, 3� � 3
Tx�2, 3� � 4

yxx � s1 � t  , y � 2 �
1
3 t

t
T�x, y��x, y�35.

yz � ln�x � z�x � z � arctan�yz�

xyz � cos�x � y � z�32.x 2 � y 2 � z 2 � 3xyz

�z��y�z��x

sin x � cos y � sin x cos ycos�x � y� � xe y

y 5 � x 2y 3 � 1 � ye x 2

sxy � 1 � x 2y

dy�dx

r � 1, s � 0, t � 1
�Y

�t

�Y

�s

�Y

�r

w � t � rv � s � tu � r � sY � w tan�1�uv�

p � 2, r � 3, � � 0
�u

��

�u

�r

�u

�p

z � p � ry � pr sin �x � pr cos �u � x 2 � yz

u � 3, v � �1
�M

�v

�M

�u

z � u � vy � u � vx � 2uvM � xe y�z2

x � y � 1
�R

�y

�R

�x

w � 2xyv � 2x � yu � x � 2y
R � ln�u 2 � v 2 � w 2�

t � 0y � 2x � 1
�u

�t

�u

�y

�u

�x

s � x � y sin tr � y � x cos tu � sr 2 � s 2
 

w � 0v � 1u � 2
�z

�w

�z

�v

�z

�u

y � u � ve wx � uv 2 � w 3z � x 2 � xy 3
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50. If , where and , show that

51. If , where and , find .
(Compare with Example 7.)

52. If , where and , find 
(a) , (b) , and (c) .

53. If , where and , show that 

54. Suppose , where and .
(a) Show that

(b) Find a similar formula for .

55. A function f is called homogeneous of degree n if it satisfies
the equation for all t, where n is a positive
integer and f has continuous second-order partial derivatives.
(a) Verify that is homogeneous 

of degree 3.
(b) Show that if is homogeneous of degree , then

[Hint: Use the Chain Rule to differentiate with
respect to t.]

56. If is homogeneous of degree , show that

57. If is homogeneous of degree , show that

58. Suppose that the equation implicitly defines each
of the three variables , , and as functions of the other two:

, , . If is differentiable and
, , and are all nonzero, show that

�z

�x
 
�x

�y
 
�y

�z
� �1

FzFyFx

Fx � h�y, z�y � t�x, z�z � f �x, y�
zyx

F�x, y, z� � 0

fx�t x, t y� � t n�1fx�x, y�

nf

x2 
�2f

�x 2 � 2xy 
�2f

�x �y
� y 2 

�2f

�y 2 � n�n � 1� f �x, y�

nf

f �tx, t y�

x 
�f

�x
� y 

�f

�y
� n f �x, y�

nf

f �x, y� � x 2y � 2xy 2 � 5y 3

f �t x, t y� � t nf �x, y�

�2z��s �t

  �
�z

�x
 
�2x

�t 2 �
�z

�y
 
�2 y

�t 2

 
�2z

�t 2 �
�2z

�x 2  ��x

�t �2

� 2 
�2z

�x �y
 
�x

�t
 
�y

�t
�

�2z

�y 2  ��y

�t �2

y � h�s, t�x � t�s, t�z � f �x, y�

�2z

�x 2 �
�2z

�y 2 �
�2z

�r 2 �
1

r 2  
�2z

�� 2 �
1

r
 
�z

�r

y � r sin �x � r cos �z � f �x, y�

�2z��r ���z����z��r
y � r sin �x � r cos �z � f �x, y�

�2z��r �sy � 2rsx � r 2 � s 2z � f �x, y�

�2u

�x 2 �
�2u

�y 2 � e�2s��2u

�s 2 �
�2u

�t 2�
y � e s sin tx � e s cos tu � f �x, y�triangle remains constant, at what rate does the angle between

the sides change when the first side is 20 cm long, the second
side is 30 cm, and the angle is ?

44. If a sound with frequency is produced by a source traveling
along a line with speed and an observer is traveling with
speed along the same line from the opposite direction toward
the source, then the frequency of the sound heard by the
observer is

where is the speed of sound, about . (This is the
Doppler effect.) Suppose that, at a particular moment, you 
are in a train traveling at and accelerating at .
A train is approaching you from the opposite direction on the
other track at , accelerating at , and sounds its
whistle, which has a frequency of 460 Hz. At that instant, what
is the perceived frequency that you hear and how fast is it
changing?

45–48 Assume that all the given functions are differentiable.

If , where and , (a) find 
and and (b) show that

46. If , where and , show that

If , show that .

48. If , where and , show that

49–54 Assume that all the given functions have continuous 
second-order partial derivatives.

49. Show that any function of the form

is a solution of the wave equation

[Hint: Let , .]v � x � atu � x � at

�2z

�t 2 � a 2 
�2z

�x 2

z � f �x � at� � t�x � at�

� �z

�x�2

� � �z

�y�2

�
�z

�s
 
�z

�t

y � s � tx � s � tz � f �x, y�

�z

�x
�

�z

�y
� 0z � f �x � y�47.

��u

�x�2

� ��u

�y�2

� e�2s���u

�s�2

� ��u

�t �2�
y � e s sin tx � e s cos tu � f �x, y�

� �z

�x�2

� � �z

�y�2

� ��z

�r�2

�
1

r 2  � �z

��
�2

�z���
�z��ry � r sin �x � r cos �z � f �x, y�45.

1.4 m�s240 m�s

1.2 m�s234 m�s

332 m�sc

fo � � c � vo

c � vs
� fs

vo

vs

fs


�6



DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

The weather map in Figure 1 shows a contour map of the temperature function for
the states of California and Nevada at 3:00 PM on a day in October. The level curves, or
isothermals, join locations with the same temperature. The partial derivative at a loca-
tion such as Reno is the rate of change of temperature with respect to distance if we travel
east from Reno; is the rate of change of temperature if we travel north. But what if we
want to know the rate of change of temperature when we travel southeast (toward Las
Vegas), or in some other direction? In this section we introduce a type of derivative, called
a directional derivative, that enables us to find the rate of change of a function of two or
more variables in any direction.

DIRECTIONAL DERIVATIVES

Recall that if , then the partial derivatives and are defined as

and represent the rates of change of in the - and -directions, that is, in the directions of
the unit vectors and .

Suppose that we now wish to find the rate of change of at in the direction of
an arbitrary unit vector . (See Figure 2.) To do this we consider the surface 
with equation (the graph of ) and we let . Then the point

lies on . The vertical plane that passes through in the direction of inter-
sects in a curve . (See Figure 3.) The slope of the tangent line to at the point is
the rate of change of in the direction of .

FIGURE 3

P(x¸, y¸, z¸)T

y

x

z

uz
PCTCS

uPSP�x0, y0, z0 �
z0 � f �x0, y0 �fz � f �x, y�

Su � 	a, b 

�x0, y0 �z

ji
yxz

 fy�x0, y0 � � lim
h l 0

 
 f �x0, y0 � h� � f �x0, y0 �

h

 fx�x0, y0 � � lim
h l 0

 
 f �x0 � h, y0 � � f �x0, y0 �

h
1

fyfxz � f �x, y�

Ty

Tx

T�x, y�
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FIGURE 2
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If is another point on and , are the projections of , on the -plane,
then the vector P�BQ� is parallel to and so

P�BQ�

for some scalar . Therefore , , so , ,
and

If we take the limit as , we obtain the rate of change of (with respect to distance)
in the direction of , which is called the directional derivative of in the direction of .

DEFINITION The directional derivative of at in the direction of a
unit vector is

if this limit exists.

By comparing Definition 2 with Equations (1), we see that if , then
and if , then . In other words, the partial derivatives of 

with respect to and are just special cases of the directional derivative.

EXAMPLE 1 Use the weather map in Figure 1 to estimate the value of the directional
derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION The unit vector directed toward the southeast is , but we won’t
need to use this expression. We start by drawing a line through Reno toward the south-
east. (See Figure 4.)

We approximate the directional derivative by the average rate of change of the
temperature between the points where this line intersects the isothermals andT � 50

Du T

FIGURE 4
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u � �i � j��s2 

yx
fDj f � fyu � j � 	0, 1 
Di f � fx

u � i � 	1, 0 


Du f �x0, y0 � � lim
h l 0

 
 f �x0 � ha, y0 � hb� � f �x0, y0 �

h

u � 	a, b 

�x0, y0 �f2

ufu
zh l 0

�z

h
�

z � z0

h
�

 f �x0 � ha, y0 � hb� � f �x0, y0 �
h

y � y0 � hbx � x0 � hay � y0 � hbx � x0 � hah

� hu � 	ha, hb 


u
xyQPQ�P�CQ�x, y, z�
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. The temperature at the point southeast of Reno is and the temperature
at the point northwest of Reno is . The distance between these points looks to
be about 75 miles. So the rate of change of the temperature in the southeasterly direction
is

M

When we compute the directional derivative of a function defined by a formula, we gen-
erally use the following theorem.

THEOREM If is a differentiable function of and , then has a directional
derivative in the direction of any unit vector and

PROOF If we define a function of the single variable by

then, by the definition of a derivative, we have

On the other hand, we can write , where , , so the
Chain Rule (Theorem 14.5.2) gives

If we now put , then , , and

Comparing Equations 4 and 5, we see that

M

If the unit vector makes an angle with the positive -axis (as in Figure 2), then we
can write and the formula in Theorem 3 becomes

EXAMPLE 2 Find the directional derivative if

and is the unit vector given by angle . What is ?Du f �1, 2�� � 
�6u

f �x, y� � x 3 � 3xy � 4y 2

Du f �x, y�

Du f �x, y� � fx�x, y� cos � � fy�x, y� sin �6

u � 	cos �, sin � 

x�u

Du f �x0, y0 � � fx�x0, y0 � a � fy�x0, y0 � b

t��0� � fx�x0, y0 � a � fy�x0, y0 � b5

y � y0x � x0h � 0

 t��h� �
�f

�x
 
dx

dh
�

�f

�y
 
dy

dh
� fx�x, y� a � fy�x, y� b

y � y0 � hbx � x0 � hat�h� � f �x, y�

 � Du f �x0, y0 �

 t��0� � lim
h l 0

 
t�h� � t�0�

h
� lim

h l 0
 
 f �x0 � ha, y0 � hb� � f �x0, y0 �

h
4

t�h� � f �x0 � ha, y0 � hb�

ht

Du f �x, y� � fx�x, y� a � fy�x, y� b

u � 	a, b 

fyxf3

Du T �
60 � 50

75
�

10

75
� 0.13�F�mi

T � 50 �F
T � 60 �FT � 60
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SOLUTION Formula 6 gives

Therefore

M

THE GRADIENT VECTOR

Notice from Theorem 3 that the directional derivative can be written as the dot product of
two vectors:

The first vector in this dot product occurs not only in computing directional derivatives but
in many other contexts as well. So we give it a special name (the gradient of ) and a spe-
cial notation (grad or , which is read “del ”).

DEFINITION If is a function of two variables and , then the gradient of 
is the vector function defined by

EXAMPLE 3 If , then

and M

With this notation for the gradient vector, we can rewrite the expression (7) for the
directional derivative as

This expresses the directional derivative in the direction of as the scalar projection of the
gradient vector onto .u

u

Du f �x, y� � 
 f �x, y� � u9

 
 f �0, 1� � 	2, 0 


 
 f �x, y� � 	 fx , fy
 � 	cos x � yex y, xex y 


f �x, y� � sin x � ex y


 f �x, y� � 	 fx�x, y�, fy�x, y�
 �
�f

�x
 i �

�f

�y
 j


 f
fyxf8

f
 ff
f

 � 	 fx�x, y�, fy�x, y�
 � u

 � 	 fx�x, y�, fy�x, y�
 � 	a, b 


 Du f �x, y� � fx�x, y� a � fy�x, y� b7

Du f �1, 2� � 1
2 [3s3 �1�2 � 3�1� � (8 � 3s3 )�2�] �

13 � 3s3 

2

 � 1
2 [3 s3 x 2 � 3x � (8 � 3s3 )y]

 � �3x 2 � 3y� 
s3 

2
� ��3x � 8y� 1

2

 Du f �x, y� � fx�x, y� cos 



6
� fy�x, y� sin 




6
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N The directional derivative in 
Example 2 represents the rate of change of in
the direction of . This is the slope of the tan-
gent line to the curve of intersection of the 
surface and the vertical
plane through in the direction of 
shown in Figure 5.

u�1, 2, 0�
z � x 3 � 3xy � 4y2

u
z

Du f �1, 2�

FIGURE 5

(1, 2, 0)
π
6

z

x

y0

u



EXAMPLE 4 Find the directional derivative of the function at the
point in the direction of the vector .

SOLUTION We first compute the gradient vector at :

Note that is not a unit vector, but since , the unit vector in the direction 
of is

Therefore, by Equation 9, we have

M

FUNCTIONS OF THREE VARIABLES

For functions of three variables we can define directional derivatives in a similar manner.
Again can be interpreted as the rate of change of the function in the direction
of a unit vector .

DEFINITION The directional derivative of at in the direction of a
unit vector is

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

where if and if . This is reasonable because
the vector equation of the line through in the direction of the vector is given by

(Equation 12.5.1) and so represents the value of at a point on
this line.

ff �x0 � hu�x � x0 � tu
ux0

n � 3x0 � �x0, y0, z0 �n � 2x0 � �x0, y0 �

Du f �x0 � � lim
h l 0

 
 f �x0 � hu� � f �x0 �

h
11

Du f �x0, y0, z0 � � lim
h l 0

 
 f �x0 � ha, y0 � hb, z0 � hc� � f �x0, y0, z0 �

h

u � �a, b, c�
�x0, y0, z0 �f10

u
Du f �x, y, z�

 �
�4 � 2 � 8 � 5

s29 �
32

s29 

Du f �2, �1� � � f �2, �1� � u � ��4 i � 8 j� � � 2

s29  i �
5

s29  j�

u �
v

� v � �
2

s29  i �
5

s29  j

v
� v � � s29 v

 � f �2, �1� � �4 i � 8 j

 � f �x, y� � 2xy 3 i � �3x 2y 2 � 4�j

�2, �1�

v � 2 i � 5 j�2, �1�
f �x, y� � x 2y 3 � 4yV
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N The gradient vector in Example 4
is shown in Figure 6 with initial point .
Also shown is the vector that gives the direc-
tion of the directional derivative. Both of these
vectors are superimposed on a contour plot of
the graph of .f

v
�2, �1�

�f �2, �1�

v

(2, _1)

±f(2, _1)

FIGURE 6

x

y



If is differentiable and , then the same method that was used to
prove Theorem 3 can be used to show that

For a function of three variables, the gradient vector, denoted by or grad , is

or, for short,

Then, just as with functions of two variables, Formula 12 for the directional derivative can
be rewritten as

EXAMPLE 5 If , (a) find the gradient of and (b) find the direc-
tional derivative of at in the direction of .

SOLUTION
(a) The gradient of is 

(b) At we have . The unit vector in the direction of
is

Therefore Equation 14 gives

M

MAXIMIZING THE DIRECTIONAL DERIVATIVE

Suppose we have a function of two or three variables and we consider all possible direc-
tional derivatives of at a given point. These give the rates of change of in all possible
directions. We can then ask the questions: In which of these directions does change
fastest and what is the maximum rate of change? The answers are provided by the follow-
ing theorem.

f
ff

f

 � 3��
1

s6 � � �	3

2

 � 3k � � 1

s6  i �
2

s6  j �
1

s6  k�
 Du f �1, 3, 0� � � f �1, 3, 0� � u

u �
1

s6  i �
2

s6  j �
1

s6  k

v � i � 2 j � k
� f �1, 3, 0� � �0, 0, 3 ��1, 3, 0�

 � �sin yz, xz cos yz, xy cos yz�

 � f �x, y, z� � � fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

f

v � i � 2 j � k�1, 3, 0�f
ff �x, y, z� � x sin yzV

Du f �x, y, z� � � f �x, y, z� � u14

� f � � fx, fy, fz� �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k13

� f �x, y, z� � � fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

f� ff

Du f �x, y, z� � fx�x, y, z� a � fy�x, y, z� b � fz�x, y, z� c12

u � �a, b, c�f �x, y, z�
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THEOREM Suppose is a differentiable function of two or three variables. The
maximum value of the directional derivative is and it occurs when

has the same direction as the gradient vector .

PROOF From Equation 9 or 14 we have

where is the angle between and . The maximum value of is 1 and this
occurs when . Therefore the maximum value of is and it occurs when

, that is, when has the same direction as . M

EXAMPLE 6
(a) If , find the rate of change of at the point in the direction from

to .
(b) In what direction does have the maximum rate of change? What is this maximum
rate of change?

SOLUTION
(a) We first compute the gradient vector:

The unit vector in the direction of is , so the rate of change
of in the direction from to is

(b) According to Theorem 15, increases fastest in the direction of the gradient vector
. The maximum rate of change is

M

EXAMPLE 7 Suppose that the temperature at a point in space is given by
, where is measured in degrees Celsius and 

, , in meters. In which direction does the temperature increase fastest at the point
? What is the maximum rate of increase?

SOLUTION The gradient of is

 � 
160

�1 � x 2 � 2y 2 � 3z2 �2  ��x i � 2y j � 3z k�

 � �
160x

�1 � x 2 � 2y 2 � 3z2 �2  i �
320y

�1 � x 2 � 2y 2 � 3z2 �2  j �
480z

�1 � x 2 � 2y 2 � 3z2 �2  k

 �T �
�T

�x
 i �

�T

�y
 j �

�T

�z
 k

T

�1, 1, �2�
zyx

TT�x, y, z� � 80
�1 � x 2 � 2y 2 � 3z2 �
�x, y, z�

� � f �2, 0� � � � �1, 2 � � � s5 

� f �2, 0� � �1, 2 �
f

 � 1(� 3
5 ) � 2(4

5 ) � 1

 Du f �2, 0� � � f �2, 0� � u � �1, 2 � � �� 3
5, 45 �

QPf
u � �� 3

5, 45 �PQ
l

� ��1.5, 2 �

  � f �2, 0� � �1, 2 �

 � f �x, y� � � fx, fy � � �ey, xey�

f
Q( 1

2, 2)P
P�2, 0�ff �x, y� � xey

� fu� � 0
� � f �Du f� � 0

cos �u� f�

Du f � � f � u � � � f �� u � cos � � � � f � cos �

� f �x�u
� � f �x� �Du f �x�

f15
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Visual 14.6B provides visual 
confirmation of Theorem 15.
TEC

FIGURE 7

Q

±f(2, 0)

0 1 3

1

2

P x

y

N At the function in Example 6 increases
fastest in the direction of the gradient vector

. Notice from Figure 7 that
this vector appears to be perpendicular to the
level curve through . Figure 8 shows the
graph of and the gradient vector.f

�2, 0�

� f �2, 0� � �1, 2 �

�2, 0�

FIGURE 8

20
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0 1 3
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1

15
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At the point the gradient vector is

By Theorem 15 the temperature increases fastest in the direction of the gradient vector
or, equivalently, in the direction of or

the unit vector . The maximum rate of increase is the length of the
gradient vector:

Therefore the maximum rate of increase of temperature is . M

TANGENT PLANES TO LEVEL SURFACES

Suppose is a surface with equation , that is, it is a level surface of a func-
tion of three variables, and let be a point on . Let be any curve that lies
on the surface and passes through the point . Recall from Section 13.1 that the curve 
is described by a continuous vector function . Let be the param-
eter value corresponding to ; that is, . Since lies on , any point

must satisfy the equation of , that is,

If , , and are differentiable functions of and is also differentiable, then we can use
the Chain Rule to differentiate both sides of Equation 16 as follows:

But, since and , Equation 17 can be written in
terms of a dot product as

In particular, when we have , so

Equation 18 says that the gradient vector at , , is perpendicular to the 
tangent vector to any curve on that passes through . (See Figure 9.) If

, it is therefore natural to define the tangent plane to the level surface
at as the plane that passes through and has normal vector

. Using the standard equation of a plane (Equation 12.5.7), we can write the
equation of this tangent plane as

Fx�x0, y0, z0 ��x � x0 � � Fy�x0, y0, z0 ��y � y0 � � Fz�x0, y0, z0 ��z � z0 � � 019

�F�x0, y0, z0 �
PP�x0, y0, z0 �F�x, y, z� � k

�F�x0, y0, z0 � � 0
PSCr��t0 �

�F�x0, y0, z0 �P

�F�x0, y0, z0 � � r��t0 � � 018

r�t0� � �x0, y0, z0 �t � t0

�F � r��t� � 0

r��t� � �x��t�, y��t�, z��t���F � �Fx , Fy , Fz�

�F

�x
 
dx

dt
�

�F

�y
 
dy

dt
�

�F

�z
 
dz

dt
� 017

Ftzyx

F(x�t�, y�t�, z�t�) � k16

S(x�t�, y�t�, z�t�)
SCr�t0� � �x0, y0, z0 �P

t0r�t� � �x�t�, y�t�, z�t��
CPS

CSP�x0, y0, z0 �F
F�x, y, z� � kS

5
8 s41 � 4�C
m

 � �T�1, 1, �2� � � 5
8 � �i � 2 j � 6 k � � 5

8 s41

��i � 2 j � 6 k�
s41
�i � 2 j � 6 k�T�1, 1, �2� � 5

8 ��i � 2 j � 6 k�

�T�1, 1, �2� � 160
256 ��i � 2 j � 6 k� � 5

8 ��i � 2 j � 6 k�

�1, 1, �2�
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tangent plane
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The normal line to at is the line passing through and perpendicular to the tan-
gent plane. The direction of the normal line is therefore given by the gradient vector

and so, by Equation 12.5.3, its symmetric equations are

In the special case in which the equation of a surface is of the form (that
is, is the graph of a function of two variables), we can rewrite the equation as

and regard as a level surface (with ) of . Then

so Equation 19 becomes

which is equivalent to Equation 14.4.2. Thus our new, more general, definition of a tangent
plane is consistent with the definition that was given for the special case of Section 14.4.

EXAMPLE 8 Find the equations of the tangent plane and normal line at the point
to the ellipsoid

SOLUTION The ellipsoid is the level surface (with ) of the function

Therefore we have

Then Equation 19 gives the equation of the tangent plane at as

which simplifies to .
By Equation 20, symmetric equations of the normal line are

M

x � 2

�1
�

y � 1

2
�

z � 3

�
2
3

3x � 6y � 2z � 18 � 0

�1�x � 2� � 2�y � 1� �
2
3 �z � 3� � 0

��2, 1, �3�

 Fz��2, 1, �3� � �
2
3 Fy��2, 1, �3� � 2 Fx��2, 1, �3� � �1

 Fz�x, y, z� �
2z

9
 Fy�x, y, z� � 2y Fx�x, y, z� �

x

2

F�x, y, z� �
x 2

4
� y 2 �

z2

9

k � 3

x 2

4
� y 2 �

z2

9
� 3

��2, 1, �3�
V

fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 � � �z � z0 � � 0

 Fz�x0, y0, z0 � � �1 

 Fy�x0, y0, z0 � � fy�x0, y0 �

 Fx�x0, y0, z0 � � fx�x0, y0 �

Fk � 0S

F�x, y, z� � f �x, y� � z � 0

fS
z � f �x, y�S

x � x0

Fx�x0, y0, z0 �
�

y � y0

Fy�x0, y0, z0 �
�

z � z0

Fz�x0, y0, z0 �
20

�F�x0, y0, z0 �

PPS
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N Figure 10 shows the ellipsoid, tangent plane,
and normal line in Example 8.

FIGURE 10
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SIGNIFICANCE OF THE GRADIENT VECTOR

We now summarize the ways in which the gradient vector is significant. We first consider
a function of three variables and a point in its domain. On the one hand, we
know from Theorem 15 that the gradient vector gives the direction of fastest
increase of . On the other hand, we know that is orthogonal to the level sur-
face of through . (Refer to Figure 9.) These two properties are quite compatible intu-
itively because as we move away from on the level surface , the value of does not
change at all. So it seems reasonable that if we move in the perpendicular direction, we get
the maximum increase.

In like manner we consider a function of two variables and a point in its
domain. Again the gradient vector gives the direction of fastest increase of .
Also, by considerations similar to our discussion of tangent planes, it can be shown that

is perpendicular to the level curve that passes through . Again this
is intuitively plausible because the values of remain constant as we move along the
curve. (See Figure 11.)

If we consider a topographical map of a hill and let represent the height above
sea level at a point with coordinates , then a curve of steepest ascent can be drawn as
in Figure 12 by making it perpendicular to all of the contour lines. This phenomenon can
also be noticed in Figure 12 in Section 14.1, where Lonesome Creek follows a curve of
steepest descent.

Computer algebra systems have commands that plot sample gradient vectors. Each gra-
dient vector is plotted starting at the point . Figure 13 shows such a plot
(called a gradient vector field ) for the function superimposed on a con-
tour map of f. As expected, the gradient vectors point “uphill” and are perpendicular to the
level curves.

x

y

0 3 6 9

_3

_6

_9

FIGURE 13

f �x, y� � x 2 � y 2
�a, b�� f �a, b�

�x, y�
f �x, y�

y

0 x

P(x¸, y¸)

level curve
f(x, y)=k

±f(x¸, y¸)

300

200

100

curve of
steepest
ascent

FIGURE 11 FIGURE 12

f
Pf �x, y� � k� f �x0, y0 �

f� f �x0, y0 �
P�x0, y0 �f

fSP
PfS

� f �x0, y0, z0 �f
� f �x0, y0, z0 �

P�x0, y0, z0 �f
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7–10
(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

7. , ,

8. , ,

9. , ,

10. , ,

11–17 Find the directional derivative of the function at the given
point in the direction of the vector .

, ,

12. , ,

13. , ,

14. , ,

15. , ,

16. , ,

17. , ,

18. Use the figure to estimate .

Find the directional derivative of at in
the direction of .

20. Find the directional derivative of at
in the direction of .

21–26 Find the maximum rate of change of at the given point
and the direction in which it occurs.

21. ,

22. ,

,

24. ,

25. ,

26. , ��5, 1, 1�f �x, y, z� � tan�x � 2y � 3z�

�3, 6, �2�f �x, y, z� � sx 2 � y 2 � z 2 

�1, 1, �1�f �x, y, z� � �x � y�
z

�1, 0�f �x, y� � sin�xy�23.

�0, 0�f �p, q� � qe�p � pe�q

�2, 4�f �x, y� � y 2
x

f

Q�2, 4, 5�P�1, �1, 3�
f �x, y, z� � xy � yz � zx

Q�5, 4�
P�2, 8�f �x, y� � sxy 19.

y

x0

(2, 2)

±f(2, 2)

u

Du f �2, 2�

v � 2 j � k�1, 1, 2�t�x, y, z� � �x � 2y � 3z�3
2

v � ��1, �2, 2 ��3, 2, 6�f �x, y, z� � sxyz 

v � �5, 1, �2 ��0, 0, 0�f �x, y, z� � xe y � ye z � ze x

v � 5 i � 10 j�1, 2�t�r, s� � tan�1�rs�

v � i � 3 j�2, 1�t�p, q� � p4 � p2q3

v � ��1, 2 ��2, 1�f �x, y� � ln�x 2 � y 2�

v � �4, �3 ��3, 4�f �x, y� � 1 � 2xsy 11.

v

u � � 2
7 , 37 , 67 �P�1, 3, 1�f �x, y, z� � sx � yz 

u � � 2
3 , �2

3 , 13 �P�3, 0, 2�f �x, y, z� � xe 2 yz

u � 1
3 (2 i � s5 j)P�1, 2�f �x, y� � y 2
x

u � 1
2 (s3 i � j)P��6, 4�f �x, y� � sin�2x � 3y�

u
Pf

P
f

Level curves for barometric pressure (in millibars) are shown
for 6:00 AM on November 10, 1998. A deep low with pressure
972 mb is moving over northeast Iowa. The distance along the
red line from K (Kearney, Nebraska) to S (Sioux City, Iowa) is
300 km. Estimate the value of the directional derivative of the
pressure function at Kearney in the direction of Sioux City.
What are the units of the directional derivative?

2. The contour map shows the average maximum temperature for
November 2004 (in ). Estimate the value of the directional
derivative of this temperature function at Dubbo, New South
Wales, in the direction of Sydney. What are the units?

3. A table of values for the wind-chill index is given
in Exercise 3 on page 888. Use the table to estimate the value
of , where .

4–6 Find the directional derivative of at the given point in the
direction indicated by the angle .

4. , ,

5. , ,

6. , , � � 	
3�2, 0�f �x, y� � x sin�xy�

� � 2	
3�0, 4�f �x, y� � ye�x

� � 	
4�2, 1�f �x, y� � x 2y3 � y 4

�
f

u � �i � j�
s2 Du f ��20, 30�

W � f �T, v�

Sydney

Dubbo

30

27 24

24

21
18

0 100 200 300
(Distance in kilometres)

Copyright Commonwealth of Australia. Reproduced by permission.
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1008
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1000
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1016
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972

K

S

From Meteorology Today, 8E by C. Donald Ahrens (2007 Thomson Brooks/Cole).
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35. Let be a function of two variables that has continuous 
partial derivatives and consider the points , ,

, and . The directional derivative of at in the
direction of the vector is 3 and the directional derivative at

in the direction of is 26. Find the directional derivative of
at in the direction of the vector .

36. For the given contour map draw the curves of steepest ascent
starting at and at .

37. Show that the operation of taking the gradient of a function has
the given property. Assume that and are differentiable func-
tions of and and that , are constants.

(a) (b)

(c) (d)

38. Sketch the gradient vector for the function whose
level curves are shown. Explain how you chose the direction
and length of this vector.

39–44 Find equations of (a) the tangent plane and (b) the normal
line to the given surface at the specified point.

39. ,

40. ,

41. ,

42. ,

,

44. , �0, 0, 1�yz � ln�x � z�

�1, 0, 0�z � 1 � xe y cos z43.

�1 � 	, 1, 1�x � z � 4 arctan�yz�

�2, 1, �1�x 2 � 2y 2 � z 2 � yz � 2

�4, 7, 3�y � x 2 � z 2

�3, 3, 5�2�x � 2�2 � �y � 1�2 � �z � 3�2 � 10

20

2
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6
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y

_1
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1 3 5
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_5

(4, 6)

f� f �4, 6�

�un � nu n�1 �u��u

v� �
v �u � u �v

v 2

��uv� � u �v � v �u��au � bv� � a �u � b �v

bayx
vu

60 50
40

30
20

Q

P

QP

AD
l

Af
AC
l

A
AB
l

AfD�6, 15�C�1, 7�
B�3, 3�A�1, 3�

f(a) Show that a differentiable function decreases most
rapidly at in the direction opposite to the gradient vector,
that is, in the direction of .

(b) Use the result of part (a) to find the direction in which the
function decreases fastest at the 
point .

28. Find the directions in which the directional derivative of
at the point has the value 1.

Find all points at which the direction of fastest change of the
function is .

30. Near a buoy, the depth of a lake at the point with coordinates
is , where , , and are

measured in meters. A fisherman in a small boat starts at the
point and moves toward the buoy, which is located at

. Is the water under the boat getting deeper or shallower
when he departs? Explain.

31. The temperature in a metal ball is inversely proportional to
the distance from the center of the ball, which we take to be the
origin. The temperature at the point is .
(a) Find the rate of change of at in the direction

toward the point .
(b) Show that at any point in the ball the direction of greatest

increase in temperature is given by a vector that points
toward the origin.

32. The temperature at a point is given by 

where is measured in and , , in meters.
(a) Find the rate of change of temperature at the point

in the direction toward the point .
(b) In which direction does the temperature increase fastest 

at ?
(c) Find the maximum rate of increase at .

Suppose that over a certain region of space the electrical poten-
tial is given by .
(a) Find the rate of change of the potential at in the

direction of the vector .
(b) In which direction does change most rapidly at ?
(c) What is the maximum rate of change at ?

34. Suppose you are climbing a hill whose shape is given by the
equation , where , , and are
measured in meters, and you are standing at a point with coor-
dinates . The positive -axis points east and the
positive -axis points north.
(a) If you walk due south, will you start to ascend or descend?

At what rate?
(b) If you walk northwest, will you start to ascend or descend?

At what rate?
(c) In which direction is the slope largest? What is the rate of

ascent in that direction? At what angle above the horizontal
does the path in that direction begin?

y
x�60, 40, 966�

zyxz � 1000 � 0.005x 2 � 0.01y 2

P
PV

v � i � j � k
P�3, 4, 5�

V�x, y, z� � 5x 2 � 3xy � xyzV
33.

P
P

�3, �3, 3�P�2, �1, 2�

zyx�CT

T�x, y, z� � 200e�x 2�3y 2�9z 2

�x, y, z�

�2, 1, 3�
�1, 2, 2�T

120��1, 2, 2�

T

�0, 0�
�80, 60�

zyxz � 200 � 0.02x 2 � 0.001y 3�x, y�

i � jf �x, y� � x 2 � y 2 � 2x � 4y
29.

�0, 2�f �x, y� � ye�xy

�2, �3�
f �x, y� � x 4y � x 2 y 3

�� f �x�
x

f27.



56. Show that every normal line to the sphere 
passes through the center of the sphere.

Show that the sum of the -, -, and -intercepts of any 
tangent plane to the surface is a 
constant.

58. Show that the pyramids cut off from the first octant by any
tangent planes to the surface at points in the first
octant must all have the same volume.

59. Find parametric equations for the tangent line to the curve of
intersection of the paraboloid and the ellipsoid

at the point .

60. (a) The plane intersects the cylinder 
in an ellipse. Find parametric equations for the tangent
line to this ellipse at the point .

; (b) Graph the cylinder, the plane, and the tangent line on the
same screen.

61. (a) Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that
point. Show that surfaces with equations 
and are orthogonal at a point where

and if and only if

at 

(b) Use part (a) to show that the surfaces and
are orthogonal at every point of 

intersection. Can you see why this is true without using
calculus?

62. (a) Show that the function is continuous and
the partial derivatives and exist at the origin but the
directional derivatives in all other directions do not exist.

; (b) Graph near the origin and comment on how the graph
confirms part (a).

Suppose that the directional derivatives of are known 
at a given point in two nonparallel directions given by unit 
vectors and . Is it possible to find at this point? If so,
how would you do it?

64. Show that if is differentiable at 
then

[Hint: Use Definition 14.4.7 directly.]

lim 
x l x 0

 
 f �x� � f �x0 � � � f �x0 � � �x � x0 �

� x � x0 � � 0

x0 � �x0, y0 �,z � f �x, y�

� fvu

f �x, y�63.

f

fyfx

f �x, y� � s
3 xy 

x 2 � y 2 � z2 � r 2
z2 � x 2 � y 2

PFx Gx � FyGy � FzGz � 0

�G � 0�F � 0
PG�x, y, z� � 0

F�x, y, z� � 0

�1, 2, 1�

x 2 � y 2 � 5y � z � 3

��1, 1, 2�4x 2 � y 2 � z2 � 9
z � x 2 � y 2

xyz � 1

sx � sy � sz � sc 
zyx57.

x 2 � y 2 � z2 � r 2

; 45–46 Use a computer to graph the surface, the tangent plane,
and the normal line on the same screen. Choose the domain care-
fully so that you avoid extraneous vertical planes. Choose the
viewpoint so that you get a good view of all three objects.

45. ,

46. ,

47. If , find the gradient vector and use it 
to find the tangent line to the level curve at the
point . Sketch the level curve, the tangent line, and the
gradient vector.

48. If , find the gradient vector 
and use it to find the tangent line to the level curve

at the point . Sketch the level curve, the 
tangent line, and the gradient vector.

49. Show that the equation of the tangent plane to the ellipsoid
at the point can be 

written as

50. Find the equation of the tangent plane to the hyperboloid
at and express it in a

form similar to the one in Exercise 49.

51. Show that the equation of the tangent plane to the elliptic
paraboloid at the point can
be written as

52. At what point on the paraboloid is the tangent
plane parallel to the plane ?

53. Are there any points on the hyperboloid 
where the tangent plane is parallel to the plane ?

54. Show that the ellipsoid and the sphere
are tangent to each

other at the point . (This means that they have a com-
mon tangent plane at the point.)

55. Show that every plane that is tangent to the cone
passes through the origin.x 2 � y 2 � z2

�1, 1, 2�
x 2 � y 2 � z2 � 8x � 6y � 8z � 24 � 0

3x 2 � 2y 2 � z2 � 9

z � x � y
x 2 � y 2 � z2 � 1

x � 2y � 3z � 1
y � x 2 � z2

2xx0

a 2 �
2yy0

b 2 �
z � z0

c

�x0, y0, z0 �z
c � x 2
a 2 � y 2
b 2

�x0, y0, z0 �x 2
a 2 � y 2
b 2 � z2
c 2 � 1

xx0

a 2 �
 yy0

b 2 �
zz0

c 2 � 1

�x0, y0, z0 �x 2
a 2 � y 2
b 2 � z2
c 2 � 1

�1, 2�t�x, y� � 1

�t�1, 2�t�x, y� � x 2 � y 2 � 4x

�3, 2�
f �x, y� � 6

� f �3, 2�f �x, y� � xy

�1, 2, 3�xyz � 6

�1, 1, 1�xy � yz � zx � 3

922 | | | | CHAPTER 14 PARTIAL DERIVATIVES

MAXIMUM AND MINIMUM VALUES

As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding maxi-
mum and minimum values. In this section we see how to use partial derivatives to locate
maxima and minima of functions of two variables. In particular, in Example 6 we will see
how to maximize the volume of a box without a lid if we have a fixed amount of cardboard
to work with.

14.7



Look at the hills and valleys in the graph of shown in Figure 1. There are two points
where has a local maximum, that is, where is larger than nearby values of
. The larger of these two values is the absolute maximum. Likewise, has two local

minima, where is smaller than nearby values. The smaller of these two values is the
absolute minimum.

DEFINITION A function of two variables has a local maximum at if
when is near . [This means that for

all points in some disk with center .] The number is called a
local maximum value. If when is near , then has a
local minimum at and is a local minimum value.

If the inequalities in Definition 1 hold for all points in the domain of , then has
an absolute maximum (or absolute minimum) at .

THEOREM If has a local maximum or minimum at and the first-order
partial derivatives of exist there, then and .

PROOF Let . If has a local maximum (or minimum) at , then has a
local maximum (or minimum) at , so by Fermat’s Theorem (see Theorem 4.1.4).
But (see Equation 14.3.1) and so . Similarly, by applying
Fermat’s Theorem to the function , we obtain . M

If we put and in the equation of a tangent plane (Equation
14.4.2), we get . Thus the geometric interpretation of Theorem 2 is that if the graph
of has a tangent plane at a local maximum or minimum, then the tangent plane must be
horizontal.

A point is called a critical point (or stationary point) of if and
, or if one of these partial derivatives does not exist. Theorem 2 says that if 

has a local maximum or minimum at , then is a critical point of . However, as
in single-variable calculus, not all critical points give rise to maxima or minima. At a crit-
ical point, a function could have a local maximum or a local minimum or neither.

EXAMPLE 1 Let . Then

These partial derivatives are equal to 0 when and , so the only critical point
is . By completing the square, we find that

Since and , we have for all values of and .
Therefore is a local minimum, and in fact it is the absolute minimum 
of . This can be confirmed geometrically from the graph of which is the elliptic
paraboloid with vertex shown in Figure 2. M�1, 3, 4�

f,f
f �1, 3� � 4

yxf �x, y� 
 4�y � 3�2 
 0�x � 1�2 
 0

f �x, y� � 4 � �x � 1�2 � �y � 3�2

�1, 3�
y � 3x � 1

fy�x, y� � 2y � 6fx�x, y� � 2x � 2

f �x, y� � x 2 � y 2 � 2x � 6y � 14

f�a, b��a, b�
ffy�a, b� � 0

fx�a, b� � 0f�a, b�

f
z � z0

fy�a, b� � 0fx�a, b� � 0

fy�a, b� � 0G�y� � f �a, y�
fx�a, b� � 0t��a� � fx�a, b�

t��a� � 0a
t�a, b�ft�x� � f �x, b�

fy�a, b� � 0fx�a, b� � 0f
�a, b�f2

�a, b�
ff�x, y�

f �a, b��a, b�
f�a, b��x, y�f �x, y� 
 f �a, b�

f �a, b��a, b��x, y�
f �x, y� � f �a, b��a, b��x, y�f �x, y� � f �a, b�

�a, b�1

f �a, b�
ff �x, y�

f �a, b�f�a, b�
f

SECTION 14.7 MAXIMUM AND MINIMUM VALUES | | | | 923

FIGURE 1
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EXAMPLE 2 Find the extreme values of .

SOLUTION Since and , the only critical point is . Notice that 
for points on the -axis we have , so (if ). However, for
points on the -axis we have , so (if ). Thus every disk 
with center contains points where takes positive values as well as points where 

takes negative values. Therefore can’t be an extreme value for , so has
no extreme value. M

Example 2 illustrates the fact that a function need not have a maximum or minimum
value at a critical point. Figure 3 shows how this is possible. The graph of is the hyper-
bolic paraboloid , which has a horizontal tangent plane ( ) at the origin.
You can see that is a maximum in the direction of the -axis but a minimum
in the direction of the -axis. Near the origin the graph has the shape of a saddle and so

is called a saddle point of .
We need to be able to determine whether or not a function has an extreme value at a

critical point. The following test, which is proved at the end of this section, is analogous
to the Second Derivative Test for functions of one variable.

SECOND DERIVATIVES TEST Suppose the second partial derivatives of are
continuous on a disk with center , and suppose that and

[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

In case (c) the point is called a saddle point of and the graph of 
crosses its tangent plane at .

If , the test gives no information: could have a local maximum or local
minimum at , or could be a saddle point of .

To remember the formula for , it’s helpful to write it as a determinant:

EXAMPLE 3 Find the local maximum and minimum values and saddle points of
.

SOLUTION We first locate the critical points:

Setting these partial derivatives equal to 0, we obtain the equations

To solve these equations we substitute from the first equation into the second
one. This gives

0 � x 9 � x � x�x 8 � 1� � x�x 4 � 1��x 4 � 1� � x�x 2 � 1��x 2 � 1��x 4 � 1�

y � x 3

y 3 � x � 0andx 3 � y � 0

fy � 4y 3 � 4xfx � 4x 3 � 4y

f �x, y� � x 4 � y 4 � 4xy � 1
V

D � � fxx

fyx

fx y

fyy
� � fxx fyy � � fx y�2

DNOTE 3

f�a, b��a, b�
fD � 0NOTE 2

�a, b�
ff�a, b�NOTE 1

f �a, b�D � 0

f �a, b�fxx�a, b� � 0D � 0

f �a, b�fxx�a, b� � 0D � 0

D � D�a, b� � fxx�a, b� fyy�a, b� � � fx y �a, b��2

f�a, b�fy�a, b� � 0
fx�a, b� � 0�a, b�

f3

f�0, 0�
y

xf �0, 0� � 0
z � 0z � y 2 � x 2

f

fff �0, 0� � 0f
f�0, 0�

y � 0f �x, y� � y 2 � 0x � 0y
x � 0f �x, y� � �x 2 � 0y � 0x

�0, 0�fy � 2yfx � �2x

f �x, y� � y 2 � x 2
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so there are three real roots: , , . The three critical points are , , 
and .

Next we calculate the second partial derivatives and :

Since , it follows from case (c) of the Second Derivatives Test that
the origin is a saddle point; that is, has no local maximum or minimum at . 
Since and , we see from case (a) of the test that

is a local minimum. Similarly, we have and
, so is also a local minimum.

The graph of is shown in Figure 4. M

EXAMPLE 4 Find and classify the critical points of the function

Also find the highest point on the graph of .

SOLUTION The first-order partial derivatives are

So to find the critical points we need to solve the equations

From Equation 4 we see that either

In the first case ( ), Equation 5 becomes , so and we
have the critical point .�0, 0�

y � 0�4y�1 � y 2 � � 0x � 0

10y � 5 � 2x 2 � 0orx � 0

 5x 2 � 4y � 4y 3 � 05

 2x�10y � 5 � 2x 2 � � 04

fy � 10x 2 � 8y � 8y 3fx � 20xy � 10x � 4x 3

f

f �x, y� � 10x 2y � 5x 2 � 4y 2 � x 4 � 2y 4

FIGURE 5
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f ��1, �1� � �1fxx ��1, �1� � 12 � 0

D��1, �1� � 128 � 0f �1, 1� � �1
fxx�1, 1� � 12 � 0D�1, 1� � 128 � 0

�0, 0�f
D�0, 0� � �16 � 0

D�x, y� � fxx fyy � � fx y�2 � 144x 2y 2 � 16

fyy � 12y 2fx y � �4fxx � 12x 2

D�x, y�
��1, �1�

�1, 1��0, 0��11x � 0
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FIGURE 4
z=x$+y$-4xy+1

N A contour map of the function in Example 3
is shown in Figure 5. The level curves near 
and are oval in shape and indicate
that as we move away from or 
in any direction the values of are increasing.
The level curves near , on the other hand,
resemble hyperbolas. They reveal that as we
move away from the origin (where the value of 
is ), the values of decrease in some directions
but increase in other directions. Thus the contour
map suggests the presence of the minima and
saddle point that we found in Example 3.

f1
f

�0, 0�
f

��1, �1��1, 1�
��1, �1�

�1, 1�
f

In Module 14.7 you can use contour
maps to estimate the locations of critical
points.

TEC



In the second case , we get

and, putting this in Equation 5, we have . So we have to
solve the cubic equation

Using a graphing calculator or computer to graph the function

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can find
the roots to four decimal places:

(Alternatively, we could have used Newton’s method or a rootfinder to locate these
roots.) From Equation 6, the corresponding -values are given by

If , then x has no corresponding real values. If , then
. If , then . So we have a total of five critical

points, which are analyzed in the following chart. All quantities are rounded to two 
decimal places.

Figures 7 and 8 give two views of the graph of and we see that the surface opens
downward. [This can also be seen from the expression for : The dominant terms
are when and are large.] Comparing the values of at its local maxi-
mum points, we see that the absolute maximum value of is . In
other words, the highest points on the graph of are .

M
FIGURE 7 FIGURE 8

y
x

z

y

z

x

��2.64, 1.90, 8.50�f
f ��2.64, 1.90� � 8.50f

f� y �� x ��x 4 � 2y 4
f �x, y�

f

x � �2.6442y � 1.8984x � �0.8567
y � 0.6468y � �2.5452

x � �s5y � 2.5 

x

 y � 1.8984 y � 0.6468 y � �2.5452

t�y� � 4y 3 � 21y � 12.5

4y 3 � 21y � 12.5 � 07

25y � 12.5 � 4y � 4y 3 � 0

x 2 � 5y � 2.56

�10y � 5 � 2x 2 � 0�
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Critical point Value of D Conclusion

0.00 �10.00 80.00 local maximum

8.50 �55.93 2488.72 local maximum

�1.48 �5.87 �187.64 saddle point��0.86, 0.65�

��2.64, 1.90�

�0, 0�

fxxf

FIGURE 6

_3 2.7

Visual 14.7 shows several families 
of surfaces.The surface in Figures 7 and 8 
is a member of one of these families.
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EXAMPLE 5 Find the shortest distance from the point to the plane
.

SOLUTION The distance from any point to the point is

but if lies on the plane , then and so we have
. We can minimize by minimizing the simpler

expression

By solving the equations

we find that the only critical point is . Since , , and , we
have and , so by the Second Derivatives Test 
has a local minimum at . Intuitively, we can see that this local minimum is actually
an absolute minimum because there must be a point on the given plane that is closest to

. If and , then

The shortest distance from to the plane is . M

EXAMPLE 6 A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be , , and , as shown
in Figure 10. Then the volume of the box is

We can express as a function of just two variables and by using the fact that the
area of the four sides and the bottom of the box is

2xz � 2yz � xy � 12

yxV

V � xyz

zyx

2V

5
6 s6 x � 2y � z � 4�1, 0, �2�

d � s�x � 1�2 � y 2 � �6 � x � 2y�2 � s(5
6)2 � (5

3)2 � (5
6)2 � 5

6 s6 

y � 5
3x � 11

6�1, 0, �2�

( 11
6 , 53 )

ffxx � 0D�x, y� � fxx fy y � � fx y�2 � 24 � 0
fyy � 10fx y � 4fxx � 4(11

6 , 53 )

 fy � 2y � 4�6 � x � 2y� � 4x � 10y � 24 � 0

 fx � 2�x � 1� � 2�6 � x � 2y� � 4x � 4y � 14 � 0

d 2 � f �x, y� � �x � 1�2 � y 2 � �6 � x � 2y�2

dd � s�x � 1�2 � y 2 � �6 � x � 2y�2 

z � 4 � x � 2yx � 2y � z � 4�x, y, z�

d � s�x � 1�2 � y 2 � �z � 2�2 

�1, 0, �2��x, y, z�

x � 2y � z � 4
�1, 0, �2�V

FIGURE 9
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N The five critical points of the function in
Example 4 are shown in red in the contour map
of in Figure 9.f

f

N Example 5 could also be solved using 
vectors. Compare with the methods of 
Section 12.5.

FIGURE 10
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Solving this equation for , we get , so the expression for 
becomes

We compute the partial derivatives:

If is a maximum, then , but or gives , so we
must solve the equations

These imply that and so . (Note that and must both be positive in this
problem.) If we put in either equation we get , which gives ,

, and .
We could use the Second Derivatives Test to show that this gives a local maximum 

of , or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume, which has to occur at a critical point of , so it must
occur when , , . Then , so the maximum volume of
the box is 4 m . M

ABSOLUTE MAXIMUM AND MINIMUM VALUES

For a function of one variable the Extreme Value Theorem says that if is continuous
on a closed interval , then has an absolute minimum value and an absolute maxi-
mum value. According to the Closed Interval Method in Section 4.1, we found these by
evaluating not only at the critical numbers but also at the endpoints and .

There is a similar situation for functions of two variables. Just as a closed interval con-
tains its endpoints, a closed set in is one that contains all its boundary points. [A bound-
ary point of D is a point such that every disk with center contains points in D
and also points not in D.] For instance, the disk

which consists of all points on and inside the circle , is a closed set because it
contains all of its boundary points (which are the points on the circle ). But if
even one point on the boundary curve were omitted, the set would not be closed. (See 
Figure 11.)

A bounded set in is one that is contained within some disk. In other words, it is
finite in extent. Then, in terms of closed and bounded sets, we can state the following coun-
terpart of the Extreme Value Theorem in two dimensions.

EXTREME VALUE THEOREM FOR FUNCTIONS OF TWO VARIABLES If is continu-
ous on a closed, bounded set in , then attains an absolute maximum value

and an absolute minimum value at some points and
in .D�x2, y2�

�x1, y1�f �x2, y2 �f �x1, y1�
f� 2D

f8

� 2

x 2 � y 2 � 1
x 2 � y 2 � 1

D � 	�x, y� � x 2 � y 2 � 1


�a, b��a, b�
� 2

baf

f�a, b�
ff

3
V � 2 � 2 � 1 � 4z � 1y � 2x � 2

V
V

z � �12 � 2 � 2���2�2 � 2�� � 1y � 2
x � 212 � 3x 2 � 0x � y

yxx � yx 2 � y 2

12 � 2xy � y 2 � 012 � 2xy � x 2 � 0

V � 0y � 0x � 0�V��x � �V��y � 0V

�V

�y
�

x 2�12 � 2xy � y 2 �
2�x � y�2

�V

�x
�

y 2�12 � 2xy � x 2 �
2�x � y�2

V � xy 
12 � xy

2�x � y�
�

12xy � x 2y 2

2�x � y�

Vz � �12 � xy���2�x � y��z
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(a) Closed sets

(b) Sets that are not closed

FIGURE 11



To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if 
has an extreme value at , then is either a critical point of or a boundary
point of . Thus we have the following extension of the Closed Interval Method.

To find the absolute maximum and minimum values of a continuous function 
on a closed, bounded set :

1. Find the values of at the critical points of in .

2. Find the extreme values of on the boundary of .

3. The largest of the values from steps 1 and 2 is the absolute maximum value; 
the smallest of these values is the absolute minimum value.

EXAMPLE 7 Find the absolute maximum and minimum values of the function
on the rectangle .

SOLUTION Since is a polynomial, it is continuous on the closed, bounded rectangle , 
so Theorem 8 tells us there is both an absolute maximum and an absolute minimum.
According to step 1 in (9), we first find the critical points. These occur when

so the only critical point is , and the value of there is .
In step 2 we look at the values of on the boundary of , which consists of the four

line segments , , , shown in Figure 12. On we have and

This is an increasing function of , so its minimum value is and its maxi-
mum value is . On we have and

This is a decreasing function of , so its maximum value is and its minimum
value is . On we have and

By the methods of Chapter 4, or simply by observing that , we see
that the minimum value of this function is and the maximum value is

. Finally, on we have and

with maximum value and minimum value . Thus, on the bound-
ary, the minimum value of is 0 and the maximum is 9.

In step 3 we compare these values with the value at the critical point and
conclude that the absolute maximum value of on is and the absolute
minimum value is . Figure 13 shows the graph of . Mff �0, 0� � f �2, 2� � 0

f �3, 0� � 9Df
f �1, 1� � 1

f
f �0, 0� � 0f �0, 2� � 4

0 � y � 2f �0, y� � 2y

x � 0L4f �0, 2� � 4
f �2, 2� � 0

f �x, 2� � �x � 2�2

0 � x � 3f �x, 2� � x 2 � 4x � 4

y � 2L3f �3, 2� � 1
f �3, 0� � 9y

0 � y � 2f �3, y� � 9 � 4y

x � 3L 2f �3, 0� � 9
f �0, 0� � 0x

0 � x � 3f �x, 0� � x 2

y � 0L1L 4L3L 2L1

Df
f �1, 1� � 1f�1, 1�

fy � �2x � 2 � 0fx � 2x � 2y � 0

Df

D � 	�x, y� � 0 � x � 3, 0 � y � 2
f �x, y� � x 2 � 2xy � 2y

Df

Dff

Df
9

D
f�x1, y1��x1, y1�

f
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FIGURE 12
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We close this section by giving a proof of the first part of the Second Derivatives Test.
Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (A) We compute the second-order directional derivative of in
the direction of . The first-order derivative is given by Theorem 14.6.3:

Applying this theorem a second time, we have

(by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

We are given that and . But and are con-
tinuous functions, so there is a disk with center and radius such that

and whenever is in . Therefore, by looking at Equation
10, we see that whenever is in . This means that if is the curve
obtained by intersecting the graph of with the vertical plane through in
the direction of , then is concave upward on an interval of length . This is true in
the direction of every vector , so if we restrict to lie in , the graph of lies
above its horizontal tangent plane at . Thus whenever is in .
This shows that is a local minimum. Mf �a, b�

B�x, y�f �x, y� 	 f �a, b�P
fB�x, y�u

2
Cu
P�a, b, f �a, b��f

CB�x, y�Du
2 f �x, y� � 0

B�x, y�D�x, y� � 0fxx�x, y� � 0

 � 0�a, b�B

D � fxx fyy � fx y
2fxxD�a, b� � 0fxx�a, b� � 0

D2
u f � fxx�h �

 fx y

fxx
 k
2

�
k 2

fxx
 � fxx fyy � f 2

xy �10

 � fxxh2 � 2 fxyhk � fyyk 2

 � � fxxh � fyxk�h � � fxyh � fyyk�k

 D2
u f � Du�Du f � �

�

�x
 �Du f �h �

�

�y
 �Du f �k

Du f � fxh � fyk

u � �h, k�
f
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reasoning. Then use the Second Derivatives Test to confirm your
predictions.

x

y

4
4.2

5
6

1

1

3.7

3.7

3.2

3.2

2
1

0

_1

_1

f �x, y� � 4 � x 3 � y 3 � 3xy3.

Suppose is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?
(a)

(b)

2. Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say 
about t?
(a)

(b)

(c)

3–4 Use the level curves in the figure to predict the location of 
the critical points of and whether has a saddle point or a 
local maximum or minimum at each critical point. Explain your 

ff

tyy�0, 2� � 9tx y�0, 2� � 6, txx�0, 2� � 4, 

tyy�0, 2� � �8tx y�0, 2� � 2, txx�0, 2� � �1, 

tyy�0, 2� � 1tx y�0, 2� � 6, txx�0, 2� � �1, 

fyy�1, 1� � 2fx y�1, 1� � 3, fxx�1, 1� � 4, 

fyy�1, 1� � 2fx y�1, 1� � 1, fxx�1, 1� � 4, 
f

f�1, 1�1.

EXERCISES14.7
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22.

23. ,
,

24. ,
,

; 25–28 Use a graphing device as in Example 4 (or Newton’s
method or a rootfinder) to find the critical points of correct to
three decimal places. Then classify the critical points and find the
highest or lowest points on the graph.

25.

26.

27.

28.

29–36 Find the absolute maximum and minimum values of on
the set .

29. , is the closed triangular region
with vertices , , and 

30. , is the closed triangular
region with vertices , , and 

,

32. ,

33. ,

34. ,

35. ,

36. , is the quadrilateral
whose vertices are , , , and .

; 37. For functions of one variable it is impossible for a continuous
function to have two local maxima and no local minimum.
But for functions of two variables such functions exist. Show
that the function

has only two critical points, but has local maxima at both 
of them. Then use a computer to produce a graph with a 
carefully chosen domain and viewpoint to see how this is
possible.

; 38. If a function of one variable is continuous on an interval and
has only one critical number, then a local maximum has to be 

f �x, y� � ��x 2 � 1�2 � �x 2 y � x � 1�2

��2, �2��2, 2��2, 3���2, 3�
Df �x, y� � x 3 � 3x � y 3 � 12y

D � 	�x, y� � x 2 � y 2 � 1
f �x, y� � 2x 3 � y 4

D � 	�x, y� � x 	 0, y 	 0, x 2 � y 2 � 3
f �x, y� � xy 2

D � 	�x, y� � 0 � x � 3, 0 � y � 2

f �x, y� � x 4 � y 4 � 4xy � 2

D � 	�x, y� � 0 � x � 4, 0 � y � 5

f �x, y� � 4x � 6y � x 2 � y 2

D � 	�x, y� � � x � � 1, � y � � 1

f �x, y� � x 2 � y 2 � x 2 y � 431.

�1, 4��5, 0��1, 0�
Df �x, y� � 3 � xy � x � 2y

�0, 3��2, 0��0, 0�
Df �x, y� � 1 � 4x � 5y

D
f

f �x, y� � e x � y 4 � x 3 � 4 cos y

f �x, y� � 2x � 4x 2 � y 2 � 2xy 2 � x 4 � y 4

f �x, y� � 5 � 10xy � 4x 2 � 3y � y 4

f �x, y� � x 4 � 5x 2 � y 2 � 3x � 2

f

0 � y � ��40 � x � ��4
f �x, y� � sin x � sin y � cos�x � y�

0 � y � 2�0 � x � 2�
f �x, y� � sin x � sin y � sin�x � y�

f �x, y� � xye�x2�y24.

5–18 Find the local maximum and minimum values and saddle
point(s) of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

5.

6.

7.

8.

9.

10.

11.

12.

14.

15.

16.

17. ,

18. , ,

19. Show that has an infinite
number of critical points and that at each one. Then
show that has a local (and absolute) minimum at each 
critical point.

20. Show that has maximum values at
and minimum values at . Show 

also that has infinitely many other critical points and 
at each of them. Which of them give rise to maximum
values? Minimum values? Saddle points?

; 21–24 Use a graph and/or level curves to estimate the local 
maximum and minimum values and saddle point(s) of the 
function. Then use calculus to find these values precisely.

21. f �x, y� � x 2 � y 2 � x�2y�2

D � 0f
(�1, �1�s2 )(�1, 1�s2 )

f �x, y� � x 2ye�x2�y2

f
D � 0

f �x, y� � x 2 � 4y 2 � 4xy � 2

�� � y � ��� � x � �f �x, y� � sin x sin y

1 � x � 7f �x, y� � y 2 � 2y cos x

f �x, y� � e y�y 2 � x 2�

f �x, y� � �x 2 � y 2�e y2�x2

f �x, y� � y cos x

f �x, y� � e x cos y13.

f �x, y� � xy �
1

x
�

1

y

f �x, y� � x 3 � 12xy � 8y 3

f �x, y� � 2x 3 � xy 2 � 5x 2 � y 2

f �x, y� � �1 � xy��x � y�

f �x, y� � e 4y�x2�y2

f �x, y� � x 4 � y 4 � 4xy � 2

f �x, y� � x 3y � 12x 2 � 8y

f �x, y� � 9 � 2x � 4y � x 2 � 4y 2

y

x

_2.5

_2.9
_2.7

_
1

_
1.

5

1.9

1.7

1.5

1.5

10.
5

0

_
2

1

1

_1

_1

f �x, y� � 3x � x 3 � 2y 2 � y 4
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(b) Find the dimensions that minimize heat loss. (Check both
the critical points and the points on the boundary of the
domain.)

(c) Could you design a building with even less heat loss 
if the restrictions on the lengths of the walls were removed?

53. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

54. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or BO),
O (OO), and AB. The Hardy-Weinberg Law states that the pro-
portion of individuals in a population who carry two different
alleles is

where , , and are the proportions of A, B, and O in the 
population. Use the fact that to show that is
at most .

55. Suppose that a scientist has reason to believe that two quan-
tities and are related linearly, that is, , at least
approximately, for some values of and . The scientist
performs an experiment and collects data in the form of points

, , , and then plots these points. The
points don’t lie exactly on a straight line, so the scientist wants
to find constants and so that the line “fits” the
points as well as possible. (See the figure.)

Let be the vertical deviation of the point
from the line. The method of least squares determines

and so as to minimize , the sum of the squares of
these deviations. Show that, according to this method, the line
of best fit is obtained when

Thus the line is found by solving these two equations in the
two unknowns and . (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

56. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.�1, 2, 3�

bm

 m �
n

i�1
 xi

2 � b �
n

i�1
 xi � �

n

i�1
 xi yi

 m �
n

i�1
 xi � bn � �

n

i�1
 yi

�n
i�1 di

2bm
�xi, yi�

di � yi � �mxi � b�

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0

y � mx � bbm

. . . , �xn, yn ��x2, y2 ��x1, y1�

bm
y � mx � byx

2
3

Pp � q � r � 1
rqp

P � 2pq � 2pr � 2rq

L

an absolute maximum. But this is not true for functions of two
variables. Show that the function

has exactly one critical point, and that has a local maximum
there that is not an absolute maximum. Then use a computer to
produce a graph with a carefully chosen domain and viewpoint
to see how this is possible.

39. Find the shortest distance from the point to the 
plane .

40. Find the point on the plane that is closest to the
point .

Find the points on the cone that are closest to the
point .

42. Find the points on the surface that are closest to
the origin.

Find three positive numbers whose sum is 100 and whose 
product is a maximum.

44. Find three positive numbers whose sum is 12 and the sum of
whose squares is as small as possible.

45. Find the maximum volume of a rectangular box that is
inscribed in a sphere of radius .

46. Find the dimensions of the box with volume that has
minimal surface area.

47. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one 
vertex in the plane .

48. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

49. Find the dimensions of a rectangular box of maximum volume
such that the sum of the lengths of its 12 edges is a constant .

50. The base of an aquarium with given volume is made of slate
and the sides are made of glass. If slate costs five times as
much (per unit area) as glass, find the dimensions of the aquar-
ium that minimize the cost of the materials.

A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

52. A rectangular building is being designed to minimize 
heat loss. The east and west walls lose heat at a rate of

per day, the north and south walls at a rate of
per day, the floor at a rate of per day, and

the roof at a rate of per day. Each wall must be at
least 30 m long, the height must be at least 4 m, and the
volume must be exactly .
(a) Find and sketch the domain of the heat loss as a function of

the lengths of the sides.

4000 m3

5 units�m2
1 unit�m28 units�m2

10 units�m2

3.
51.

V

c

2

x � 2y � 3z � 6

1000 cm3

r

43.

y 2 � 9 � xz

�4, 2, 0�
z 2 � x 2 � y 241.

�1, 2, 3�
x � y � z � 4

x � y � z � 1
�2, 1, �1�

f

f �x, y� � 3xe y � x 3 � e 3y



For this project we locate a trash dumpster in order to study its shape and construction. We 
then attempt to determine the dimensions of a container of similar design that minimize 
construction cost.

1. First locate a trash dumpster in your area. Carefully study and describe all details of its con-
struction, and determine its volume. Include a sketch of the container.

2. While maintaining the general shape and method of construction, determine the dimensions
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:

N The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets,
which cost $0.70 per square foot (including any required cuts or bends).

N The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90
per square foot.

N Lids cost approximately $50.00 each, regardless of dimensions.

N Welding costs approximately $0.18 per foot for material and labor combined.

Give justification of any further assumptions or simplifications made of the details of 
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4. If you were hired as a consultant on this investigation, what would your conclusions be?
Would you recommend altering the design of the dumpster? If so, describe the savings that
would result.

DESIGNING A DUMPSTERA P P L I E D
P R O J E C T
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The Taylor polynomial approximation to functions of one variable that we discussed in Chap-
ter 11 can be extended to functions of two or more variables. Here we investigate quadratic
approximations to functions of two variables and use them to give insight into the Second 
Derivatives Test for classifying critical points.

In Section 14.4 we discussed the linearization of a function of two variables at a 
point :

Recall that the graph of is the tangent plane to the surface at and the
corresponding linear approximation is . The linearization is also called the
first-degree Taylor polynomial of at .

1. If has continuous second-order partial derivatives at , then the second-degree Taylor
polynomial of at is

and the approximation is called the quadratic approximation to at .
Verify that has the same first- and second-order partial derivatives as at �a, b�.fQ

�a, b�ff �x, y� � Q�x, y�

 � 12 fxx�a, b��x � a�2 � fx y�a, b��x � a��y � b� �
1
2 fyy�a, b��y � b�2

 Q�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b�f
�a, b�f

�a, b�f
Lf �x, y� � L�x, y�
�a, b, f �a, b��z � f �x, y�L

L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b�
f

QUADRATIC APPROXIMATIONS AND CRITICAL POINTSD I S C O V E R Y
P R O J E C T
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2. (a) Find the first- and second-degree Taylor polynomials and of 
at (0, 0).

; (b) Graph , , and . Comment on how well and approximate .

3. (a) Find the first- and second-degree Taylor polynomials and for at (1, 0).
(b) Compare the values of , , and at (0.9, 0.1).

; (c) Graph , , and . Comment on how well and approximate .

4. In this problem we analyze the behavior of the polynomial 
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.
(a) By completing the square, show that if , then

(b) Let . Show that if and , then has a local minimum 
at (0, 0).

(c) Show that if and , then has a local maximum at (0, 0).
(d) Show that if , then (0, 0) is a saddle point.

5. (a) Suppose is any function with continuous second-order partial derivatives such that
and (0, 0) is a critical point of . Write an expression for the second-degree

Taylor polynomial, , of at (0, 0).
(b) What can you conclude about from Problem 4?
(c) In view of the quadratic approximation , what does part (b) suggest 

about ?f
f �x, y� � Q�x, y�

Q
fQ

ff �0, 0� � 0
f

D � 0
fa � 0D � 0

fa � 0D � 0D � 4ac � b 2

f �x, y� � ax 2 � bxy � cy 2 � a��x �
b

2a
 y�2

� �4ac � b 2

4a 2 �y 2�
a � 0

f �x, y� � ax 2 � bxy � cy 2

fQLQLf
fQL

f �x, y� � xe yQL

fQLQLf

f �x, y� � e�x2�y2

QL

LAGRANGE MULTIPLIERS

In Example 6 in Section 14.7 we maximized a volume function subject to the
constraint , which expressed the side condition that the surface area
was 12 m . In this section we present Lagrange’s method for maximizing or minimizing 
a general function subject to a constraint (or side condition) of the form

.
It’s easier to explain the geometric basis of Lagrange’s method for functions of two

variables. So we start by trying to find the extreme values of subject to a constraint
of the form . In other words, we seek the extreme values of when the
point is restricted to lie on the level curve . Figure 1 shows this curve
together with several level curves of . These have the equations where ,
, , , . To maximize subject to is to find the largest value of such

that the level curve intersects . It appears from Figure 1 that this
happens when these curves just touch each other, that is, when they have a common tan-
gent line. (Otherwise, the value of c could be increased further.) This means that the nor-
mal lines at the point where they touch are identical. So the gradient vectors are
parallel; that is, for some scalar .

This kind of argument also applies to the problem of finding the extreme values of
subject to the constraint . Thus the point is restricted to lie

on the level surface with equation . Instead of the level curves in Figure 1,
we consider the level surfaces and argue that if the maximum value of 
is , then the level surface is tangent to the level surface

and so the corresponding gradient vectors are parallel.t�x, y, z� � k
f �x, y, z� � cf �x0, y0, z0 � � c

ff �x, y, z� � c
t�x, y, z� � kS

�x, y, z�t�x, y, z� � kf �x, y, z�

�� f �x0, y0 � � � �t�x0, y0 �
�x0, y0 �

t�x, y� � kf �x, y� � c
ct�x, y� � kf �x, y�111098
c � 7f �x, y� � c,f

t�x, y� � k�x, y�
f �x, y�t�x, y� � k

f �x, y�

t�x, y, z� � k
f �x, y, z�

2
2xz � 2yz � xy � 12

V � xyz

14.8

f(x, y)=11

f(x, y)=10

f(x, y)=9

f(x, y)=8

f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

Visual 14.8 animates Figure 1 for
both level curves and level surfaces.
TEC



This intuitive argument can be made precise as follows. Suppose that a function has
an extreme value at a point on the surface and let be a curve with vector
equation that lies on and passes through . If is the parameter
value corresponding to the point , then . The composite function

represents the values that takes on the curve . Since has an
extreme value at , it follows that has an extreme value at , so . But
if is differentiable, we can use the Chain Rule to write

This shows that the gradient vector is orthogonal to the tangent vector 
to every such curve . But we already know from Section 14.6 that the gradient vector 
of , , is also orthogonal to for every such curve. (See Equation 14.6.18.)
This means that the gradient vectors and must be parallel.
Therefore, if , there is a number such that

The number in Equation 1 is called a Lagrange multiplier. The procedure based on
Equation 1 is as follows.

METHOD OF LAGRANGE MULTIPLIERS To find the maximum and minimum values
of subject to the constraint [assuming that these extreme
values exist and on the surface ]:

(a) Find all values of , , , and such that

and

(b) Evaluate at all the points that result from step (a). The largest of
these values is the maximum value of ; the smallest is the minimum value 
of .

If we write the vector equation in terms of its components, then the equa-
tions in step (a) become

This is a system of four equations in the four unknowns , , , and , but it is not neces-
sary to find explicit values for .

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of subject to the constraint

, we look for values of , , and such that

t�x, y� � kand� f �x, y� � � �t�x, y�

�yxt�x, y� � k
f �x, y�

�
�zyx

t�x, y, z� � kfz � �tzfy � �tyfx � �tx

� f � � �t

f
f

�x, y, z�f

 t�x, y, z� � k

 � f �x, y, z� � � �t�x, y, z�

�zyx

t�x, y, z� � k�t � 0
t�x, y, z� � kf �x, y, z�

�

� f �x0, y0, z0 � � � �t�x0, y0, z0 �1

��t�x0, y0, z0 � � 0
�t�x0, y0, z0 �� f �x0, y0, z0 �

r��t0 ��t�x0, y0, z0 �t

C
r��t0 �� f �x0, y0, z0 �

 � � f �x0, y0, z0 � � r��t0 �

 � fx�x0, y0, z0 �x��t0 � � fy�x0, y0, z0 �y��t0 � � fz�x0, y0, z0 �z��t0 �

 0 � h��t0�

f
h��t0� � 0t0h�x0, y0, z0 �

fCfh�t� � f �x�t�, y�t�, z�t��
r�t0� � 	x0, y0, z0 
P

t0PSr�t� � 	x�t�, y�t�, z�t�

CSP�x0, y0, z0 �

f
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N Lagrange multipliers are named after the
French-Italian mathematician Joseph-Louis
Lagrange (1736–1813). See page 283 for a 
biographical sketch of Lagrange.

N In deriving Lagrange’s method we assumed
that . In each of our examples you can
check that at all points where

. See Exercise 21 for what can 
go wrong if .�t � 0
t�x, y, z� � k

�t � 0
�t � 0



This amounts to solving three equations in three unknowns:

Our first illustration of Lagrange’s method is to reconsider the problem given in
Example 6 in Section 14.7.

EXAMPLE 1 A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION As in Example 6 in Section 14.7, we let , , and be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

subject to the constraint

Using the method of Lagrange multipliers, we look for values of , , , and such that
and . This gives the equations

which become

There are no general rules for solving systems of equations. Sometimes some ingenuity
is required. In the present example you might notice that if we multiply (2) by (3) by ,
and (4) by , then the left sides of these equations will be identical. Doing this, we have

We observe that because would imply from (2), (3), and
(4) and this would contradict (5). Therefore, from (6) and (7), we have

which gives . But (since would give ), so . From (7) and
(8) we have

which gives and so (since ) . If we now put in (5),
we get

Since , , and are all positive, we therefore have and so and . This
agrees with our answer in Section 14.7. M

y � 2x � 2z � 1zyx

4z2 � 4z2 � 4z2 � 12

x � y � 2zy � 2zx � 02xz � xy

2yz � xy � 2xz � 2yz

x � yV � 0z � 0z � 0xz � yz

2xz � xy � 2yz � xy

yz � xz � xy � 0� � 0� � 0

 xyz � ��2xz � 2yz�8

 xyz � ��2yz � xy�7

 xyz � ��2xz � xy�6

z
yx,

2xz � 2yz � xy � 125

 xy � ��2x � 2y�4

 xz � ��2z � x�3

 yz � ��2z � y�2

2xz � 2yz � xy � 12Vz � �tzVy � �tyVx � �tx

t�x, y, z� � 12�V � � �t

�zyx

t�x, y, z� � 2xz � 2yz � xy � 12

V � xyz

zyx

2V

t�x, y� � kfy � �tyfx � �tx
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N Another method for solving the system of
equations (2–5) is to solve each of Equations 2,
3, and 4 for and then to equate the resulting
expressions.

�



EXAMPLE 2 Find the extreme values of the function on the 
circle .

SOLUTION We are asked for the extreme values of subject to the constraint
. Using Lagrange multipliers, we solve the equations 

and , which can be written as

or as

From (9) we have or . If , then (11) gives . If , then
from (10), so then (11) gives . Therefore has possible extreme values 

at the points , , , and . Evaluating at these four points, we
find that

Therefore the maximum value of on the circle is and the
minimum value is . Checking with Figure 2, we see that these values look
reasonable. M

EXAMPLE 3 Find the extreme values of on the disk .

SOLUTION According to the procedure in (14.7.9), we compare the values of at the criti-
cal points with values at the points on the boundary. Since and , the only
critical point is . We compare the value of at that point with the extreme values
on the boundary from Example 2:

Therefore the maximum value of on the disk is and the
minimum value is . M

EXAMPLE 4 Find the points on the sphere that are closest to and 
farthest from the point .

SOLUTION The distance from a point to the point is

but the algebra is simpler if we instead maximize and minimize the square of the 
distance:

The constraint is that the point lies on the sphere, that is,

t�x, y, z� � x 2 � y 2 � z2 � 4

�x, y, z�

d 2 � f �x, y, z� � �x � 3�2 � �y � 1�2 � �z � 1�2

d � s�x � 3�2 � �y � 1�2 � �z � 1�2 

�3, 1, �1��x, y, z�

�3, 1, �1�
x 2 � y 2 � z2 � 4

f �0, 0� � 0
f �0, 	1� � 2x 2 � y 2 
 1f

f �0, 	1� � 2f �	1, 0� � 1f �0, 0� � 0

f�0, 0�
fy � 4yfx � 2x

f

x 2 � y 2 
 1f �x, y� � x 2 � 2y 2

f �	1, 0� � 1
f �0, 	1� � 2x 2 � y 2 � 1f

f ��1, 0� � 1f �1, 0� � 1f �0, �1� � 2f �0, 1� � 2

f��1, 0��1, 0��0, �1��0, 1�
fx � 	1y � 0

� � 1y � 	1x � 0� � 1x � 0

x 2 � y 2 � 111

 4y � 2y�10

 2x � 2x�9

t�x, y� � 1fy � �tyfx � �tx

t�x, y� � 1
� f � � �tt�x, y� � x 2 � y 2 � 1

f

x 2 � y 2 � 1
f �x, y� � x 2 � 2y 2V
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N In geometric terms, Example 2 asks for the
highest and lowest points on the curve in Fig-
ure 2 that lies on the paraboloid 
and directly above the constraint circle

.x2 � y2 � 1

z � x2 � 2y2

C

FIGURE 2
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C

N The geometry behind the use of Lagrange
multipliers in Example 2 is shown in Figure 3.
The extreme values of 
correspond to the level curves that touch the 
circle .x 2 � y 2 � 1

f �x, y� � x 2 � 2y 2

FIGURE 3
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According to the method of Lagrange multipliers, we solve , . This gives

The simplest way to solve these equations is to solve for , , and in terms of from
(12), (13), and (14), and then substitute these values into (15). From (12) we have

[Note that because is impossible from (12).] Similarly, (13) and (14)
give

Therefore, from (15), we have

which gives , , so

These values of then give the corresponding points :

and

It’s easy to see that has a smaller value at the first of these points, so the closest point
is and the farthest is . M

TWO CONSTRAINTS

Suppose now that we want to find the maximum and minimum values of a function
subject to two constraints (side conditions) of the form and

. Geometrically, this means that we are looking for the extreme values of 
when is restricted to lie on the curve of intersection of the level surfaces

and . (See Figure 5.) Suppose has such an extreme value at a
point . We know from the beginning of this section that is orthogonal to 
at . But we also know that is orthogonal to and is orthogonal to

, so and are both orthogonal to . This means that the gradient vector
is in the plane determined by and . (We assume

that these gradient vectors are not zero and not parallel.) So there are numbers and ��
�h�x0, y0, z0 ��t�x0, y0, z0 �� f �x0, y0, z0 �

C�h�th�x, y, z� � c
�ht�x, y, z� � k�tP

C� fP�x0, y0, z0�
fh�x, y, z� � ct�x, y, z� � k

C�x, y, z�
fh�x, y, z� � c

t�x, y, z� � kf �x, y, z�

(�6�s11, �2�s11, 2�s11)(6�s11, 2�s11, �2�s11)
f

��
6

s11
, �

2

s11
, 

2

s11�� 6

s11
, 

2

s11
, �

2

s11�
�x, y, z��

� � 1 	
s11

2

1 � � � 	s11�2�1 � ��2 � 11
4

32

�1 � ��2 �
12

�1 � ��2 �
��1�2

�1 � ��2 � 4

z � �
1

1 � �
y �

1

1 � �

� � 11 � � � 0

x �
3

1 � �
orx�1 � �� � 3orx � 3 � x�

�zyx

x 2 � y 2 � z2 � 415

 2�z � 1� � 2z�14

 2�y � 1� � 2y�13

 2�x � 3� � 2x�12

t � 4� f � � �t
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N Figure 4 shows the sphere and the nearest
point in Example 4. Can you see how to find
the coordinates of without using calculus?P

P
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(called Lagrange multipliers) such that

In this case Lagrange’s method is to look for extreme values by solving five equations in
the five unknowns , , , , and . These equations are obtained by writing Equation 16
in terms of its components and using the constraint equations:

EXAMPLE 5 Find the maximum value of the function on the
curve of intersection of the plane and the cylinder .

SOLUTION We maximize the function subject to the constraints
and . The Lagrange condition is

, so we solve the equations

Putting [from (19)] in (17), we get , so . Similarly, (18)
gives . Substitution in (21) then gives

and so , . Then , , and, from (20),
. The corresponding values of are

Therefore the maximum value of on the given curve is . M3 � s29 f

�
2

s29 � 2�	
5

s29 � � 3�1 	
7

s29 � � 3 	 s29 

fz � 1 � x � y � 1 	 7�s29 
y � 	5�s29 x � �2�s29 � � 	s29 �2�2 � 29

4

1

�2 �
25

4�2 � 1

y � 5��2��
x � �1��2x� � �2� � 3

 x 2 � y 2 � 121

 x � y � z � 120

 3 � �19

 2 � �� � 2y�18

 1 � � � 2x�17

� f � � �t � � �h
h�x, y, z� � x 2 � y 2 � 1t�x, y, z� � x � y � z � 1

f �x, y, z� � x � 2y � 3z

x 2 � y 2 � 1x � y � z � 1
f �x, y, z� � x � 2y � 3zV

 h�x, y, z� � c

 t�x, y, z� � k

 fz � �tz � �hz

 fy � �ty � �hy

 fx � �tx � �hx

��zyx

� f �x0, y0, z0 � � � �t�x0, y0, z0 � � � �h�x0, y0, z0 �16
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N The cylinder intersects the
plane in an ellipse (Figure 6).
Example 5 asks for the maximum value of 
when is restricted to lie on the ellipse.�x, y, z�

f
x � y � z � 1

x 2 � y 2 � 1

FIGURE 6
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15. ; ,

16. ;
,

17. ; ,

18–19 Find the extreme values of on the region described by
the inequality.

18. ,

,

20. Consider the problem of maximizing the function
subject to the constraint .

(a) Try using Lagrange multipliers to solve the problem.
(b) Does give a larger value than the one in part (a)?

; (c) Solve the problem by graphing the constraint equation
and several level curves of .

(d) Explain why the method of Lagrange multipliers fails to
solve the problem.

(e) What is the significance of ?

21. Consider the problem of minimizing the function 
on the curve (a piriform).
(a) Try using Lagrange multipliers to solve the problem.
(b) Show that the minimum value is but the

Lagrange condition is not satisfied
for any value of .

(c) Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

22. (a) If your computer algebra system plots implicitly defined
curves, use it to estimate the minimum and maximum val-
ues of subject to the constraint

by graphical methods.
(b) Solve the problem in part (a) with the aid of Lagrange 

multipliers. Use your CAS to solve the equations numeri-
cally. Compare your answers with those in part (a).

23. The total production of a certain product depends on the
amount of labor used and the amount of capital invest-
ment. In Sections 14.1 and 14.3 we discussed how the Cobb-
Douglas model follows from certain economic
assumptions, where and are positive constants and .
If the cost of a unit of labor is and the cost of a unit of 
capital is , and the company can spend only dollars as its
total budget, then maximizing the production is subject to 
the constraint . Show that the maximum
production occurs when

K �
�1 � 
�p

n
andL �


p

m

mL � nK � p
P
pn

m

 � 1
b

P � bL
K 1�


KL
P

�x � 3�2 � �y � 3�2 � 9
f �x, y� � x 3 � y 3 � 3xy

CAS

�
� f �0, 0� � ��t�0, 0�

f �0, 0� � 0

y 2 � x 4 � x 3 � 0
f �x, y� � x

f �9, 4�

f

f �25, 0�

sx � sy � 5f �x, y� � 2x � 3y

x 2 � 4y 2 
 1f �x, y� � e �xy19.

x 2 � y 2 
 16f �x, y� � 2x 2 � 3y 2 � 4x � 5

f

y 2 � z2 � 1xy � 1f �x, y, z� � yz � xy

x 2 � 2z2 � 1x � y � z � 0
f �x, y, z� � 3x � y � 3z

y 2 � z2 � 4x � y � z � 1f �x, y, z� � x � 2yPictured are a contour map of and a curve with equation
. Estimate the maximum and minimum values 

of subject to the constraint that . Explain your
reasoning.

; 2. (a) Use a graphing calculator or computer to graph the circle
. On the same screen, graph several curves of

the form until you find two that just touch the
circle. What is the significance of the values of for these
two curves?

(b) Use Lagrange multipliers to find the extreme values of
subject to the constraint .

Compare your answers with those in part (a).

3–17 Use Lagrange multipliers to find the maximum and
minimum values of the function subject to the given constraint(s).

;

4. ;

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

;

12. ;

13. ;

14. ;

x 2
1 � x 2

2 � � � � � x 2
n � 1

f �x1, x2, . . . , xn� � x1 � x2 � � � � � xn

x 2 � y 2 � z2 � t 2 � 1f �x, y, z, t� � x � y � z � t

x 2 � y 2 � z2 � 1f �x, y, z� � x 4 � y 4 � z4

x 4 � y 4 � z4 � 1f �x, y, z� � x 2 � y 2 � z211.

x 2 � y 2 � z2 � 1f �x, y, z� � x 2 y 2z2

x 2 � 2y 2 � 3z2 � 6f �x, y, z� � xyz

x 2 � 10y 2 � z2 � 5f �x, y, z� � 8x � 4z

x 2 � y 2 � z2 � 35f �x, y, z� � 2x � 6y � 10z

x 3 � y 3 � 16f �x, y� � e xy

x 2 � 2y 2 � 6f �x, y� � x 2y

x 2 � y 2 � 13f �x, y� � 4x � 6y

xy � 1f �x, y� � x 2 � y 23.

x 2 � y 2 � 1f �x, y� � x 2 � y

c
x 2 � y � c

x 2 � y 2 � 1

y

x0

70
60

50
40

30

20

10

g(x, y)=8

t�x, y� � 8f
t�x, y� � 8

f1.

EXERCISES14.8



43–44 Find the maximum and minimum values of subject to
the given constraints. Use a computer algebra system to solve the
system of equations that arises in using Lagrange multipliers. (If
your CAS finds only one solution, you may need to use additional
commands.)

43. ; ,

44. ; ,

(a) Find the maximum value of 

given that are positive numbers and
, where is a constant.

(b) Deduce from part (a) that if are positive
numbers, then

This inequality says that the geometric mean of 
numbers is no larger than the arithmetic mean of the 
numbers. Under what circumstances are these two 
means equal?

46. (a) Maximize subject to the constraints 
and .

(b) Put

to show that

for any numbers . This inequality is
known as the Cauchy-Schwarz Inequality.

a1, . . . , an, b1, . . . , bn

� ai bi 
 s
 a 2
j   s
 b 2

j  

yi �
bi

s
 b 2
j  

xi �
ai

s
 a 2
j  

    and    


n
i�1 yi

2 � 1

n

i�1 xi
2 � 1
n

i�1 xi yi

n

s
n x1 x2 � � � xn

 

x1 � x2 � � � � � xn

n

x1, x2, . . . , xn

cx1 � x2 � � � � � xn � c
x1, x2, . . . , xn

f �x1, x2, . . . , xn � � s
n x1 x2 � � � xn

   

45.

x 2 � z2 � 4x 2 � y 2 � zf �x, y, z� � x � y � z

xy � yz � 19x 2 � 4y 2 � 36z2 � 36f �x, y, z� � ye x�z

fCAS24. Referring to Exercise 23, we now suppose that the pro-
duction is fixed at , where is a constant. 
What values of and minimize the cost function

?

Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter is a square.

26. Use Lagrange multipliers to prove that the triangle with 
maximum area that has a given perimeter is equilateral.

Hint: Use Heron’s formula for the area:

where and , , are the lengths of the sides.

27–39 Use Lagrange multipliers to give an alternate solution to
the indicated exercise in Section 14.7.

27. Exercise 39 28. Exercise 40

29. Exercise 41 30. Exercise 42

31. Exercise 43 32. Exercise 44

33. Exercise 45 34. Exercise 46

Exercise 47 36. Exercise 48

37. Exercise 49 38. Exercise 50

39. Exercise 53

40. Find the maximum and minimum volumes of a rectangular
box whose surface area is 1500 cm and whose total edge
length is 200 cm.

41. The plane intersects the paraboloid
in an ellipse. Find the points on this ellipse that

are nearest to and farthest from the origin.

42. The plane intersects the cone
in an ellipse.

; (a) Graph the cone, the plane, and the ellipse.
(b) Use Lagrange multipliers to find the highest and lowest

points on the ellipse.

z2 � x 2 � y 2
4x � 3y � 8z � 5

z � x 2 � y 2
x � y � 2z � 2

2

35.

zyxs � p�2

A � ss�s � x��s � y��s � z�

p

p
25.

C�L, K � � mL � nK
KL

QbL
K 1�
 � Q
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Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that
first put men on the moon, are designed to use three stages in their ascent into space. A large first
stage initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned
to reduce the mass of the rocket. The smaller second and third stages function similarly in order
to place the rocket’s payload into orbit about the earth. (With this design, at least two stages are
required in order to reach the necessary velocities, and using three stages has proven to be a good
compromise between cost and performance.) Our goal here is to determine the individual masses
of the three stages, which are to be designed in such a way as to minimize the total mass of the
rocket while enabling it to reach a desired velocity.

ROCKET SCIENCEA P P L I E D
P R O J E C T



For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting
from the acceleration of the rocket vehicle has been modeled by

where is the mass of the rocket engine including initial fuel, is the mass of the payload, 
is a structural factor determined by the design of the rocket (specifically, it is the ratio of the

mass of the rocket vehicle without fuel to the total mass of the rocket with payload), and is the
(constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass . Assume that outside forces
are negligible and that and remain constant for each stage. If is the mass of the stage, 
we can initially consider the rocket engine to have mass and its payload to have mass

; the second and third stages can be handled similarly.

1. Show that the velocity attained after all three stages have been jettisoned is given by

2. We wish to minimize the total mass of the rocket engine subject 
to the constraint that the desired velocity from Problem 1 is attained. The method of
Lagrange multipliers is appropriate here, but difficult to implement using the current expres-
sions. To simplify, we define variables so that the constraint equation may be expressed as

. Since is now difficult to express in terms of the ’s, we
wish to use a simpler function that will be minimized at the same place as . Show that

and conclude that

3. Verify that is minimized at the same location as ; use Lagrange multipliers
and the results of Problem 2 to find expressions for the values of where the minimum
occurs subject to the constraint . [Hint: Use properties of 
logarithms to help simplify the expressions.]

4. Find an expression for the minimum value of as a function of .

5. If we want to put a three-stage rocket into orbit 100 miles above the earth’s surface, a final
velocity of approximately is required. Suppose that each stage is built with a
structural factor and an exhaust speed of .
(a) Find the minimum total mass of the rocket engines as a function of .
(b) Find the mass of each individual stage as a function of . (They are not equally sized!)

6. The same rocket would require a final velocity of approximately in order to
escape earth’s gravity. Find the mass of each individual stage that would minimize the total
mass of the rocket engines and allow the rocket to propel a 500-pound probe into deep space.

24,700 mi�h

A
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c � 6000 mi�hS � 0.2
17,500 mi�h
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vf � c�ln N1 � ln N2 � ln N3 �
Ni

Mln��M � A��A�

M � A

A
�

�1 � S �3N1N2N3

�1 � SN1��1 � SN2 ��1 � SN3 �

 
M3 � A

A
�

�1 � S �N3

1 � SN3

 
M2 � M3 � A

M3 � A
�

�1 � S �N2

1 � SN2

 
M1 � M2 � M3 � A

M2 � M3 � A
�

�1 � S �N1

1 � SN1

M
NiMvf � c�ln N1 � ln N2 � ln N3 �

Ni

vf

M � M1 � M2 � M3

vf � c�ln� M1 � M2 � M3 � A

SM1 � M2 � M3 � A� � ln� M2 � M3 � A

SM2 � M3 � A� � ln� M3 � A

SM3 � A��

M2 � M3 � A
M1

ithMiSc
A

c
S

PMr

�V � �c ln�1 �
�1 � S�Mr

P � Mr
�
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The Katahdin Paper Company in Millinocket, Maine, operates a hydroelectric generating station
on the Penobscot River. Water is piped from a dam to the power station. The rate at which the
water flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and unique)
power function that gives the amount of electric power generated as a function of the water flow
arriving at the turbine. The incoming water can be apportioned in different volumes to each
turbine, so the goal is to determine how to distribute water among the turbines to give the maxi-
mum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models were
determined for the power output of each turbine, along with the allowable flows of operation:

, ,

where

1. If all three turbines are being used, we wish to determine the flow to each turbine that will
give the maximum total energy production. Our limitations are that the flows must sum to 
the total incoming flow and the given domain restrictions must be observed. Consequently,
use Lagrange multipliers to find the values for the individual flows (as functions of ) 
that maximize the total energy production subject to the constraints

and the domain restrictions on each .

2. For which values of is your result valid?

3. For an incoming flow of , determine the distribution to the turbines and verify 
(by trying some nearby distributions) that your result is indeed a maximum.

4. Until now we have assumed that all three turbines are operating; is it possible in some situa-
tions that more power could be produced by using only one turbine? Make a graph of the
three power functions and use it to help decide if an incoming flow of should be
distributed to all three turbines or routed to just one. (If you determine that only one turbine
should be used, which one would it be?) What if the flow is only ?

5. Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming
flow is , which two turbines would you recommend using? Use Lagrange multi-
pliers to determine how the flow should be distributed between the two turbines to maxi-
mize the energy produced. For this flow, is using two turbines more efficient than using all
three?

6. If the incoming flow is , what would you recommend to the company?3400 ft3�s

1500 ft3�s

600 ft3�s

1000 ft3�s

2500 ft3�s

QT

QiQ1 � Q2 � Q3 � QT

KW1 � KW2 � KW3

QT

Qi

 QT � total flow through the station in cubic feet per second

 KWi � power generated by turbine i in kilowatts

 Qi � flow through turbine i in cubic feet per second

250 
 Q3 
 1225250 
 Q2 
 1110250 
 Q1 
 1110

 KW3 � ��27.02 � 0.1380Q3 � 3.84 � 10�5Q 2
3 ��170 � 1.6 � 10�6Q 2

T �

 KW2 � ��24.51 � 0.1358Q2 � 4.69 � 10�5Q 2
2 ��170 � 1.6 � 10�6Q 2

T �

 KW1 � ��18.89 � 0.1277Q1 � 4.08 � 10�5Q 2
1 ��170 � 1.6 � 10�6Q 2

T �
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14

12. If is defined implicitly as a function of and by an equation
of the form , how do you find and ?

13. (a) Write an expression as a limit for the directional derivative
of at in the direction of a unit vector .
How do you interpret it as a rate? How do you interpret it
geometrically?

(b) If is differentiable, write an expression for in
terms of and .

14. (a) Define the gradient vector for a function of two or
three variables.

(b) Express in terms of .
(c) Explain the geometric significance of the gradient.

15. What do the following statements mean?
(a) has a local maximum at .
(b) has an absolute maximum at .
(c) has a local minimum at .
(d) has an absolute minimum at .
(e) has a saddle point at .

16. (a) If has a local maximum at , what can you say about
its partial derivatives at ?

(b) What is a critical point of ?

17. State the Second Derivatives Test.

18. (a) What is a closed set in ? What is a bounded set?
(b) State the Extreme Value Theorem for functions of two 

variables.
(c) How do you find the values that the Extreme Value 

Theorem guarantees?

19. Explain how the method of Lagrange multipliers works 
in finding the extreme values of subject to the
constraint . What if there is a second constraint

?h�x, y, z� � c
t�x, y, z� � k

f �x, y, z�

� 2

f
�a, b�

�a, b�f

�a, b�f
�a, b�f

�a, b�f
�a, b�f

�a, b�f

� fDu f

f� f

fyfx

Du f �x0, y0 �f

u � �a, b ��x0, y0 �f

�z��y�z��xF�x, y, z� � 0
yxz1. (a) What is a function of two variables?

(b) Describe three methods for visualizing a function of two
variables.

2. What is a function of three variables? How can you visualize
such a function?

3. What does

mean? How can you show that such a limit does not exist?

4. (a) What does it mean to say that is continuous at ?
(b) If is continuous on , what can you say about its graph?

5. (a) Write expressions for the partial derivatives and
as limits.

(b) How do you interpret and geometrically?
How do you interpret them as rates of change?

(c) If is given by a formula, how do you calculate 
and 

6. What does Clairaut’s Theorem say?

7. How do you find a tangent plane to each of the following types
of surfaces?
(a) A graph of a function of two variables, 
(b) A level surface of a function of three variables,

8. Define the linearization of at . What is the corre-
sponding linear approximation? What is the geometric 
interpretation of the linear approximation?

9. (a) What does it mean to say that is differentiable 
at ?

(b) How do you usually verify that is differentiable?

10. If , what are the differentials , , and ?

11. State the Chain Rule for the case where and and 
are functions of one variable. What if and are functions of
two variables?

yx
yxz � f �x, y�

dzdydxz � f �x, y�

f
�a, b�

f

�a, b�f

F�x, y, z� � k

z � f �x, y�

fy ?
fxf �x, y�

fy�a, b�fx�a, b�
fy�a, b�

fx�a, b�

�2f
�a, b�f

lim
�x, y� l �a, b�

 
 f �x, y� � L

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1.

2. There exists a function with continuous second-order 
partial derivatives such that and

.fy�x, y� � x � y 2
fx�x, y� � x � y 2

f

fy�a, b� � lim
y l b

 
 f �a, y� � f �a, b�

y � b

3.

4.

5. If as along every straight line
through , then .

6. If and both exist, then is differentiable 
at .�a, b�

ffy�a, b�fx�a, b�

lim�x, y� l �a, b� f �x, y� � L�a, b�
�x, y� l �a, b�f �x, y� l L

Dk f �x, y, z� � fz�x, y, z�

fxy �
�2f

�x �y

T R U E - F A L S E  Q U I Z
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10. If is a critical point of and 

then has a saddle point at .

11. If , then .

12. If has two local maxima, then must have a local 
minimum.

ff �x, y�

�s2 � Du f �x, y� � s2 f �x, y� � sin x � sin y

�2, 1�f

fxx�2, 1� fyy�2, 1� � � fx y�2, 1�� 2

f�2, 1�7. If has a local minimum at and is differentiable at
, then .

8. If is a function, then

9. If , then .� f �x, y� � 1�yf �x, y� � ln y

lim 
�x, y� l �2, 5�

 f �x, y� � f �2, 5� 

f

� f �a, b� � 0�a, b�
f�a, b�f

1–2 Find and sketch the domain of the function.

1.

2.

3–4 Sketch the graph of the function.

3.

4.

5–6 Sketch several level curves of the function.

5.

6.

7. Make a rough sketch of a contour map for the function whose
graph is shown.

8. A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

y

x

1

1.5

2

4

f
f

2
x

z

2
y

f �x, y� � e x � y

f �x, y� � s4x 2 � y 2  

f �x, y� � x 2 � �y � 2�2

f �x, y� � 1 � y 2

f �x, y� � s4 � x 2 � y 2 � s1 � x 2
 

f �x, y� � ln�x � y � 1�

9–10 Evaluate the limit or show that it does not exist.

9. 10.

11. A metal plate is situated in the -plane and occupies the 
rectangle , , where and are measured
in meters. The temperature at the point in the plate is

, where is measured in degrees Celsius. Temperatures
at equally spaced points were measured and recorded in the
table.
(a) Estimate the values of the partial derivatives 

and . What are the units?
(b) Estimate the value of , where .

Interpret your result.
(c) Estimate the value of .

12. Find a linear approximation to the temperature function 
in Exercise 11 near the point (6, 4). Then use it to estimate the
temperature at the point (5, 3.8).

13–17 Find the first partial derivatives.

13. 14.

15. 16.

17. T� p, q, r� � p ln�q � er �

w �
x

y � z
t�u, v� � u tan�1v

u � e�r sin 2�f �x, y� � s2x � y 2 

T �x, y�

30

52

78

98

96

92

38

56

74

87

90

92

45

60

72

80

86

91

51

62

68

75

80

87

55

61

66

71

75

78

x
y

0

2

4

6

8

10

0 2 4 6 8

Txy�6, 4�

u � �i � j��s2Du T �6, 4�
Ty�6, 4�

Tx�6, 4�

TT �x, y�
�x, y�

yx0 � y � 80 � x � 10
xy

lim
�x, y� l �0, 0�

 
 

2xy

x 2 � 2y 2lim
�x, y� l �1, 1�

 
 

2xy

x 2 � 2y 2

E X E R C I S E S
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35. If , where , , and 
, use the Chain Rule to find .

36. If , where and , use the
Chain Rule to find and when and .

37. Suppose , where , ,
, , , ,

, , , and .
Find and when and .

38. Use a tree diagram to write out the Chain Rule for the case
where , , and

are all differentiable functions.

39. If , where is differentiable, show that

40. The length of a side of a triangle is increasing at a rate of
3 in�s, the length of another side is decreasing at a rate of
2 in�s, and the contained angle is increasing at a rate of 

radian�s. How fast is the area of the triangle changing
when in, in, and ?

41. If , where , , and has continuous
second partial derivatives, show that

42. If , find and .

43. Find the gradient of the function .

44. (a) When is the directional derivative of a maximum?
(b) When is it a minimum?
(c) When is it 0?
(d) When is it half of its maximum value?

45–46 Find the directional derivative of at the given point in
the indicated direction.

45. , , 
in the direction toward the point 

46. , , 
in the direction of 

47. Find the maximum rate of change of 
at the point . In which direction does it occur?

48. Find the direction in which increases most
rapidly at the point . What is the maximum rate of
increase?

49. The contour map shows wind speed in knots during Hurri-
cane Andrew on August 24, 1992. Use it to estimate the 

�0, 1, 2�
f �x, y, z� � ze x y

�2, 1�
f �x, y� � x 2 y � sy 

v � 2 i � j � 2k
�1, 2, 3�f �x, y, z� � x 2 y � xs1 � z 

�4, 1�
�1, 5�f �x, y� � 2sx � y 2

f

f

f �x, y, z� � z2e x sy

�z

�y

�z

�x
yz 4 � x 2z 3 � e xyz

x 2 
�2z

�x 2 � y 2 
�2z

�y 2 � �4uv 
�2z

�u �v
� 2v 

�z

�v

fv � y�xu � xyz � f �u, v�

� � 	�6y � 50x � 40
0.05

�
y

x

y 
�z

�x
� x 

�z

�y
� x

fz � y � f �x 2 � y 2 �

v � v� p, q, r, s�
u � u� p, q, r, s�w � f �t, u, v�, t � t� p, q, r, s�

t � 2s � 1�z��t�z��s
fy�3, 6� � 8fx�3, 6� � 7ht�1, 2� � 10hs�1, 2� � �5

h�1, 2� � 6tt�1, 2� � 4ts�1, 2� � �1t�1, 2� � 3
y � h�s, t�x � t�s, t�z � f �x, y�

t � 1s � 0�v��t�v��s
y � stx � s � 2tv � x 2 sin y � ye xy

du�dpz � p sin p
y � pe px � p � 3p2u � x 2y3 � z418. The speed of sound traveling through ocean water is a func-

tion of temperature, salinity, and pressure. It has been
modeled by the function

where is the speed of sound (in meters per second), is the
temperature (in degrees Celsius), is the salinity (the concen-
tration of salts in parts per thousand, which means the num-
ber of grams of dissolved solids per 1000 g of water), and 
is the depth below the ocean surface (in meters). Compute

, , and when , parts
per thousand, and m. Explain the physical signifi-
cance of these partial derivatives.

19–22 Find all second partial derivatives of .

19. 20.

21. 22.

23. If , show that .

24. If , show that

25–29 Find equations of (a) the tangent plane and (b) the normal
line to the given surface at the specified point.

25. ,

26. ,

27. ,

28. ,

29. ,

; 30. Use a computer to graph the surface and its 
tangent plane and normal line at on the same screen.
Choose the domain and viewpoint so that you get a good
view of all three objects.

31. Find the points on the hyperboloid where
the tangent plane is parallel to the plane .

32. Find if .

33. Find the linear approximation of the function
at the point (2, 3, 4) and use it 

to estimate the number .

34. The two legs of a right triangle are measured as 5 m and
12 m with a possible error in measurement of at most 

cm in each. Use differentials to estimate the maximum
error in the calculated value of (a) the area of the triangle and
(b) the length of the hypotenuse.

0.2

�1.98�3
s�3.01� 2 � �3.97� 2 

f �x, y, z� � x 3
sy 2 � z 2 

u � ln�1 � se 2t �du

2x � 2y � z � 5
x 2 � 4y 2 � z2 � 4

�1, 1, 2�
z � x 2 � y 4

�2, �1, 0�sin�xyz� � x � 2y � 3z

�1, 1, 1�xy � yz � zx � 3

�2, �1, 1�x 2 � 2y 2 � 3z 2 � 3

�0, 0, 1�z � e x cos y

�1, �2, 1�z � 3x 2 � y 2 � 2x

�z

�x

�2z

�x �t
�

�z

�t
 
�2z

�x 2

z � sin�x � sin t�

x 
�z

�x
� y

�z

�y
� xy � zz � xy � xe y�x

v � r cos�s � 2t�f �x, y, z� � x k y lz m

z � xe�2yf �x, y� � 4x 3 � xy 2

f

D � 100
S � 35T � 10
C�C��D�C��S�C��T

D

S
TC

     � �1.34 � 0.01T ��S � 35� � 0.016D

 C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3
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; 58. Use a graphing calculator or computer (or Newton’s method 
or a computer algebra system) to find the critical points of

correct to three 
decimal places. Then classify the critical points and find 
the highest point on the graph.

59–62 Use Lagrange multipliers to find the maximum and mini-
mum values of subject to the given constraint(s).

59. ;

60. ;

61. ;

62. ;
,

63. Find the points on the surface that are closest to 
the origin.

64. A package in the shape of a rectangular box can be mailed by
the US Postal Service if the sum of its length and girth (the
perimeter of a cross-section perpendicular to the length) is at
most 108 in. Find the dimensions of the package with largest
volume that can be mailed.

65. A pentagon is formed by placing an isosceles triangle on a
rectangle, as shown in the figure. If the pentagon has fixed
perimeter , find the lengths of the sides of the pentagon that
maximize the area of the pentagon.

66. A particle of mass moves on the surface . Let
and be the - and -coordinates of the 

particle at time .
(a) Find the velocity vector and the kinetic energy

of the particle.
(b) Determine the acceleration vector .
(c) Let and , . Find 

the velocity vector, the kinetic energy, and the
acceleration vector.

y�t� � t sin tx�t� � t cos tz � x 2 � y 2
a

K � 1
2 m 	 v 	2

v
t

yxy � y�t�x � x�t�
z � f �x, y�m

=

=

¨

P

xy 2z3 � 2

x � y � 2z � 2x � y � z � 1
f �x, y, z� � x 2 � 2y 2 � 3z2

x 2 � y 2 � z 2 � 3f �x, y, z� � xyz

1

x 2 �
1

y 2 � 1f �x, y� �
1

x
�

1

y

x 2 � y 2 � 1f �x, y� � x 2 y

f

f �x, y� � 12 � 10y � 2x 2 � 8xy � y 4

value of the directional derivative of the wind speed at 
Homestead, Florida, in the direction of the eye of the
hurricane.

50. Find parametric equations of the tangent line at the point
to the curve of intersection of the surface

and the plane .

51–54 Find the local maximum and minimum values and saddle
points of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

51.

52.

53.

54.

55–56 Find the absolute maximum and minimum values of on
the set .

55. ; is the closed triangular
region in the -plane with vertices , , and 

56. ; is the disk 

; 57. Use a graph and 
or level curves to estimate the local 
maximum and minimum values and saddle points of

. Then use calculus to find 
these values precisely.
f �x, y� � x 3 � 3x � y 4 � 2y 2

x 2 � y 2 � 4Df �x, y� � e�x2�y2

�x 2 � 2y 2 �

�6, 0��0, 6��0, 0�xy
Df �x, y� � 4xy 2 � x 2 y 2 � xy 3

D
f

f �x, y� � �x 2 � y�e y�2

f �x, y� � 3xy � x 2 y � xy 2

f �x, y� � x 3 � 6xy � 8y 3

f �x, y� � x 2 � xy � y 2 � 9x � 6y � 10

z � 4z � 2x 2 � y 2
��2, 2, 4�
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1. A rectangle with length and width is cut into four smaller rectangles by two lines parallel
to the sides. Find the maximum and minimum values of the sum of the squares of the areas of
the smaller rectangles.

2. Marine biologists have determined that when a shark detects the presence of blood in the water,
it will swim in the direction in which the concentration of the blood increases most rapidly.
Based on certain tests, the concentration of blood (in parts per million) at a point on
the surface of seawater is approximated by

where and are measured in meters in a rectangular coordinate system with the blood source
at the origin.
(a) Identify the level curves of the concentration function and sketch several members of this

family together with a path that a shark will follow to the source.
(b) Suppose a shark is at the point when it first detects the presence of blood in the

water. Find an equation of the shark’s path by setting up and solving a differential equation.

3. A long piece of galvanized sheet metal with width is to be bent into a symmetric form with
three straight sides to make a rain gutter. A cross-section is shown in the figure.
(a) Determine the dimensions that allow the maximum possible flow; that is, find the dimen-

sions that give the maximum possible cross-sectional area.
(b) Would it be better to bend the metal into a gutter with a semicircular cross-section?

4. For what values of the number is the function

continuous on ?

5. Suppose is a differentiable function of one variable. Show that all tangent planes to the
surface intersect in a common point.

6. (a) Newton’s method for approximating a root of an equation (see Section 4.8)
can be adapted to approximating a solution of a system of equations and

. The surfaces and intersect in a curve that intersects thez � t�x, y�z � f �x, y�t�x, y� � 0
f �x, y� � 0

f �x� � 0

z � x f �y�x�
f

� 3

f �x, y, z� � �
0

�x � y � z�r

x 2 � y 2 � z 2 if

if

�x, y, z� � 0

�x, y, z� � 0

r

¨¨
x x

w-2x

w

�x0, y0 �

yx

C�x, y� � e��x2�2y2 ��104

P�x, y�

WL

P R O B L E M S  P L U S
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-plane at the point , which is the solution of the system. If an initial approximation
is close to this point, then the tangent planes to the surfaces at intersect in a

straight line that intersects the -plane in a point , which should be closer to .
(Compare with Figure 2 in Section 4.8.) Show that

where , , and their partial derivatives are evaluated at . If we continue this proce-
dure, we obtain successive approximations .

(b) It was Thomas Simpson (1710–1761) who formulated Newton’s method as we know it
today and who extended it to functions of two variables as in part (a). (See the biography
of Simpson on page 502.) The example that he gave to illustrate the method was to solve
the system of equations

In other words, he found the points of intersection of the curves in the figure. Use the
method of part (a) to find the coordinates of the points of intersection correct to six deci-
mal places.

7. If the ellipse is to enclose the circle , what values of and 
minimize the area of the ellipse?

8. Among all planes that are tangent to the surface , find the ones that are 
farthest from the origin.

xy 2z 2 � 1

bax 2 � y 2 � 2yx 2�a 2 � y 2�b 2 � 1

y

4

2

0 2 4 x

xx+yy=1000

xy+yx=100x

x y � y x � 100x x � y y � 1000

�xn, yn �
�x1, y1�tf

y2 � y1 �
 fx t � ftx

fx ty � fy tx
andx2 � x1 �

 fty � fy t

fx ty � fy tx

�r, s��x2, y2 �xy
�x1, y1��x1, y1�

�r, s�xy
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In this chapter we extend the idea of a definite integral to double and triple integrals 

of functions of two or three variables. These ideas are then used to compute volumes,

masses, and centroids of more general regions than we were able to consider in

Chapters 6 and 8. We also use double integrals to calculate probabilities when two

random variables are involved.

We will see that polar coordinates are useful in computing double integrals over some

types of regions. In a similar way, we will introduce two new coordinate systems in

three-dimensional space––cylindrical coordinates and spherical coordinates––that

greatly simplify the computation of triple integrals over certain commonly occurring

solid regions.

A double integral of a positive function is a volume, which 
is the limit of sums of volumes of rectangular columns.

MULTIPLE INTEGRALS

15



DOUBLE INTEGRALS OVER RECTANGLES

In much the same way that our attempt to solve the area problem led to the definition of a
definite integral, we now seek to find the volume of a solid and in the process we arrive at
the definition of a double integral.

REVIEW OF THE DEFINITE INTEGRAL

First let’s recall the basic facts concerning definite integrals of functions of a single vari-
able. If is defined for , we start by dividing the interval into n sub-
intervals of equal width and we choose sample points in these
subintervals. Then we form the Riemann sum

and take the limit of such sums as to obtain the definite integral of from to :

In the special case where , the Riemann sum can be interpreted as the sum of the
areas of the approximating rectangles in Figure 1, and represents the area under
the curve from to .

VOLUMES AND DOUBLE INTEGRALS

In a similar manner we consider a function of two variables defined on a closed rectangle

and we first suppose that . The graph of f is a surface with equation .
Let S be the solid that lies above R and under the graph of f, that is,

(See Figure 2.) Our goal is to find the volume of S.
The first step is to divide the rectangle into subrectangles. We accomplish this by

dividing the interval into m subintervals of equal width 
and dividing into n subintervals of equal width . By draw-�y � �d � c��n�yj�1, yj��c, d �

�x � �b � a��m�xi�1, xi ��a, b�
R

S � ��x, y, z� � �3 � 0 � z � f �x, y�, �x, y� � R	

z � f �x, y�f �x, y� � 0

R � �a, b� � �c, d � � ��x, y� � �2 � a � x � b, c � y � d 	

f
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ing lines parallel to the coordinate axes through the endpoints of these subintervals, as in
Figure 3, we form the subrectangles

each with area .

If we choose a sample point in each , then we can approximate the part of
S that lies above each by a thin rectangular box (or “column”) with base and height

as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the
height of the box times the area of the base rectangle:

If we follow this procedure for all the rectangles and add the volumes of the corresponding
boxes, we get an approximation to the total volume of S:

(See Figure 5.) This double sum means that for each subrectangle we evaluate at the cho-
sen point and multiply by the area of the subrectangle, and then we add the results.
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Our intuition tells us that the approximation given in (3) becomes better as and 
become larger and so we would expect that

We use the expression in Equation 4 to define the volume of the solid that lies under the
graph of and above the rectangle . (It can be shown that this definition is consistent with
our formula for volume in Section 6.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding vol-
umes but in a variety of other situations as well—as we will see in Section 15.5—even
when is not a positive function. So we make the following definition.

DEFINITION The double integral of over the rectangle is

if this limit exists.

The precise meaning of the limit in Definition 5 is that for every number there is
an integer such that

for all integers and greater than and for any choice of sample points in 
A function is called integrable if the limit in Definition 5 exists. It is shown in courses

on advanced calculus that all continuous functions are integrable. In fact, the double inte-
gral of exists provided that is “not too discontinuous.” In particular, if is bounded
[that is, there is a constant such that for all in ], and is con-
tinuous there, except on a finite number of smooth curves, then is integrable over .

The sample point can be chosen to be any point in the subrectangle but if
we choose it to be the upper right-hand corner of [namely , see Figure 3], then
the expression for the double integral looks simpler:

By comparing Definitions 4 and 5, we see that a volume can be written as a double
integral:

If , then the volume of the solid that lies above the rectangle and
below the surface is

V � yy
R
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N The meaning of the double limit in Equation 4
is that we can make the double sum as close as
we like to the number [for any choice of

in ] by taking and sufficiently
large.

nmRij�xij*, yij*�
V

N Notice the similarity between Definition 5 
and the definition of a single integral in 
Equation 2.

N Although we have defined the double integral
by dividing into equal-sized subrectangles, we
could have used subrectangles of unequal
size. But then we would have to ensure that all
of their dimensions approach in the limiting
process.

0

Rij

R



The sum in Definition 5,

is called a double Riemann sum and is used as an approximation to the value of the 
double integral. [Notice how similar it is to the Riemann sum in (1) for a function of a 
single variable.] If happens to be a positive function, then the double Riemann sum 
represents the sum of volumes of columns, as in Figure 5, and is an approximation to the
volume under the graph of and above the rectangle .

EXAMPLE 1 Estimate the volume of the solid that lies above the square
and below the elliptic paraboloid . Divide 

into four equal squares and choose the sample point to be the upper right corner of 
each square . Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
and the area of each square is 1. Approximating the volume 

by the Riemann sum with , we have

This is the volume of the approximating rectangular boxes shown in Figure 7. M

We get better approximations to the volume in Example 1 if we increase the number of
squares. Figure 8 shows how the columns start to look more like the actual solid and the
corresponding approximations become more accurate when we use 16, 64, and 256
squares. In the next section we will be able to show that the exact volume is 48.

EXAMPLE 2 If , evaluate the integral
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FIGURE 8
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SOLUTION It would be very difficult to evaluate this integral directly from Definition 5 but,
because , we can compute the integral by interpreting it as a volume. If

, then and , so the given double integral represents the
volume of the solid S that lies below the circular cylinder and above the 
rectangle R. (See Figure 9.) The volume of S is the area of a semicircle with radius 1
times the length of the cylinder. Thus

M

THE MIDPOINT RULE

The methods that we used for approximating single integrals (the Midpoint Rule, the
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we
consider only the Midpoint Rule for double integrals. This means that we use a double Rie-
mann sum to approximate the double integral, where the sample point in is
chosen to be the center of . In other words, is the midpoint of and 
is the midpoint of .

MIDPOINT RULE FOR DOUBLE INTEGRALS

where is the midpoint of and is the midpoint of .

EXAMPLE 3 Use the Midpoint Rule with to estimate the value of the 
integral , where , .

SOLUTION In using the Midpoint Rule with , we evaluate at
the centers of the four subrectangles shown in Figure 10. So , , , and

. The area of each subrectangle is . Thus

Thus we have M

In the next section we will develop an efficient method for com-
puting double integrals and then we will see that the exact value of the double integral in
Example 3 is . (Remember that the interpretation of a double integral as a volume is
valid only when the integrand is a positive function. The integrand in Example 3 is not
a positive function, so its integral is not a volume. In Examples 2 and 3 in Section 15.2 we
will discuss how to interpret integrals of functions that are not always positive in terms of
volumes.) If we keep dividing each subrectangle in Figure 10 into four smaller ones with

f
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similar shape, we get the Midpoint Rule approximations displayed in the chart in the mar-
gin. Notice how these approximations approach the exact value of the double integral, .

AVERAGE VALUE

Recall from Section 6.5 that the average value of a function of one variable defined on
an interval is

In a similar fashion we define the average value of a function of two variables defined
on a rectangle R to be

where is the area of R.
If , the equation

says that the box with base and height has the same volume as the solid that lies
under the graph of . [If describes a mountainous region and you chop off the
tops of the mountains at height , then you can use them to fill in the valleys so that the
region becomes completely flat. See Figure 11.]

EXAMPLE 4 The contour map in Figure 12 shows the snowfall, in inches, that fell on the
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle
that measures 388 mi west to east and 276 mi south to north.) Use the contour map to
estimate the average snowfall for the entire state of Colorado on those days.
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Number of Midpoint Rule
subrectangles approximations
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SOLUTION Let’s place the origin at the southwest corner of the state. Then 
, and is the snowfall, in inches, at a location x miles to the east and 

y miles to the north of the origin. If R is the rectangle that represents Colorado, then the
average snowfall for the state on December 20–21 was

where . To estimate the value of this double integral, let’s use the Mid-
point Rule with . In other words, we divide R into 16 subrectangles of equal
size, as in Figure 13. The area of each subrectangle is

Using the contour map to estimate the value of at the center of each subrectangle,
we get

Therefore

On December 20–21, 2006, Colorado received an average of approximately inches of
snow. M
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PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same manner as
in Section 5.2. We assume that all of the integrals exist. Properties 7 and 8 are referred to
as the linearity of the integral.

where c is a constant

If for all in , then

yy
R

 f �x, y� dA � yy
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N Double integrals behave this way because
the double sums that define them behave 
this way.

(b) Estimate the double integral with by choosing
the sample points to be the points farthest from the origin.

6. A 20-ft-by-30-ft swimming pool is filled with water. The depth
is measured at 5-ft intervals, starting at one corner of the pool,
and the values are recorded in the table. Estimate the volume of
water in the pool.

Let be the volume of the solid that lies under the graph of
and above the rectangle given by

, . We use the lines and to y � 4x � 32 � y � 62 � x � 4
f �x, y� � s52 � x 2 � y 2 

V7.
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0
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y 0 1 2 3 4

1.0

1.5

2.0

2.5

3.0

m � n � 4(a) Estimate the volume of the solid that lies below 
the surface and above the rectangle

, 

Use a Riemann sum with , , and take the sample
point to be the upper right corner of each square.
(b) Use the Midpoint Rule to estimate the volume of the solid

in part (a).

2. If , use a Riemann sum with ,
to estimate the value of . Take the 

sample points to be the upper left corners of the squares.

3. (a) Use a Riemann sum with to estimate the value
of , where . Take the
sample points to be lower left corners.

(b) Use the Midpoint Rule to estimate the integral in part (a).

4. (a) Estimate the volume of the solid that lies below the surface
and above the rectangle .

Use a Riemann sum with and choose the 
sample points to be lower right corners.

(b) Use the Midpoint Rule to estimate the volume in part (a).

5. A table of values is given for a function defined on
.

(a) Estimate using the Midpoint Rule with
.m � n � 2

xxR f �x, y� dA
R � �1, 3� � �0, 4�

f �x, y�

m � n � 2
R � �0, 2� � �0, 4�z � x � 2y 2

R � �0, �� � �0, ��xxR sin�x � y� dA
m � n � 2

xxR �y 2 � 2x 2� dAn � 2
m � 4R � ��1, 3� � �0, 2�

n � 2m � 3

0 � y � 4	R � ��x, y� � 0 � x � 6

z � xy
1.

EXERCISES15.1
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15 2 3 4 5 6 8 7
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11–13 Evaluate the double integral by first identifying it as the 
volume of a solid.

11.

12.

14. The integral , where , 
represents the volume of a solid. Sketch the solid.

15. Use a programmable calculator or computer (or the sum 
command on a CAS) to estimate

where . Use the Midpoint Rule with the 
following numbers of squares of equal size: 1, 4, 16, 64, 256,
and 1024.

16. Repeat Exercise 15 for the integral .

If is a constant function, , and 
, show that 

18. Use the result of Exercise 17 to show that

where .R � [0, 14] � [ 1
4, 12]

0 � yy
R

 sin �x cos �y dA �
1

32

xx
R
 k dA � k�b � a��d � c�.R � �a, b� � �c, d�

f �x, y� � kf17.

xxR sin(x � sy ) dA

R � �0, 1� � �0, 1�

yy
R

 s1 � xe�y  dA

R � �0, 4� � �0, 2�xxR s9 � y 2  dA

xxR �4 � 2y� dA, R � �0, 1� � �0, 1�13.

xxR �5 � x� dA, R � ��x, y� � 0 � x � 5, 0 � y � 3	

xxR 3 dA, R � ��x, y� � �2 � x � 2, 1 � y � 6	
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40
36
32
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44
divide into subrectangles. Let and be the Riemann sums
computed using lower left corners and upper right corners,
respectively. Without calculating the numbers , , and ,
arrange them in increasing order and explain your reasoning.

8. The figure shows level curves of a function in the square
. Use the Midpoint Rule with 

to estimate . How could you improve your
estimate?

A contour map is shown for a function on the square
.

(a) Use the Midpoint Rule with to estimate the
value of .

(b) Estimate the average value of .

10. The contour map shows the temperature, in degrees Fahrenheit,
at 4:00 PM on February 26, 2007, in Colorado. (The state 
measures 388 mi east to west and 276 mi north to south.) Use
the Midpoint Rule with to estimate the average
temperature in Colorado at that time.
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ITERATED INTEGRALS

Recall that it is usually difficult to evaluate single integrals directly from the definition of
an integral, but the Fundamental Theorem of Calculus provides a much easier method. The
evaluation of double integrals from first principles is even more difficult, but in this sec- 

15.2



tion we see how to express a double integral as an iterated integral, which can then be eval-
uated by calculating two single integrals.

Suppose that is a function of two variables that is integrable on the rectangle
. We use the notation to mean that is held fixed and

is integrated with respect to from to . This procedure is called par-
tial integration with respect to . (Notice its similarity to partial differentiation.) Now

is a number that depends on the value of , so it defines a function of :

If we now integrate the function with respect to from to , we get

The integral on the right side of Equation 1 is called an iterated integral. Usually the
brackets are omitted. Thus

means that we first integrate with respect to from to and then with respect to from
to .
Similarly, the iterated integral

means that we first integrate with respect to (holding fixed) from to and
then we integrate the resulting function of with respect to from to Notice
that in both Equations 2 and 3 we work from the inside out.

EXAMPLE 1 Evaluate the iterated integrals.

(a) (b)

SOLUTION
(a) Regarding as a constant, we obtain

Thus the function in the preceding discussion is given by in this example.
We now integrate this function of from 0 to 3:

 � y
3

0
 32 x 2 dx �

x 3

2 �0

3

�
27

2

 y
3

0
 y

2

1
 x 2y dy dx � y

3

0
 �y

2

1
 x 2y dy� dx

x
A�x� � 3

2 x 2A

� x 2�22

2 � � x 2�12

2 � � 3
2 x 2

y
2

1
 x 2 y dy � �x 2 

y 2

2 �y�1

y�2

x

y
2

1
 y

3

0
 x 2y dx dyy

3

0
 y

2

1
 x 2y dy dx

y � d.y � cyy
x � bx � ayx

y
d

c
 y

b

a
 f �x, y� dx dy � y

d

c
 �y

b

a
 f �x, y� dx� dy3

ba
xdcy

y
b

a
 y

d

c
 f �x, y� dy dx � y

b

a
 �y

d

c
 f �x, y� dy� dx2

y
b

a
 A�x� dx � y

b

a
 �y

d

c
 f �x, y� dy� dx1

x � bx � axA

A�x� � y
d

c
 f �x, y� dy

xxx
d
c  f �x, y� dy

y
y � dy � cyf �x, y�

xx
d
c  f �x, y� dyR � �a, b	 � �c, d 	

f

960 | | | | CHAPTER 15 MULTIPLE INTEGRALS



(b) Here we first integrate with respect to :

M

Notice that in Example 1 we obtained the same answer whether we integrated with
respect to or first. In general, it turns out (see Theorem 4) that the two iterated integrals
in Equations 2 and 3 are always equal; that is, the order of integration does not matter.
(This is similar to Clairaut’s Theorem on the equality of the mixed partial derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).

FUBINI’S THEOREM If is continuous on the rectangle 
, , then

More generally, this is true if we assume that is bounded on , is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can at least
give an intuitive indication of why it is true for the case where . Recall that if

is positive, then we can interpret the double integral as the volume of
the solid that lies above and under the surface . But we have another for-
mula that we used for volume in Chapter 6, namely,

where is the area of a cross-section of in the plane through perpendicular to the 
-axis. From Figure 1 you can see that is the area under the curve whose equation

is , where is held constant and . Therefore

and we have

A similar argument, using cross-sections perpendicular to the -axis as in Figure 2, shows
that

yy
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N Theorem 4 is named after the Italian mathe-
matician Guido Fubini (1879–1943), who proved
a very general version of this theorem in 1907.
But the version for continuous functions was
known to the French mathematician Augustin-
Louis Cauchy almost a century earlier.
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EXAMPLE 2 Evaluate the double integral , where 
, . (Compare with Example 3 in Section 15.1.)

SOLUTION 1 Fubini’s Theorem gives

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with respect to 
first, we have

M

EXAMPLE 3 Evaluate , where .

SOLUTION 1 If we first integrate with respect to , we get

SOLUTION 2 If we reverse the order of integration, we get

To evaluate the inner integral, we use integration by parts with

and so
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yy
R

 y sin�xy� dA � y
2

1
 y

�

0
 y sin�xy� dy dx

 � �
1
2 sin 2y � sin y]0

�

� 0

 � y
�

0
 ��cos 2y � cos y� dy

� y
�

0
 [�cos�xy�]x�1

x�2
 dy yy

R

 y sin�xy� dA � y
�

0
 y

2

1
 y sin�xy� dx dy

x

R � �1, 2	 � �0, �	xxR y sin�xy� dAV

 � y
2

1
 �2 � 6y 2 � dy � 2y � 2y 3]1

2
� �12

 � y
2

1

 � x 2

2
� 3xy 2�

x�0

x�2

 dy

 yy
R

 �x � 3y 2 � dA � y
2

1
 y

2

0
 �x � 3y 2 � dx dy

x

 � y
2

0
 �x � 7� dx �

x 2

2
� 7x�

0

2

� �12

� y
2

0

 [xy � y 3] y�1
y�2 dx yy

R

 �x � 3y 2 � dA � y
2

0
 y

2

1
 �x � 3y 2 � dy dx

1 � y � 2
R � ��x, y� � 0 � x � 2
xx

R
 �x � 3y 2 � dAV
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N Notice the negative answer in Example 2;
nothing is wrong with that. The function in
that example is not a positive function, so its
integral doesn’t represent a volume. From 
Figure 3 we see that is always negative on 

, so the value of the integral is the negative
of the volume that lies above the graph of 
and below .R

f
R

f

f
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N For a function that takes on both positive
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that these two volumes and are equal.
(See Figure 4.)
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If we now integrate the first term by parts with and , we get
, , and

Therefore

and so

M

EXAMPLE 4 Find the volume of the solid that is bounded by the elliptic paraboloid
, the planes and , and the three coordinate planes.

SOLUTION We first observe that is the solid that lies under the surface 
and above the square . (See Figure 5.) This solid was considered in
Example 1 in Section 15.1, but we are now in a position to evaluate the double integral
using Fubini’s Theorem. Therefore

M

In the special case where can be factored as the product of a function of only
and a function of only, the double integral of can be written in a particularly simple
form. To be specific, suppose that and . Then 
Fubini’s Theorem gives

In the inner integral, is a constant, so is a constant and we can write

since is a constant. Therefore, in this case, the double integral of can be writ-
ten as the product of two single integrals:
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N In Example 2, Solutions 1 and 2 are equally
straightforward, but in Example 3 the first solu-
tion is much easier than the second one. There-
fore, when we evaluate double integrals, it is
wise to choose the order of integration that gives
simpler integrals.
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EXAMPLE 5 If , then, by Equation 5,

M

FIGURE 6
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N The function in 
Example 5 is positive on , so the integral repre-
sents the volume of the solid that lies above 
and below the graph of shown in Figure 6.f

R
R

f �x, y� � sin x cos y

18. ,

,

20. ,

21. ,

22. ,

23–24 Sketch the solid whose volume is given by the iterated 
integral.

24.

25. Find the volume of the solid that lies under the plane
and above the rectangle

.

26. Find the volume of the solid that lies under the hyperbolic
paraboloid and above the square

.R � ��1, 1	 � �0, 2	
z � 4 � x 2 � y 2

R � ��x, y� � 0 � x � 1, �2 � y � 3

3x � 2y � z � 12

y
1

0
 y

1

0
 �2 � x 2 � y 2 � dy dx

y
1

0
 y
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0
 �4 � x � 2y� dx dy23.
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1 � y 2  dA
1–2 Find and .

1. 2.

3–14 Calculate the iterated integral.

4.

5. 6.

7. 8.

10.

11. 12.

13. 14.

15–22 Calculate the double integral.

15. ,

16. ,
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34. Graph the solid that lies between the surfaces
and for ,

. Use a computer algebra system to approximate the
volume of this solid correct to four decimal places.

35–36 Find the average value of over the given rectangle.

, has vertices , , , 

36. ,

37. Use your CAS to compute the iterated integrals 

Do the answers contradict Fubini’s Theorem? Explain what 
is happening.

38. (a) In what way are the theorems of Fubini and Clairaut 
similar?

(b) If is continuous on and 

for , , show that .txy � tyx � f �x, y�c 	 y 	 da 	 x 	 b

t�x, y� � y
x

a
 y

y

c
  f �s, t� dt ds

�a, b	 � �c, d 	f �x, y�

y
1

0
 y

1

0
 

x � y

�x � y�3  dx dyandy
1

0
 y

1

0
 

x � y

�x � y�3  dy dx

CAS

R � �0, 4	 � �0, 1	f �x, y� � e y
sx � e y 

�1, 0��1, 5���1, 5���1, 0�Rf �x, y� � x 2 y35.

f

� y � � 1
� x � � 1z � 2 � x 2 � y 2z � e�x2

cos �x 2 � y 2 �
CASFind the volume of the solid lying under the elliptic 

paraboloid and above the rectangle
.

28. Find the volume of the solid enclosed by the surface
and the planes , , , 

and .

29. Find the volume of the solid enclosed by the surface
and the planes , , , , 

and .

30. Find the volume of the solid in the first octant bounded by 
the cylinder and the plane .

31. Find the volume of the solid enclosed by the paraboloid
and the planes , , ,

, and .

; 32. Graph the solid that lies between the surface
and the plane and is bounded

by the planes , , , and . Then find its
volume.

33. Use a computer algebra system to find the exact value of the
integral , where . Then use
the CAS to draw the solid whose volume is given by the 
integral.

R � �0, 1	 � �0, 1	xxR x 5y 3e x y dA
CAS

y � 4y � 0x � 2x � 0
z � x � 2yz � 2xy
�x 2 � 1�

y � 4y � 0
x � �1x � 1z � 1z � 2 � x 2 � �y � 2�2

y � 5z � 16 � x 2

y � �
4
y � 0x � 2x � 0z � 0z � x sec2y

z � 0
y � �y � 0x � 
1z � 1 � e x sin y

R � ��1, 1	 � ��2, 2	
x 2
4 � y 2
9 � z � 1

27.
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DOUBLE INTEGRALS OVER GENERAL REGIONS

For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles but
also over regions of more general shape, such as the one illustrated in Figure 1. We sup-
pose that is a bounded region, which means that can be enclosed in a rectangular
region as in Figure 2. Then we define a new function with domain by

0
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D
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0 x

D

R

FIGURE 2FIGURE 1
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f �x, y� if

if
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1

RFR
DD

D
f
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If F is integrable over R, then we define the double integral of over D by

Definition 2 makes sense because R is a rectangle and so has been previ-
ously defined in Section 15.1. The procedure that we have used is reasonable because the
values of are 0 when lies outside and so they contribute nothing to the inte-
gral. This means that it doesn’t matter what rectangle we use as long as it contains .

In the case where , we can still interpret as the volume of the
solid that lies above and under the surface (the graph of ). You can see that
this is reasonable by comparing the graphs of and in Figures 3 and 4 and remember-
ing that is the volume under the graph of .

Figure 4 also shows that is likely to have discontinuities at the boundary points of 
Nonetheless, if is continuous on and the boundary curve of is “well behaved” 

(in a sense outside the scope of this book), then it can be shown that exists
and therefore exists. In particular, this is the case for the following types
of regions.

A plane region is said to be of type I if it lies between the graphs of two continuous
functions of , that is,

where and are continuous on . Some examples of type I regions are shown in
Figure 5.

In order to evaluate when is a region of type I, we choose a rectangle
that contains , as in Figure 6, and we let be the function given by

Equation 1; that is, agrees with on and is outside . Then, by Fubini’s Theorem,

Observe that if or because then lies outside .
Therefore

y
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FIGURE 5  Some type I regions
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because when . Thus we have the following formula
that enables us to evaluate the double integral as an iterated integral.

If is continuous on a type I region D such that

then

The integral on the right side of (3) is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard as being
constant not only in but also in the limits of integration, and 

We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing (3), we can show that

where D is a type II region given by Equation 4.

EXAMPLE 1 Evaluate , where is the region bounded by the 
parabolas and .

SOLUTION The parabolas intersect when , that is, , so . We
note that the region , sketched in Figure 8, is a type I region but not a type II region
and we can write

Since the lower boundary is and the upper boundary is , Equation 3
gives

M

 � �3 
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DxxD �x � 2y� dAV

yy
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D
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FIGURE 7
Some type II regions
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When we set up a double integral as in Example 1, it is essential to draw a 
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of 
integration for the inner integral can be read from the diagram as follows: The arrow 
starts at the lower boundary , which gives the lower limit in the integral, and 
the arrow ends at the upper boundary , which gives the upper limit of integration.
For a type II region the arrow is drawn horizontally from the left boundary to the right
boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid and
above the region in the -plane bounded by the line and the parabola .

SOLUTION 1 From Figure 9 we see that is a type I region and

Therefore the volume under and above is

SOLUTION 2 From Figure 10 we see that can also be written as a type II region:

Therefore another expression for is

M

EXAMPLE 3 Evaluate where is the region bounded by the line 
and the parabola .

SOLUTION The region is shown in Figure 12. Again is both type I and type II, but the
description of as a type I region is more complicated because the lower boundary con-
sists of two parts. Therefore we prefer to express as a type II region:
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FIGURE 10
D as a type II region

FIGURE 9
D as a type I region
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N Figure 11 shows the solid whose volume 
is calculated in Example 2. It lies above the 

-plane, below the paraboloid ,
and between the plane and the
parabolic cylinder .y � x 2

y � 2x
z � x 2 � y 2xy

FIGURE 11
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y=2x

y=≈



Then (5) gives

If we had expressed as a type I region using Figure 12(a), then we would have
obtained

but this would have involved more work than the other method. M

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes ,
, , and .

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the three-
dimensional solid and another of the plane region over which it lies. Figure 13 shows
the tetrahedron bounded by the coordinate planes , , the vertical plane

, and the plane . Since the plane intersects the 
-plane (whose equation is ) in the line , we see that lies above the

triangular region in the -plane bounded by the lines , , and .
(See Figure 14.)

The plane can be written as , so the required volume
lies under the graph of the function and above
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FIGURE 14

FIGURE 13
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Therefore

M

EXAMPLE 5 Evaluate the iterated integral .

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task of first
evaluating . But it’s impossible to do so in finite terms since is
not an elementary function. (See the end of Section 7.5.) So we must change the order 
of integration. This is accomplished by first expressing the given iterated integral as a
double integral. Using (3) backward, we have

where

We sketch this region in Figure 15. Then from Figure 16 we see that an alternative
description of is

This enables us to use (5) to express the double integral as an iterated integral in the
reverse order:

M

PROPERTIES OF DOUBLE INTEGRALS

We assume that all of the following integrals exist. The first three properties of double inte-
grals over a region follow immediately from Definition 2 and Properties 7, 8, and 9 in
Section 15.1.
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FIGURE 16
D as a type II region

FIGURE 15
D as a type I region



If for all in , then 

The next property of double integrals is similar to the property of single integrals given
by the equation .

If , where and don’t overlap except perhaps on their boundaries
(see Figure 17), then

Property 9 can be used to evaluate double integrals over regions that are neither type I
nor type II but can be expressed as a union of regions of type I or type II. Figure 18 illus-
trates this procedure. (See Exercises 51 and 52.)

The next property of integrals says that if we integrate the constant function 
over a region , we get the area of :

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is and whose
height is 1 has volume , but we know that we can also write its volume
as .

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See
Exercise 57.)

If for all in , then

mA�D� � yy
D
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xxD 1 dA
A�D� � 1 � A�D�

D

yy
D

 1 dA � A�D�10

DD
f �x, y� � 1

FIGURE 18
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(b) D=D¡ � D™, D¡ is type I, D™ is type II.

 

D

yy
D

 f �x, y� dA � yy
D1

 f �x, y� dA � yy
D2

 f �x, y� dA9
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x
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FIGURE 19
Cylinder with base D and height 1
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is bounded by the circle with center the origin and radius 2

18. is the triangular region with vertices ,

, and 

19–28 Find the volume of the given solid.

19. Under the plane and above the region
bounded by and 

20. Under the surface and above the region bounded
by and 

Under the surface and above the triangle with vertices
, , and 

22. Enclosed by the paraboloid and the planes ,
, , 

23. Bounded by the coordinate planes and the plane

24. Bounded by the planes , , , and 

25. Enclosed by the cylinders , and the planes 
, 

26. Bounded by the cylinder and the planes 
, in the first octant

27. Bounded by the cylinder and the planes ,
, in the first octant

28. Bounded by the cylinders and 

; 29. Use a graphing calculator or computer to estimate the 
-coordinates of the points of intersection of the curves 

and . If is the region bounded by these curves,
estimate .xxD x dA

Dy � 3x � x 2
y � x 4x

y 2 � z2 � r 2x 2 � y 2 � r 2

z � 0x � 0
y � zx 2 � y 2 � 1

z � 0x � 0
x � 2y,y 2 � z2 � 4

y � 4z � 0
y � x 2z � x 2

z � 0x � y � 2y � xz � x

3x � 2y � z � 6

z � 0y � xy � 1
x � 0z � x 2 � 3y 2

�1, 2��4, 1��1, 1�
z � xy21.

x � y 3x � y 2
z � 2x � y 2

y � x 4y � x
x � 2y � z � 0

�0, 3��1, 2�

�0, 0�yy
D

 2xy dA, D

D

yy
D

 �2x � y� dA,17.1–6 Evaluate the iterated integral.

1. 2.

3. 4.

6.

7–18 Evaluate the double integral.

7.

8.

9.

10.

11.

12. ,

, is bounded by , ,

14. , is bounded by 

15. ,

is the triangular region with vertices (0, 2), (1, 1), 

16. yy
D

 xy 2 dA, D is enclosed by x � 0 and x � s1 � y 2 

�3, 2�D

yy
D

 y 3 dA
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x � 1y � x 2y � 0Dyy
D

 x cos y dA13.

D � ��x, y� � 0 � y � 1, 0 � x � y�yy
D

 xsy 2 � x 2  dA

yy
D

 y 2e xy dA, D � ��x, y� � 0 � y � 4, 0 � x � y�

yy
D

 x 3 dA, D � ��x, y� � 1 � x � e, 0 � y � ln x�

yy
D

 x dA, D � ��x, y� � 0 � x � �, 0 � y � sin x�
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EXERCISES15.3

EXAMPLE 6 Use Property 11 to estimate the integral , where is the disk
with center the origin and radius 2.

SOLUTION Since and , we have and
therefore

Thus, using , , and in Property 11, we obtain

M

4�

e
� yy

D

 e sin x cos y dA � 4�e 

A�D� � � �2�2M � em � e�1 � 1
e

e�1 � e sin x cos y � e 1 � e

�1 � sin x cos y � 1�1 � cos y � 1�1 � sin x � 1

DxxD e sin x cos y dA
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51–52 Express as a union of regions of type I or type II and
evaluate the integral.

52.

53–54 Use Property 11 to estimate the value of the integral.

53. , is the quarter-circle with center the origin 

and radius in the first quadrant

54. , is the triangle enclosed by the lines 

, , and 

55–56 Find the average value of over region .

55. , is the triangle with vertices , 
and 

56. , is enclosed by the curves , 
, and 

57. Prove Property 11.

In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

59. Evaluate , where
[Hint: Exploit the fact that 

is symmetric with respect to both axes.]

60. Use symmetry to evaluate , where 
is the region bounded by the square with vertices 
and .

61. Compute , where is the disk
, by first identifying the integral as the volume 

of a solid.

62. Graph the solid bounded by the plane and 
the paraboloid and find its exact volume.
(Use your CAS to do the graphing, to find the equations of
the boundary curves of the region of integration, and to eval-
uate the double integral.)

z � 4 � x 2 � y 2
x � y � z � 1CAS
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Dxx
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D
D � ��x, y� � x 2 � y 2 � 2�.

xx
D
 �x 2 tan x � y 3 � 4� dA

D

yy
D

 f �x, y� dA � y
1

0
 y

2y

0
 f �x, y� dx dy � y

3

1
 y

3�y

0
 f �x, y� dx dy

D58.
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 y dAyy
D

 x 2 dA51.

D; 30. Find the approximate volume of the solid in the first octant 
that is bounded by the planes , , and and
the cylinder . (Use a graphing device to estimate
the points of intersection.)

31–32 Find the volume of the solid by subtracting two volumes.

31. The solid enclosed by the parabolic cylinders 
, and the planes ,

32. The solid enclosed by the parabolic cylinder and the
planes , 

33–34 Sketch the solid whose volume is given by the iterated 
integral.

33. 34.

35–38 Use a computer algebra system to find the exact volume
of the solid.

35. Under the surface and above the region
bounded by the curves and for 

36. Between the paraboloids and
and inside the cylinder 

37. Enclosed by 

38. Enclosed by 

39–44 Sketch the region of integration and change the order of
integration.

39. 40.

41. 42.

44.

45–50 Evaluate the integral by reversing the order of integration.

46.

47. 48.

49.

50. y
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z � x 2 � y 2 and z � 2y

z � 1 � x 2 � y 2 and z � 0
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DOUBLE INTEGRALS IN POLAR COORDINATES

Suppose that we want to evaluate a double integral , where is one of the
regions shown in Figure 1. In either case the description of in terms of rectangular coor-
dinates is rather complicated but is easily described using polar coordinates.

Recall from Figure 2 that the polar coordinates of a point are related to the rect-
angular coordinates by the equations

(See Section 10.3.)
The regions in Figure 1 are special cases of a polar rectangle

which is shown in Figure 3. In order to compute the double integral , where
is a polar rectangle, we divide the interval into subintervals of equal

width and we divide the interval into subintervals of
equal width . Then the circles and the rays divide the polar
rectangle R into the small polar rectangles shown in Figure 4.

r=ri-1

FIGURE 3 Polar rectangle FIGURE 4 Dividing R into polar subrectangles
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The “center” of the polar subrectangle

has polar coordinates

We compute the area of using the fact that the area of a sector of a circle with radius 
and central angle is . Subtracting the areas of two such sectors, each of which has
central angle , we find that the area of is

Although we have defined the double integral in terms of ordinary rect-
angles, it can be shown that, for continuous functions , we always obtain the same 
answer using polar rectangles. The rectangular coordinates of the center of are

, so a typical Riemann sum is

If we write , then the Riemann sum in Equation 1 can be writ-
ten as

which is a Riemann sum for the double integral

Therefore we have

CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If is con-
tinuous on a polar rectangle given by , , where

, then

yy
R

 f �x, y� dA � y



�
 y

b

a
 f �r cos �, r sin �� r dr d�

0 � 
 � � � 2�
� � � � 
0 � a � r � bR

f2

 � y



�
 y

b

a
 f �r cos �, r sin �� r dr d�

 � lim
m, n l �

 �
m

i�1
 �

n

j�1
 t�ri*, � j*� 	r 	� � y




�
y

b

a
 t�r, � � dr d�

 yy
R

 f �x, y� dA � lim
m, n l �

 �
m

i�1
 �

n

j�1
 f �ri* cos � j*, ri* sin � j*� 	Ai

y



�
 y

b

a
 t�r, �� dr d�

�
m

i�1
 �

n

j�1
 t�ri*, � j*� 	r 	�

t�r, �� � r f �r cos �, r sin ��

�
m

i�1
 �

n

j�1
 f �ri* cos � j*, ri* sin � j*� 	Ai � �

m

i�1
 �

n

j�1
 f �ri* cos � j*, ri* sin � j*� ri* 	r 	�1

�ri* cos � j*, ri* sin � j*�
Rij

f
xx

R
 f �x, y� dA

 � 1
2 �ri � ri�1 ��ri � ri�1 � 	� � ri* 	r 	�

 	Ai � 1
2 ri

2 	� �
1
2 ri�1

2 	� � 1
2

 �ri
2 � ri�1

2 � 	�

Rij	� � � j � � j�1

1
2 r 2��

rRij

� j* � 1
2 ��j�1 � �j�ri* � 1

2 �ri�1 � ri�

Rij � ��r, �� � ri�1 � r � ri, � j�1 � � � � j�

SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES | | | | 975



The formula in (2) says that we convert from rectangular to polar coordinates in a 
double integral by writing and , using the appropriate limits of 

| integration for and , and replacing by . Be careful not to forget the additional
factor r on the right side of Formula 2. A classical method for remembering this is shown
in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an ordinary rect-
angle with dimensions and and therefore has “area” 

EXAMPLE 1 Evaluate , where is the region in the upper half-plane
bounded by the circles and .

SOLUTION The region can be described as

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by ,
. Therefore, by Formula 2,

M

EXAMPLE 2 Find the volume of the solid bounded by the plane and the parabo-
loid .

SOLUTION If we put in the equation of the paraboloid, we get . This
means that the plane intersects the paraboloid in the circle , so the solid 
lies under the paraboloid and above the circular disk given by [see
Figures 6 and 1(a)]. In polar coordinates is given by , . Since

, the volume is
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N Here we use the trigonometric identity

See Section 7.2 for advice on integrating 
trigonometric functions.
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If we had used rectangular coordinates instead of polar coordinates, then we would have
obtained

which is not easy to evaluate because it involves finding . M

What we have done so far can be extended to the more complicated type of region
shown in Figure 7. It’s similar to the type II rectangular regions considered in Section 15.3.
In fact, by combining Formula 2 in this section with Formula 15.3.5, we obtain the fol-
lowing formula.

If is continuous on a polar region of the form

then

In particular, taking , , and in this formula, we see
that the area of the region bounded by , , and is

and this agrees with Formula 10.4.3.

EXAMPLE 3 Use a double integral to find the area enclosed by one loop of the four-
leaved rose .

SOLUTION From the sketch of the curve in Figure 8, we see that a loop is given by the
region

So the area is
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EXAMPLE 4 Find the volume of the solid that lies under the paraboloid ,
above the -plane, and inside the cylinder .

SOLUTION The solid lies above the disk whose boundary circle has equation
or, after completing the square,

(See Figures 9 and 10.) In polar coordinates we have and , so
the boundary circle becomes , or . Thus the disk is given by

and, by Formula 3, we have
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5–6 Sketch the region whose area is given by the integral and eval-
uate the integral.

5. 6.

7–14 Evaluate the given integral by changing to polar coordinates.

7. ,
where is the disk with center the origin and radius 3

8. , where is the region that lies to the left of the
-axis between the circles and 

9. , where is the region that lies above the 
-axis within the circle 

10. ,
where 

, where D is the region bounded by the
semicircle and the y-axis

12. , where is the region in the first quadrant enclosed
by the circle x 2 � y 2 � 25

Rxx
R
 yex dA
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1–4 A region is shown. Decide whether to use polar coordinates
or rectangular coordinates and write as an iterated
integral, where is an arbitrary continuous function on .

2.

3. 4.
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33. A swimming pool is circular with a 40-ft diameter. The depth
is constant along east-west lines and increases linearly from
2 ft at the south end to 7 ft at the north end. Find the volume of
water in the pool.

34. An agricultural sprinkler distributes water in a circular pattern
of radius 100 ft. It supplies water to a depth of feet per hour
at a distance of feet from the sprinkler.
(a) If , what is the total amount of water supplied

per hour to the region inside the circle of radius centered
at the sprinkler?

(b) Determine an expression for the average amount of water
per hour per square foot supplied to the region inside the
circle of radius .

Use polar coordinates to combine the sum

into one double integral. Then evaluate the double integral.

36. (a) We define the improper integral (over the entire plane 

where is the disk with radius and center the origin.
Show that

(b) An equivalent definition of the improper integral in part (a)
is

where is the square with vertices . Use this to
show that

(c) Deduce that

(d) By making the change of variable , show that

(This is a fundamental result for probability and statistics.)

37. Use the result of Exercise 36 part (c) to evaluate the following
integrals.

(a) (b) y
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0
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2
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 y

s4�x 2 

0
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35.

R

R
0 
 R � 100

r
e�r

,
where 

14. , where is the region in the first quadrant that lies
between the circles and 

15–18 Use a double integral to find the area of the region.

One loop of the rose 

16. The region enclosed by the curve 

17. The region within both of the circles and 

18. The region inside the cardioid and outside the
circle 

19–27 Use polar coordinates to find the volume of the given solid.

19. Under the cone and above the disk 

20. Below the paraboloid and above the 
-plane

21. Enclosed by the hyperboloid and the 
plane 

22. Inside the sphere and outside the 
cylinder 

23. A sphere of radius 

24. Bounded by the paraboloid and the 
plane in the first octant

Above the cone and below the sphere

26. Bounded by the paraboloids and

27. Inside both the cylinder and the ellipsoid

28. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height of
the ring. Notice that the volume depends only on , not 
on or .

29–32 Evaluate the iterated integral by converting to polar 
coordinates.

29. 30.

31. 32. y
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APPLICATIONS OF DOUBLE INTEGRALS

We have already seen one application of double integrals: computing volumes. Another
geometric application is finding areas of surfaces and this will be done in Section 16.6. In
this section we explore physical applications such as computing mass, electric charge, cen-
ter of mass, and moment of inertia. We will see that these physical ideas are also impor-
tant when applied to probability density functions of two random variables.

DENSITY AND MASS

In Section 8.3 we were able to use single integrals to compute moments and the center of
mass of a thin plate or lamina with constant density. But now, equipped with the double
integral, we can consider a lamina with variable density. Suppose the lamina occupies a
region of the -plane and its density (in units of mass per unit area) at a point in

is given by , where is a continuous function on . This means that

where and are the mass and area of a small rectangle that contains and the
limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass of the lamina, we divide a rectangle containing into sub-
rectangles of equal size (as in Figure 2) and consider to be 0 outside . If 
we choose a point in , then the mass of the part of the lamina that occupies 
is approximately , where is the area of . If we add all such masses, we
get an approximation to the total mass:

If we now increase the number of subrectangles, we obtain the total mass of the lamina
as the limiting value of the approximations:

Physicists also consider other types of density that can be treated in the same manner.
For example, if an electric charge is distributed over a region and the charge density (in
units of charge per unit area) is given by at a point in , then the total charge

is given by

EXAMPLE 1 Charge is distributed over the triangular region in Figure 3 so that the
charge density at is , measured in coulombs per square meter (C�m ).
Find the total charge.
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SOLUTION From Equation 2 and Figure 3 we have

Thus the total charge is C. M

MOMENTS AND CENTERS OF MASS

In Section 8.3 we found the center of mass of a lamina with constant density; here we con-
sider a lamina with variable density. Suppose the lamina occupies a region and has den-
sity function . Recall from Chapter 8 that we defined the moment of a particle about
an axis as the product of its mass and its directed distance from the axis. We divide into
small rectangles as in Figure 2. Then the mass of is approximately , so we
can approximate the moment of with respect to the -axis by

If we now add these quantities and take the limit as the number of subrectangles becomes
large, we obtain the moment of the entire lamina about the x-axis:

Similarly, the moment about the y-axis is 

As before, we define the center of mass so that and . The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center
of mass. Thus the lamina balances horizontally when supported at its center of mass (see
Figure 4).

The coordinates of the center of mass of a lamina occupying the region
D and having density function are

where the mass is given by

m � yy
D

 ��x, y� dA

m

y �
Mx

m
�

1

m
 yy

D

y ��x, y� dAx �
My

m
�

1

m
 yy

D

 x ��x, y� dA

��x, y�
�x, y�5

my � Mxmx � My�x, y �

My � lim 
m, nl�

  �
m

i�1
 �

n

j�1
 xij* ��xij*, yij*� �A � yy

D

 x ��x, y� dA4

Mx � lim 
m, nl�

  �
m

i�1
 �

n

j�1
 yij* ��xij*, yij*� �A � yy

D

 y ��x, y� dA3

���xij*, yij*� �A� yij*

xRij

��xij*, yij*� �ARij

D
��x, y�

D

5
24 

 � 1
2 y

1

0
 �2x 2 � x 3 � dx �

1

2
 	2x 3

3
�

x 4

 4 
0

1

�
5

24

 � y
1

0

 	x 
y 2

2 
y�1�x

y�1

 dx � y
1

0
 
x

2
 �12 � �1 � x�2 � dx

 Q � yy
D

 ��x, y� dA � y
1

0
 y

1

1�x
 xy dy dx

SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS | | | | 981

FIGURE 3

1

y

0 x

(1, 1)
y=1

y=1-x

D

FIGURE 4

D
(x, y)



EXAMPLE 2 Find the mass and center of mass of a triangular lamina with vertices
, , and if the density function is .

SOLUTION The triangle is shown in Figure 5. (Note that the equation of the upper boundary
is .) The mass of the lamina is

Then the formulas in (5) give

The center of mass is at the point . M

EXAMPLE 3 The density at any point on a semicircular lamina is proportional to the
distance from the center of the circle. Find the center of mass of the lamina.

SOLUTION Let’s place the lamina as the upper half of the circle . (See Fig-
ure 6.) Then the distance from a point to the center of the circle (the origin) is

. Therefore the density function is

where is some constant. Both the density function and the shape of the lamina suggest
that we convert to polar coordinates. Then and the region is given by

, . Thus the mass of the lamina is

Both the lamina and the density function are symmetric with respect to the -axis, so they

� K� 
r 3

3 
0

a

�
K�a3

3
 � K y

�

0
 d� y

a

0
 r 2 dr

� y
�

0
 y

a

0
 �Kr� r dr d� m � yy

D

 ��x, y� dA � yy
D

 Ksx 2 	 y 2  dA

0 
 � 
 �0 
 r 
 a
Dsx 2 	 y 2 � r

K

��x, y� � Ksx 2 	 y 2 

sx 2 	 y 2 

�x, y�
x 2 	 y 2 � a 2

V

( 3
8 , 11

16 )

 �
1

4
 	7x � 9 

x 2

2
� x 3 	 5 

x 4

4 
0

1

�
11

16

� 1
4 y

1

0
 �7 � 9x � 3x 2 	 5x 3 � dx �

3

8
 y

1

0

 	 y 2

2
	 3x 

y 2

2
	

y 3

3 
y�0

y�2�2x

dx

 y �
1

m
 yy

D

 y ��x, y� dA � 3
8 y

1

0
 y

2�2x

0
 �y 	 3xy 	 y 2 � dy dx

�
3

2 	 x 2

2
�

x 4

4 
0

1

�
3

8

� 3
2 y

1

0
 �x � x 3 � dx�

3

8
 y

1

0

 	xy 	 3x 2y 	 x 
y 2

2 
y�0

y�2�2x

 dx

 x �
1

m
 yy

D

 x ��x, y� dA � 3
8 y

1

0
 y

2�2x

0
 �x 	 3x 2 	 xy� dy dx

� 4 y
1

0
 �1 � x 2 � dx � 4	x �

x 3

3 
0

1

�
8

3
� y

1

0

 	y 	 3xy 	
 y 2

2 
y�0

y�2�2x

 dx

 m � yy
D

 ��x, y� dA � y
1

0
 y

2�2x

0
 �1 	 3x 	 y� dy dx

y � 2 � 2x

��x, y� � 1 	 3x 	 y�0, 2��1, 0��0, 0�
V

982 | | | | CHAPTER 15 MULTIPLE INTEGRALS

FIGURE 5

0

y

x(1, 0)

(0, 2)

y=2-2x

”     ,       ’
3
8

11
16

D

FIGURE 6

0

y

xa_a

a

D

≈+¥=a@

”0,         ’
3a
2π



center of mass must lie on the -axis, that is, . The -coordinate is given by

Therefore the center of mass is located at the point . M

MOMENT OF INERTIA

The moment of inertia (also called the second moment) of a particle of mass about an
axis is defined to be , where is the distance from the particle to the axis. We extend
this concept to a lamina with density function and occupying a region by pro-
ceeding as we did for ordinary moments. We divide into small rectangles, approximate
the moment of inertia of each subrectangle about the -axis, and take the limit of the sum
as the number of subrectangles becomes large. The result is the moment of inertia of the
lamina about the x-axis:

Similarly, the moment of inertia about the y-axis is

It is also of interest to consider the moment of inertia about the origin, also called the
polar moment of inertia:

Note that .

EXAMPLE 4 Find the moments of inertia , , and of a homogeneous disk with
density , center the origin, and radius . 

SOLUTION The boundary of is the circle and in polar coordinates is Dx 2 	 y 2 � a 2D
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Example 3 with Example 4 in Section 8.3, where
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described by , . Let’s compute first:

Instead of computing and directly, we use the facts that and 
(from the symmetry of the problem). Thus

M

In Example 4 notice that the mass of the disk is

so the moment of inertia of the disk about the origin (like a wheel about its axle) can be
written as

Thus if we increase the mass or the radius of the disk, we thereby increase the moment of
inertia. In general, the moment of inertia plays much the same role in rotational motion
that mass plays in linear motion. The moment of inertia of a wheel is what makes it diffi-
cult to start or stop the rotation of the wheel, just as the mass of a car is what makes it dif-
ficult to start or stop the motion of the car.

The radius of gyration of a lamina about an axis is the number such that

where is the mass of the lamina and is the moment of inertia about the given axis.
Equation 9 says that if the mass of the lamina were concentrated at a distance from the
axis, then the moment of inertia of this “point mass” would be the same as the moment of
inertia of the lamina.

In particular, the radius of gyration with respect to the -axis and the radius of gyra-
tion with respect to the -axis are given by the equations

Thus is the point at which the mass of the lamina can be concentrated without chang-
ing the moments of inertia with respect to the coordinate axes. (Note the analogy with the
center of mass.)

EXAMPLE 5 Find the radius of gyration about the -axis of the disk in Example 4.

SOLUTION As noted, the mass of the disk is , so from Equations 10 we have

Therefore the radius of gyration about the -axis is , which is half the radius of
the disk. M

y � 1
2 ax

y 2 �
Ix

m
�

1
4 ��a 4

��a 2 �
a 2

4

m � ��a 2

xV

�x, y�

mx 2 � Iymy 2 � Ix10

yx
xy

R
Im

mR2 � I9

R

I0 �
��a4

2
� 1

2 ���a2�a2 � 1
2 ma2

m � density � area � ���a 2 �

Ix � Iy �
I0

2
�

��a 4

4

Ix � IyIx 	 Iy � I0IyIx

 � � y
2�

0
 d� y

a

0
 r 3dr � 2��	 r 4

4 
0

a

�
��a 4

2

 I0 � yy
D

 �x 2 	 y 2 �� dA � � y
2�

0
 y

a

0
 r 2 r dr d�

I00 
 r 
 a0 
 � 
 2�
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PROBABILITY

In Section 8.5 we considered the probability density function of a continuous random
variable X. This means that for all x, , and the probability that X
lies between a and b is found by integrating f from a to b:

Now we consider a pair of continuous random variables X and Y, such as the lifetimes
of two components of a machine or the height and weight of an adult female chosen at ran-
dom. The joint density function of X and Y is a function f of two variables such that the
probability that lies in a region D is

In particular, if the region is a rectangle, the probability that X lies between a and b and Y
lies between c and d is

(See Figure 7.)

Because probabilities aren’t negative and are measured on a scale from 0 to 1, the joint
density function has the following properties:

As in Exercise 36 in Section 15.4, the double integral over is an improper integral
defined as the limit of double integrals over expanding circles or squares and we can write

yy
�2

 f �x, y� dA � y
�

��
 y

�

��
 f �x, y� dx dy � 1

�2

yy
�2

 f �x, y� dA � 1f �x, y� 
 0

FIGURE 7
The probability that X lies between
a and b and Y lies between c and d

is the volume that lies above the
rectangle D=[a, b]x[c, d] and

below the graph of the joint
density function.

c

D

z=f(x, y)

d

yx
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 Y 
 d � � y
b
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 y

d

c
 f �x, y� dy dx
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D

 f �x, y� dA

�X, Y�

P�a 
 X 
 b� � y
b

a
 f �x� dx

x
�

��
 f �x� dx � 1f �x� 
 0

f
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EXAMPLE 6 If the joint density function for X and Y is given by

find the value of the constant C. Then find .

SOLUTION We find the value of C by ensuring that the double integral of f is equal to 1.
Because outside the rectangle , we have

Therefore and so .
Now we can compute the probability that X is at most 7 and Y is at least 2:

M

Suppose X is a random variable with probability density function and Y is a ran-
dom variable with density function . Then X and Y are called independent random
variables if their joint density function is the product of their individual density functions:

In Section 8.5 we modeled waiting times by using exponential density functions

where is the mean waiting time. In the next example we consider a situation with two
independent waiting times.

EXAMPLE 7 The manager of a movie theater determines that the average time movie-
goers wait in line to buy a ticket for this week’s film is 10 minutes and the average time
they wait to buy popcorn is 5 minutes. Assuming that the waiting times are independent,
find the probability that a moviegoer waits a total of less than 20 minutes before taking
his or her seat.

SOLUTION Assuming that both the waiting time X for the ticket purchase and the waiting
time Y in the refreshment line are modeled by exponential probability density functions,
we can write the individual density functions as

f2�y� � �0
1
5 e�y�5

if y � 0

if y 
 0
f1�x� � �0

1
10 e�x�10

if x � 0

if x 
 0

�

f �t� � �0

��1e�t��

if t � 0

if t 
 0

f �x, y� � f1�x� f2�y�

f2�y�
f1�x�

 � 868
1500 � 0.5787

 � 1
1500 y

7

0
 [xy 	 y 2]y�2

y�10 dx � 1
1500 y

7

0
 �8x 	 96� dx

 P�X 
 7, Y 
 2� � y
7

��
 y

�

2
 f �x, y� dy dx � y

7

0
 y

10

2
 1
1500 �x 	 2y� dy dx

C � 1
15001500C � 1

 � C y
10

0
 �10x 	 100� dx � 1500C

 y
�

��
 y

�

��
 f �x, y� dy dx � y

10

0
 y

10

0
 C�x 	 2y� dy dx � C y

10

0
 [xy 	 y 2]y�0

y�10 dx

�0, 10� � �0, 10�f �x, y� � 0

P�X 
 7, Y 
 2�

f �x, y� � �0

C�x 	 2y�
otherwise

if 0 
 x 
 10, 0 
 y 
 10
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Since X and Y are independent, the joint density function is the product:

We are asked for the probability that :

where D is the triangular region shown in Figure 8. Thus

This means that about 75% of the moviegoers wait less than 20 minutes before taking
their seats. M

EXPECTED VALUES

Recall from Section 8.5 that if X is a random variable with probability density function
then its mean is

Now if X and Y are random variables with joint density function f, we define the X-mean
and Y-mean, also called the expected values of X and Y, to be

Notice how closely the expressions for and in (11) resemble the moments and 
of a lamina with density function in Equations 3 and 4. In fact, we can think of proba-
bility as being like continuously distributed mass. We calculate probability the way we cal-
culate mass—by integrating a density function. And because the total “probability mass”
is 1, the expressions for and in (5) show that we can think of the expected values of X
and Y, and , as the coordinates of the “center of mass” of the probability distribution.

In the next example we deal with normal distributions. As in Section 8.5, a single ran-
dom variable is normally distributed if its probability density function is of the form

where is the mean and is the standard deviation.��

f �x� �
1

�s2�  e
��x���2��2�2�

�2�1

yx

�
MyMx�2�1

�2 � yy
�2

 yf �x, y� dA�1 � yy
�2

 x f �x, y� dA11

� � y
�

��
 x f �x� dx

f,

 � 1 	 e�4 � 2e�2 � 0.7476

 � 1
10 y

20

0
 �e�x�10 � e�4ex�10 � dx

 � 1
10 y

20

0
 e�x�10�1 � e �x�20��5 � dx

 � 1
50 y

20

0
 [e�x�10��5�e�y�5]y�0

y�20�x dx

 P�X 	 Y � 20� � yy
D

 f �x, y� dA � y
20

0
 y

20�x

0
 1
50 e�x�10e�y�5 dy dx

P�X 	 Y � 20� � P��X, Y� � D�

X 	 Y � 20

f �x, y� � f1�x� f2�y� � � 1
50 e�x�10e�y�5

0

if x 
 0, y 
 0

otherwise
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EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally distrib-
uted with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are normally
distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that X and Y are
independent, write the joint density function and graph it. Find the probability that a
bearing randomly chosen from the production line has either length or diameter that
differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y are normally distributed with , and
. So the individual density functions for X and Y are

Since X and Y are independent, the joint density function is the product:

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X and Y differ from their means by less

than 0.02 cm. Using a calculator or computer to estimate the integral, we have

Then the probability that either X or Y differs from its mean by more than 0.02 cm is
approximately

M1 � 0.91 � 0.09

 � 0.91

 �
5000

�
 y

4.02

3.98
 y

6.02

5.98
 e�5000��x�4�2	� y�6�2� dy dx

 P�3.98 � X � 4.02, 5.98 � Y � 6.02� � y
4.02

3.98
 y

6.02

5.98
 f �x, y� dy dx

 �
5000

�
 e�5000��x�4�2	� y�6�2�

 f �x, y� � f1�x� f2�y� �
1

0.0002�
 e��x�4�2�0.0002e��y�6�2�0.0002

f2�y� �
1

0.01s2�  e
�� y�6�2�0.0002f1�x� �

1

0.01s2�  e
��x�4�2�0.0002

�1 � �2 � 0.01
�2 � 6.0,�1 � 4.0
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FIGURE 9
Graph of the bivariate normal joint
density function in Example 8
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4. ;

is the triangular region with vertices , , ;

6. is the triangular region enclosed by the lines , ,
and ;

7. is bounded by , , , and ;

8. is bounded by , , and ;

9. ;

10. is bounded by the parabolas and ;
��x, y� � sx 

x � y 2y � x 2D

��x, y� � yD � ��x, y� 
 0 
 y 
 sin��x�L�, 0 
 x 
 L�

��x, y� � xx � 1y � 0y � sx D

��x, y� � yx � 1x � 0y � 0y � e xD

��x, y� � x 22x 	 y � 6
y � xx � 0D

��x, y� � x 	 y
�0, 3��2, 1��0, 0�D5.

��x, y� � cxyD � ��x, y� 
 0 
 x 
 a, 0 
 y 
 b�Electric charge is distributed over the rectangle ,
so that the charge density at is

(measured in coulombs per square meter).
Find the total charge on the rectangle.

2. Electric charge is distributed over the disk so 
that the charge density at is 
(measured in coulombs per square meter). Find the total charge
on the disk.

3–10 Find the mass and center of mass of the lamina that occupies
the region and has the given density function .

3. ; ��x, y� � xy 2D � ��x, y� 
 0 
 x 
 2, �1 
 y 
 1�

�D

� �x, y� � x 	 y 	 x 2 	 y 2�x, y�
x 2 	 y 2 
 4

� �x, y� � 2xy 	 y 2
�x, y�0 
 y 
 2

1 
 x 
 31.
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The joint density function for a pair of random variables 
and is

(a) Find the value of the constant .
(b) Find .
(c) Find .

28. (a) Verify that

is a joint density function.
(b) If and are random variables whose joint density func-

tion is the function in part (a), find

(i) (ii)
(c) Find the expected values of and .

Suppose and are random variables with joint density 
function

(a) Verify that is indeed a joint density function.
(b) Find the following probabilities.

(i) (ii)
(c) Find the expected values of and .

30. (a) A lamp has two bulbs of a type with an average lifetime
of 1000 hours. Assuming that we can model the proba-
bility of failure of these bulbs by an exponential density
function with mean , find the probability that
both of the lamp’s bulbs fail within 1000 hours.

(b) Another lamp has just one bulb of the same type as in
part (a). If one bulb burns out and is replaced by a bulb 
of the same type, find the probability that the two bulbs
fail within a total of 1000 hours.

31. Suppose that and are independent random variables,
where is normally distributed with mean 45 and standard
deviation 0.5 and is normally distributed with mean 20 and
standard deviation 0.1.
(a) Find .
(b) Find .

32. Xavier and Yolanda both have classes that end at noon and
they agree to meet every day after class. They arrive at the
coffee shop independently. Xavier’s arrival time is and
Yolanda’s arrival time is , where and are measured in
minutes after noon. The individual density functions are

(Xavier arrives sometime after noon and is more likely to
arrive promptly than late. Yolanda always arrives by 12:10 PM

and is more likely to arrive late than promptly.) After Yolanda
arrives, she’ll wait for up to half an hour for Xavier, but he
won’t wait for her. Find the probability that they meet.

f2�y� � � 1
50 y

0

if 0 
 y 
 10

otherwise
f1�x� � �e�x

0

if x 
 0

if x � 0

YXY
X

P�4�X � 45�2 	 100�Y � 20�2 
 2�
P�40 
 X 
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 Y 
 25�

Y
X

YXCAS

� � 1000

YX
P�X 
 2, Y 
 4�P�Y 
 1�

f

f �x, y� � �0.1e��0.5x	0.2y�

0

if x 
 0, y 
 0

otherwise

YX29.

YX
P(X 


1
2 , Y 


1
2 )P(X 


1
2 )

f
YX

f �x, y� � �4xy

0

if 0 
 x 
 1, 0 
 y 
 1

otherwise

P�X 	 Y 
 1�
P�X 
 1, Y 
 1�

C

f �x, y� � �Cx�1 	 y�
0

if 0 
 x 
 1, 0 
 y 
 2

otherwise

Y
X27.11. A lamina occupies the part of the disk in the

first quadrant. Find its center of mass if the density at any
point is proportional to its distance from the -axis.

12. Find the center of mass of the lamina in Exercise 11 if the 
density at any point is proportional to the square of its
distance from the origin.

13. The boundary of a lamina consists of the semicircles
and together with the portions 

of the -axis that join them. Find the center of mass of the
lamina if the density at any point is proportional to its dis-
tance from the origin.

14. Find the center of mass of the lamina in Exercise 13 if the
density at any point is inversely proportional to its distance
from the origin.

Find the center of mass of a lamina in the shape of an isos-
celes right triangle with equal sides of length if the density
at any point is proportional to the square of the distance from
the vertex opposite the hypotenuse.

16. A lamina occupies the region inside the circle 
but outside the circle . Find the center of mass 
if the density at any point is inversely proportional to its dis-
tance from the origin.

17. Find the moments of inertia , , for the lamina of 
Exercise 7.

18. Find the moments of inertia , , for the lamina of 
Exercise 12.

19. Find the moments of inertia , , for the lamina of 
Exercise 15.

20. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the
blade is , is it more difficult to rotate the
blade about the -axis or the -axis?

21–22 Use a computer algebra system to find the mass, center 
of mass, and moments of inertia of the lamina that occupies the
region and has the given density function.

21. ;

22. is enclosed by the cardioid ;

23–26 A lamina with constant density occupies the
given region. Find the moments of inertia and and the radii
of gyration and .

23. The rectangle 

24. The triangle with vertices , , and 

25. The part of the disk in the first quadrant

26. The region under the curve from to x � �x � 0y � sin x

x 2 	 y 2 
 a2

�0, h��b, 0��0, 0�
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 x 
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 y 
 h

yx
IyIx

��x, y� � �CAS

��x, y� � sx 2 	 y 2 

r � 1 	 cos �D
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 0 
 y 
 sin x, 0 
 x 
 � �

D

CAS

yx
��x, y� � 1 	 0.1x

I0IyIx

I0IyIx

I0IyIx

x 2 	 y 2 � 1
x 2 	 y 2 � 2y

a
15.

x
y � s4 � x 2 y � s1 � x 2 

x

x 2 	 y 2 
 1
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(a) Suppose the exposure of a person to the disease is the 
sum of the probabilities of catching the disease from all
members of the population. Assume that the infected 
people are uniformly distributed throughout the city, with 

infected individuals per square mile. Find a double 
integral that represents the exposure of a person residing 
at .

(b) Evaluate the integral for the case in which is the center 
of the city and for the case in which is located on the
edge of the city. Where would you prefer to live?

A
A

A

k

33. When studying the spread of an epidemic, we assume that the
probability that an infected individual will spread the disease to
an uninfected individual is a function of the distance between
them. Consider a circular city of radius 10 mi in which the
population is uniformly distributed. For an uninfected indi-
vidual at a fixed point , assume that the probability 
function is given by

where denotes the distance between and .APd�P, A�

f �P� � 1
20 �20 � d�P, A��

A�x0, y0 �

TRIPLE INTEGRALS

Just as we defined single integrals for functions of one variable and double integrals for
functions of two variables, so we can define triple integrals for functions of three variables.
Let’s first deal with the simplest case where is defined on a rectangular box:

The first step is to divide B into sub-boxes. We do this by dividing the interval into
l subintervals of equal width , dividing into m subintervals of width ,
and dividing into n subintervals of width . The planes through the endpoints of
these subintervals parallel to the coordinate planes divide the box into sub-boxes

which are shown in Figure 1. Each sub-box has volume .
Then we form the triple Riemann sum

where the sample point is in . By analogy with the definition of a double
integral (15.1.5), we define the triple integral as the limit of the triple Riemann sums in (2).

DEFINITION The triple integral of over the box is

if this limit exists.

Again, the triple integral always exists if is continuous. We can choose the sample
point to be any point in the sub-box, but if we choose it to be the point we get a
simpler-looking expression for the triple integral:

Just as for double integrals, the practical method for evaluating triple integrals is to
express them as iterated integrals as follows.

yyy
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 f �x, y, z� dV � lim 
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 �
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 �
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n

k�1
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�xi, yj, zk�
f

yyy
B

 f �x, y, z� dV � lim 
l, m, n l �
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i�1
 �
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n

k�1
 f �xi jk* , yi jk* , zi jk* � �V

Bf3
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lmnB
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FUBINI’S THEOREM FOR TRIPLE INTEGRALS If is continuous on the rectan-
gular box , then

The iterated integral on the right side of Fubini’s Theorem means that we integrate first
with respect to (keeping and fixed), then we integrate with respect to (keeping 
fixed), and finally we integrate with respect to . There are five other possible orders in
which we can integrate, all of which give the same value. For instance, if we integrate with
respect to , then , and then , we have

EXAMPLE 1 Evaluate the triple integral , where is the rectangular box
given by

SOLUTION We could use any of the six possible orders of integration. If we choose to 
integrate with respect to , then , and then , we obtain

M

Now we define the triple integral over a general bounded region E in three-
dimensional space (a solid) by much the same procedure that we used for double integrals
(15.3.2). We enclose in a box of the type given by Equation 1. Then we define a 
function so that it agrees with on but is 0 for points in that are outside . By 
definition,

This integral exists if is continuous and the boundary of is “reasonably smooth.” The
triple integral has essentially the same properties as the double integral (Properties 6–9 in
Section 15.3).

We restrict our attention to continuous functions and to certain simple types of regions.
A solid region is said to be of type 1 if it lies between the graphs of two continuous func-
tions of and , that is,

where is the projection of onto the -plane as shown in Figure 2. Notice that the
upper boundary of the solid is the surface with equation , while the lower
boundary is the surface .z � u1�x, y�

z � u2�x, y�E
xyED
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FIGURE 2
A type 1 solid region
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By the same sort of argument that led to Formula 15.3.3, it can be shown that if is a 
type 1 region given by Equation 5, then

The meaning of the inner integral on the right side of Equation 6 is that and are held
fixed, and therefore and are regarded as constants, while is inte-
grated with respect to .

In particular, if the projection of onto the -plane is a type I plane region (as in
Figure 3), then

and Equation 6 becomes

If, on the other hand, is a type II plane region (as in Figure 4), then

and Equation 6 becomes

EXAMPLE 2 Evaluate , where is the solid tetrahedron bounded by the four
planes , , , and .

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of 
the solid region (see Figure 5) and one of its projection on the -plane (see 
Figure 6). The lower boundary of the tetrahedron is the plane and the upper 
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FIGURE 3
A type 1 solid region where the  
projection D is a type I plane region
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boundary is the plane (or ), so we use and
in Formula 7. Notice that the planes and 

intersect in the line (or ) in the -plane. So the projection of is
the triangular region shown in Figure 6, and we have

This description of as a type 1 region enables us to evaluate the integral as follows:

M

A solid region is of type 2 if it is of the form

where, this time, is the projection of onto the -plane (see Figure 7). The back sur-
face is , the front surface is , and we have

Finally, a type 3 region is of the form

where is the projection of onto the -plane, is the left surface, and
is the right surface (see Figure 8). For this type of region we have
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In each of Equations 10 and 11 there may be two possible expressions for the integral
depending on whether is a type I or type II plane region (and corresponding to Equa-
tions 7 and 8).

EXAMPLE 3 Evaluate , where is the region bounded by the parabo-
loid and the plane .

SOLUTION The solid is shown in Figure 9. If we regard it as a type 1 region, then we
need to consider its projection onto the -plane, which is the parabolic region in
Figure 10. (The trace of in the plane is the parabola .)

From we obtain , so the lower boundary surface of is
and the upper surface is . Therefore the description of as

a type 1 region is

and so we obtain

Although this expression is correct, it is extremely difficult to evaluate. So let’s
instead consider as a type 3 region. As such, its projection onto the -plane is the
disk shown in Figure 11.

Then the left boundary of is the paraboloid and the right boundary is
the plane , so taking and in Equation 11, we have

Although this integral could be written as

it’s easier to convert to polar coordinates in the -plane: , . This
gives
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Visual 15.6 illustrates how solid
regions (including the one in Figure 9) 
project onto coordinate planes.

TEC

FIGURE 11
Projection on xz-plane
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| The most difficult step in evaluating a triple
integral is setting up an expression for the region
of integration (such as Equation 9 in Example 2).
Remember that the limits of integration in the
inner integral contain at most two variables, the
limits of integration in the middle integral con-
tain at most one variable, and the limits of inte-
gration in the outer integral must be constants.
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APPLICATIONS OF TRIPLE INTEGRALS

Recall that if , then the single integral represents the area under the
curve from to , and if , then the double integral rep-
resents the volume under the surface and above . The corresponding inter-
pretation of a triple integral , where , is not very useful
because it would be the “hypervolume” of a four-dimensional object and, of course, that
is very difficult to visualize. (Remember that is just the domain of the function ; the
graph of lies in four-dimensional space.) Nonetheless, the triple integral 
can be interpreted in different ways in different physical situations, depending on the phys-
ical interpretations of , , and .

Let’s begin with the special case where for all points in . Then the triple
integral does represent the volume of :

For example, you can see this in the case of a type 1 region by putting in
Formula 6:

and from Section 15.3 we know this represents the volume that lies between the surfaces
and .

EXAMPLE 4 Use a triple integral to find the volume of the tetrahedron bounded by the
planes , , , and .

SOLUTION The tetrahedron and its projection on the -plane are shown in Figures 12
and 13. The lower boundary of is the plane and the upper boundary is the plane

, that is, .

Therefore we have

by the same calculation as in Example 4 in Section 15.3.
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(Notice that it is not necessary to use triple integrals to compute volumes. They 
simply give an alternative method for setting up the calculation.) M

All the applications of double integrals in Section 15.5 can be immediately extended to
triple integrals. For example, if the density function of a solid object that occupies the
region is , in units of mass per unit volume, at any given point , then its
mass is

and its moments about the three coordinate planes are

The center of mass is located at the point , where

If the density is constant, the center of mass of the solid is called the centroid of . The
moments of inertia about the three coordinate axes are

As in Section 15.5, the total electric charge on a solid object occupying a region and
having charge density is

If we have three continuous random variables X, Y, and Z, their joint density function
is a function of three variables such that the probability that lies in E is

In particular,

The joint density function satisfies
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EXAMPLE 5 Find the center of mass of a solid of constant density that is bounded by
the parabolic cylinder and the planes , , and .

SOLUTION The solid and its projection onto the -plane are shown in Figure 14. The
lower and upper surfaces of are the planes and , so we describe as a
type 1 region:

Then, if the density is , the mass is

Because of the symmetry of and about the -plane, we can immediately say that
and therefore . The other moments are

Therefore the center of mass is
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20. The solid bounded by the cylinder and the planes
, and 

21. The solid enclosed by the cylinder and the 
planes and 

22. The solid enclosed by the paraboloid and the
plane 

(a) Express the volume of the wedge in the first octant that is
cut from the cylinder by the planes and

as a triple integral.
(b) Use either the Table of Integrals (on Reference Pages 6–10)

or a computer algebra system to find the exact value of the
triple integral in part (a).

24. (a) In the Midpoint Rule for triple integrals we use a triple
Riemann sum to approximate a triple integral over a box 

, where is evaluated at the center 
of the box . Use the Midpoint Rule to estimate

, where is the cube defined by
, , . Divide into eight

cubes of equal size.
(b) Use a computer algebra system to approximate the integral

in part (a) correct to the nearest integer. Compare with the
answer to part (a).

25–26 Use the Midpoint Rule for triple integrals (Exercise 24) to
estimate the value of the integral. Divide into eight sub-boxes of
equal size.

25. , where

26. , where 

27–28 Sketch the solid whose volume is given by the iterated 
integral.

28.

29–32 Express the integral as an iterated integral
in six different ways, where is the solid bounded by the given
surfaces.

29. ,

30. , ,

31. , ,

32. , , , x � y � 2z � 2z � 0y � 2x � 2

y � 2z � 4z � 0y � x 2

x � 2x � �2y 2 � z2 � 9

y � 0y � 4 � x 2 � 4z2

E
xxxE f �x, y, z� dV

y
2

0
 y

2�y

0
 y

4�y 2

0
 dx dz dyy

1

0
 y

1�x

0
 y

2�2z

0
 dy dz dx27.

B � ��x, y, z� � 0 � x � 4, 0 � y � 2, 0 � z � 1	
xxxB sin�xy 2z 3� dV 

B � ��x, y, z� � 0 � x � 4, 0 � y � 8, 0 � z � 4	

xxxB 
1

ln�1 � x � y � z�
 dV

B

CAS

B0 � z � 40 � y � 40 � x � 4
BxxxB sx 2 � y 2 � z 2   dV

Bijk

�xi, yj, zk �f �x, y, z�B

CAS

x � 1
y � xy 2 � z2 � 1

23.

x � 16
x � y 2 � z 2

z � 1y � z � 5
x 2 � y 2 � 9

y � 9z � 4z � 0,
y � x 21. Evaluate the integral in Example 1, integrating first with

respect to , then , and then .

2. Evaluate the integral , where

using three different orders of integration.

3–8 Evaluate the iterated integral.

3. 4.

5. 6.

7.

8.

9–18 Evaluate the triple integral.

9. , where

10. , where

, where lies under the plane 
and above the region in the -plane bounded by the curves

, , and 

12. , where is bounded by the planes , ,
, and 

13. , where is bounded by the parabolic cylinder
and the planes , , and 

14. , where is bounded by the parabolic cylinders
and and the planes and 

15. , where is the solid tetrahedron with vertices
, , , and 

16. , where is the solid tetrahedron with vertices
, , , and 

17. , where is bounded by the paraboloid 
and the plane 

18. , where is bounded by the cylinder 
and the planes , , and in the first octant

19–22 Use a triple integral to find the volume of the given solid.

The tetrahedron enclosed by the coordinate planes and the
plane 2x � y � z � 4

19.
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40. is the tetrahedron bounded by the planes , , 
, ;

41–44 Assume that the solid has constant density .

41. Find the moments of inertia for a cube with side length if 
one vertex is located at the origin and three edges lie along the
coordinate axes.

42. Find the moments of inertia for a rectangular brick with dimen-
sions , , and and mass if the center of the brick is situ-
ated at the origin and the edges are parallel to the coordinate
axes.

43. Find the moment of inertia about the -axis of the solid cylin-
der , .

44. Find the moment of inertia about the -axis of the solid cone
.

45–46 Set up, but do not evaluate, integral expressions for 
(a) the mass, (b) the center of mass, and (c) the moment of inertia
about the -axis.

45. The solid of Exercise 21;

46. The hemisphere , ; 

47. Let be the solid in the first octant bounded by the cylinder
and the planes , , and with the

density function . Use a computer
algebra system to find the exact values of the following quan-
tities for .
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

48. If is the solid of Exercise 18 with density function
, find the following quantities, correct 

to three decimal places.
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

49. The joint density function for random variables , , and is
if , and

otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .

50. Suppose , , and are random variables with joint density
function if , , ,
and otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .P�X � 1, Y � 1, Z � 1�

P�X � 1, Y � 1�
C

f �x, y, z� � 0
z � 0y � 0x � 0f �x, y, z� � Ce��0.5x�0.2y�0.1z�

ZYX

P�X � Y � Z � 1�
P�X � 1, Y � 1, Z � 1�

C
f �x, y, z� � 0

0 � x � 2, 0 � y � 2, 0 � z � 2f �x, y, z� � Cxyz
ZYX

z


 �x, y, z� � x 2 � y 2
ECAS

z

E


 �x, y, z� � 1 � x � y � z
z � 0x � 0y � zx 2 � y 2 � 1

ECAS


 �x, y, z� � sx 2 � y 2 � z 2 

z � 0x 2 � y 2 � z2 � 1


 �x, y, z� � sx 2 � y 2 

z

sx 2 � y 2 � z � h
z

0 � z � hx 2 � y 2 � a 2
z

Mcba

L

k


 �x, y, z� � yx � y � z � 1z � 0
y � 0x � 0E33. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

34. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

35–36 Write five other iterated integrals that are equal to the
given iterated integral.

36.

37–40 Find the mass and center of mass of the solid with the
given density function .

37. is the solid of Exercise 11;

38. is bounded by the parabolic cylinder and the
planes , , and ;

is the cube given by , , ;

 �x, y, z� � x 2 � y 2 � z2

0 � z � a0 � y � a0 � x � aE39.
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52. Find the average value of the function 
over the region enclosed by the paraboloid 
and the plane .

53. Find the region for which the triple integral 

is a maximum.

yyy
E

�1 � x 2 � 2y 2 � 3z 2� dV

E

z � 0
z � 1 � x 2 � y 2

f �x, y, z� � x 2z � y 2z51–52 The average value of a function over a solid
region is defined to be 

where is the volume of . For instance, if is a density 
function, then is the average density of .

Find the average value of the function over the
cube with side length that lies in the first octant with one 
vertex at the origin and edges parallel to the coordinate axes.

L
f �x, y, z� � xyz51.

E�ave

�EV�E �

fave �
1

V�E �
 yyy

E

 f �x, y, z� dV

E
f �x, y, z�

In this project we find formulas for the volume enclosed by a hypersphere in -dimensional
space.

1. Use a double integral and trigonometric substitution, together with Formula 64 in the Table 
of Integrals, to find the area of a circle with radius .

2. Use a triple integral and trigonometric substitution to find the volume of a sphere with 
radius .

3. Use a quadruple integral to find the hypervolume enclosed by the hypersphere
in . (Use only trigonometric substitution and the reduction 

formulas for or .)

4. Use an -tuple integral to find the volume enclosed by a hypersphere of radius in 
-dimensional space . [Hint: The formulas are different for even and odd.]nn�nn

rn

x cosnx dxx sinnx dx
�4x 2 � y 2 � z 2 � w 2 � r 2

r

r

n

VOLUMES OF HYPERSPHERESD I S C O V E R Y
P R O J E C T

TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

In plane geometry the polar coordinate system is used to give a convenient description of
certain curves and regions. (See Section 10.3.) Figure 1 enables us to recall the connection
between polar and Cartesian coordinates. If the point has Cartesian coordinates 
and polar coordinates , then, from the figure,

In three dimensions there is a coordinate system, called cylindrical coordinates, that is
similar to polar coordinates and gives convenient descriptions of some commonly occur-
ring surfaces and solids. As we will see, some triple integrals are much easier to evaluate
in cylindrical coordinates.

tan � �
y

x
r 2 � x 2 � y 2

y � r sin �x � r cos �

�r, ��
�x, y�P

15.7

O

y

x

¨

x

y
r

P(r, ̈ )=P(x, y)

FIGURE 1  



CYLINDRICAL COORDINATES

In the cylindrical coordinate system, a point in three-dimensional space is represented
by the ordered triple , where and are polar coordinates of the projection of 
onto the -plane and is the directed distance from the -plane to . (See Figure 2.)

To convert from cylindrical to rectangular coordinates, we use the equations

whereas to convert from rectangular to cylindrical coordinates, we use

EXAMPLE 1
(a) Plot the point with cylindrical coordinates and find its rectangular 
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates .

SOLUTION
(a) The point with cylindrical coordinates is plotted in Figure 3. From
Equations 1, its rectangular coordinates are

Thus the point is in rectangular coordinates.

(b) From Equations 2 we have

so

Therefore one set of cylindrical coordinates is . Another is
. As with polar coordinates, there are infinitely many choices. M

Cylindrical coordinates are useful in problems that involve symmetry about an axis, and
the -axis is chosen to coincide with this axis of symmetry. For instance, the axis of the
circular cylinder with Cartesian equation is the -axis. In cylindrical coordi-
nates this cylinder has the very simple equation . (See Figure 4.) This is the reason 
for the name “cylindrical” coordinates.

r � c
zx 2 � y 2 � c 2

z

(3s2 , ���4, �7)
(3s2 , 7��4, �7)

z � �7

� �
7�

4
� 2n�tan � �

�3

3
� �1

r � s32 � ��3�2 � 3s2 

(�1, s3 , 1)

 z � 1

 y � 2 sin 
2�

3
� 2�s3 

2 � � s3 

 x � 2 cos 
2�

3
� 2��

1

2� � �1

�2, 2��3, 1�

�3, �3, �7�

�2, 2��3, 1�

z � ztan � �
y

x
r 2 � x 2 � y 22

z � zy � r sin �x � r cos �1

Pxyzxy
P�r�r, �, z�

P
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The cylindrical coordinates of a point
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EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is .

SOLUTION The equation says that the -value, or height, of each point on the surface is the
same as r, the distance from the point to the -axis. Because doesn’t appear, it can
vary. So any horizontal trace in the plane is a circle of radius k. These
traces suggest that the surface is a cone. This prediction can be confirmed by converting
the equation into rectangular coordinates. From the first equation in (2) we have

We recognize the equation (by comparison with Table 1 in Section 12.6) as
being a circular cone whose axis is the -axis. (See Figure 5.) M

EVALUATING TRIPLE INTEGRALS WITH CYLINDRICAL COORDINATES

Suppose that is a type 1 region whose projection on the -plane is conveniently
described in polar coordinates (see Figure 6). In particular, suppose that is continuous
and

where is given in polar coordinates by

We know from Equation 15.6.6 that

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.4.3, we obtain

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that
we convert a triple integral from rectangular to cylindrical coordinates by writing

, , leaving as it is, using the appropriate limits of integration for ,
, and , and replacing by . (Figure 7 shows how to remember this.) It is

worthwhile to use this formula when is a solid region easily described in cylindrical
coordinates, and especially when the function involves the expression .

EXAMPLE 3 A solid lies within the cylinder , below the plane ,
and above the paraboloid . (See Figure 8.) The density at any point is
proportional to its distance from the axis of the cylinder. Find the mass of .E

z � 1 � x 2 � y 2
z � 4x 2 � y 2 � 1EV

x 2 � y2f �x, y, z�
E

r dz dr d�dV�r
zzy � r sin �x � r cos �

yyy
E

 f �x, y, z� dV � y
�

�
 y

h2���

h1���
 y

u2�r cos �, r sin ��

u1�r cos �, r sin ��
 f �r cos �, r sin �, z� r dz dr d�4

yyy
E

 f �x, y, z� dV � yy
D

 �y
u2�x, y�

u1�x, y�
 f �x, y, z� dz� dA3

D � 	�r, �� 
 � 	 � 	 �, h1��� 	 r 	 h2����

D

E � 	�x, y, z� 
 �x, y� � D, u1�x, y� 	 z 	 u2�x, y��

f
xyDE

z
z2 � x 2 � y 2

z2 � r 2 � x 2 � y 2

z � k �k 
 0�
�z

z

z � rV
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FIGURE 7
Volume element in cylindrical
coordinates: dV=r dz dr d¨
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SOLUTION In cylindrical coordinates the cylinder is and the paraboloid is ,
so we can write

Since the density at is proportional to the distance from the -axis, the density
function is

where is the proportionality constant. Therefore, from Formula 15.6.13, the mass 
of is

M

EXAMPLE 4 Evaluate .

SOLUTION This iterated integral is a triple integral over the solid region 

and the projection of onto the -plane is the disk . The lower surface of
is the cone and its upper surface is the plane . (See Figure 9.)

This region has a much simpler description in cylindrical coordinates:

Therefore, we have

M
� 2� [ 1
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 0 	 � 	 2�, 0 	 r 	 2, r 	 z 	 2�
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12�K
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0
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0
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� y
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0
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1

0
 Kr 2 �4 � �1 � r 2 �
 dr d�

� y
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0
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1

0
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 m � yyy
E

 Ksx 2 � y 2  dV

E
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f �x, y, z� � Ksx 2 � y 2 � Kr

z�x, y, z�
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FIGURE 9
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20. Evaluate , where is enclosed by the planes 
and and by the cylinders and

.

Evaluate , where is the solid that lies within the
cylinder , above the plane , and below the
cone .

22. Find the volume of the solid that lies within both the cylinder
and the sphere .

23. (a) Find the volume of the region bounded by the parabo-
loids and .

(b) Find the centroid of (the center of mass in the case
where the density is constant).

24. (a) Find the volume of the solid that the cylinder 
cuts out of the sphere of radius centered at the origin.

; (b) Illustrate the solid of part (a) by graphing the sphere and
the cylinder on the same screen.

25. Find the mass and center of mass of the solid bounded by
the paraboloid and the plane if

has constant density .

26. Find the mass of a ball given by if the
density at any point is proportional to its distance from the 
-axis.

27–28 Evaluate the integral by changing to cylindrical coordinates.

27.

28.

29. When studying the formation of mountain ranges, geologists
estimate the amount of work required to lift a mountain from
sea level. Consider a mountain that is essentially in the shape
of a right circular cone. Suppose that the weight density of 
the material in the vicinity of a point is and the height 
is .
(a) Find a definite integral that represents the total work done

in forming the mountain.
(b) Assume that Mount Fuji in Japan is in the shape of a right

circular cone with radius 62,000 ft, height 12,400 ft, and
density a constant 200 lb�ft . How much work was done
in forming Mount Fuji if the land was initially at sea level?

P

3

h�P�
t�P�P

y
3

�3
 y

s9�x 2 

0
 y

9�x 2�y 2

0
 sx2 � y2  dz dy dx

y
2

�2
 y

s4�y 2  

�s4�y 2 
 y

2

sx 2�y 2 
  xz dz dx dy

z

x 2 � y 2 � z2 	 a 2B

KS
z � a �a 
 0�z � 4x 2 � 4y 2

S

a
r � a cos �

E
z � 36 � 3x 2 � 3y 2z � x 2 � y 2

E

x 2 � y 2 � z2 � 4x 2 � y 2 � 1

z2 � 4x 2 � 4y 2
z � 0x 2 � y 2 � 1

ExxxE x 2 dV21.

x 2 � y 2 � 9
x 2 � y 2 � 4z � x � y � 5

z � 0ExxxE x dV1–2 Plot the point whose cylindrical coordinates are given. Then
find the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 Change from rectangular to cylindrical coordinates.

(a) (b)

4. (a) (b)

5–6 Describe in words the surface whose equation is given.

5. 6.

7–8 Identify the surface whose equation is given.

7. 8.

9–10 Write the equations in cylindrical coordinates.

(a) (b)

10. (a) (b)

11–12 Sketch the solid described by the given inequalities.

11. , ,

12. ,

13. A cylindrical shell is 20 cm long, with inner radius 6 cm and
outer radius 7 cm. Write inequalities that describe the shell 
in an appropriate coordinate system. Explain how you have
positioned the coordinate system with respect to the shell.

; 14. Use a graphing device to draw the solid enclosed by the 
paraboloids and .

15–16 Sketch the solid whose volume is given by the integral 
and evaluate the integral.

15. 16.

17–26 Use cylindrical coordinates.

Evaluate , where is the region that lies
inside the cylinder and between the planes

and .

18. Evaluate , where is the solid in the first
octant that lies beneath the paraboloid .

19. Evaluate , where is enclosed by the paraboloid
, the cylinder , and the -plane.xyx 2 � y 2 � 5z � 1 � x 2 � y 2

Exxx
E
 e z dV

z � 1 � x 2 � y 2
ExxxE �x 3 � xy 2 � dV

z � 4z � �5
x 2 � y 2 � 16

Exxx
E
 sx 2 � y 2  dV17.
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0
 r dz dr d�y
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0
 y

2�

0
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4

r
 r dz d� dr

z � 5 � x 2 � y 2z � x 2 � y 2

r 	 z 	 20 	 � 	 ��2

0 	 z 	 1���2 	 � 	 ��20 	 r 	 2

�x 2 � y 2 � z2 � 13x � 2y � z � 6

x 2 � y2 � 2yz � x 2 � y29.

2r 2 � z2 � 1z � 4 � r 2

r � 5� � ��4

�4, �3, 2�(2s3, 2, �1)
(�1, �s3 , 2)�1, �1, 4�3.

�1, 3��2, 2��1, �, e�

�4, ���3, 5��2, ��4, 1�

EXERCISES15.7
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TRIPLE INTEGRALS IN SPHERICAL COORDINATES

Another useful coordinate system in three dimensions is the spherical coordinate system.
It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

SPHERICAL COORDINATES

The spherical coordinates of a point in space are shown in Figure 1, where
is the distance from the origin to , is the same angle as in cylindrical coor-

dinates, and is the angle between the positive -axis and the line segment . Note that

FIGURE 1
The spherical coordinates of a point

P(∏, ¨, ˙)

O

z

∏

¨

˙

x y

0 	 � 	 �� � 0

OPz�
�P� � 
 OP 

P��, �, ��

15.8

The figure shows the solid enclosed by three circular cylinders with the same diameter that inter-
sect at right angles. In this project we compute its volume and determine how its shape changes if
the cylinders have different diameters.

1. Sketch carefully the solid enclosed by the three cylinders , , and
. Indicate the positions of the coordinate axes and label the faces with the equa-

tions of the corresponding cylinders.

2. Find the volume of the solid in Problem 1.

3. Use a computer algebra system to draw the edges of the solid.

4. What happens to the solid in Problem 1 if the radius of the first cylinder is different from 1?
Illustrate with a hand-drawn sketch or a computer graph.

5. If the first cylinder is , where , set up, but do not evaluate, a double inte-
gral for the volume of the solid. What if ?a 
 1

a 
 1x 2 � y 2 � a 2

CAS

y 2 � z 2 � 1
x 2 � z 2 � 1x 2 � y 2 � 1

THE INTERSECTION OF THREE CYLINDERSD I S C O V E R Y
P R O J E C T



The spherical coordinate system is especially useful in problems where there is symmetry
about a point, and the origin is placed at this point. For example, the sphere with center the
origin and radius has the simple equation (see Figure 2); this is the reason for the
name “spherical” coordinates. The graph of the equation is a vertical half-plane (see
Figure 3), and the equation represents a half-cone with the -axis as its axis (see
Figure 4).

The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 5. From triangles and we have

But and , so to convert from spherical to rectangular coordinates,
we use the equations

Also, the distance formula shows that

We use this equation in converting from rectangular to spherical coordinates.

EXAMPLE 1 The point is given in spherical coordinates. Plot the point
and find its rectangular coordinates.

SOLUTION We plot the point in Figure 6. From Equations 1 we have

Thus the point is in rectangular coordinates. M(s3�2 , s3�2 , 1)�2, ��4, ��3�

 z � � cos � � 2 cos 
�

3
� 2(1

2 ) � 1

 y � � sin � sin � � 2 sin 
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3
 sin 
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4
� 2�s3 

2 �� 1

s2 � � �3

2
 

 x � � sin �  cos � � 2 sin 
�

3
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�

4
� 2�s3 

2 �� 1

s2 � � �3

2
 

�2, ��4, ��3�V

�2 � x 2 � y 2 � z22

z � � cos �y � � sin � sin �x � � sin � cos �1

y � r sin �x � r cos �

r � � sin �z � � cos �

OPP�OPQ

FIGURE 2  ∏=c, a sphere FIGURE 3 ¨=c, a half-plane
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FIGURE 4  ˙=c, a half-cone
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EXAMPLE 2 The point is given in rectangular coordinates. Find spheri-
cal coordinates for this point.

SOLUTION From Equation 2 we have

and so Equations 1 give

(Note that because .) Therefore spherical coordinates of the
given point are . M

EVALUATING TRIPLE INTEGRALS WITH SPHERICAL COORDINATES

In the spherical coordinate system the counterpart of a rectangular box is a spherical
wedge

where , , and . Although we defined triple integrals by divid-
ing solids into small boxes, it can be shown that dividing a solid into small spherical
wedges always gives the same result. So we divide into smaller spherical wedges by
means of equally spaced spheres , half-planes , and half-cones .
Figure 7 shows that is approximately a rectangular box with dimensions , (arc
of a circle with radius angle ), and (arc of a circle with radius 
angle ). So an approximation to the volume of is given by

In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 45), that the
volume of is given exactly by

where is some point in . Let be the rectangular coordinates of
this point. Then

But this sum is a Riemann sum for the function

Consequently, we have arrived at the following formula for triple integration in spherical
coordinates.
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In Module 15.8 you can investigate
families of surfaces in cylindrical and spheri-
cal coordinates.

TEC

| WARNING There is not universal agree-
ment on the notation for spherical coordinates.
Most books on physics reverse the meanings 
of and and use in place of .�r��

FIGURE 7
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where is a spherical wedge given by

Formula 3 says that we convert a triple integral from rectangular coordinates to spher-
ical coordinates by writing

using the appropriate limits of integration, and replacing by . This is
illustrated in Figure 8.

This formula can be extended to include more general spherical regions such as

In this case the formula is the same as in (3) except that the limits of integration for are
and .

Usually, spherical coordinates are used in triple integrals when surfaces such as cones
and spheres form the boundary of the region of integration.

EXAMPLE 3 Evaluate where is the unit ball:

SOLUTION Since the boundary of is a sphere, we use spherical coordinates:

In addition, spherical coordinates are appropriate because

Thus (3) gives

M

It would have been extremely awkward to evaluate the integral in Example 3
without spherical coordinates. In rectangular coordinates the iterated integral would have
been
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B � 	��, �, �� 
 0 	 � 	 1, 0 	 � 	 2�, 0 	 � 	 � �
B

B � 	�x, y, z� 
 x 2 � y 2 � z2 	 1�
BxxxB e �x2�y2�z2�3�2

 dV,V

t2��, ��t1��, ��
�

E � 	��, �, �� 
 � 	 � 	 �, c 	 � 	 d, t1��, �� 	 � 	 t2��, ���

�2 sin � d� d� d�dV

z � � cos �y � � sin � sin �x � � sin � cos �

E � 	��, �, �� 
 a 	 � 	 b, � 	 � 	 �, c 	 � 	 d �
E

� y
d

c
 y

�

�
 y

b

a
 f �� sin � cos �, � sin � sin �, � cos �� �2 sin � d� d� d�

yyy
E

 f �x, y, z� dV3
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FIGURE 8
Volume element in spherical
coordinates: dV=∏@ sin ˙ d∏ d¨ d˙
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yd¨

˙

∏ sin ˙ d¨
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∏ d˙
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EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above
the cone and below the sphere . (See Figure 9.)

SOLUTION Notice that the sphere passes through the origin and has center . We
write the equation of the sphere in spherical coordinates as

The equation of the cone can be written as

This gives , or . Therefore the description of the solid in 
spherical coordinates is

Figure 11 shows how E is swept out if we integrate first with respect to , then , and
then . The volume of E is

MFIGURE 11
¨ varies from 0 to 2π.

z

yx

z

yx

∏ varies from 0 to cos ˙

while ˙ and ̈   are constant.

z

yx

˙ varies from 0 to π/4

 while ¨ is constant.
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��4
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0
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��4
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3 �
��0
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 d�

 V�E � � yyy
E

 dV � y
2�

0
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��4

0
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 �2 sin � d� d� d�

�
��

E � 	��, �, �� 
 0 	 � 	 2�, 0 	 � 	 ��4, 0 	 � 	 cos ��

E� � ��4sin � � cos �

� cos � � s�2 sin2� cos2� � �2 sin 2� sin2�  � � sin �

� � cos �or�2 � � cos �

(0, 0, 12 )

FIGURE 9
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FIGURE 10

N Figure 10 gives another look (this time 
drawn by Maple) at the solid of Example 4.

Visual 15.8 shows an animation 
of Figure 11.
TEC
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19–20 Set up the triple integral of an arbitrary continuous function
in cylindrical or spherical coordinates over the solid

shown.

19. 20.

21–34 Use spherical coordinates.

Evaluate , where is the ball with 
center the origin and radius 5.

22. Evaluate , where is the solid
hemisphere , .

23. Evaluate , where lies between the spheres
and in the first octant.

24. Evaluate , where is enclosed by the sphere
in the first octant.

25. Evaluate , where is bounded by the -plane 
and the hemispheres and

.

26. Evaluate , where lies between the spheres 
and and above the cone .

27. Find the volume of the part of the ball that lies between
the cones and .

28. Find the average distance from a point in a ball of radius to 
its center.

29. (a) Find the volume of the solid that lies above the cone
and below the sphere .

(b) Find the centroid of the solid in part (a).

Find the volume of the solid that lies within the sphere
, above the -plane, and below the cone

.

31. Find the centroid of the solid in Exercise 25.

32. Let be a solid hemisphere of radius whose density at any
point is proportional to its distance from the center of the base.
(a) Find the mass of .
(b) Find the center of mass of .
(c) Find the moment of inertia of about its axis.

33. (a) Find the centroid of a solid homogeneous hemisphere of
radius .

(b) Find the moment of inertia of the solid in part (a) about a
diameter of its base.

a

H
H

H

aH

z � sx 2 � y 2 

xyx 2 � y 2 � z 2 � 4
30.

� � 4 cos �� � ��3

a

� � ��3� � ��6
� � a

� � ��3� � 4� � 2
ExxxE xyz dV

y � s16 � x 2 � z 2 
y � s9 � x 2 � z 2 

xzExxxE x 2 dV

x 2 � y 2 � z2 � 9
ExxxE esx2�y2�z2  dV

x 2 � y 2 � z 2 � 4x 2 � y 2 � z 2 � 1
ExxxE z dV

z � 0x 2 � y 2 � z2 � 9
HxxxH �9 � x 2 � y 2 � dV

BxxxB �x 2 � y 2 � z2 �2 dV21.

z

x
y

3

2

z

x y2
1

f �x, y, z�
1–2 Plot the point whose spherical coordinates are given. Then
find the rectangular coordinates of the point.

(a) (b)

2. (a) (b)

3–4 Change from rectangular to spherical coordinates.

3. (a) (b)

4. (a) (b)

5–6 Describe in words the surface whose equation is given.

6.

7–8 Identify the surface whose equation is given.

7. 8.

9–10 Write the equation in spherical coordinates.

9. (a) (b)

10. (a) (b)

11–14 Sketch the solid described by the given inequalities.

11. , ,

12. ,

13. ,

14. ,

15. A solid lies above the cone and below the
sphere . Write a description of the solid in
terms of inequalities involving spherical coordinates.

16. (a) Find inequalities that describe a hollow ball with diameter
30 cm and thickness 0.5 cm. Explain how you have
positioned the coordinate system that you have chosen.

(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral and
evaluate the integral.

18. y
2�

0
 y

�

��2
 y

2

1
 �2 sin � d� d� d	

y
��6

0
 y

��2

0
 y

3

0
 �2 sin � d� d	 d�17.

x 2 � y 2 � z2 � z
z � sx 2 � y 2 

� � csc �� � 2

3��4 � � � �� � 1

��2 � � � �2 � � � 3

0 � 	 � ��20 � � � ��2� � 2

x � 2y � 3z � 1x 2 � 2x � y 2 � z 2 � 0

x 2 � z2 � 9z2 � x 2 � y 2

� 2 �sin2� sin2	 � cos2�� � 9� � sin 	 sin �

� � 3� � ��35.

(�1, 1, s6 )(0, s3 , 1)

�0, �1, �1�(1, s3 , 2s3 )

�4, 3��4, ��3��5, �, ��2�

�2, ��3, ��4��1, 0, 0�1.

EXERCISES15.8
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43. The surfaces have been used as
models for tumors. The “bumpy sphere” with and

is shown. Use a computer algebra system to find the
volume it encloses.

44. Show that

(The improper triple integral is defined as the limit of a 
triple integral over a solid sphere as the radius of the sphere
increases indefinitely.)

45. (a) Use cylindrical coordinates to show that the volume of 
the solid bounded above by the sphere and
below by the cone (or ), where

, is

(b) Deduce that the volume of the spherical wedge given by
, , is

(c) Use the Mean Value Theorem to show that the volume in
part (b) can be written as

where lies between and , lies between and 
, , , and .
� � � 2 � �1
	 � 	2 � 	1
� � � 2 � �1� 2

�1�
�

� 2�1��


V � �� 2 sin �
�


� 
	 
�


V �
� 2

3 � �1
3

3
 �cos �1 � cos � 2 ��	 2 � 	1 �

�1 � � � � 2	1 � 	 � 	 2�1 � � � � 2

V �
2�a 3

3
 �1 � cos� 0 �

0 � � 0 � ��2
� � � 0z � r cot � 0

r 2 � z2 � a 2

e��x2�y 2�z2� dx dy dz � 2�y
�

�� y
�

�� y
�

��
 sx 2 � y 2 � z2 

n � 5
m � 6

� � 1 �
1
5 sin m	 sin n�CAS

34. Find the mass and center of mass of a solid hemisphere of
radius if the density at any point is proportional to its 
distance from the base.

35–38 Use cylindrical or spherical coordinates, whichever seems
more appropriate.

Find the volume and centroid of the solid that lies 
above the cone and below the sphere

.

36. Find the volume of the smaller wedge cut from a sphere of
radius by two planes that intersect along a diameter at an
angle of .

37. Evaluate , where lies above the paraboloid 
and below the plane . Use either the

Table of Integrals (on Reference Pages 6–10) or a computer
algebra system to evaluate the integral.

38. (a) Find the volume enclosed by the torus .

; (b) Use a computer to draw the torus.

39–40 Evaluate the integral by changing to spherical coordinates.

39.

40.

; 41. Use a graphing device to draw a silo consisting of a cylinder
with radius 3 and height 10 surmounted by a hemisphere.

42. The latitude and longitude of a point in the Northern Hemi-
sphere are related to spherical coordinates , , as follows.
We take the origin to be the center of the earth and the posi-
tive -axis to pass through the North Pole. The positive -axis
passes through the point where the prime meridian (the
meridian through Greenwich, England) intersects the equator.
Then the latitude of is and the longitude is

. Find the great-circle distance from Los
Angeles (lat. N, long. W) to Montréal (lat.

N, long. W). Take the radius of the earth to be
3960 mi. (A great circle is the circle of intersection of a
sphere and a plane through the center of the sphere.)

73.60
45.50

118.25
34.06


� � 360
 � 	

� � 90
 � �
P

xz

�	�
P

y
a

�a
 y

sa 2�y 2 

�sa 2�y 2 
 y

sa 2�x 2�y 2 

�sa 2�x 2�y 2 
 �x 2z � y 2z � z3� dz dx dy

y
1

0
 y

s1�x 2 

0
 y

s2�x 2�y 2 

sx 2�y 2 
 xy dz dy dx

� � sin �

z � 2yz � x 2 � y 2

ExxxE z dVCAS

��6
a

x 2 � y 2 � z2 � 1
z � sx 2 � y 2 

E35.

a
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Suppose that a solid ball (a marble), a hollow ball (a squash ball), a solid cylinder (a steel bar),
and a hollow cylinder (a lead pipe) roll down a slope. Which of these objects reaches the bottom
first? (Make a guess before proceeding.)

To answer this question, we consider a ball or cylinder with mass , radius , and moment of
inertia (about the axis of rotation). If the vertical drop is , then the potential energy at the top
is . Suppose the object reaches the bottom with velocity and angular velocity , so .
The kinetic energy at the bottom consists of two parts: from translation (moving down the
slope) and from rotation. If we assume that energy loss from rolling friction is negligible,
then conservation of energy gives

1. Show that

2. If is the vertical distance traveled at time then the same reasoning as used in 
Problem 1 shows that at any time . Use this result to show that 
satisfies the differential equation

where is the angle of inclination of the plane.

3. By solving the differential equation in Problem 2, show that the total travel time is

This shows that the object with the smallest value of wins the race.

4. Show that for a solid cylinder and for a hollow cylinder.

5. Calculate for a partly hollow ball with inner radius and outer radius . Express your
answer in terms of . What happens as and as ?

6. Show that for a solid ball and for a hollow ball. Thus the objects finish in the
following order: solid ball, solid cylinder, hollow ball, hollow cylinder.

I* � 2
3I* � 2

5

a l ra l 0b � a�r
raI*

I* � 1I* � 1
2

I*

T � �2h�1 � I*�
t sin2�

�

dy

dt
� � 2t

1 � I*
 �sin ��sy 

ytv2 � 2ty��1 � I*�
t,y�t�

where I* �
I

mr 2v2 �
2th

1 � I*

mth � 1
2 mv2 �

1
2 I�2

1
2 I�2

1
2 mv2

v � �r�vmth
hI

rm

ROLLER DERBYA P P L I E D
P R O J E C T

å

h

CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

In one-dimensional calculus we often use a change of variable (a substitution) to simplify
an integral. By reversing the roles of and , we can write the Substitution Rule (5.5.6) as

where and , . Another way of writing Formula 1 is as follows:

y
b

a
 f �x� dx � y

d

c
 f �x�u�� 

dx

du
 du2

b � t�d �a � t�c�x � t�u�

y
b

a
 f �x� dx � y

d

c
 f �t�u��t��u� du1

ux

15.9



A change of variables can also be useful in double integrals. We have already seen one
example of this: conversion to polar coordinates. The new variables and are related to
the old variables and by the equations

and the change of variables formula (15.4.2) can be written as

where is the region in the -plane that corresponds to the region in the -plane.
More generally, we consider a change of variables that is given by a transformation

from the -plane to the -plane:

where and are related to and by the equations

or, as we sometimes write,

We usually assume that is a C transformation, which means that and have contin-
uous first-order partial derivatives.

A transformation is really just a function whose domain and range are both subsets
of . If , then the point is called the image of the point .
If no two points have the same image, is called one-to-one. Figure 1 shows the effect of
a transformation on a region in the -plane. transforms into a region in the 

-plane called the image of S, consisting of the images of all points in .

If is a one-to-one transformation, then it has an inverse transformation from the
-plane to the -plane and it may be possible to solve Equations 3 for and in terms

of and :

EXAMPLE 1 A transformation is defined by the equations

Find the image of the square , .

SOLUTION The transformation maps the boundary of into the boundary of the image. So
we begin by finding the images of the sides of . The first side, , is given by v � 0S1S

S

0 � v � 1�S � ��u, v� � 0 � u � 1

y � 2uvx � u 2 � v2

V

v � H�x, y�u � G�x, y�
yx

vuuvxy
T�1T

FIGURE 1
0
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y

u x

(u¡, √¡)
(x¡, y¡)

S R

T –!

T

Sxy
RSTuvST

T
�u1, v1��x1, y1�T�u1, v1� � �x1, y1�� 2

T

ht
1T

y � y�u, v�x � x�u, v�

y � h�u, v�x � t�u, v�3

vuyx

T�u, v� � �x, y�

xyuv
T

xyRr	S

yy
R

 f �x, y� dA � yy
S

 f �r cos 	, r sin 	� r dr d	

y � r sin 	x � r cos 	

yx
	r
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. (See Figure 2.) From the given equations we have , , and so
. Thus is mapped into the line segment from to in the -plane.

The second side, is and, putting in the given equations, we
get

Eliminating , we obtain

which is part of a parabola. Similarly, is given by , whose image is
the parabolic arc

Finally, is given by whose image is , , that is,
. (Notice that as we move around the square in the counterclockwise direc-

tion, we also move around the parabolic region in the counterclockwise direction.) The
image of is the region (shown in Figure 2) bounded by the -axis and the parabolas
given by Equations 4 and 5. M

Now let’s see how a change of variables affects a double integral. We start with a small
rectangle in the -plane whose lower left corner is the point and whose dimen-
sions are and . (See Figure 3.)

The image of is a region in the -plane, one of whose boundary points is
. The vector

is the position vector of the image of the point . The equation of the lower side of 
is , whose image curve is given by the vector function . The tangent vector
at to this image curve is

Similarly, the tangent vector at to the image curve of the left side of (namely,
) is

rv � tv�u0, v0 � i � hv�u0, v0 � j �
�x

�v
 i �

�y

�v
 j

u � u0

S�x0, y0 �

ru � tu�u0, v0 � i � hu�u0, v0 � j �
�x

�u
 i �

�y

�u
 j

�x0, y0 �
r�u, v0�v � v0

S�u, v�

r�u, v� � t�u, v� i � h�u, v� j

�x0, y0 � � T�u0, v0 �
xyRS

FIGURE 3
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x
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0

√

u
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Î√

√=√¸

u=u¸

S

(u¸, √ ¸)


v
u
�u0, v0 �uvS

xRS

�1 � x � 0
y � 0x � �v2�0 � v � 1�u � 0S4

�1 � x � 0x �
y 2

4
� 15

�0 � u � 1�v � 1S3

0 � x � 1x � 1 �
y 2

4
4

v

y � 2vx � 1 � v2

u � 1�0 � v � 1�u � 1S2,
xy�1, 0��0, 0�S10 � x � 1

y � 0x � u 2�0 � u � 1�
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FIGURE 2
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We can approximate the image region by a parallelogram determined by the
secant vectors

shown in Figure 4. But

and so

Similarly

This means that we can approximate R by a parallelogram determined by the vectors
and . (See Figure 5.) Therefore we can approximate the area of by the area

of this parallelogram, which, from Section 12.4, is

Computing the cross product, we obtain

i j k

The determinant that arises in this calculation is called the Jacobian of the transformation
and is given a special notation.

DEFINITION The Jacobian of the transformation given by and
is

With this notation we can use Equation 6 to give an approximation to the area 
of :

where the Jacobian is evaluated at .�u0, v0 �


A 	 
 ��x, y�
��u, v� 
 
u 
v8

R

A

��x, y�
��u, v�

� � �x

�u

�y

�u

�x

�v

�y

�v � �
�x

�u
 
�y

�v
�

�x

�v
 
�y

�u

y � h�u, v�
x � t�u, v�T7

� �x

�u

�y

�u

�x

�v

�y

�v � k� � �x

�u

�x

�v

�y

�u

�y

�v � k �� �x

�u

�x

�v

�y

�u

�y

�v

0

0 �ru � rv �

� �
u ru � � �
v rv � � � � ru � rv � 
u 
v6

R
v rv
u ru

 r�u0, v0 � 
v� � r�u0, v0 � 	 
v rv

 r�u0 � 
u, v0 � � r�u0, v0 � 	 
u ru

ru � lim 

u l 0

 
r�u0 � 
u, v0 � � r�u0, v0 �


u

b � r�u0, v0 � 
v� � r�u0, v0 �a � r�u0 � 
u, v0 � � r�u0, v0 �

R � T�S �
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r (u¸, √ ¸) Îu ru

Î√ r√

FIGURE 4

FIGURE 5
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r (u¸+Îu, √¸)

R
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b
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N The Jacobian is named after the German
mathematician Carl Gustav Jacob Jacobi
(1804–1851). Although the French mathematician
Cauchy first used these special determinants
involving partial derivatives, Jacobi developed
them into a method for evaluating multiple 
integrals.



Next we divide a region in the -plane into rectangles and call their images in the
-plane . (See Figure 6.)

Applying the approximation (8) to each we approximate the double integral of 
over as follows:

where the Jacobian is evaluated at . Notice that this double sum is a Riemann sum
for the integral

The foregoing argument suggests that the following theorem is true. (A full proof is
given in books on advanced calculus.)

CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that is a trans-
formation whose Jacobian is nonzero and that maps a region in the -plane onto
a region in the -plane. Suppose that is continuous on and that and are
type I or type II plane regions. Suppose also that is one-to-one, except perhaps
on the boundary of . Then

Theorem 9 says that we change from an integral in and to an integral in and by
expressing and in terms of and and writing

Notice the similarity between Theorem 9 and the one-dimensional formula in Equation 2.
Instead of the derivative , we have the absolute value of the Jacobian, that is,

.� ��x, y����u, v� �
dx�du

dA � 
 ��x, y�
��u, v� 
  du dv

vuyx
vuyx

yy
R

 f �x, y� dA � yy
S

 f (x�u, v�, y�u, v�) 
 ��x, y�
��u, v� 
  du dv

S
T

SRRfxyR
uvS

C1T9

yy
S

 f (t�u, v�, h�u, v�) 
 ��x, y�
��u, v� 
  du dv

�ui, vj �

 	 �
m

i�1
 �

n

j�1
 f (t�ui, vj �, h�ui, vj �) 
 ��x, y�

��u, v� 
 
u 
v

 yy
R

 f �x, y� dA 	 �
m

i�1
 �

n

j�1
 f �xi, yj � 
A

R
fRij,
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As a first illustration of Theorem 9, we show that the formula for integration in polar
coordinates is just a special case. Here the transformation from the -plane to the 

-plane is given by

and the geometry of the transformation is shown in Figure 7. maps an ordinary rectangle
in the -plane to a polar rectangle in the -plane. The Jacobian of is

Thus Theorem 9 gives

which is the same as Formula 15.4.2.

EXAMPLE 2 Use the change of variables , to evaluate the integral
, where is the region bounded by the -axis and the parabolas 

and , .

SOLUTION The region is pictured in Figure 2 (on page 1014). In Example 1 we discov-
ered that , where is the square . Indeed, the reason for making
the change of variables to evaluate the integral is that is a much simpler region than .
First we need to compute the Jacobian:

Therefore, by Theorem 9,

M � y
1

0
 �2v � 4v3 � dv � [v2 � v4 ]0

1
� 2

 � 8 y
1

0
y

1

0
 �u3v � uv3 � du dv � 8 y

1

0
 [ 1

4u4v �
1
2 u2v3]u�1

u�0
     dv

 yy
R

 y dA � yy
S

 2uv 
 ��x, y�
��u, v� 
  dA � y

1

0
y

1

0
 �2uv�4�u2 � v 2 � du dv

��x, y�
��u, v�

� � �x

�u

�y

�u

�x

�v

�y

�v � � 
 2u

2v

�2v

2u 
 � 4u 2 � 4v 2 � 0

RS
�0, 1
 � �0, 1
ST�S � � R

R

y � 0y 2 � 4 � 4x
y 2 � 4 � 4xxRxx

R
 y dA

y � 2uvx � u 2 � v2V

 � y
�

�
 y

b

a
 f �r cos 	, r sin 	� r dr d	

 yy
R

 f �x, y� dx dy � yy
S

 f �r cos 	, r sin 	� 
 ��x, y�
��r, 	� 
  dr d	

��x, y�
��r, 	�

� ��x

�r

�y

�r

�x

�	

�y

�	 � � 
 cos 	

sin 	

�r sin 	

r cos 	 
 � r cos2	 � r sin2	 � r � 0

Txyr	
T

y � h�r, 	� � r sin 	x � t�r, 	� � r cos 	

xy
r	T
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FIGURE 7
The polar coordinate transformation
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Example 2 was not a very difficult problem to solve because we were given a
suitable change of variables. If we are not supplied with a transformation, then the first step
is to think of an appropriate change of variables. If is difficult to integrate, then the
form of may suggest a transformation. If the region of integration is awkward,
then the transformation should be chosen so that the corresponding region in the -plane
has a convenient description.

EXAMPLE 3 Evaluate the integral , where is the trapezoidal region with
vertices , , , and .

SOLUTION Since it isn’t easy to integrate , we make a change of variables sug-
gested by the form of this function:

These equations define a transformation from the -plane to the -plane. 
Theorem 9 talks about a transformation from the -plane to the -plane. It is
obtained by solving Equations 10 for and :

The Jacobian of is

To find the region in the -plane corresponding to , we note that the sides of lie on
the lines

and, from either Equations 10 or Equations 11, the image lines in the -plane are

Thus the region is the trapezoidal region with vertices , , , and
shown in Figure 8. Since

Theorem 9 gives

M � 1
2 y

2

1
 �e � e�1 �v dv � 3

4 �e � e�1 �

 � y
2

1
 y

v

�v
 eu�v( 1

2 ) du dv � 1
2 y

2

1
 [veu�v ]u��v

u�v
  dv

 yy
R

 e �x�y���x�y� dA � yy
S

 eu�v 
 ��x, y�
��u, v� 
  du dv

S � ��u, v� � 1 � v � 2, �v � u � v�

��1, 1�
��2, 2��2, 2��1, 1�S

v � 1u � �vv � 2u � v

uv

x � y � 1x � 0x � y � 2y � 0

RRuvS

��x, y�
��u, v�

� � �x

�u

�y

�u

�x

�v

�y

�v � � 
 1
2
1
2

�
1
2

�
1
2


 � �
1
2

T

y � 1
2 �u � v�x � 1

2 �u � v�11

yx
xyuvT

uvxyT�1

v � x � yu � x � y10

e �x�y���x�y�

�0, �1��0, �2��2, 0��1, 0�
RxxR e �x�y���x�y� dA

uvS
Rf �x, y�

f �x, y�

NOTE
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FIGURE 8
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TRIPLE INTEGRALS

There is a similar change of variables formula for triple integrals. Let be a transfor-
mation that maps a region in -space onto a region in -space by means of the
equations

The Jacobian of is the following determinant:

Under hypotheses similar to those in Theorem 9, we have the following formula for triple
integrals:

EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical
coordinates.

SOLUTION Here the change of variables is given by

We compute the Jacobian as follows:

Since , we have . Therefore

and Formula 13 gives

which is equivalent to Formula 15.8.3. M

yyy
R

 f �x, y, z� dV � yyy
S

 f �� sin � cos 	, � sin � sin 	, � cos �� �2 sin � d� d	 d�


 ��x, y, z�
���, 	, �� 
 � � ��2 sin � � � �2 sin �

sin � � 00 � � � �

 � ��2 sin � cos2� � �2 sin � sin2� � ��2 sin �

� � sin � �� sin2� cos2	 � � sin2� sin2	�

 � cos � ���2 sin � cos � sin2	 � �2 sin � cos � cos2	�

 � cos � 
 �� sin � sin 	

� � sin � cos 	

� cos � cos 	

� cos � sin 	 
 � � sin � 
 sin � cos 	

sin � sin 	

�� sin � sin 		

� sin � cos  	 

 
��x, y, z�
���, 	, ��

� � sin � cos 	

sin � sin 	

cos �

�� sin � sin 	

�� sin � cos 	

0

� cos � cos 	

� cos � sin 	

�� sin � �
z � � cos �y � � sin � sin 	x � � sin � cos 	

V

yyy
R

 f �x, y, z� dV � yyy
S

 f (x�u, v, w�, y�u, v, w�, z�u, v, w�) 
 ��x, y, z�
��u, v, w�

 
  du dv dw13

��x, y, z�
��u, v, w�

� � �x

�u

�y

�u

�z

�u

�x

�v

�y

�v

�z

�v

�x

�w

�y

�w

�z

�w

�12

3 � 3T

z � k�u, v, w�y � h�u, v, w�x � t�u, v, w�

xyzRuvwS
T
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; 16. , where is the region bounded by the curves
, , , ; , . 

Illustrate by using a graphing calculator or computer to 
draw .

17. (a) Evaluate , where is the solid enclosed by the 
ellipsoid . Use the transfor-
mation , , .

(b) The earth is not a perfect sphere; rotation has resulted in
flattening at the poles. So the shape can be approximated
by an ellipsoid with km and km.
Use part (a) to estimate the volume of the earth.

18. If the solid of Exercise 17(a) has constant density , find its
moment of inertia about the -axis.

19–23 Evaluate the integral by making an appropriate change of
variables.

19. , where is the parallelogram enclosed by

the lines , , , and

20. , where is the rectangle enclosed by the
lines , , , and 

, where is the trapezoidal region 

with vertices , , , and 

22. , where is the region in the first 
quadrant bounded by the ellipse 

23. , where is given by the inequality

24. Let be continuous on and let be the triangular
region with vertices , , and . Show that

yy
R

 f �x � y� dA � y
1

0
 uf �u� du

�0, 1��1, 0��0, 0�
R�0, 1�f

� x � � � y � � 1RxxR e x�y dA

9x 2 � 4y 2 � 1
RxxR sin�9x 2 � 4y 2 � dA

�0, 1��0, 2��2, 0��1, 0�

Ryy
R

 cos� y � x

y � x� dA21.

x � y � 3x � y � 0x � y � 2x � y � 0
Rxx

R
�x � y�e x2�y2

 dA

3x � y � 8
3x � y � 1x � 2y � 4x � 2y � 0

Ryy
R

x � 2y

3x � y
 dA

z
k

c � 6356a � b � 6378

z � cwy � bvx � au
x 2	a 2 � y 2	b 2 � z2	c 2 � 1

ExxxE dV

R

v � xy 2u � xyxy 2 � 2xy 2 � 1xy � 2xy � 1
RxxR y 2 dA1–6 Find the Jacobian of the transformation.

1. ,

2. ,

3. ,

4. ,

5. , ,

6. , ,

7–10 Find the image of the set under the given transformation.

;

8. is the square bounded by the lines , , ,
; ,

9. is the triangular region with vertices , , ;
,

10. is the disk given by ; ,

11–16 Use the given transformation to evaluate the integral.

11. , where is the triangular region with
vertices , , and ; ,

12. , where is the parallelogram with 
vertices , , , and ;

,

, where is the region bounded by the ellipse 
; ,

14. , where is the region bounded 
by the ellipse ;

,

15. , where is the region in the first quadrant bounded
by the lines and and the hyperbolas ,

; , y � vx � u	vxy � 3
xy � 1y � 3xy � x

RxxR  xy dA

y � s2 u � s2	3 vx � s2 u � s2	3 v
x 2 � xy � y 2 � 2

RxxR �x 2 � xy � y 2 � dA

y � 3vx � 2u9x 2 � 4y 2 � 36
RxxR x 2 dA13.

y � 1
4�v � 3u�x � 1

4�u � v�
�1, 5��3, �1��1, �3���1, 3�

RxxR �4x � 8y� dA

y � u � 2vx � 2u � v�1, 2��2, 1��0, 0�
RxxR �x � 3y� dA

y � bvx � auu 2 � v2 � 1S

y � vx � u2
�0, 1��1, 1��0, 0�S

y � u�1 � v 2 �x � vv � 1
v � 0u � 1u � 0S

x � 2u � 3v, y � u � v
S � 
�u, v� � 0 � u � 3, 0 � v � 2�7.

S

z � u � v 2y � w � u 2x � v � w 2

z � w	uy � v	wx � u	v

y � es�tx � es�t

y � er cos �x � e�r sin �

y � u	vx � uv

y � u � 3vx � 5u � v
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REVIEW

C O N C E P T  C H E C K

15

(b) What properties does possess?
(c) What are the expected values of and ?

6. (a) Write the definition of the triple integral of over a 
rectangular box .

(b) How do you evaluate ?

(c) How do you define if is a bounded solid
region that is not a box?

(d) What is a type 1 solid region? How do you evaluate
if is such a region?

(e) What is a type 2 solid region? How do you evaluate
if is such a region?

(f) What is a type 3 solid region? How do you evaluate
if is such a region?

7. Suppose a solid object occupies the region and has density
function . Write expressions for each of the following.
(a) The mass
(b) The moments about the coordinate planes
(c) The coordinates of the center of mass
(d) The moments of inertia about the axes

8. (a) How do you change from rectangular coordinates to cylin-
drical coordinates in a triple integral?

(b) How do you change from rectangular coordinates to 
spherical coordinates in a triple integral?

(c) In what situations would you change to cylindrical or
spherical coordinates?

9. (a) If a transformation is given by 
, what is the Jacobian of ?

(b) How do you change variables in a double integral?
(c) How do you change variables in a triple integral?

Ty � h�u, v�
x � t�u, v�,T

��x, y, z�
E

ExxxE  f �x, y, z� dV

ExxxE  f �x, y, z� dV

ExxxE  f �x, y, z� dV

Exxx
E
  f �x, y, z� dV

xxxB  f �x, y, z� dV
B

f

YX
f1. Suppose is a continuous function defined on a rectangle

.
(a) Write an expression for a double Riemann sum of . 

If , what does the sum represent?
(b) Write the definition of as a limit.
(c) What is the geometric interpretation of if

? What if takes on both positive and negative
values?

(d) How do you evaluate ?
(e) What does the Midpoint Rule for double integrals say?
(f) Write an expression for the average value of .

2. (a) How do you define if is a bounded region
that is not a rectangle?

(b) What is a type I region? How do you evaluate 
if is a type I region?

(c) What is a type II region? How do you evaluate
if is a type II region?

(d) What properties do double integrals have?

3. How do you change from rectangular coordinates to polar coor-
dinates in a double integral? Why would you want to make the
change?

4. If a lamina occupies a plane region and has density function
, write expressions for each of the following in terms of

double integrals.
(a) The mass
(b) The moments about the axes
(c) The center of mass
(d) The moments of inertia about the axes and the origin

5. Let be a joint density function of a pair of continuous 
random variables and .
(a) Write a double integral for the probability that lies

between and and lies between and .dcYba
X

YX
f

��x, y�
D

Dxx
D
 f �x, y� dA

D
xxD f �x, y� dA

DxxD f �x, y� dA

f

xxR f �x, y� dA

ff �x, y� � 0
xx

R
 f �x, y� dA

xxR f �x, y� dA
f �x, y� � 0

f
R � �a, b� � �c, d �

f

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1.

2.

3.

4. y
1

�1
 y

1

0
 ex2�y2

 sin y dx dy � 0

y
2

1
 y

4

3
 x 2e y dy dx � y

2

1
 x 2 dx y

4

3
 e y dy

y
1

0
 y

x

0
 sx � y 2  dy dx � y

x

0
y

1

0
 sx � y 2  dx dy

y
2

�1
 y

6

0
 x 2 sin�x � y� dx dy � y

6

0
 y

2

�1
 x 2 sin�x � y� dy dx

5. If is the disk given by , then

6.

7. The integral

represents the volume enclosed by the cone 
and the plane .

8. The integral represents the moment of 
inertia about the -axis of a solid with constant density .kEz

xxx
E
 kr 3 dz dr d�

z � 2
z � sx 2 � y 2 

y
2	

0
 y

2

0
 y

2

r
 dz dr d�

y
4

1
 y

1

0
 (x 2 � sy ) sin�x 2 y 2 � dx dy � 9

yy
D

 s4 � x 2 � y 2  dA � 16
3 	

x 2 � y 2 � 4D

T R U E - F A L S E  Q U I Z
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1. A contour map is shown for a function on the square
. Use a Riemann sum with nine terms to

estimate the value of . Take the sample points to
be the upper right corners of the squares.

2. Use the Midpoint Rule to estimate the integral in Exercise 1.

3–8 Calculate the iterated integral.

3. 4.

5. 6.

7. 8.

9–10 Write as an iterated integral, where is the
region shown and f is an arbitrary continuous function on .

9. 10.

11. Describe the region whose area is given by the integral 

12. Describe the solid whose volume is given by the integral 

and evaluate the integral.

y
		2

0
 y

		2

0
 y

2

1
 �2 sin 
 d� d
 d�

y
		2

0
 y

sin 2�

0
 r dr d�

0

4

y

x

R

4_40 42_2_4

y

x

R

2

4

R
RxxR f �x, y� dA

y
1

0
 y

y

0
 y

1

x
 6xyz dz dx dyy

	

0
 y

1

0
 y

s1�y 2
 

0
 y sin x dz dy dx

y
1

0
y

e x

x
 3xy 2 dy dxy

1

0
 y

x

0
 cos�x 2 � dy dx

y
1

0
 y

1

0
 ye xy dx dyy

2

1
 y

2

0
 �y � 2xe y � dx dy

y

0

1

1

1 2 3

2

3

2

3

4
5

8
9

10

6

7

x

xx
R
 f �x, y� dA

R � �0, 3� � �0, 3�
f 13–14 Calculate the iterated integral by first reversing the order of

integration.

13. 14.

15–28 Calculate the value of the multiple integral.

15. , where ,

16. , where ,

17. ,

where is bounded by , , 

18. , where is the triangular region with 

vertices , , and 

19. , where is the region in the first quadrant bounded by
the parabolas and 

20. , where is the region in the first quadrant that lies
above the hyperbola and the line and below the
line 

21. , where is the region in the first 
quadrant bounded by the lines and and the 
circle 

22. , where is the region in the first quadrant that lies
between the circles and 

23. , where
, ,

24. , where is the solid tetrahedron with vertices
, , , and 

25. , where is bounded by the paraboloid
and the plane 

26. , where is bounded by the planes , ,
and the cylinder in the first octant

27. , where lies above the plane , below the plane
, and inside the cylinder 

28. , where is the solid hemisphere that
lies above the -plane and has center the origin and radius 1

29–34 Find the volume of the given solid.

29. Under the paraboloid and above the rectangle

30. Under the surface and above the triangle in the 
-plane with vertices , , and �4, 0��2, 1��1, 0�xy

z � x 2 y

R � �0, 2� � �1, 4�
z � x 2 � 4y 2

xy
Hxxx

H
 z3

sx 2 � y 2 � z 2  dV

x 2 � y 2 � 4z � y
z � 0Exxx

E
 yz dV

y 2 � z2 � 1x � y � 2
z � 0y � 0Exxx

E
 z dV

x � 0x � 1 � y 2 � z2
Exxx

E
 y 2z2 dV

�0, 0, 1��0, 1, 0�(1
3, 0, 0)�0, 0, 0�

TxxxT xy dV

0 � z � x � y�0 � y � xE � 
�x, y, z� � 0 � x � 3
xxxE xy dV

x 2 � y 2 � 2x 2 � y 2 � 1
Dxx

D
 x dA

x 2 � y 2 � 9
y � s3 xy � 0

DxxD �x 2 � y 2 �3	2 dA

y � 2
y � xxy � 1

DxxD y dA

x � 8 � y 2x � y 2
DxxD y dA

�0, 1��1, 1��0, 0�

Dyy
D

 
1

1 � x 2  dA

x � 1y � 0y � sx D

yy
D

 
y

1 � x 2  dA

y 2 � x � y � 2�D � 
�x, y� � 0 � y � 1xx
D
 xy dA

0 � y � 3�R � 
�x, y� � 0 � x � 2xx
R
 ye xy dA

y
1

0
 y

1

sy 
  

yex2

x 3
 dx dyy

1

0
 y

1

x
 cos�y 2� dy dx

E X E R C I S E S
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44. A lamp has three bulbs, each of a type with average lifetime
800 hours. If we model the probability of failure of the 
bulbs by an exponential density function with mean 800, 
find the probability that all three bulbs fail within a total of
1000 hours.

45. Rewrite the integral

as an iterated integral in the order .

46. Give five other iterated integrals that are equal to

47. Use the transformation , to evaluate
, where is the square with vertices

, , , and .

48. Use the transformation , , to 
find the volume of the region bounded by the surface

and the coordinate planes.

49. Use the change of variables formula and an appropriate trans-
formation to evaluate , where is the square with
vertices , , , and .

50. The Mean Value Theorem for double integrals says that 
if is a continuous function on a plane region that is of
type I or II, then there exists a point in such that

Use the Extreme Value Theorem (14.7.8) and Property
15.3.11 of integrals to prove this theorem. (Use the proof of
the single-variable version in Section 6.5 as a guide.)

51. Suppose that is continuous on a disk that contains the 
point . Let be the closed disk with center and
radius . Use the Mean Value Theorem for double integrals
(see Exercise 50) to show that

52. (a) Evaluate , where is an integer and 

is the region bounded by the circles with center the
origin and radii and , .

(b) For what values of does the integral in part (a) have a
limit as ?

(c) Find , where is the region 

bounded by the spheres with center the origin and radii 
and , .

(d) For what values of does the integral in part (c) have a
limit as ?r l 0�

n
0 � r � RR

r

Eyyy
E

 
1

�x 2 � y 2 � z2 �n	2  dV

r l 0�

n
0 � r � RRr

D

nyy
D

 
1

�x 2 � y 2 �n	2  dA

lim
r l 0

 
1

	r 2  yy
Dr

 f �x, y� dA � f �a, b�

r
�a, b�Dr�a, b�

f

yy
D

 f �x, y� dA � f �x0, y0 � A�D�

D�x0, y0 �
Df

�1, �1��2, 0��1, 1��0, 0�
RxxR xy dA

sx � sy � sz � 1

z � w2y � v2x � u 2

�1, 3��2, 2��1, 1��0, 2�
RxxR �x � y�	�x � y� dA

v � x � yu � x � y

y
2

0
 y

y3

0
 y

y2

0
 f �x, y, z� dz dx dy

dx dy dz

y
1

�1
 y

1

x2
 y

1�y

0
 f �x, y, z� dz dy dx

31. The solid tetrahedron with vertices , , ,
and 

32. Bounded by the cylinder and the planes 
and 

33. One of the wedges cut from the cylinder by
the planes and 

34. Above the paraboloid and below the half-cone

35. Consider a lamina that occupies the region bounded by 
the parabola and the coordinate axes in the first
quadrant with density function .
(a) Find the mass of the lamina.
(b) Find the center of mass.
(c) Find the moments of inertia and radii of gyration about 

the - and -axes.

36. A lamina occupies the part of the disk that lies
in the first quadrant.
(a) Find the centroid of the lamina.
(b) Find the center of mass of the lamina if the density func-

tion is .

37. Find the centroid of a right circular cone with height 
and base radius . (Place the cone so that its base is in the 

-plane with center the origin and its axis along the positive
-axis.)

38. Find the moment of inertia of the cone in Exercise 37 about
its axis (the -axis).

39. Use polar coordinates to evaluate

40. Use spherical coordinates to evaluate

; 41. If is the region bounded by the curves and
, find the approximate value of the integral .

(Use a graphing device to estimate the points of intersection 
of the curves.)

42. Find the center of mass of the solid tetrahedron with vertices
, , , and density function

.

43. The joint density function for random variables and is

(a) Find the value of the constant .
(b) Find .
(c) Find .P�X � Y � 1�

P�X � 2, Y � 1�
C

f �x, y� � �C�x � y�
0

if 0 � x � 3, 0 � y � 2

otherwise

YX

��x, y, z� � x 2 � y 2 � z2
�0, 0, 3��0, 2, 0��1, 0, 0��0, 0, 0�

CAS

xxD y 2 dAy � e x
y � 1 � x 2D

y
2

�2
 y

s4�y 2 

0
 y

s4�x 2�y 2 

�s4�x 2�y 2
 y 2

sx 2 � y 2 � z 2  dz dx dy

y
3

0
 y

s9�x 2 

�s9�x 2  
�x 3 � xy 2� dy dx

z

z
xy

a
h

��x, y� � xy 2

x 2 � y 2 � a 2

yx

��x, y� � y
x � 1 � y 2

D

z � sx 2 � y 2 

z � x 2 � y 2

z � mxz � 0
x 2 � 9y 2 � a 2

y � z � 3
z � 0x 2 � y 2 � 4

�2, 2, 0�
�0, 2, 0��0, 0, 1��0, 0, 0�
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1. If denotes the greatest integer in , evaluate the integral

where .

2. Evaluate the integral

where max means the larger of the numbers and .

3. Find the average value of the function on the interval .

4. If , , and are constant vectors, is the position vector , and is given by
the inequalities , , , show that

5. The double integral is an improper integral and could be defined as

the limit of double integrals over the rectangle as . But if we expand the
integrand as a geometric series, we can express the integral as the sum of an infinite series.
Show that

6. Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he proved
that

In this problem we ask you to prove this fact by evaluating the double integral in Problem 5.
Start by making the change of variables

This gives a rotation about the origin through the angle . You will need to sketch the 
corresponding region in the -plane.

[Hint: If, in evaluating the integral, you encounter either of the expressions
or , you might like to use the identity

and the corresponding identity for .]

7. (a) Show that

(Nobody has ever been able to find the exact value of the sum of this series.)

y
1

0
 y

1

0
 y

1

0
 

1

1 � xyz
 dx dy dz � 


�

n�1
 

1

n 3

sin �cos � � sin��		2� � ��
�cos ��	�1 � sin ���1 � sin ��	cos �

uv
		4

y �
u � v

s2 x �
u � v

s2 



�

n�1
 

1

n 2 �
	 2

6

y
1

0
 y

1

0
 

1

1 � xy
 dx dy � 


�

n�1
 

1

n 2

t l 1��0, t� � �0, t�

y
1

0
 y

1

0
 

1

1 � xy
 dx dy

yyy
E

 �a � r��b � r��c � r� dV �
�
���2

8� a � �b � c� �

0 � c � r � �0 � b � r � �0 � a � r � 

Ex i � y j � z krcba

[0, 1]f �x� � x
1
x  cos�t 2 � dt

y 2x 2
x 2, y 2 �

y
1

0
 y

1

0
 e max
x2, y2� dy dx

R � 
�x, y� � 1 � x � 3, 2 � y � 5�

yy
R

 �x � y� dA

x�x�
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(b) Show that

Use this equation to evaluate the triple integral correct to two decimal places.

8. Show that

by first expressing the integral as an iterated integral.

9. (a) Show that when Laplace’s equation

is written in cylindrical coordinates, it becomes

(b) Show that when Laplace’s equation is written in spherical coordinates, it becomes

10. (a) A lamina has constant density and takes the shape of a disk with center the origin and
radius . Use Newton’s Law of Gravitation (see Section 13.4) to show that the magnitude
of the force of attraction that the lamina exerts on a body with mass located at the point

on the positive -axis is

[Hint: Divide the disk as in Figure 4 in Section 15.4 and first compute the vertical com-
ponent of the force exerted by the polar subrectangle .]

(b) Show that the magnitude of the force of attraction of a lamina with density that occupies
an entire plane on an object with mass located at a distance from the plane is

Notice that this expression does not depend on .

11. If is continuous, show that

y
x

0
 y

y

0
 y

z

0
 f �t� dt dz dy � 1

2 y
x

0
 �x � t�2 f �t� dt

f

d

F � 2	Gm�

dm
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Rij

F � 2	Gm�d�1
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sR 2 � d 2 �
z�0, 0, d �

m
R
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�2u
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2
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��
�
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� 2  
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1

� 2 sin2

 
�2u

�� 2 � 0

�2u
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1
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�r
�

1

r 2  
�2u

�� 2 �
�2u

�z2 � 0

�2u

�x 2 �
�2u

�y 2 �
�2u

�z2 � 0 

y
�

0
 
arctan 	x � arctan x

x
 dx �
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 ln 	
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1

0
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1

0
 y

1

0
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1 � xyz
 dx dy dz � 
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In this chapter we study the calculus of vector fields. (These are functions that assign

vectors to points in space.) In particular we define line integrals (which can be used to

find the work done by a force field in moving an object along a curve). Then we define

surface integrals (which can be used to find the rate of fluid flow across a surface). The

connections between these new types of integrals and the single, double, and triple

integrals that we have already met are given by the higher-dimensional versions of the

Fundamental Theorem of Calculus: Green’s Theorem, Stokes’ Theorem, and the

Divergence Theorem.

Parametric equations enable us to plot surfaces with 
strange and beautiful shapes.

VECTOR CALCULUS

16



VECTOR FIELDS

The vectors in Figure 1 are air velocity vectors that indicate the wind speed and direction
at points 10 m above the surface elevation in the San Francisco Bay area. (Notice that the
wind patterns on consecutive days are quite different.) Associated with every point in the
air we can imagine a wind velocity vector. This is an example of a velocity vector field.

Other examples of velocity vector fields are illustrated in Figure 2: ocean currents and
flow past an airfoil.

Another type of vector field, called a force field, associates a force vector with each
point in a region. An example is the gravitational force field that we will look at in 
Example 4.

Nova Scotia

(a) Ocean currents off the coast of Nova Scotia

FIGURE 2   Velocity vector fields

(b) Airflow past an inclined airfoil

W
er

le
´ 1

97
4

(a) 12:00 AM, February 20, 2007 (b) 2:00 PM, February 21, 2007

FIGURE 1   Velocity vector fields showing San Francisco Bay wind patterns

16.1
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In general, a vector field is a function whose domain is a set of points in (or ) and
whose range is a set of vectors in (or ).

DEFINITION Let be a set in (a plane region). A vector field on is a
function that assigns to each point in a two-dimensional vector .

The best way to picture a vector field is to draw the arrow representing the vector 
starting at the point . Of course, it’s impossible to do this for all points , but we
can gain a reasonable impression of by doing it for a few representative points in as
in Figure 3. Since is a two-dimensional vector, we can write it in terms of its com-
ponent functions and as follows:

or, for short,

Notice that and are scalar functions of two variables and are sometimes called scalar
fields to distinguish them from vector fields.

DEFINITION Let be a subset of . A vector field on is a function that
assigns to each point in a three-dimensional vector .

A vector field on is pictured in Figure 4. We can express it in terms of its compo-
nent functions , , and as

As with the vector functions in Section 13.1, we can define continuity of vector fields 
and show that is continuous if and only if its component functions , , and are 
continuous.

We sometimes identify a point with its position vector and write
instead of . Then becomes a function that assigns a vector to a vec-

tor .

EXAMPLE 1 A vector field on is defined by . Describe by
sketching some of the vectors as in Figure 3.

SOLUTION Since , we draw the vector starting at the point in
Figure 5. Since , we draw the vector with starting point .
Continuing in this way, we calculate several other representative values of in the
table and draw the corresponding vectors to represent the vector field in Figure 5.

It appears from Figure 5 that each arrow is tangent to a circle with center the origin.

F�x, y�
�0, 1���1, 0 �F�0, 1� � �i
�1, 0�j � �0, 1 �F�1, 0� � j

F�x, y�
FF�x, y� � �y i � x j� 2V

x
F�x�FF�x, y, z�F�x�

x � �x, y, z ��x, y, z�

RQPF

F�x, y, z� � P�x, y, z� i � Q�x, y, z� j � R�x, y, z� k

RQP
� 3F

F�x, y, z�E�x, y, z�
F� 3� 3E2

QP

F � P i � Q j

F�x, y� � P�x, y� i � Q�x, y� j � �P�x, y�, Q�x, y��

QP
F�x, y�

DF
�x, y��x, y�

F�x, y�

F�x, y�D�x, y�F
� 2� 2D1

V3V2

� 3� 2
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FIGURE 3
Vector field on R@

0

(x, y)

F(x, y)

x

y

FIGURE 4
Vector field on R#

y

0

z

x

(x, y, z)

F (x, y, z)

FIGURE 5
F(x, y)=_y i+x j

F (1, 0)

F (0, 3) F (2, 2)

0 x

y

�3, 0��0, �3���3, 0 ��0, 3�
�2, 2��2, �2���2, �2 ���2, 2�
�1, 0��0, �1���1, 0 ��0, 1�

�0, �3 ���3, 0��0, 3��3, 0�
�2, �2 ���2, �2���2, 2 ��2, 2�
�0, �1 ���1, 0��0, 1��1, 0�

F�x, y��x, y�F�x, y��x, y�



To confirm this, we take the dot product of the position vector with the
vector :

This shows that is perpendicular to the position vector and is therefore
tangent to a circle with center the origin and radius . Notice also that

so the magnitude of the vector is equal to the radius of the circle. M

Some computer algebra systems are capable of plotting vector fields in two or three
dimensions. They give a better impression of the vector field than is possible by hand
because the computer can plot a large number of representative vectors. Figure 6 shows a
computer plot of the vector field in Example 1; Figures 7 and 8 show two other vector
fields. Notice that the computer scales the lengths of the vectors so they are not too long
and yet are proportional to their true lengths.

EXAMPLE 2 Sketch the vector field on given by .

SOLUTION The sketch is shown in Figure 9. Notice that all vectors are vertical and point
upward above the -plane or downward below it. The magnitude increases with the 
distance from the -plane.

M

We were able to draw the vector field in Example 2 by hand because of its particularly
simple formula. Most three-dimensional vector fields, however, are virtually impossible to

FIGURE 9
F(x, y, z)=z k

y

0

z

x

xy
xy

F�x, y, z� � z k� 3V

5

_5

_5 5

6

_6

_6 6

5

_5

_5 5

FIGURE 6
F(x, y)=k_y, xl

FIGURE 7
F(x, y)=ky, sin xl

FIGURE 8
F(x, y)=k ln(1+¥), ln(1+≈)l

F�x, y�

� F�x, y� � � s��y�2 � x 2 � sx 2 � y 2 � � x �
� x � � sx 2 � y 2 

�x, y�F�x, y�

� �xy � yx � 0 x � F�x� � �x i � y j� � ��y i � x j�

F�x� � F�x, y�
x � x i � y j
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sketch by hand and so we need to resort to a computer algebra system. Examples are
shown in Figures 10, 11, and 12. Notice that the vector fields in Figures 10 and 11 have simi-
lar formulas, but all the vectors in Figure 11 point in the general direction of the negative
y-axis because their y-components are all �2. If the vector field in Figure 12 represents a
velocity field, then a particle would be swept upward and would spiral around the -axis in
the clockwise direction as viewed from above.

EXAMPLE 3 Imagine a fluid flowing steadily along a pipe and let be the 
velocity vector at a point . Then assigns a vector to each point in a
certain domain (the interior of the pipe) and so is a vector field on called a
velocity field. A possible velocity field is illustrated in Figure 13. The speed at any given
point is indicated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in
Example 1 could be used as the velocity field describing the counterclockwise rotation of
a wheel. We have seen other examples of velocity fields in Figures 1 and 2. M

EXAMPLE 4 Newton’s Law of Gravitation states that the magnitude of the gravitational
force between two objects with masses and is

where is the distance between the objects and is the gravitational constant. (This 
is an example of an inverse square law.) Let’s assume that the object with mass is 
located at the origin in . (For instance, could be the mass of the earth and the origin
would be at its center.) Let the position vector of the object with mass be .
Then , so . The gravitational force exerted on this second object acts
toward the origin, and the unit vector in this direction is

Therefore the gravitational force acting on the object at is

[Physicists often use the notation instead of for the position vector, so you may see xr

F�x� � �
mMG

� x �3  x3

x � �x, y, z�

�
x

� x �

r 2 � � x �2r � � x �
x � �x, y, z�m

M� 3
M

Gr

� F � �
mMG

r 2

Mm

� 3VE
�x, y, z�V�x, y, z�

V�x, y, z�

z

1

0

_1

y 1
0_1

x1
0

_1

FIGURE 10
F(x, y, z)=y i+z j+x k

z

1

0

-1

y 1
0-1

x1
0

-1

FIGURE 11
F(x, y, z)=y i-2 j+x k

z

5

3

1

y 1
0

_1 x
1

0
_1

FIGURE 12

F(x, y, z)=    i-    j+    k
y

z

x

z

z

4

z
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In Visual 16.1 you can rotate the 
vector fields in Figures 10–12 as well as 
additional fields.

TEC

FIGURE 13
Velocity field in fluid flow

z

y
x
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Formula 3 written in the form .] The function given by Equation 3 is
an example of a vector field, called the gravitational field, because it associates a vector
[the force ] with every point in space.

Formula 3 is a compact way of writing the gravitational field, but we can also write 
it in terms of its component functions by using the facts that and

:

The gravitational field is pictured in Figure 14. M

EXAMPLE 5 Suppose an electric charge is located at the origin. According to
Coulomb’s Law, the electric force exerted by this charge on a charge located at 
a point with position vector is

where is a constant (that depends on the units used). For like charges, we have 
and the force is repulsive; for unlike charges, we have and the force is attractive.
Notice the similarity between Formulas 3 and 4. Both vector fields are examples of force
fields.

Instead of considering the electric force , physicists often consider the force per unit
charge:

Then is a vector field on called the electric field of . M

GRADIENT FIELDS

If is a scalar function of two variables, recall from Section 14.6 that its gradient (or
grad ) is defined by

Therefore is really a vector field on and is called a gradient vector field. Likewise,
if is a scalar function of three variables, its gradient is a vector field on given by

EXAMPLE 6 Find the gradient vector field of . Plot the gradient
vector field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by

Figure 15 shows a contour map of with the gradient vector field. Notice that the gradi-
ent vectors are perpendicular to the level curves, as we would expect from Section 14.6. 

f

� f �x, y� �
�f

�x
 i �

�f

�y
 j � 2xy i � �x 2 � 3y 2 � j

f �x, y� � x 2y � y 3V

� f �x, y, z� � fx�x, y, z� i � fy�x, y, z� j � fz�x, y, z� k

� 3f
� 2∇ f

� f �x, y� � fx�x, y� i � fy�x, y� j

f
∇ ff

Q� 3E

E�x� �
1

q
 F�x� �

�Q

� x �3  x

F

qQ � 0
qQ � 0�

F�x� �
�qQ

� x �3  x4

x � �x, y, z��x, y, z�
qF�x�

Q

F

F�x, y, z� �
�mMGx

�x 2 � y 2 � z2 �3�2  i �
�mMGy

�x 2 � y 2 � z2 �3�2  j �
�mMGz

�x 2 � y 2 � z2 �3�2  k

� x � � sx 2 � y 2 � z 2 

x � x i � y j � z k

xF�x�

F � ��mMG�r 3 �r
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FIGURE 14
Gravitational force field
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Notice also that the gradient vectors are long where the level curves are close to each
other and short where the curves are farther apart. That’s because the length of the gradi-
ent vector is the value of the directional derivative of and closely spaced level curves
indicate a steep graph. M

A vector field is called a conservative vector field if it is the gradient of some scalar
function, that is, if there exists a function such that . In this situation is called
a potential function for .

Not all vector fields are conservative, but such fields do arise frequently in physics. For
example, the gravitational field F in Example 4 is conservative because if we define

then

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is
conservative.

 � F�x, y, z�

 �
�mMGx

�x 2 � y 2 � z 2 �3�2  i �
�mMGy

�x 2 � y 2 � z 2 �3�2  j �
�mMGz

�x 2 � y 2 � z 2 �3�2  k

 � f �x, y, z� �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f �x, y, z� �
mMG

sx 2 � y 2 � z 2 

F
fF � ∇ ff

F

f
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15–18 Match the vector fields on with the plots labeled I–IV.
Give reasons for your choices.

15. 16. F�x, y, z� � i � 2 j � z kF�x, y, z� � i � 2 j � 3 k

�3F

3

_3

_3 3

5

_5

_5 5

5

_5

_5 5

I II

III IV3

_3

_3 3

1–10 Sketch the vector field by drawing a diagram like 
Figure 5 or Figure 9.

1. 2.

3. 4.

6.

7.

8.

9.

10.

11–14 Match the vector fields with the plots labeled I–IV. 
Give reasons for your choices.

12.

13.

14. F�x, y� � � y, 1�x�

F�x, y� � �x � 2, x � 1 �

F�x, y� � �1, sin y�

F�x, y� � � y, x�11.

F

F�x, y, z� � j � i

F�x, y, z� � x k

F�x, y, z� � �y k

F�x, y, z� � k

F�x, y� �
y i � x j

sx 2 � y 2 
F�x, y� �

y i � x j
sx 2 � y 2 

5.

F�x, y� � �x � y� i � x jF�x, y� � y i �
1
2 j

F�x, y� � i � x jF�x, y� � 1
2�i � j�

F

EXERCISES16.1



31. 32.

33. A particle moves in a velocity field . 
If it is at position at time , estimate its location at
time .

34. At time , a particle is located at position . If it
moves in a velocity field 

find its approximate location at time .

The flow lines (or streamlines) of a vector field are the paths
followed by a particle whose velocity field is the given vector
field. Thus the vectors in a vector field are tangent to the flow
lines.
(a) Use a sketch of the vector field to

draw some flow lines. From your sketches, can you guess
the equations of the flow lines?

(b) If parametric equations of a flow line are
, explain why these functions satisfy the differ-

ential equations and . Then solve
the differential equations to find an equation of the flow
line that passes through the point (1, 1).

36. (a) Sketch the vector field and then sketch
some flow lines. What shape do these flow lines appear
to have?

(b) If parametric equations of the flow lines are 
, what differential equations do these functions 

satisfy? Deduce that .
(c) If a particle starts at the origin in the velocity field given

by F, find an equation of the path it follows.

dy�dx � x
y � y�t�

x � x�t�,

F�x, y� � i � x j

dy�dt � �ydx�dt � x
y � y�t�

x � x�t�,

F�x, y� � x i � y j

35.

t � 1.05

F�x, y� � �xy � 2, y 2 � 10 �

�1, 3�t � 1

t � 3.01
t � 3�2, 1�

V�x, y� � �x 2, x � y 2 �

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

I II

III IV4

_4

_4 4

f �x, y� � sinsx 2 � y 2 f �x, y� � �x � y�2

18.

19. If you have a CAS that plots vector fields (the command 
is fieldplot in Maple and PlotVectorField in 
Mathematica), use it to plot

Explain the appearance by finding the set of points 
such that .

20. Let , where and . Use a
CAS to plot this vector field in various domains until you can
see what is happening. Describe the appearance of the plot
and explain it by finding the points where .

21–24 Find the gradient vector field of .

21. 22.

24.

25–26 Find the gradient vector field of and sketch it.

25. 26.

27–28 Plot the gradient vector field of together with a contour
map of . Explain how they are related to each other.

27. 28.

29–32 Match the functions with the plots of their gradient 
vector fields (labeled I–IV). Give reasons for your choices.

30. f �x, y� � x�x � y�f �x, y� � x 2 � y 229.

f

f �x, y� � sin�x � y�f �x, y� � sin x � sin y

f
fCAS

f �x, y� � sx 2 � y2 f �x, y� � x 2 � y

f∇ f

f �x, y, z� � x cos�y�z�f �x, y, z� � sx 2 � y 2 � z 2 23.

f �x, y� � tan�3x � 4y�f �x, y� � xe xy

f

F�x� � 0

r � � x �x � �x, y�F�x� � �r 2 � 2r�xCAS

F�x, y� � 0
�x, y�

F�x, y� � �y 2 � 2xy� i � �3xy � 6x 2 � j

CAS

z

1

0

_1

y 10_1
x1

0
_1

z

1

0

_1

y 10_1
x1

0
_1

0
y 1_1 x1 0 _1

z

1

0

_1

z

1

0

_1

y
10_1 1 0 _1

x

I II

III IV

F�x, y, z� � x i � y j � z k

F�x, y, z� � x i � y j � 3 k17.
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LINE INTEGRALS

In this section we define an integral that is similar to a single integral except that instead
of integrating over an interval , we integrate over a curve . Such integrals are called
line integrals, although “curve integrals” would be better terminology. They were invented
in the early 19th century to solve problems involving fluid flow, forces, electricity, and
magnetism.

We start with a plane curve given by the parametric equations

or, equivalently, by the vector equation , and we assume that is a
smooth curve. [This means that is continuous and . See Section 13.3.] If we
divide the parameter interval into n subintervals of equal width and we let

and , then the corresponding points divide into subarcs
with lengths (See Figure 1.) We choose any point in the th
subarc. (This corresponds to a point in .) Now if is any function of two vari-
ables whose domain includes the curve , we evaluate at the point , multiply by
the length of the subarc, and form the sum

which is similar to a Riemann sum. Then we take the limit of these sums and make the fol-
lowing definition by analogy with a single integral.

DEFINITION If is defined on a smooth curve given by Equations 1, then
the line integral of f along C is

if this limit exists.

In Section 10.2 we found that the length of is

A similar type of argument can be used to show that if is a continuous function, then the
limit in Definition 2 always exists and the following formula can be used to evaluate the
line integral:

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

y
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If is the length of C between and , then

So the way to remember Formula 3 is to express everything in terms of the parameter 
Use the parametric equations to express and in terms of t and write ds as

In the special case where is the line segment that joins to , using as the
parameter, we can write the parametric equations of as follows: , ,

. Formula 3 then becomes

and so the line integral reduces to an ordinary single integral in this case.
Just as for an ordinary single integral, we can interpret the line integral of a positive

function as an area. In fact, if , represents the area of one side of
the “fence” or “curtain” in Figure 2, whose base is and whose height above the point

is .

EXAMPLE 1 Evaluate , where is the upper half of the unit circle
.

SOLUTION In order to use Formula 3, we first need parametric equations to represent C.
Recall that the unit circle can be parametrized by means of the equations

and the upper half of the circle is described by the parameter interval 
(See Figure 3.) Therefore Formula 3 gives

M

Suppose now that is a piecewise-smooth curve; that is, is a union of a finite num-
ber of smooth curves where, as illustrated in Figure 4, the initial point of

is the terminal point of Then we define the integral of along as the sum of the
integrals of along each of the smooth pieces of :

y
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 � y
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EXAMPLE 2 Evaluate , where consists of the arc of the parabola 
from to followed by the vertical line segment from to .

SOLUTION The curve is shown in Figure 5. is the graph of a function of , so we can
choose as the parameter and the equations for become

Therefore

On we choose as the parameter, so the equations of are

and

Thus M

Any physical interpretation of a line integral depends on the physical inter-
pretation of the function . Suppose that represents the linear density at a point

of a thin wire shaped like a curve . Then the mass of the part of the wire from 
to in Figure 1 is approximately and so the total mass of the wire is approx-
imately . By taking more and more points on the curve, we obtain the mass

of the wire as the limiting value of these approximations:

[For example, if represents the density of a semicircular wire, then the
integral in Example 1 would represent the mass of the wire.] The center of mass of the
wire with density function is located at the point , where

Other physical interpretations of line integrals will be discussed later in this chapter.

EXAMPLE 3 A wire takes the shape of the semicircle , , and is
thicker near its base than near the top. Find the center of mass of the wire if the linear
density at any point is proportional to its distance from the line .

SOLUTION As in Example 1 we use the parametrization , , ,
and find that . The linear density is

��x, y� � k�1 � y�

ds � dt
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m � lim
n l 	

 �
n

i�1
 ��xi*, yi*� 
si � y

C
 ��x, y� ds

m
� ��xi*, yi*� 
si

��xi*, yi*� 
siPi

Pi�1C�x, y�
��x, y�f

xC f �x, y� ds

y
C
 2x ds � y

C1

 2x ds � y
C2

 2x ds �
5s5 � 1

6
� 2

y
C2

 2x ds � y
2

1
 2�1��	dx

dy
2

� 	dy

dy
2 

 dy � y
2

1
 2 dy � 2

1 � y � 2y � yx � 1

C2yC2

� 1
4 � 2

3 �1 � 4x 2 �3�2]0

1
�

5s5 � 1

6

� y
1

0
 2xs1 � 4x 2  dxy

C1

 2x ds � y
1

0
 2x�	dx

dx
2

� 	dy

dx
2 

 dx

0 � x � 1y � x 2x � x

C1x
xC1C

�1, 2��1, 1�C2�1, 1��0, 0�
y � x 2C1Cx

C
 2x ds

1036 | | | | CHAPTER 16 VECTOR CALCULUS

FIGURE 5
C=C¡ � C™

(0, 0)

(1, 1)

(1, 2)

C¡

C™

x

y



where is a constant, and so the mass of the wire is

From Equations 4 we have

By symmetry we see that , so the center of mass is

See Figure 6. M

Two other line integrals are obtained by replacing by either or
in Definition 2. They are called the line integrals of along with

respect to x and y:

When we want to distinguish the original line integral from those in Equa-
tions 5 and 6, we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to and can also be 
evaluated by expressing everything in terms of : , , ,

.

It frequently happens that line integrals with respect to and occur together. When
this happens, it’s customary to abbreviate by writing

When we are setting up a line integral, sometimes the most difficult thing is to think of
a parametric representation for a curve whose geometric description is given. In particular,
we often need to parametrize a line segment, so it’s useful to remember that a vector rep-

y
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resentation of the line segment that starts at and ends at is given by

(See Equation 12.5.4.)

EXAMPLE 4 Evaluate , where (a) is the line segment from
to and (b) is the arc of the parabola from 

to . (See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

(Use Equation 8 with and .) Then , , and
Formulas 7 give

(b) Since the parabola is given as a function of , let’s take as the parameter and write
as

Then and by Formulas 7 we have

M

Notice that we got different answers in parts (a) and (b) of Example 4 even though the
two curves had the same endpoints. Thus, in general, the value of a line integral depends
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
ditions under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation, of the
curve. If denotes the line segment from to , you can verify, using the
parametrization

that y
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In general, a given parametrization , , , determines an orien-
tation of a curve , with the positive direction corresponding to increasing values of the
parameter (See Figure 8, where the initial point corresponds to the parameter value 
and the terminal point corresponds to .)

If denotes the curve consisting of the same points as but with the opposite ori-
entation (from initial point to terminal point in Figure 8), then we have

But if we integrate with respect to arc length, the value of the line integral does not change
when we reverse the orientation of the curve:

This is because is always positive, whereas and change sign when we reverse
the orientation of .

LINE INTEGRALS IN SPACE

We now suppose that is a smooth space curve given by the parametric equations

or by a vector equation . If is a function of three variables
that is continuous on some region containing , then we define the line integral of
along (with respect to arc length) in a manner similar to that for plane curves:

We evaluate it using a formula similar to Formula 3:

Observe that the integrals in both Formulas 3 and 9 can be written in the more compact
vector notation

For the special case , we get

where is the length of the curve (see Formula 13.3.3).CL
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Line integrals along with respect to , , and can also be defined. For example,

Therefore, as with line integrals in the plane, we evaluate integrals of the form

by expressing everything , , , , , in terms of the parameter 

EXAMPLE 5 Evaluate , where is the circular helix given by the equations
, , , . (See Figure 9.)

SOLUTION Formula 9 gives

M

EXAMPLE 6 Evaluate , where consists of the line segment 
from to , followed by the vertical line segment from to

.

SOLUTION The curve is shown in Figure 10. Using Equation 8, we write as

or, in parametric form, as

Thus

Likewise, can be written in the form
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Then , so

Adding the values of these integrals, we obtain

M

LINE INTEGRALS OF VECTOR FIELDS

Recall from Section 6.4 that the work done by a variable force in moving a particle
from to along the -axis is . Then in Section 12.3 we found that the
work done by a constant force in moving an object from a point to another point in
space is , where 

l
is the displacement vector.

Now suppose that is a continuous force field on , such as the
gravitational field of Example 4 in Section 16.1 or the electric force field of Example 5 in
Section 16.1. (A force field on could be regarded as a special case where and 
and depend only on and .) We wish to compute the work done by this force in mov-
ing a particle along a smooth curve .

We divide into subarcs with lengths by dividing the parameter interval
into subintervals of equal width. (See Figure 1 for the two-dimensional case or 

Figure 11 for the three-dimensional case.) Choose a point on the th subarc
corresponding to the parameter value . If is small, then as the particle moves from

to along the curve, it proceeds approximately in the direction of , the unit tan-
gent vector at . Thus the work done by the force in moving the particle from to

is approximately

and the total work done in moving the particle along is approximately

where is the unit tangent vector at the point on . Intuitively, we see that
these approximations ought to become better as becomes larger. Therefore we define the
work done by the force field as the limit of the Riemann sums in (11), namely,

Equation 12 says that work is the line integral with respect to arc length of the tangential
component of the force.

If the curve is given by the vector equation , then
, so using Equation 9 we can rewrite Equation 12 in the form

� y
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This integral is often abbreviated as and occurs in other areas of physics as well.
Therefore we make the following definition for the line integral of any continuous vector
field.

DEFINITION Let be a continuous vector field defined on a smooth curve 
given by a vector function , . Then the line integral of along C is

When using Definition 13, remember that is just an abbreviation for
, so we evaluate simply by putting , , and 

in the expression for . Notice also that we can formally write .

EXAMPLE 7 Find the work done by the force field in moving a
particle along the quarter-circle , .

SOLUTION Since and , we have

and

Therefore the work done is

M

Even though and integrals with respect to arc length are
unchanged when orientation is reversed, it is still true that

because the unit tangent vector is replaced by its negative when is replaced by 

EXAMPLE 8 Evaluate , where and is the 
twisted cubic given by

SOLUTION We have
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Thus

M

Finally, we note the connection between line integrals of vector fields and line integrals
of scalar fields. Suppose the vector field on is given in component form by the equa-
tion . We use Definition 13 to compute its line integral along :

But this last integral is precisely the line integral in (10). Therefore we have

For example, the integral in Example 6 could be expressed as
where
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 �P i � Q j � R k� � (x��t� i � y��t� j � z��t� k) dt

 y
C
 F � dr � y

b

a
 F�r�t�� � r��t� dt

CF � P i � Q j � R k
� 3F

 � y
1

0
 �t 3 � 5t 6 � dt �

t 4

4
�

5t 7

7 �0

1

�
27

28

 y
C
 F � dr � y

1

0
 F�r�t�� � r��t� dt

SECTION 16.2 LINE INTEGRALS | | | | 1043

9. ,

10. ,
is the line segment from to 

,
is the line segment from (0, 0, 0) to (1, 2, 3)

12. , : , , ,

13. , : , , ,

14. ,
: , , ,

15. , consists of line 
segments from to and from to

16. , consists of line segments from
to and from to �3, 2, 0��1, 2, �1��1, 2, �1��0, 0, 0�

Cx
C
 x 2 dx � y 2 dy � z 2 dz

�2, 5, 2�
�2, 3, 1��2, 3, 1��1, 0, 1�

CxC �x � yz� dx � 2x dy � xyz dz

0 � t � 1z � t 2y � t 3x � t 2C
xC z dx � x dy � y dz

0 � t � 1z � t 2y � tx � t 3CxC x 2 ysz  dz

0 � t � 1z � t 3y � t 2x � tCx
C
 �2x � 9z� ds

C
x

C
 xe yz ds11.

�1, 6, 4���1, 5, 0�C
xC xyz2 ds

C: x � 2 sin t, y � t, z � �2 cos t, 0 � t � �
xC xyz ds1–16 Evaluate the line integral, where is the given curve.

1. ,

2. ,

, is the right half of the circle 

4. , is the line segment from to 

5. ,
is the arc of the curve from to 

6. ,
C is the arc of the curve from (1, 0) to 

, consists of line segments from
to and from to 

8. , consists of the top half of the circle 
from to and the line segment from

to ��2, 3���1, 0�
��1, 0��1, 0�x 2 � y 2 � 1

Cx
C
 sin x dx � cos y dy

�3, 2��2, 0��2, 0��0, 0�
Cx

C
 xy dx � �x � y� dy7.

�e, 1�x � e y

x
C
 xe y dx

�4, 2��1, 1�y � sx C
x

C
 (x 2y 3 � sx ) dy

�4, 6��0, 3�Cx
C
 x sin y ds

x 2 � y 2 � 16Cx
C
 xy 4 ds3.

C: x � t 2, y � 2t, 0 � t � 1xC xy ds

C: x � t 3, y � t, 0 � t � 2x
C
 y 3 ds

C

EXERCISES16.2



24. , where 
and ,

25. , where has parametric equations ,
, ,

26. , where has parametric equations , ,
,

27–28 Use a graph of the vector field F and the curve C to guess
whether the line integral of F over C is positive, negative, or zero.
Then evaluate the line integral.

27. ,
is the arc of the circle traversed counter-

clockwise from (2, 0) to 

28. ,

is the parabola from to (1, 2)

29. (a) Evaluate the line integral , where
and is given by 

, .

; (b) Illustrate part (a) by using a graphing calculator or com-
puter to graph and the vectors from the vector field 
corresponding to , , and 1 (as in Figure 13).

30. (a) Evaluate the line integral , where
and is given by

, .

; (b) Illustrate part (a) by using a computer to graph and 
the vectors from the vector field corresponding to 
and (as in Figure 13).

31. Find the exact value of , where is the curve with
parametric equations , , ,

.

32. (a) Find the work done by the force field 
on a particle that moves once around the circle 
oriented in the counterclockwise direction.

(b) Use a computer algebra system to graph the force field and
circle on the same screen. Use the graph to explain your
answer to part (a).

A thin wire is bent into the shape of a semicircle ,
. If the linear density is a constant , find the mass and

center of mass of the wire.

34. A thin wire has the shape of the first-quadrant part of the circle
with center the origin and radius . If the density function is

, find the mass and center of mass of the wire.

35. (a) Write the formulas similar to Equations 4 for the center of
mass of a thin wire in the shape of a space curve 
if the wire has density function .	�x, y, z�

C�x, y, z �

	�x, y� � kxy
a

kx 
 0
x 2 � y 2 � 433.

CAS

x 2 � y 2 � 4
F�x, y� � x 2 i � xy j

0 � t � 2�
z � e�ty � e�t sin 4 tx � e�t cos 4 t

CxC x 3y 2z dsCAS

�
1
2

t � �1
C

�1 � t � 1r�t� � 2t i � 3t j � t 2 k
CF�x, y, z� � x i � z j � y k

xC F � dr

1
s2 t � 0
C

0 � t � 1r�t� � t 2 i � t 3 j
CF�x, y� � e x�1 i � xy j

xC F � dr

��1, 2�y � 1 � x 2C

F�x, y� �
x

sx 2 � y 2 
 i �

y

sx 2 � y 2 
 j

�0, �2�
x 2 � y 2 � 4C

F�x, y� � �x � y� i � xy j

CAS

0 � t � 1z � e�t
y � t 2x � tCxC ze�xy ds

0 � t � 5z � t 4y � t 3
x � t 2Cx

C
 x sin�y � z� ds

0 � t � �r�t� � cos t i � sin t j � sin 5t k
F�x, y, z� � y sin z i � z sin x j � x sin y kxC F � drLet be the vector field shown in the figure.

(a) If is the vertical line segment from to ,
determine whether is positive, negative, or zero.

(b) If is the counterclockwise-oriented circle with radius 3
and center the origin, determine whether is posi-
tive, negative, or zero.

18. The figure shows a vector field and two curves and .
Are the line integrals of over and positive, negative, 
or zero? Explain.

19–22 Evaluate the line integral , where is given by the
vector function .

19. ,
,

20. ,
,

,
,

22. ,
,

23–26 Use a calculator or CAS to evaluate the line integral correct
to four decimal places.

23. , where and 
, 1 � t � 2r�t� � e t i � e�t2

 j
F�x, y� � xy i � sin y jxC F � dr

0 � t � �r�t� � t i � sin t j � cos t k
F�x, y, z� � z i � y j � x k

0 � t � 1r�t� � t 3 i � t 2 j � t k
F�x, y, z� � sin x i � cos y j � xz k21.

0 � t � 1r�t� � t 2 i � t 3 j � t 2 k
F�x, y, z� � �x � y� i � �y � z� j � z2 k

0 � t � 1r�t� � 11t 4 i � t 3 j
F�x, y� � xy i � 3y 2 j

r�t�
CxC F � dr

y

x

C¡

C™

C2C1F
C2C1F

y

x0
1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

xC2
 F � dr

C2

xC1
 F � dr

��3, 3���3, �3�C1

F17.
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(b) Is this also true for a force field , where is a
constant and ?

46. The base of a circular fence with radius 10 m is given by
. The height of the fence at position

is given by the function , so
the height varies from 3 m to 5 m. Suppose that 1 L of paint
covers . Sketch the fence and determine how much paint
you will need if you paint both sides of the fence.

47. An object moves along the curve shown in the figure from
(1, 2) to (9, 8). The lengths of the vectors in the force field 
are measured in newtons by the scales on the axes. Estimate
the work done by on the object.

48. Experiments show that a steady current in a long wire pro-
duces a magnetic field that is tangent to any circle that lies in
the plane perpendicular to the wire and whose center is the axis
of the wire (as in the figure). Ampère’s Law relates the electric
current to its magnetic effects and states that

where is the net current that passes through any surface
bounded by a closed curve , and is a constant called the
permeability of free space. By taking to be a circle with
radius , show that the magnitude of the magnetic
field at a distance from the center of the wire is

B

I

B �
�0 I

2�r

r
B � � B �r

C
�0C

I

y
C
 B � dr � �0 I

B
I

0 1

1

y
(meters)

x
(meters)

C

C

F

F
C

100 m2

h�x, y� � 4 � 0.01�x 2 � y 2��x, y�
x � 10 cos t, y � 10 sin t

x � �x, y�
kF�x� � kx(b) Find the center of mass of a wire in the shape of the helix

, , , , if the density
is a constant .

36. Find the mass and center of mass of a wire in the shape of the
helix , , , , if the density at
any point is equal to the square of the distance from the origin.

37. If a wire with linear density lies along a plane curve 
its moments of inertia about the - and -axes are defined as

Find the moments of inertia for the wire in Example 3.

38. If a wire with linear density lies along a space curve
, its moments of inertia about the -, -, and -axes are

defined as

Find the moments of inertia for the wire in Exercise 35.

Find the work done by the force field 
in moving an object along an arch of the cycloid

, .

40. Find the work done by the force field 
on a particle that moves along the parabola from

to .

41. Find the work done by the force field
on a particle that moves

along the line segment from to .

42. The force exerted by an electric charge at the origin on a
charged particle at a point with position vector

is where is a constant. (See
Example 5 in Section 16.1.) Find the work done as the particle
moves along a straight line from to .

A 160-lb man carries a 25-lb can of paint up a helical staircase
that encircles a silo with a radius of 20 ft. If the silo is 90 ft
high and the man makes exactly three complete revolutions,
how much work is done by the man against gravity in climbing
to the top?

44. Suppose there is a hole in the can of paint in Exercise 43 and
9 lb of paint leaks steadily out of the can during the man’s
ascent. How much work is done?

45. (a) Show that a constant force field does zero work on a 
particle that moves once uniformly around the circle

.x 2 � y 2 � 1

43.

�2, 1, 5��2, 0, 0�

KF�r� � Kr
� r �3r � �x, y, z �
�x, y, z�

�3, 4, 2��1, 0, 0�
F�x, y, z� � � y � z, x � z, x � y�

�2, 4���1, 1�
y � x 2

F�x, y� � x sin y i � y j

0 � t � 2�r�t� � �t � sin t� i � �1 � cos t� j

F�x, y� � x i � � y � 2� j39.

 Iz � y
C
 �x 2 � y 2 �	�x, y, z� ds

 Iy � y
C
 �x 2 � z2 �	�x, y, z� ds

 Ix � y
C
 � y 2 � z2 �	�x, y, z� ds

zyxC
	�x, y, z�

Iy � y
C
 x 2	�x, y� dsIx � y

C
 y 2	�x, y� ds

yx
C,	�x, y�

0 � t � 2�z � sin ty � cos tx � t

k
0 � t � 2�z � 3ty � 2 cos tx � 2 sin t



THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS

Recall from Section 5.3 that Part 2 of the Fundamental Theorem of Calculus can be writ-
ten as

where is continuous on . We also called Equation 1 the Net Change Theorem: The
integral of a rate of change is the net change.

If we think of the gradient vector of a function of two or three variables as a sort
of derivative of , then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

THEOREM Let be a smooth curve given by the vector function , .
Let be a differentiable function of two or three variables whose gradient vector

is continuous on . Then

Theorem 2 says that we can evaluate the line integral of a conservative vector
field (the gradient vector field of the potential function ) simply by knowing the value of

at the endpoints of . In fact, Theorem 2 says that the line integral of is the net
change in f. If is a function of two variables and is a plane curve with initial point

and terminal point , as in Figure 1, then Theorem 2 becomes

If is a function of three variables and is a space curve joining the point 
to the point , then we have

Let’s prove Theorem 2 for this case.

FIGURE 1

0

A(x¡, y¡, z¡)
B(x™, y™, z™)

C

0

A(x¡, y¡) B(x™, y™)

C

y

z

x

x

y

y
C
 
 f � dr � f �x2, y2, z2 � � f �x1, y1, z1 �

B�x2, y2, z2 �
A�x1, y1, z1 �Cf

y
C
 
 f � dr � f �x2, y2 � � f �x1, y1 �

B�x2, y2 �A�x1, y1 �
Cf

∇ fCf
f

NOTE

y
C
 
 f � dr � f �r�b�� � f �r�a��

C∇ f
f

a � t � br�t�C2

f
f∇ f

�a, b�F�

y
b

a
 F��x� dx � F�b� � F�a�1

16.3
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PROOF OF THEOREM 2 Using Definition 16.2.13, we have

(by the Chain Rule)

The last step follows from the Fundamental Theorem of Calculus (Equation 1). M

Although we have proved Theorem 2 for smooth curves, it is also true for piecewise-
smooth curves. This can be seen by subdividing into a finite number of smooth curves
and adding the resulting integrals.

EXAMPLE 1 Find the work done by the gravitational field

in moving a particle with mass from the point to the point along a
piecewise-smooth curve . (See Example 4 in Section 16.1.)

SOLUTION From Section 16.1 we know that is a conservative vector field and, in fact,
, where

Therefore, by Theorem 2, the work done is

M

INDEPENDENCE OF PATH

Suppose and are two piecewise-smooth curves (which are called paths) that have the
same initial point and terminal point . We know from Example 4 in Section 16.2 that,
in general, . But one implication of Theorem 2 is that

whenever is continuous. In other words, the line integral of a conservative vector field
depends only on the initial point and terminal point of a curve.

In general, if is a continuous vector field with domain , we say that the line integral
is independent of path if for any two paths and in C2C1x

 
C1

 F � dr � x
 
C2

 F � drxC F � dr
DF

∇ f

y
 

C1

 
 f � dr � y
 

C2

 
 f � dr

x
 
C1

F � dr � x
 
C2

 F � dr
BA

C2C1

 �
mMG

s22 � 22 
�

mMG

s32 � 42 � 122 
� mMG
 1

2s2 �
1

13�
 � f �2, 2, 0� � f �3, 4, 12�

 W � y
C
 F � dr � y

C
 
 f � dr

f �x, y, z� �
mMG

sx 2 � y 2 � z 2 

F � ∇ f
F

C
�2, 2, 0��3, 4, 12�m

F�x� � �
mMG

� x �3  x

C

 � f �r�b�� � f �r�a��

 � y
b

a
 

d

dt
 f �r�t�� dt

 � y
b

a
 
 �f

�x
 
dx

dt
�

�f

�y
 
dy

dt
�

�f

�z
 
dz

dt� dt

 y
C
 
 f � dr � y

b

a
 
 f �r�t�� � r��t� dt
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that have the same initial and terminal points. With this terminology we can say that line
integrals of conservative vector fields are independent of path.

A curve is called closed if its terminal point coincides with its initial point, that is,
. (See Figure 2.) If is independent of path in and is any closed

path in , we can choose any two points and on and regard as being composed
of the path from to followed by the path from to . (See Figure 3.) Then

since and have the same initial and terminal points.
Conversely, if it is true that whenever is a closed path in , then we

demonstrate independence of path as follows. Take any two paths and from to 
in and define to be the curve consisting of followed by . Then

and so . Thus we have proved the following theorem.

THEOREM is independent of path in if and only if for
every closed path in .

Since we know that the line integral of any conservative vector field is independent
of path, it follows that for any closed path. The physical interpretation is that
the work done by a conservative force field (such as the gravitational or electric field in
Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are
conservative. It is stated and proved for plane curves, but there is a similar version for
space curves. We assume that is open, which means that for every point in there is
a disk with center that lies entirely in . (So doesn’t contain any of its boundary
points.) In addition, we assume that is connected. This means that any two points in 
can be joined by a path that lies in .

THEOREM Suppose is a vector field that is continuous on an open connected
region . If is independent of path in , then is a conservative vector
field on ; that is, there exists a function such that .

PROOF Let be a fixed point in . We construct the desired potential function by
defining

for any point in . Since is independent of path, it does not matter 
which path from to is used to evaluate . Since is open, there
exists a disk contained in with center . Choose any point in the disk with

and let consist of any path from to followed by the horizontal
line segment from to . (See Figure 4.) Then

f �x, y� � y
 

C1

 F � dr � y
 

C2

 F � dr � y
�x1, y�

�a, b�
 F � dr � y

 

C2

 F � dr

�x, y��x1, y�C2

�x1, y��a, b�C1Cx1 � x
�x1, y��x, y�D

Df �x, y��x, y��a, b�C
xC F � drD�x, y�

f �x, y� � y
�x, y�

�a, b�
 F � dr

fDA�a, b�

∇ f � FfD
FDxC F � drD

F4

D
DD

DDP
DPD

x
C
 F � dr � 0

F

DC
x

C
 F � dr � 0Dx

C
 F � dr3

x
 
C1

 F � dr � x
 
C2

 F � dr

0 � y
C
 F � dr � y

 

C1

 F � dr � y
 

�C2

 F � dr � y
 

C1

 F � dr � y
 

C2

 F � dr

�C2C1CD
BAC2C1

DCxC F � dr � 0
�C2C1

y
C
 F � dr � y

 

C1

 F � dr � y
 

C2

 F � dr � y
 

C1

 F � dr � y
 

�C2

 F � dr � 0

ABC2BAC1

CCBAD
CDxC F � drr�b� � r�a�

D
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FIGURE 2
A closed curve

C

FIGURE 3
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Notice that the first of these integrals does not depend on , so

If we write , then

On , is constant, so . Using as the parameter, where , we have

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.3). A similar argu-
ment, using a vertical line segment (see Figure 5), shows that

Thus

which says that is conservative. M

The question remains: How is it possible to determine whether or not a vector field 
is conservative? Suppose it is known that is conservative, where and 
have continuous first-order partial derivatives. Then there is a function such that 

, that is,

Therefore, by Clairaut’s Theorem,

THEOREM If is a conservative vector field,
where and have continuous first-order partial derivatives on a domain , then
throughout we have

The converse of Theorem 5 is true only for a special type of region. To explain this, we
first need the concept of a simple curve, which is a curve that doesn’t intersect itself any-
where between its endpoints. [See Figure 6; for a simple closed curve, but

when .]
In Theorem 4 we needed an open connected region. For the next theorem we need a

stronger condition. A simply-connected region in the plane is a connected region such D

a � t1 � t2 � br�t1 � � r�t2 �
r�a� � r�b�

�P

�y
�

�Q

�x

D
DQP

F�x, y� � P�x, y� i � Q�x, y� j5

�P

�y
�

�2 f

�y �x
�

�2 f

�x �y
�

�Q

�x

Q �
�f

�y
andP �

�f

�x

F � ∇ f
fQ

PF � P i � Q jF

F

F � P i � Q j �
�f

�x
 i �

�f

�y
 j � ∇ f

�

�y
 f �x, y� �

�

�y
 y

 

C2

 P dx � Q dy �
�

�y
 y

y

y1

 Q�x, t� dt � Q�x, y�

�
�

�x
 y

x

x1

 P�t, y� dt � P�x, y� 
�

�x
 f �x, y� �

�

�x
 y

C2

 P dx � Q dy

x1 � t � xtdy � 0yC2

y
 

C2

 F � dr � y
 

C2

 P dx � Q dy

F � P i � Q j

�

�x
 f �x, y� � 0 �

�

�x
 y

 

C2

 F � dr

x
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FIGURE 5
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FIGURE 6
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that every simple closed curve in encloses only points that are in . Notice from Figure
7 that, intuitively speaking, a simply-connected region contains no hole and can’t consist
of two separate pieces.

In terms of simply-connected regions we can now state a partial converse to Theorem 5
that gives a convenient method for verifying that a vector field on is conservative. The
proof will be sketched in the next section as a consequence of Green’s Theorem.

THEOREM Let be a vector field on an open simply-connected
region . Suppose that and have continuous first-order derivatives and

Then is conservative.

EXAMPLE 2 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Since , is not conservative by Theorem 5. M

EXAMPLE 3 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Also, the domain of is the entire plane , which is open and simply-
connected. Therefore we can apply Theorem 6 and conclude that is conservative. M

In Example 3, Theorem 6 told us that is conservative, but it did not tell us how to find
the (potential) function such that . The proof of Theorem 4 gives us a clue as to
how to find . We use “partial integration” as in the following example.

EXAMPLE 4
(a) If , find a function such that .

(b) Evaluate the line integral , where is the curve given by 

0 � t � �r�t� � e t sin t i � e t cos t j

CxC F � dr
F � ∇ ffF�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j

f
F � ∇ ff

F

F
�D � � 2 �F

�P

�y
� 2x �

�Q

�x

Q�x, y� � x 2 � 3y 2P�x, y� � 3 � 2xy

F�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j

V

F�P��y � �Q��x

�Q

�x
� 1

�P

�y
� �1

Q�x, y� � x � 2P�x, y� � x � y

F�x, y� � �x � y� i � �x � 2� j

V

F

 throughout D
�P

�y
�

�Q

�x

QPD
F � P i � Q j6

� 2

DD
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FIGURE 7

simply-connected region
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FIGURE 8

N Figures 8 and 9 show the vector fields in
Examples 2 and 3, respectively. The vectors in
Figure 8 that start on the closed curve all
appear to point in roughly the same direction 
as . So it looks as if and there-
fore is not conservative. The calculation in
Example 2 confirms this impression. Some of the
vectors near the curves and in Figure 9
point in approximately the same direction as the
curves, whereas others point in the opposite
direction. So it appears plausible that line inte-
grals around all closed paths are . Example 3
shows that is indeed conservative.F

0

C2C1

F
xC F � dr � 0C

C

FIGURE 9
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SOLUTION
(a) From Example 3 we know that is conservative and so there exists a function 
with , that is,

Integrating (7) with respect to , we obtain

Notice that the constant of integration is a constant with respect to , that is, a function
of , which we have called . Next we differentiate both sides of (9) with respect to :

Comparing (8) and (10), we see that

Integrating with respect to , we have

where is a constant. Putting this in (9), we have

as the desired potential function.

(b) To use Theorem 2 all we have to know are the initial and terminal points of ,
namely, and . In the expression for in part (a), any
value of the constant will do, so let’s choose . Then we have

This method is much shorter than the straightforward method for evaluating line inte-
grals that we learned in Section 16.2. M

A criterion for determining whether or not a vector field on is conservative is given
in Section 16.5. Meanwhile, the next example shows that the technique for finding the
potential function is much the same as for vector fields on .

EXAMPLE 5 If , find a function such 
that .

SOLUTION If there is such a function , then

 fz�x, y, z� � 3ye 3z13

 fy�x, y, z� � 2xy � e 3z12

 fx�x, y, z� � y 211

f

∇ f � F
fF�x, y, z� � y 2 i � �2xy � e 3z � j � 3ye 3z kV

� 2

� 3F

� e 3� � ��1� � e 3� � 1 y
C
 F � dr � y

C
 	 f � dr � f �0, �e� � � f �0, 1�

K � 0K
f �x, y�r��� � �0, �e� �r�0� � �0, 1�

C

f �x, y� � 3x � x 2y � y 3 � K

K

t�y� � �y 3 � K

y

t
�y� � �3y 2

fy�x, y� � x 2 � t
�y�10

yt�y�y
x

f �x, y� � 3x � x 2y � t�y�9

x

 fy�x, y� � x 2 � 3y 28

 fx�x, y� � 3 � 2xy7

∇ f � F
fF
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Integrating (11) with respect to , we get

where is a constant with respect to . Then differentiating (14) with respect to ,
we have

and comparison with (12) gives

Thus and we rewrite (14) as

Finally, differentiating with respect to and comparing with (13), we obtain 
and therefore , a constant. The desired function is

It is easily verified that . M

CONSERVATION OF ENERGY

Let’s apply the ideas of this chapter to a continuous force field that moves an object
along a path given by , , where is the initial point and 
is the terminal point of . According to Newton’s Second Law of Motion (see Sec-
tion 13.4), the force at a point on is related to the acceleration by the
equation

So the work done by the force on the object is

(Theorem 13.2.3, Formula 4)

(Fundamental Theorem of Calculus)

Therefore

where is the velocity.
The quantity , that is, half the mass times the square of the speed, is called the

kinetic energy of the object. Therefore we can rewrite Equation 15 as

W � K�B� � K�A�16

1
2 m � v�t� �2

v � r


W � 1
2 m � v�b� �2 �

1
2 m � v�a� �215

 �
m

2
 (� r
�b� �2 � � r
�a� �2 )

�
m

2
 [� r
�t� �2]a

b
�

m

2
 y

b

a
 

d

dt
 � r
�t� �2 dt

 �
m

2
 y

b

a
 

d

dt
 �r
�t� � r
�t�� dt

� y
b

a
 mr��t� � r
�t� dt W � y

C
 F � dr � y

b

a
 F�r�t�� � r
�t� dt

F�r�t�� � mr��t�

a�t� � r��t�CF�r�t��
C

r�b� � Br�a� � Aa � t � br�t�C
F

∇ f � F

f �x, y, z� � xy 2 � ye 3z � K

h�z� � K
h
�z� � 0z

f �x, y, z� � xy 2 � ye 3z � h�z�

t�y, z� � ye 3z � h�z�

ty�y, z� � e 3z

fy�x, y, z� � 2xy � ty�y, z�

yxt�y, z�

f �x, y, z� � xy 2 � t�y, z�14

x
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which says that the work done by the force field along is equal to the change in kinetic
energy at the endpoints of .

Now let’s further assume that is a conservative force field; that is, we can write
. In physics, the potential energy of an object at the point is defined as

, so we have . Then by Theorem 2 we have

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy
remains constant. This is called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

BA

P�A� � K�A� � P�B� � K�B�

� P�A� � P�B�� ��P�r�b�� � P�r�a��� W � y
C
 F � dr � �y

C
 	P � dr

F � �∇PP�x, y, z� � �f �x, y, z�
�x, y, z�F � ∇ f

F
C

C
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5.

6.

8.

9.

10.

The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

y

x0 3

3

2

1

21

xC F � dr

F�x, y� � �2xy, x 2 	11.

F�x, y� � �xy cosh xy � sinh xy� i � �x 2 cosh xy � j

F�x, y� � �ln y � 2xy 3� i � �3x 2y 2 � x�y� j

F�x, y� � �xy cos xy � sin xy� i � �x 2 cos xy � j

F�x, y� � �ye x � sin y� i � �e x � x cos y� j7.

F�x, y� � �3x 2 � 2y 2� i � �4xy � 3� j

F�x, y� � e x sin y i � e x cos y j1. The figure shows a curve and a contour map of a function 
whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

3–10 Determine whether or not is a conservative vector field. 
If it is, find a function such that .

3.

4. F�x, y� � e x cos y i � e x sin y j

F�x, y� � �2x � 3y� i � ��3x � 4y � 8� j

F � 	 ff
F

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2

x � t 2 � 1    y � t 3 � t    0 � t � 1

CxC 	 f � dr
f

y

x0

10

20

30
40

50
60

C

xC 	 f � dr
fC
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26. Let , where . Find curves 
and that are not closed and satisfy the equation.

(a) (b)

Show that if the vector field is conser-
vative and , , have continuous first-order partial deriva-
tives, then

28. Use Exercise 27 to show that the line integral
is not independent of path.

29–32 Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.

30

31.

32.

Let .

(a) Show that .

(b) Show that is not independent of path. 
[Hint: Compute and , where 
and are the upper and lower halves of the circle

from to .] Does this contradict
Theorem 6?

34. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find the
work done by in moving an object from a point 
along a path to a point in terms of the distances and

from these points to the origin.
(b) An example of an inverse square field is the gravita-

tional field discussed in Example 4
in Section 16.1. Use part (a) to find the work done by 
the gravitational field when the earth moves from aph-
elion (at a maximum distance of km from 
the sun) to perihelion (at a minimum distance of

km). (Use the values kg,
kg, and 

(c) Another example of an inverse square field is the electric
force field discussed in Example 5 in
Section 16.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the electron
and moves to a position half that distance from the elec-
tron. Use part (a) to find the work done by the electric
force field. (Use the value .)� � 8.985 
 10 9

10�12
�1.6 
 10�19

F � �qQr�� r �3

N�m2�kg2.�G � 6.67 
 10�11M � 1.99 
 1030
m � 5.97 
 10241.47 
 108

1.52 
 108

F � ��mMG �r�� r �3

d2

d1P2

P1F
r � x i � y j � z kc

F�r� �
cr

� r �3

F

��1, 0��1, 0�x 2 � y 2 � 1
C2

C1x
 
C2

 F � drx
 
C1

 F � dr
xC F � dr

�P��y � �Q��x

F�x, y� �
�y i � x j

x 2 � y 2
33.


�x, y� � x 2 � y 2 � 1 or 4 � x 2 � y 2 � 9�


�x, y� � 1 � x 2 � y 2 � 4�


�x, y� � x � 0�
�x, y� � x � 0, y � 0�29.

xC y dx � x dy � xyz dz

�Q

�z
�

�R

�y

�P

�z
�

�R

�x

�P

�y
�

�Q

�x

RQP
F � P i � Q j � R k27.

y
C2

 F � dr � 1y
C1

 F � dr � 0

C2

C1f �x, y� � sin�x � 2y�F � 	 f12–18 (a) Find a function such that and (b) use 
part (a) to evaluate along the given curve .

12. ,
is the arc of the parabola from to 

13. ,

: ,

14. ,

: ,

,
is the line segment from to 

16. ,
: , , ,

17. ,
: ,

18. ,
: ,

19–20 Show that the line integral is independent of path and
evaluate the integral.

19. ,

is any path from to 

20. ,

is any path from to 

21–22 Find the work done by the force field in moving an
object from to .

21. ; ,

22. ; ,

23–24 Is the vector field shown in the figure conservative?
Explain.

24.

25. If , use a plot to guess
whether is conservative. Then determine whether your
guess is correct.

F
F�x, y� � sin y i � �1 � x cos y� jCAS

y

x

y

x

23.

Q�2, 0�P�0, 1�F�x, y� � e�y i � xe�y j

Q�2, 4�P�1, 1�F�x, y� � 2y 3�2 i � 3xsy  j

QP
F

�1, 2��0, 1�C

xC �1 � ye�x � dx � e�x dy

�2, ��4��1, 0�C

xC tan y dx � x sec2 y dy

0 � t � 1r�t� � t i � t 2 j � t 3 kC
F�x, y, z� � e y i � xe y j � �z � 1�ez k

0 � t � �r�t� � t 2 i � sin t j � t kC
F�x, y, z� � y 2 cos z i � 2xy cos z j � xy 2 sin z k

0 � t � 1z � 2t � 1y � t � 1x � t 2C
F�x, y, z� � �2xz � y2� i � 2xy j � �x 2 � 3z2� k

�4, 6, 3��1, 0, �2�C
F�x, y, z� � yz i � xz j � �xy � 2z� k15.

0 � t � 1r�t� � t 2 i � 2t jC

F�x, y� �
y 2

1 � x 2
 i � 2y arctan x j

0 � t � 1r�t� � � t � sin 1
2� t, t � cos 1

2� t	C

F�x, y� � xy 2 i � x 2y j

�2, 8���1, 2�y � 2x 2C
F�x, y� � x 2 i � y 2 j

Cx
C
 F � dr

F � ∇ ff
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GREEN’S THEOREM

Green’s Theorem gives the relationship between a line integral around a simple closed
curve and a double integral over the plane region bounded by . (See Figure 1. We
assume that consists of all points inside as well as all points on .) In stating Green’s
Theorem we use the convention that the positive orientation of a simple closed curve 
refers to a single counterclockwise traversal of . Thus if is given by the vector func-
tion , , then the region is always on the left as the point traverses .
(See Figure 2.)

GREEN’S THEOREM Let be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let be the region bounded by . If and have
continuous partial derivatives on an open region that contains , then

The notation

g
C

is sometimes used to indicate that the line integral is calculated using the positive orienta-
tion of the closed curve . Another notation for the positively oriented boundary curve of

is , so the equation in Green’s Theorem can be written as

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem of
Calculus for double integrals. Compare Equation 1 with the statement of the Fundamental
Theorem of Calculus, Part 2, in the following equation:

In both cases there is an integral involving derivatives ( , , and ) on the left
side of the equation. And in both cases the right side involves the values of the original
functions ( , , and ) only on the boundary of the domain. (In the one-dimensional case,
the domain is an interval whose boundary consists of just two points, and .)ba�a, b�

PQF

�P��y�Q��xF


y
b

a
 F
�x� dx � F�b� � F�a�

yy
D

 ��Q

�x
�

�P

�y 
 dA � y
�D

 P dx � Q dy1

�DD
C

P dx � Q dyor�y
C
 P dx � Q dy

NOTE

y
C
 P dx � Q dy � yy

D

 ��Q

�x
�

�P

�y 
 dA

D
QPCD

C

FIGURE 2 (a) Positive orientation

y

x0

D

C

(b) Negative orientation

y

x0

D

C

Cr�t�Da � t � br�t�
CC

C
CCD
CDC

16.4
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FIGURE 1

y

x0

D

C

N Recall that the left side of this equation 
is another way of writing , where

.F � P i � Q j
x

C F � dr



Green’s Theorem is not easy to prove in general, but we can give a proof for the special
case where the region is both of type I and of type II (see Section 15.3). Let’s call such
regions simple regions.

PROOF OF GREEN’S THEOREM FOR THE CASE IN WHICH IS A SIMPLE REGION Notice that Green’s
Theorem will be proved if we can show that

and

We prove Equation 2 by expressing as a type I region:

where and are continuous functions. This enables us to compute the double integral
on the right side of Equation 2 as follows:

where the last step follows from the Fundamental Theorem of Calculus.
Now we compute the left side of Equation 2 by breaking up as the union of the

four curves , , , and shown in Figure 3. On we take as the parameter and
write the parametric equations as , , . Thus

Observe that goes from right to left but goes from left to right, so we can write
the parametric equations of as , , . Therefore

On or (either of which might reduce to just a single point), is constant, so
and

Hence

 � y
b

a
 P�x, t1�x�� dx � y

b

a
 P�x, t2�x�� dx

 y
C
 P�x, y� dx � y

 

C1

 P�x, y� dx � y
 

C2

 P�x, y� dx � y
 

C3

 P�x, y� dx � y
 

C4

 P�x, y� dx

y
 

C2

 P�x, y� dx � 0 � y
 

C4

 P�x, y� dx

dx � 0
xC4C2

y
 

C3

 P�x, y� dx � �y
 

�C3

 P�x, y� dx � �y
b

a
 P�x, t2�x�� dx

a � x � by � t2�x�x � x�C3

�C3C3

y
 

C1

 P�x, y� dx � y
b

a
 P�x, t1�x�� dx

a � x � by � t1�x�x � x
xC1C4C3C2C1

C

� y
b

a
 �P�x, t2�x�� � P�x, t1�x��� dx yy

D

 
�P

�y
 dA � y

b

a
 y

t2�x�

t1�x�
 
�P

�y
 �x, y� dy dx4

t2t1

D � 
�x, y� � a � x � b, t1�x� � y � t2�x��

D

y
C
 Q dy � yy

D

 
�Q

�x
 dA3

y
C
 P dx � �yy

D

 
�P

�y
 dA2

D
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N Green’s Theorem is named after the 
self-taught English scientist George Green
(1793–1841). He worked full-time in his father’s
bakery from the age of nine and taught himself
mathematics from library books. In 1828 he 
published privately An Essay on the Application
of Mathematical Analysis to the Theories of
Electricity and Magnetism, but only 100 copies
were printed and most of those went to his
friends. This pamphlet contained a theorem 
that is equivalent to what we know as Green’s
Theorem, but it didn’t become widely known 
at that time. Finally, at age 40, Green entered 
Cambridge University as an undergraduate 
but died four years after graduation. In 1846 
William Thomson (Lord Kelvin) located a copy 
of Green’s essay, realized its significance, and
had it reprinted. Green was the first person to 
try to formulate a mathematical theory of elec-
tricity and magnetism. His work was the basis
for the subsequent electromagnetic theories of
Thomson, Stokes, Rayleigh, and Maxwell.

FIGURE 3
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x0 a b
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Comparing this expression with the one in Equation 4, we see that

Equation 3 can be proved in much the same way by expressing as a type II region (see
Exercise 28). Then, by adding Equations 2 and 3, we obtain Green’s Theorem. M

EXAMPLE 1 Evaluate , where is the triangular curve consisting of the
line segments from to , from to , and from to .

SOLUTION Although the given line integral could be evaluated as usual by the methods of
Section 16.2, that would involve setting up three separate integrals along the three sides
of the triangle, so let’s use Green’s Theorem instead. Notice that the region enclosed
by is simple and has positive orientation (see Figure 4). If we let and

, then we have

M

EXAMPLE 2 Evaluate , where is the 
circle .

SOLUTION The region bounded by is the disk , so let’s change to polar
coordinates after applying Green’s Theorem:

M

In Examples 1 and 2 we found that the double integral was easier to evaluate than the
line integral. (Try setting up the line integral in Example 2 and you’ll soon be convinced!)
But sometimes it’s easier to evaluate the line integral, and Green’s Theorem is used in the
reverse direction. For instance, if it is known that on the curve ,
then Green’s Theorem gives

no matter what values and assume in the region .
Another application of the reverse direction of Green’s Theorem is in computing areas.

Since the area of is , we wish to choose and so that

�Q

�x
�

�P

�y
� 1

QPxx
D
 1 dAD

DQP

yy
D

 ��Q

�x
�

�P

�y 
 dA � y
C
 P dx � Q dy � 0

CP�x, y� � Q�x, y� � 0

� 4 y
2�

0
 d�  y

3

0
 r dr � 36�� y

2�

0
 y

3

0
 �7 � 3� r dr d�

 � yy
D

 � �

�x
 (7x � sy 4 � 1) �

�

�y
 �3y � e sin x�� dA

�y
C
 �3y � e sin x � dx � (7x � sy 4 � 1) dy

x 2 � y 2 � 9CD

x 2 � y 2 � 9
C�x

C
 �3y � e sin x � dx � (7x � sy 4 � 1) dyV

 � �
1
6 �1 � x�3 ]0

1
� 1

6

 � y
1

0
 [ 1

2 y 2 ]y�0
y�1�x

 dx � 1
2 y

1

0
 �1 � x�2 dx

 y
C
 x 4 dx � xy dy � yy

D

 ��Q

�x
�

�P

�y 
 dA � y
1

0
 y

1�x

0
 �y � 0� dy dx

Q�x, y� � xy
P�x, y� � x 4CC

D

�0, 0��0, 1��0, 1��1, 0��1, 0��0, 0�
CxC x 4 dx � xy dy

D

y
C
 P�x, y� dx � �yy

D

 
�P

�y
 dA
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N Instead of using polar coordinates, we could
simply use the fact that is a disk of radius 3
and write

yy
D

 4 dA � 4 � ��3�2 � 36�

D

FIGURE 4
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x

C
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(0, 1) y=1-x

D



There are several possibilities:

Then Green’s Theorem gives the following formulas for the area of :

EXAMPLE 3 Find the area enclosed by the ellipse .

SOLUTION The ellipse has parametric equations and , where
. Using the third formula in Equation 5, we have

M

Although we have proved Green’s Theorem only for the case where is simple, we can
now extend it to the case where is a finite union of simple regions. For example, if is
the region shown in Figure 5, then we can write , where and are both
simple. The boundary of is and the boundary of is so, apply-
ing Green’s Theorem to and separately, we get

If we add these two equations, the line integrals along and cancel, so we get

which is Green’s Theorem for , since its boundary is .
The same sort of argument allows us to establish Green’s Theorem for any finite union

of nonoverlapping simple regions (see Figure 6).

EXAMPLE 4 Evaluate , where is the boundary of the semiannular
region in the upper half-plane between the circles and .

SOLUTION Notice that although is not simple, the -axis divides it into two simple
regions (see Figure 7). In polar coordinates we can write

D � ��r, �� � 1 � r � 2, 0 � � � ��

yD

x 2 � y 2 � 4x 2 � y 2 � 1D
C�xC y 2 dx � 3xy dyV

C � C1 � C2D � D1 � D2

y
 

C1�C2

 P dx � Q dy � yy
D

 ��Q

�x
�

�P

�y � dA

�C3C3

 y
C2���C3 �

 P dx � Q dy � yy
D2

 ��Q

�x
�

�P

�y � dA

 y
 

C1�C3

 P dx � Q dy � yy
D1

 ��Q

�x
�

�P

�y � dA

D2D1

C2 � ��C3�D2C1 � C3D1

D2D1D � D1 � D2

DD
D

 �
ab

2
 y

2�

0
 dt � �ab

 � 1
2 y

2�

0
 �a cos t��b cos t� dt � �b sin t���a sin t� dt

 A � 1
2 y

C
 x dy � y dx

0 � t � 2�
y � b sin tx � a cos t

x 2

a 2 �
y 2

b 2 � 1

A � �y
C
 x dy � ��y

C
 y dx � 1

2 �y
C
 x dy � y dx5

D

 Q�x, y� � 1
2 x Q�x, y� � 0 Q�x, y� � x

P�x, y� � �
1
2 yP�x, y� � �yP�x, y� � 0
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Therefore Green’s Theorem gives

M

Green’s Theorem can be extended to apply to regions with holes, that is, regions that
are not simply-connected. Observe that the boundary of the region in Figure 8 con-
sists of two simple closed curves and . We assume that these boundary curves are 
oriented so that the region is always on the left as the curve is traversed. Thus the 
positive direction is counterclockwise for the outer curve but clockwise for the inner
curve . If we divide into two regions and by means of the lines shown in 
Figure 9 and then apply Green’s Theorem to each of and we get

Since the line integrals along the common boundary lines are in opposite directions, they
cancel and we get

which is Green’s Theorem for the region .

EXAMPLE 5 If , show that for every
positively oriented simple closed path that encloses the origin.

SOLUTION Since is an arbitrary closed path that encloses the origin, it’s difficult to 
compute the given integral directly. So let’s consider a counterclockwise-oriented circle 

with center the origin and radius , where is chosen to be small enough that lies
inside . (See Figure 10.) Let be the region bounded by and . Then its positively
oriented boundary is and so the general version of Green’s Theorem gives

Therefore

that is,  y
C
 F � dr � y

C�
 F � dr

 y
C
 P dx � Q dy � y

C�
 P dx � Q dy

 � yy
D

 	 y 2 � x 2

�x 2 � y 2 �2 �
y 2 � x 2

�x 2 � y 2 �2
 dA � 0

 y
C
 P dx � Q dy � y

�C�
 P dx � Q dy � yy

D

 ��Q

�x
�

�P

�y � dA

C � ��C��
C�CDC

C�aaC�

C

x
C
 F � dr � 2�F�x, y� � ��y i � x j���x 2 � y 2 �V

D

yy
D

 ��Q

�x
�

�P

�y � dA � y
 

C1

 P dx � Q dy � y
 

C2

 P dx � Q dy � y
C
 P dx � Q dy

 � y
�D�

 P dx � Q dy � y
�D	

 P dx � Q dy

 yy
D

 ��Q

�x
�

�P

�y � dA � yy
D�

 ��Q

�x
�

�P

�y � dA � yy
D	

 ��Q

�x
�

�P

�y � dA

D	,D�
D	D�DC2

C1

CD
C2C1

DC

 � y
�

0
 sin � d�  y

2

1
 r 2 dr � [�cos �]0

� [ 1
3 r 3 ]1

2
�

14

3

 � yy
D

 y dA � y
�

0
 y

2

1
 �r sin �� r dr d�

 �y
C

 y 2 dx � 3xy dy � yy
D

 	 �

�x
 �3xy� �

�

�y
 �y 2 �
 dA
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We now easily compute this last integral using the parametrization given by
, . Thus

M

We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that is a vector field on
an open simply-connected region , that and have continuous first-order partial
derivatives, and that

If is any simple closed path in and is the region that encloses, then Green’s
Theorem gives

A curve that is not simple crosses itself at one or more points and can be broken up into
a number of simple curves. We have shown that the line integrals of around these 
simple curves are all 0 and, adding these integrals, we see that for any
closed curve . Therefore is independent of path in by Theorem 16.3.3. It
follows that is a conservative vector field. MF

Dx
C
 F � drC

x
C
 F � dr � 0

F

�y
C
 F � dr � �y

C
 P dx � Q dy � yy

R

 ��Q

�x
�

�P

�y � dA � yy
R

 0 dA � 0

CRDC

 throughout D
�P

�y
�

�Q

�x

QPD
F � P i � Q j

� y
2�

0
 dt � 2�� y

2�

0
 
��a sin t���a sin t� � �a cos t��a cos t�

a 2 cos2t � a 2 sin2t
 dt

 y
C
 F � dr � y

C�
 F � dr � y

2�

0
 F�r�t�� � r��t� dt

0 � t � 2�r�t� � a cos t i � a sin t j
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6. ,
is the rectangle with vertices , , , and 

,
is the boundary of the region enclosed by the parabolas

and 

8. ,
is the boundary of the region between the circles

and 

, is the circle 

10. , is the ellipse 

11–14 Use Green’s Theorem to evaluate . (Check the 
orientation of the curve before applying the theorem.)

11. ,
consists of the arc of the curve from to 

and the line segment from to �0, 0���, 0�
��, 0��0, 0�y � sin xC

F�x, y� � �sx � y 3, x 2 � sy 


xC F � dr

x 2 � xy � y 2 � 1CxC sin y dx � x cos y dy

x 2 � y 2 � 4CxC y 3 dx � x 3 dy9.

x 2 � y 2 � 4x 2 � y 2 � 1
C
xC xe�2x dx � �x 4 � 2x 2y 2� dy

x � y 2y � x 2
C
xC (y � esx ) dx � �2x � cos y 2 � dy7.

�0, 2��5, 2��5, 0��0, 0�C
xC cos y dx � x 2 sin y dy1–4 Evaluate the line integral by two methods: (a) directly and 

(b) using Green’s Theorem.

1. ,
is the circle with center the origin and radius 2

2. ,
is the rectangle with vertices , , , and 

,
is the triangle with vertices , (1, 0), and (1, 2)

4. , consists of the line segments from 
to and from to and the parabola 
from to 

5–10 Use Green’s Theorem to evaluate the line integral along the
given positively oriented curve.

5. ,
is the triangle with vertices , , and �2, 4��2, 2��0, 0�C

xC xy 2 dx � 2x 2y dy

�0, 1��1, 0�
y � 1 � x 2�1, 0��0, 0��0, 0�

�0, 1�C�xC x  dx � y dy

�0, 0�C
�xC xy dx � x 2 y 3 dy3.

�0, 1��3, 1��3, 0��0, 0�C
�xC xy dx � x 2 dy

C
�xC �x � y� dx � �x � y� dy

EXERCISES16.4



(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordinates

of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of a quarter-circular
region of radius .

24. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and , where and .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

26. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 15.5.)

If is the vector field of Example 5, show that 
for every simple closed path that does not pass through or
enclose the origin.

28. Complete the proof of the special case of Green’s Theorem
by proving Equation 3.

29. Use Green’s Theorem to prove the change of variables 
formula for a double integral (Formula 15.9.9) for the case
where :

Here is the region in the -plane that corresponds to the
region in the -plane under the transformation given by

, .
[Hint: Note that the left side is and apply the first part

of Equation 5. Convert the line integral over to a line inte-
gral over and apply Green’s Theorem in the -plane.]uv�S

�R
A�R�

y � h�u, v�x � t�u, v�
uvS

xyR

yy
R

 dx dy � yy
S

 � ��x, y�
��u, v� �  du dv

f �x, y� � 1

xC F � dr � 0F27.


a

Iy �



3
 �y

C
 x 3 dyIx � �




3
 �y

C
 y 3 dx

Cxy

�x, y� � 


b � 0a � 0�a, b��a, 0��0, 0�

a

DA

y � �
1

2A
 �y

C
 y 2 dxx �

1

2A
 �y

C
 x 2 dy

D�x, y �
xy

CD

��1, 1��0, 2��1, 3�
�2, 1��0, 0�12. ,

is the triangle from to to to 

13. ,
is the circle oriented clockwise

14. , is the circle
oriented counterclockwise

15–16 Verify Green’s Theorem by using a computer algebra sys-
tem to evaluate both the line integral and the double integral.

15. , ,
consists of the line segment from to followed

by the arc of the parabola from to 

16. , ,
is the ellipse 

Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis
to , and then along the semicircle to the
starting point. Use Green’s Theorem to find the work done on
this particle by the force field .

19. Use one of the formulas in (5) to find the area under one arch
of the cycloid .

; 20. If a circle with radius 1 rolls along the outside of the 
circle , a fixed point on traces out a 
curve called an epicycloid, with parametric equations

, . Graph the epi-
cycloid and use (5) to find the area it encloses.

(a) If is the line segment connecting the point to the
point , show that 

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area of
the polygon is

 A � � �xn�1 yn � xn yn�1 � � �xn y1 � x1 yn ��
 A � 1

2 ��x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � � � �

�xn , yn ��x2, y2 �, . . . , �x1, y1 �

y
C
 x dy � y dx � x1 y2 � x2 y1

�x2, y2�
�x1, y1�C21.

y � 5 sin t � sin 5tx � 5 cos t � cos 5t

CPx 2 � y 2 � 16
C

x � t � sin t, y � 1 � cos t

F�x, y� � �x, x 3 � 3xy 2 


y � s4 � x 2 �2, 0�
x��2, 0�

y�0, 1�
�1, 0�x

F�x, y� � x�x � y� i � xy 2 j
17.

4x 2 � y 2 � 4C
Q�x, y� � x 3y 8P�x, y� � 2x � x 3y 5

��1, 1��1, 1�y � 2 � x 2
�1, 1���1, 1�C

Q�x, y� � x 2e yP�x, y� � y 2e x

CAS

�x � 2�2 � �y � 3�2 � 1
CF�x, y� � � y � ln�x 2 � y 2�, 2 tan�1�y�x�


x 2 � y 2 � 25C
F�x, y� � �e x � x 2 y, e y � xy 2 


�0, 0��2, 0��2, 6��0, 0�C
F�x, y� � � y 2 cos x, x 2 � 2y sin x
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CURL AND DIVERGENCE

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and mag-
netism. Each operation resembles differentiation, but one produces a vector field whereas
the other produces a scalar field.

16.5



CURL

If is a vector field on and the partial derivatives of , , and 
all exist, then the curl of is the vector field on defined by

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We introduce
the vector differential operator (“del”) as

It has meaning when it operates on a scalar function to produce the gradient of :

If we think of as a vector with components , , and , we can also consider
the formal cross product of with the vector field as follows:

Thus the easiest way to remember Definition 1 is by means of the symbolic expression

EXAMPLE 1 If , find .

SOLUTION Using Equation 2, we have

M� �y�2 � x� i � x j � yz k

 � ��2y � xy� i � �0 � x� j � �yz � 0� k

� 	 �

�x
 �xyz� �

�

�y
 �xz�
 k

 � 	 �

�y
 ��y 2 � �

�

�z
 �xyz�
 i � 	 �

�x
 ��y 2 � �

�

�z
 �xz�
 j

 curl F � 
 � F � � i
�

�x

xz

j
�

�y

xyz

k
�

�z

�y 2 �
curl FF�x, y, z� � xz i � xyz j � y 2 k

curl F � ∇ � F2

 � curl F

 � ��R

�y
�

�Q

�z � i � ��P

�z
�

�R

�x � j � ��Q

�x
�

�P

�y � k

 
 � F � � i
�

�x

P

j
�

�y

Q

k
�

�z

R �
F∇

���z���y���x∇

∇ f � i 
�f

�x
� j 

�f

�y
� k 

�f

�z
�

�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f

∇ � i 
�

�x
� j 

�

�y
� k 

�

�z
 

∇

curl F � ��R

�y
�

�Q

�z � i � ��P

�z
�

�R

�x � j � ��Q

�x
�

�P

�y � k1

� 3F
RQP� 3F � P i � Q j � R k
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N Most computer algebra systems have
commands that compute the curl and divergence
of vector fields. If you have access to a CAS, use
these commands to check the answers to the
examples and exercises in this section.



Recall that the gradient of a function of three variables is a vector field on and so
we can compute its curl. The following theorem says that the curl of a gradient vector field
is .

THEOREM If is a function of three variables that has continuous second-
order partial derivatives, then

PROOF We have

by Clairaut’s Theorem. M

Since a conservative vector field is one for which , Theorem 3 can be rephrased
as follows:

If is conservative, then .

This gives us a way of verifying that a vector field is not conservative.

EXAMPLE 2 Show that the vector field is not 
conservative.

SOLUTION In Example 1 we showed that

This shows that and so, by Theorem 3, is not conservative. M

The converse of Theorem 3 is not true in general, but the following theorem says the
converse is true if is defined everywhere. (More generally it is true if the domain is 
simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional version of
Theorem 16.3.6. Its proof requires Stokes’ Theorem and is sketched at the end of 
Section 16.8.

THEOREM If is a vector field defined on all of whose component func-
tions have continuous partial derivatives and , then is a conservative
vector field.

Fcurl F � 0
� 3F4

F

Fcurl F � 0

curl F � �y�2 � x� i � x j � yz k

F�x, y, z� � xz i � xyz j � y 2 kV

curl F � 0F

F � ∇ f

 � 0 i � 0 j � 0 k � 0

 � � �2f

�y �z
�

�2f

�z �y� i � � �2f

�z �x
�

�2f

�x �z� j � � �2f

�x �y
�

�2f

�y �x� k

 curl�
 f � � 
 � �
 f � � �
i
�

�x

�f

�x

j
�

�y

�f

�y

k
�

�z

�f

�z
�

curl�
 f � � 0

f3

0

� 3f
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N Notice the similarity to what we know 
from Section 12.4: for every 
three-dimensional vector .a

a � a � 0

N Compare this with Exercise 27 in 
Section 16.3.



EXAMPLE 3
(a) Show that

is a conservative vector field.
(b) Find a function such that .

SOLUTION
(a) We compute the curl of :

Since and the domain of is , is a conservative vector field by 
Theorem 4.

(b) The technique for finding was given in Section 16.3. We have

Integrating (5) with respect to , we obtain

Differentiating (8) with respect to , we get , so comparison
with (6) gives . Thus and

Then (7) gives . Therefore

M

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 37. Another occurs when represents the velocity
field in fluid flow (see Example 3 in Section 16.1). Particles near (x, y, ) in the fluid tend
to rotate about the axis that points in the direction of and the length of this
curl vector is a measure of how quickly the particles move around the axis (see Figure 1).
If at a point , then the fluid is free from rotations at and is called irro-
tational at . In other words, there is no whirlpool or eddy at P. If , then a 
tiny paddle wheel moves with the fluid but doesn’t rotate about its axis. If , the
paddle wheel rotates about its axis. We give a more detailed explanation in Section 16.8 as
a consequence of Stokes’ Theorem.

curl F � 0
curl F � 0P

FPPcurl F � 0

curl F�x, y, z�
z

F

f �x, y, z� � xy 2z3 � K

h��z� � 0

fz�x, y, z� � 3xy 2z2 � h��z�

t�y, z� � h�z�ty�y, z� � 0
fy�x, y, z� � 2xyz3 � ty�y, z�y

f �x, y, z� � xy 2z3 � t�y, z�8

x

 fz�x, y, z� � 3xy 2z27

 fy�x, y, z� � 2xyz36

 fx�x, y, z� � y 2z35

f

F� 3Fcurl F � 0

 � 0

 � �6xyz2 � 6xyz2 � i � �3y 2z2 � 3y 2z2 � j � �2yz3 � 2yz3 � k

 curl F � 
 � F � � i
�

�x

y 2z 3

j
�

�y

2xyz 3

k
�

�z

3xy 2z 2 �
F

F � 
 ff

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

V
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FIGURE 1

(x, y, z)

curl F(x, y, z)



DIVERGENCE

If is a vector field on and , , and exist, then
the divergence of is the function of three variables defined by

Observe that is a vector field but is a scalar field. In terms of the gradient oper-
ator , the divergence of can be written symbolically
as the dot product of and :

EXAMPLE 4 If , find .

SOLUTION By the definition of divergence (Equation 9 or 10) we have

M

If is a vector field on , then is also a vector field on . As such, we can 
compute its divergence. The next theorem shows that the result is 0.

THEOREM If is a vector field on and , , and 
have continuous second-order partial derivatives, then

PROOF Using the definitions of divergence and curl, we have

because the terms cancel in pairs by Clairaut’s Theorem. M

EXAMPLE 5 Show that the vector field can’t be 
written as the curl of another vector field, that is, .

SOLUTION In Example 4 we showed that

div F � z � xz

F � curl G
F�x, y, z� � xz i � xyz j � y 2 kV

 � 0

 �
�2R

�x �y
�

�2Q

�x �z
�

�2P

�y �z
�

�2R

�y �x
�

�2Q

�z �x
�

�2P

�z �y

 �
�

�x
 ��R

�y
�

�Q

�z � �
�

�y
 ��P

�z
�

�R

�x � �
�

�z
 ��Q

�x
�

�P

�y �
 div curl F � 
 � �
 � F�

div curl F � 0

RQP� 3F � P i � Q j � R k11

� 3curl F� 3F

� z � xz div F � 
 � F �
�

�x
 �xz� �

�

�y
 �xyz� �

�

�z
 ��y 2 �

div FF�x, y, z� � xz i � xyz j � y 2 k

div F � 
 � F10

F

F
 � ����x� i � ����y� j � ����z� k

div Fcurl F

div F �
�P

�x
�

�Q

�y
�

�R

�z
9

F
�R��z�Q��y�P��x� 3F � P i � Q j � R k
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N Note the analogy with the scalar triple 
product: .a � �a � b� � 0



and therefore . If it were true that , then Theorem 11 would give

which contradicts . Therefore is not the curl of another vector field. M

Again, the reason for the name divergence can be understood in the context of fluid
flow. If is the velocity of a fluid (or gas), then represents the net rate
of change (with respect to time) of the mass of fluid (or gas) flowing from the point 
per unit volume. In other words, measures the tendency of the fluid to diverge
from the point . If , then is said to be incompressible.

Another differential operator occurs when we compute the divergence of a gradient vec-
tor field . If is a function of three variables, we have

and this expression occurs so often that we abbreviate it as . The operator

is called the Laplace operator because of its relation to Laplace’s equation

We can also apply the Laplace operator to a vector field

in terms of its components:

VECTOR FORMS OF GREEN’S THEOREM

The curl and divergence operators allow us to rewrite Green’s Theorem in versions that
will be useful in our later work. We suppose that the plane region , its boundary curve 

, and the functions and satisfy the hypotheses of Green’s Theorem. Then we con-
sider the vector field . Its line integral is

and, regarding as a vector field on with third component , we have

curl F � � i
�

�x

P�x, y�

j
�

�y

Q�x, y�

k
�

�z

0 � � ��Q

�x
�

�P

�y � k

0�3F

�y
C
 F � dr � �y

C
 P dx � Q dy

F � P i � Q j
QPC

D


 2F � 
 2P i � 
 2Q j � 
 2R k

F � P i � Q j � R k


 2


 2 f �
�2f

�x 2 �
�2f

�y 2 �
�2f

�z2 � 0


 2 � 
 � 



 2 f

div�
 f � � 
 � �
 f � �
�2f

�x 2 �
�2f

�y 2 �
�2f

�z2

f
 f

Fdiv F � 0�x, y, z�
div F�x, y, z�

�x, y, z�
div F�x, y, z�F�x, y, z�

Fdiv F � 0

div F � div curl G � 0

F � curl Gdiv F � 0
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N The reason for this interpretation of will
be explained at the end of Section 16.9 as a 
consequence of the Divergence Theorem.

div F



Therefore

and we can now rewrite the equation in Green’s Theorem in the vector form

Equation 12 expresses the line integral of the tangential component of along as the
double integral of the vertical component of over the region enclosed by . We
now derive a similar formula involving the normal component of .

If is given by the vector equation

then the unit tangent vector (see Section 13.2) is

You can verify that the outward unit normal vector to is given by

(See Figure 2.) Then, from Equation 16.2.3, we have

by Green’s Theorem. But the integrand in this double integral is just the divergence of .
So we have a second vector form of Green’s Theorem.

This version says that the line integral of the normal component of along is equal to
the double integral of the divergence of over the region enclosed by .CDF

CF

�y
C
 F � n ds � yy

D

 div F�x, y� dA13

F

 � y
C
 P dy � Q dx � yy

D

 ��P

�x
�

�Q

�y � dA

 � y
b

a
 P�x�t�, y�t�� y��t� dt � Q�x�t�, y�t�� x��t� dt

 � y
b

a
 	P(x�t�, y�t�) y��t�

� r��t� � �
Q(x�t�, y�t�) x��t�

� r��t� � 
 � r��t� � dt

 �y
C
 F � n ds � y

b

a
 �F � n��t� � r��t� � dt

n�t� �
 y��t�

� r��t� �  i �
x��t�

� r��t� �  j

C

T�t� �
x��t�

� r��t� �  i �
 y��t�

� r��t� �  j

a � t � br�t� � x�t� i � y�t� j

C
F

CDcurl F
CF

�y
C
 F � dr � yy

D

 �curl F� � k dA12

�curl F� � k � ��Q

�x
�

�P

�y � k � k �
�Q

�x
�

�P

�y
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13–18 Determine whether or not the vector field is conservative. 
If it is conservative, find a function such that .

13.

14.

16.

17.

18.

Is there a vector field on such that
? Explain.

20. Is there a vector field on such that
? Explain.

Show that any vector field of the form

where , , are differentiable functions, is irrotational.

22. Show that any vector field of the form

is incompressible.

23–29 Prove the identity, assuming that the appropriate partial
derivatives exist and are continuous. If is a scalar field and , 
are vector fields, then , , and are defined by

23. div

24. curl

25. div

26. curl

27. div

28. div

29.

30–32 Let and .

30. Verify each identity.
(a) (b)
(c) � 2r 3 � 12r

� � �rr� � 4r� � r � 3

r � � r �r � x i � y j � z k

curl�curl F� � grad�div F� � � 2F

�� f � �t� � 0

�F � G� � G � curl F � F � curl G

curl F � �� f � � F� f F� � f

div F � F � � f� f F� � f

�F � G� � curl F � curl G

�F � G� � div F � div G

 �F � G��x, y, z� � F�x, y, z� � G�x, y, z�

 �F � G��x, y, z� � F�x, y, z� � G�x, y, z�

 � f F��x, y, z� � f �x, y, z� F�x, y, z�

F � GF � Gf F
GFf

F�x, y, z� � f �y, z� i � t�x, z� j � h�x, y� k

htf

F�x, y, z� � f �x� i � t�y� j � h�z� k

21.

curl G � �xyz, �y 2z, yz2 �
� 3G

curl G � �x sin y, cos y, z � xy�
� 3G19.

F�x, y, z� � y cos xy i � x cos xy j � sin z k

F�x, y, z� � ye�x i � e�x j � 2z k

F�x, y, z� � e z i � j � xe z k

F�x, y, z� � 2xy i � �x 2 � 2yz� j � y 2 k15.

F�x, y, z� � xyz 2 i � x 2yz2 j � x 2y 2z k

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

F � ∇ ff
1–8 Find (a) the curl and (b) the divergence of the vector field.

2.

3.

4.

5.

6.

7.

8.

9–11 The vector field F is shown in the xy-plane and looks the
same in all other horizontal planes. (In other words, F is indepen-
dent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction does

curl F point?

9. 10.

12. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so, state
whether it is a scalar field or a vector field.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) ( j)

(k) ( l) div�curl�grad f ���grad f � � �div F�
div�div F�curl�curl F�
grad�div f �div�grad f �
grad�div F�grad F

curl�grad f �div F

grad fcurl f

Ff

y

x0

11.

y

x0

y

x0

F � 0

zz

F�x, y, z� � �e x, e xy, e xyz �

F�x, y, z� � � ln x, ln�xy�, ln�xyz��

F�x, y, z� � e xy sin z j � y tan�1�x�z� k

F�x, y, z� �
1

sx 2 � y 2 � z2 
 �x i � y j � z k�

F�x, y, z� � cos xz j � sin xy k

F�x, y, z� � i � �x � yz� j � (xy � sz ) k

F�x, y, z� � x 2 yz i � xy 2z j � xyz 2 k

F�x, y, z� � xyz i � x 2y k1.

EXERCISES16.5
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38. Maxwell’s equations relating the electric field and magnetic
field as they vary with time in a region containing no charge
and no current can be stated as follows:

where is the speed of light. Use these equations to prove the
following:

(a)

(b)

(c) [Hint: Use Exercise 29.]

(d)

39. We have seen that all vector fields of the form 
satisfy the equation and that all vector fields of the
form satisfy the equation (assuming 
continuity of the appropriate partial derivatives). This suggests
the question: Are there any equations that all functions of the
form must satisfy? Show that the answer to this
question is “No” by proving that every continuous function 
on is the divergence of some vector field. [Hint: Let

,where t�x, y, z� � x
x

0  f �t, y, z� dt.]G�x, y, z� � �t�x, y, z�, 0, 0 �
� 3

f
f � div G

div F � 0F � curl G
curl F � 0

F � �t

� 2H �
1

c 2  
�2 H
�t 2

� 2E �
1

c 2  
�2 E
�t 2

� � �� � H� � �
1

c 2  
�2 H
�t 2

� � �� � E� � �
1

c 2  
�2 E
�t 2

c

 curl H �
1

c
 
�E
�t

 curl E � �
1

c
 
�H
�t

 div H � 0 div E � 0

H
E

0

¨

P

d
B

w

v

z

y

x

Verify each identity.
(a) (b)
(c) (d)

32. If , find div . Is there a value of for which 
div ?

33. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous. (The quantity occurs in the line inte-
gral. This is the directional derivative in the direction of the
normal vector and is called the normal derivative of .)

34. Use Green’s first identity (Exercise 33) to prove Green’s 
second identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous.

35. Recall from Section 14.3 that a function is called harmonic
on if it satisfies Laplace’s equation, that is, on .
Use Green’s first identity (with the same hypotheses as in Exer-
cise 33) to show that if is harmonic on then .
Here is the normal derivative of defined in Exercise 33.

36. Use Green’s first identity to show that if is harmonic 
on and if on the boundary curve then

. (Assume the same hypotheses as in 
Exercise 33.)

37. This exercise demonstrates a connection between the curl 
vector and rotations. Let be a rigid body rotating about the 
-axis. The rotation can be described by the vector ,

where is the angular speed of , that is, the tangential speed
of any point in divided by the distance from the axis of
rotation. Let be the position vector of .
(a) By considering the angle in the figure, show that the

velocity field of is given by .
(b) Show that .
(c) Show that .curl v � 2w

v � ��y i � � x j
v � w � rB

�
Pr � �x, y, z�

dBP
B�

w � �kz
B

xxD � �f �2
 dA � 0

C,f �x, y� � 0D,
f

tDn t

x�C Dn t ds � 0D,t

D�2
t � 0D

t

tf
CD

yy
D

 � f �2
t � t�2f � dA � �y

C
 � f �t � t� f � � n ds

tn

�t � n � Dn t

tf
CD

yy
D

 f �2
t dA � �y

C
 f ��t� � n ds � yy

D

 � f � �t dA

F � 0
pFF � r�r p

� ln r � r�r 2��1�r� � �r�r 3

� � r � 0�r � r�r

31.
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PARAMETRIC SURFACES AND THEIR AREAS

So far we have considered special types of surfaces: cylinders, quadric surfaces, graphs of
functions of two variables, and level surfaces of functions of three variables. Here we use
vector functions to describe more general surfaces, called parametric surfaces, and com-
pute their areas. Then we take the general surface area formula and see how it applies to
special surfaces.

PARAMETRIC SURFACES

In much the same way that we describe a space curve by a vector function of a single
parameter , we can describe a surface by a vector function of two parameters and
. We suppose that

is a vector-valued function defined on a region in the -plane. So x, y, and , the com-
ponent functions of r, are functions of the two variables u and with domain D. The set
of all points in such that

and varies throughout , is called a parametric surface and Equations 2 are called
parametric equations of . Each choice of u and gives a point on S; by making all 
choices, we get all of S. In other words, the surface is traced out by the tip of the posi-
tion vector as moves throughout the region . (See Figure 1.)

EXAMPLE 1 Identify and sketch the surface with vector equation

SOLUTION The parametric equations for this surface are

So for any point on the surface, we have

This means that vertical cross-sections parallel to the -plane (that is, with y constant)
are all circles with radius 2. Since and no restriction is placed on , the surface is a
circular cylinder with radius 2 whose axis is the y-axis. (See Figure 2.) M

vy � v
xz

x 2 � z2 � 4 cos2u � 4 sin2u � 4

�x, y, z�

z � 2 sin uy � vx � 2 cos u

r�u, v� � 2 cos u i � v j � 2 sin u k

0

z

x y

S

r(u, √)
0

√

u

D
(u, √)

r

FIGURE 1
A parametric surface

D�u, v�r�u, v�
S
vS

SD�u, v�

z � z�u, v�y � y�u, v�x � x�u, v�2

� 3�x, y, z�
v

zuvD

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k1

v
ur�u, v�t

r�t�

16.6

FIGURE 2 

0

(0, 0, 2)

(2, 0, 0)

x
y

z



In Example 1 we placed no restrictions on the parameters and and so we obtained
the entire cylinder. If, for instance, we restrict u and by writing the parameter domain as

then and we get the quarter-cylinder with length 3 illustrated in
Figure 3.

If a parametric surface S is given by a vector function , then there are two useful
families of curves that lie on S, one family with u constant and the other with constant.
These families correspond to vertical and horizontal lines in the -plane. If we keep 
constant by putting becomes a vector function of the single parame-
ter and defines a curve lying on . (See Figure 4.)

Similarly, if we keep constant by putting given by 
that lies on . We call these curves grid curves. (In Example 1, for instance, the grid 
curves obtained by letting u be constant are horizontal lines whereas the grid curves with

constant are circles.) In fact, when a computer graphs a parametric surface, it usually
depicts the surface by plotting these grid curves, as we see in the following example.

EXAMPLE 2 Use a computer algebra system to graph the surface

Which grid curves have u constant? Which have constant?

SOLUTION We graph the portion of the surface with parameter domain 
in Figure 5. It has the appearance of a spiral tube. To identify the grid

curves, we write the corresponding parametric equations:

If is constant, then and are constant, so the parametric equations resemble
those of the helix in Example 4 in Section 13.1. So the grid curves with constant are
the spiral curves in Figure 5. We deduce that the grid curves with u constant must be the
curves that look like circles in the figure. Further evidence for this assertion is that if u
is kept constant, , then the equation shows that the -values vary
from to . M

In Examples 1 and 2 we were given a vector equation and asked to graph the corre-
sponding parametric surface. In the following examples, however, we are given the more
challenging problem of finding a vector function to represent a given surface. In the rest of
this chapter we will often need to do exactly that.

u0 � 1u0 � 1
zz � u0 � cos vu � u0

v
cos vsin vv

z � u � cos vy � �2 � sin v� sin ux � �2 � sin v� cos u

0 	 v 	 2

0 	 u 	 4
,

v

r�u, v� � ��2 � sin v� cos u, �2 � sin v� sin u, u � cos v�

v

S
r�u, v0 �v � v0, we get a curve C2v

FIGURE 4

r

0

z

y
x

C¡

C™
0

D

√=√¸

(u¸, √¸)

u=u¸

u

√

SC1v
u � u0, then r�u0, v�

uuv
v

r�u, v�

x � 0, z � 0, 0 	 y 	 3,

0 	 v 	 30 	 u 	 
�2

v
vu
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FIGURE 3 

0

(0, 3, 2)

x
y

z

Visual 16.6 shows animated versions 
of Figures 4 and 5, with moving grid curves,
for several parametric surfaces.

TEC

z

y
x

u constant

√ constant

FIGURE 5



EXAMPLE 3 Find a vector function that represents the plane that passes through the 
point with position vector and that contains two nonparallel vectors a and b.

SOLUTION If P is any point in the plane, we can get from to by moving a certain 
distance in the direction of and another distance in the direction of . So there are
scalars u and such that A . (Figure 6 illustrates how this works, by 
means of the Parallelogram Law, for the case where and are positive. See also 
Exercise 40 in Section 12.2.) If r is the position vector of P, then

A A

So the vector equation of the plane can be written as

where u and are real numbers.
If we write , , , and , 

then we can write the parametric equations of the plane through the point as
follows:

M

EXAMPLE 4 Find a parametric representation of the sphere

SOLUTION The sphere has a simple representation in spherical coordinates, so let’s
choose the angles and in spherical coordinates as the parameters (see Section 15.8).
Then, putting in the equations for conversion from spherical to rectangular coordi-
nates (Equations 15.8.1), we obtain

as the parametric equations of the sphere. The corresponding vector equation is

We have and , so the parameter domain is the rectangle
. The grid curves with constant are the circles of constant lati-

tude (including the equator). The grid curves with constant are the meridians (semi-
circles), which connect the north and south poles. M

FIGURE 8FIGURE 7

�
�D � �0, 
	 � �0, 2
	

0 	 � 	 2
0 	 � 	 


r��, �� � a sin � cos � i � a sin � sin � j � a cos � k

z � a cos �y � a sin � sin �x � a sin � cos �


 � a
��


 � a

x 2 � y 2 � z2 � a 2

V

z � z0 � ua3 � vb3y � y0 � ua2 � vb2x � x0 � ua1 � vb1

�x0, y0, z0 �
b � �b1, b2, b3 �a � �a1, a2, a3 �r0 � �x0, y0, z0 �r � �x, y, z�

v

r�u, v� � r0 � ua � vb

� r0 � ua � vbP0P�r � OP0

vu
� ua � vbP0Pv

ba
PP0

r0P0

1072 | | | | CHAPTER 16 VECTOR CALCULUS

P

ua
P¸

√b

a

b

FIGURE 6

N One of the uses of parametric surfaces is in
computer graphics. Figure 7 shows the result of
trying to graph the sphere 
by solving the equation for and graphing the
top and bottom hemispheres separately. Part of
the sphere appears to be missing because of the
rectangular grid system used by the computer.
The much better picture in Figure 8 was pro-
duced by a computer using the parametric 
equations found in Example 4.

z
x 2 � y 2 � z2 � 1



EXAMPLE 5 Find a parametric representation for the cylinder 

SOLUTION The cylinder has a simple representation in cylindrical coordinates, so we
choose as parameters and in cylindrical coordinates. Then the parametric equations
of the cylinder are

where and . M

EXAMPLE 6 Find a vector function that represents the elliptic paraboloid .

SOLUTION If we regard and as parameters, then the parametric equations are simply

and the vector equation is

M

In general, a surface given as the graph of a function of and , that is, with an equa-
tion of the form , can always be regarded as a parametric surface by taking 
and as parameters and writing the parametric equations as

Parametric representations (also called parametrizations) of surfaces are not unique. The
next example shows two ways to parametrize a cone.

EXAMPLE 7 Find a parametric representation for the surface , that is, the
top half of the cone .

SOLUTION 1 One possible representation is obtained by choosing x and y as parameters:

So the vector equation is

SOLUTION 2 Another representation results from choosing as parameters the polar coor-
dinates r and . A point on the cone satisfies , , and

. So a vector equation for the cone is

where and . M

SURFACES OF REVOLUTION

Surfaces of revolution can be represented parametrically and thus graphed using a com-
puter. For instance, let’s consider the surface obtained by rotating the curve ,

, about the -axis, where . Let be the angle of rotation as shown in �f �x� � 0xa 	 x 	 b
y � f �x�S

0 	 � 	 2
r � 0

r�r, �� � r cos � i � r sin � j � 2r k

z � 2sx 2 � y 2 � 2r
y � r sin �x � r cos ��x, y, z��

r�x, y� � x i � y j � 2sx 2 � y 2  k

z � 2sx 2 � y 2 y � yx � x

z2 � 4x 2 � 4y 2
z � 2sx 2 � y 2 

z � f �x, y�y � yx � x

y
xz � f �x, y�

yx

r�x, y� � x i � y j � �x 2 � 2y 2 � k

z � x 2 � 2y 2y � yx � x

yx

z � x 2 � 2y 2V

0 	 z 	 10 	 � 	 2


z � zy � 2 sin �x � 2 cos �

z�
r � 2

0 	 z 	 1x 2 � y 2 � 4
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In Module 16.6 you can investigate 
several families of parametric surfaces.
TEC

N For some purposes the parametric represen-
tations in Solutions 1 and 2 are equally good, 
but Solution 2 might be preferable in certain 
situations. If we are interested only in the part 
of the cone that lies below the plane , 
for instance, all we have to do in Solution 2 is
change the parameter domain to

0 	 � 	 2
0 	 r 	
1
2

z � 1



Figure 9. If is a point on , then

Therefore we take and as parameters and regard Equations 3 as parametric equations
of . The parameter domain is given by , .

EXAMPLE 8 Find parametric equations for the surface generated by rotating the curve
, , about the -axis. Use these equations to graph the surface of

revolution.

SOLUTION From Equations 3, the parametric equations are

and the parameter domain is , . Using a computer to plot these
equations and rotate the image, we obtain the graph in Figure 10. M

We can adapt Equations 3 to represent a surface obtained through revolution about the
- or -axis. (See Exercise 30.)

TANGENT PLANES

We now find the tangent plane to a parametric surface traced out by a vector function

at a point with position vector . If we keep constant by putting , then
becomes a vector function of the single parameter and defines a grid curve 

lying on . (See Figure 11.) The tangent vector to at is obtained by taking the partial
derivative of with respect to :

Similarly, if we keep constant by putting , we get a grid curve given by
that lies on , and its tangent vector at is

ru �
�x

�u
 �u0, v0 � i �

�y

�u
 �u0, v0 � j �

�z

�u
 �u0, v0 � k5

P0Sr�u, v0 �
C2v � v0v

FIGURE 11

0 u

D

√=√¸

(u¸, √¸)

u=u¸

√

0

z

yx

C¡

C™

ru
r√

P¸

r

rv �
�x

�v
 �u0, v0 � i �

�y

�v
 �u0, v0 � j �

�z

�v
 �u0, v0 � k4

vr
P0C1S

C1vr�u0, v�
u � u0ur�u0, v0 �P0

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

S

zy

0 	 � 	 2
0 	 x 	 2


z � sin x sin �y � sin x cos �x � x

x0 	 x 	 2
y � sin x

0 	 � 	 2
a 	 x 	 bS
�x

z � f �x� sin �y � f �x� cos �x � x3

S�x, y, z�
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If is not , then the surface is called smooth (it has no “corners”). For a smooth
surface, the tangent plane is the plane that contains the tangent vectors and , and the
vector is a normal vector to the tangent plane.

EXAMPLE 9 Find the tangent plane to the surface with parametric equations ,
, at the point .

SOLUTION We first compute the tangent vectors:

Thus a normal vector to the tangent plane is

Notice that the point corresponds to the parameter values and , so
the normal vector there is

Therefore an equation of the tangent plane at is

or M

SURFACE AREA

Now we define the surface area of a general parametric surface given by Equation 1. For
simplicity we start by considering a surface whose parameter domain is a rectangle, and
we divide it into subrectangles . Let’s choose to be the lower left corner of .
(See Figure 13.) The part of the surface that corresponds to is called a patch and 
has the point with position vector as one of its corners. Let

be the tangent vectors at as given by Equations 5 and 4.

FIGURE 13
The image of the

subrectangle Rij is the patch Sij.

0

y

z

x

Pij
Sijr

(u*
i , √*

j)

0 u

√

Îu

Rij

Î√

Pij

rv* � rv�ui*, vj*�andru* � ru�ui*, vj*�

r�ui*, vj*�Pij

RijSSij

Rij�ui*, vj*�Rij

D

 x � 2y � 2z � 3 � 0

 �2�x � 1� � 4�y � 1� � 4�z � 3� � 0

�1, 1, 3�

�2 i � 4 j � 4 k

v � 1u � 1�1, 1, 3�

ru � rv � � i
2u

0

j
0

2v

k
1

2 � � �2v i � 4u j � 4uv k

 rv �
�x

�v
 i �

�y

�v
 j �

�z

�v
 k � 2v j � 2 k

 ru �
�x

�u
 i �

�y

�u
 j �

�z

�u
 k � 2u i � k

�1, 1, 3�z � u � 2vy � v2
x � u 2V

ru � rv

rvru

S0ru � rv
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N Figure 12 shows the self-intersecting surface
in Example 9 and its tangent plane at .�1, 1, 3�

FIGURE 12

z

x

y

(1, 1, 3)



Figure 14(a) shows how the two edges of the patch that meet at can be approximated
by vectors. These vectors, in turn, can be approximated by the vectors and 
because partial derivatives can be approximated by difference quotients. So we approxi-
mate by the parallelogram determined by the vectors and . This parallelo-
gram is shown in Figure 14(b) and lies in the tangent plane to at The area of this 
parallelogram is

and so an approximation to the area of is

Our intuition tells us that this approximation gets better as we increase the number of sub-
rectangles, and we recognize the double sum as a Riemann sum for the double integral

. This motivates the following definition.

DEFINITION If a smooth parametric surface is given by the equation

and is covered just once as ranges throughout the parameter domain ,
then the surface area of is

where

EXAMPLE 10 Find the surface area of a sphere of radius .

SOLUTION In Example 4 we found the parametric representation

where the parameter domain is

We first compute the cross product of the tangent vectors:

� a 2 sin2� cos � i � a 2 sin2� sin � j � a 2 sin � cos � k

 r� � r� � �
i
�x

��

�x

��

j
�y

��

�y

��

k
�z

��

�z

��
� � � i

�a cos � cos �

�a sin � sin �

j
a cos � sin �

a sin � cos �

k
�a sin �

0 �
D � 
��, �� � 0 	 � 	 
, 0 	 � 	 2
�

z � a cos �y � a sin � sin �x � a sin � cos �

a

rv �
�x

�v
 i �

�y

�v
 j �

�z

�v
 kru �

�x

�u
 i �

�y

�u
 j �

�z

�u
 k

A�S � � yy
D

 � ru � rv � dA

S
D�u, v�S

�u, v� � Dr�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

S6

xxD � ru � rv � du dv

�
m

i�1
 �

n

j�1
 � ru* � rv* � �u �v

S

� ��u ru*� � ��v rv*� � � � ru* � rv* � �u �v

Pij.S
�v rv*�u ru*Sij
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FIGURE 14
Approximating a patch
by a parallelogram

(b)

Î√ r*
√

Îu  r*
u

(a)
Pij

Sij



Thus

since for . Therefore, by Definition 6, the area of the sphere is

M

SURFACE AREA OF THE GRAPH OF A FUNCTION

For the special case of a surface with equation , where lies in and 
has continuous partial derivatives, we take and as parameters. The parametric equations
are

so

and

Thus we have

and the surface area formula in Definition 6 becomes

EXAMPLE 11 Find the area of the part of the paraboloid that lies under
the plane .

SOLUTION The plane intersects the paraboloid in the circle , . There-
fore the given surface lies above the disk with center the origin and radius 3. (See
Figure 15.) Using Formula 9, we have

 � yy
D

 s1 � 4�x 2 � y 2 � dA

 A � yy
D

 
1 � � �z

�x�2

� � �z

�y�2 

 dA � yy
D

 s1 � �2x� 2 � �2y� 2  dA

D
z � 9x 2 � y 2 � 9

z � 9
z � x 2 � y 2V

A�S � � yy
D

 
1 � � �z

�x�2

� � �z

�y�2 

 dA9

� rx � ry � � 
� �f

�x�2

� � �f

�y�2

� 1 � 
1 � � �z

�x�2

� � �z

�y�2

8

rx � ry � � i

1

0

j

0

1

k
�f

�x

�f

�y
� � �

�f

�x  
i �

�f

�y  
j � k7

ry � j � � �f

�y� krx � i � � �f

�x� k

z � f �x, y�y � yx � x

yx
fD�x, y�z � f �x, y�S

 � a 2 y
2


0
 d�  y




0
 sin � d� � a 2�2
�2 � 4
a 2

 A � yy
D

 � r� � r� � dA � y
2


0
 y




0
 a 2 sin � d� d�

0 	 � 	 
sin � � 0

 � sa 4 sin4� � a 4 sin 2� cos2� � a 2
ssin2� � a 2 sin �

 � r� � r� � � sa 4 sin4� cos2� � a 4 sin4� sin 2� � a 4 sin 2� cos2� 
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N Notice the similarity between the surface area
formula in Equation 9 and the arc length formula

from Section 8.1.

L � y
b

a
 
1 � �dy

dx�2

 dx

FIGURE 15

999999

x

z

y3

D



Converting to polar coordinates, we obtain

M

The question remains whether our definition of surface area (6) is consistent with the
surface area formula from single-variable calculus (8.2.4).

We consider the surface obtained by rotating the curve , , about
the -axis, where and is continuous. From Equations 3 we know that para-
metric equations of are

To compute the surface area of we need the tangent vectors

Thus

and so

because . Therefore the area of is

This is precisely the formula that was used to define the area of a surface of revolution in
single-variable calculus (8.2.4).

 � 2� y
b

a
 f �x�s1 � � f ��x��2  dx

 A � yy
D

 � rx � r� � dA � y
2�

0
 y

b

a
 f �x�s1 � � f ��x��2  dx d�

Sf �x� � 0

 � s� f �x��2�1 � � f ��x��2 � � f �x�s1 � � f ��x��2 

 � rx � r� � � s� f �x��2� f ��x��2 � � f �x��2 cos2� � � f �x��2 sin 2� 

 � f �x� f ��x� i � f �x� cos � j � f �x� sin � k

 rx � r� � � i
1

0

j
 f ��x� cos �

 �f �x� sin �

k
f ��x� sin �

f �x� cos � �
 r� � �f �x� sin � j � f �x� cos � k

 rx � i � f ��x� cos � j � f ��x� sin � k

S

0 	 � 	 2�a 	 x 	 bz � f �x� sin �y � f �x� cos �x � x

S
f �f �x� � 0x

a 	 x 	 by � f �x�S

 � 2� ( 1
8 ) 2

3 �1 � 4r 2 �3�2 ]0
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�

6
 (37s37 � 1)

 A � y
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0
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0
 s1 � 4r 2  r dr d� � y
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0
 d�  y
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0
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1078 | | | | CHAPTER 16 VECTOR CALCULUS

5.

6.

; 7–12 Use a computer to graph the parametric surface. Get a printout
and indicate on it which grid curves have constant and which have 

constant.

7.

8.

9. , , 0 	 v 	 2��1 	 u 	 1r�u, v� � �u cos v, u sin v, u5 	

�1 	 v 	 1�1 	 u 	 1,r�u, v� � �u � v, u 2, v2 	 ,

�1 	 u 	 1, �1 	 v 	 1r�u, v� � �u 2 � 1, v3 � 1, u � v	 , 

v
u

r�s, t� � �s sin 2t, s 2, s cos 2t	

r�s, t� � �s, t, t 2 � s 2 	1–2 Determine whether the points and lie on the given surface.

1.

2.

3–6 Identify the surface with the given vector equation.

4. , 0 	 v 	 2r�u, v� � 2 sin u i � 3 cos u j � v k

r�u, v� � �u � v� i � �3 � v� j � �1 � 4u � 5v� k3.

P�3, �1, 5�,  Q��1, 3, 4�
r�u, v� � �u � v, u 2 � v, u � v 2 	

P�7, 10, 4�,  Q�5, 22, 5�
r�u, v� � �2u � 3v, 1 � 5u � v, 2 � u � v 	

QP

EXERCISES16.6



19–26 Find a parametric representation for the surface.

The plane that passes through the point and
contains the vectors and 

20. The lower half of the ellipsoid 

21. The part of the hyperboloid that lies to the
right of the -plane

22. The part of the elliptic paraboloid that lies
in front of the plane 

The part of the sphere that lies above the
cone 

24. The part of the sphere that lies between
the planes and 

25. The part of the cylinder that lies between the
planes and 

The part of the plane that lies inside the cylinder

27–28 Use a computer algebra system to produce a graph that
looks like the given one.

27. 28.

; 29. Find parametric equations for the surface obtained by rotating
the curve , , about the -axis and use them
to graph the surface.

; 30. Find parametric equations for the surface obtained by rotating
the curve , , about the -axis and
use them to graph the surface.

; 31. (a) What happens to the spiral tube in Example 2 (see Fig-
ure 5) if we replace by and by ?

(b) What happens if we replace by and 
by ?

; 32. The surface with parametric equations

where and , is called a Möbius
strip. Graph this surface with several viewpoints. What is
unusual about it?

0 	 � 	 2��
1
2 	 r 	

1
2

 z � r sin���2�

 y � 2 sin � � r cos���2�

 x � 2 cos � � r cos���2�

sin 2u
sin ucos 2ucos u

cos usin usin ucos u

y�2 	 y 	 2x � 4y 2 � y 4

x0 	 x 	 3y � e �x

3

0

_3
_3

0

0 5

z

y
x

0

_1
_1

1
0

1
0

_1

z

y x

CAS

x 2 � y 2 � 1
z � x � 326.

x � 5x � 0
y 2 � z 2 � 16

z � 2z � �2
x 2 � y 2 � z 2 � 16

z � sx 2 � y 2 

x 2 � y 2 � z2 � 423.

x � 0
x � y 2 � 2z2 � 4

xz
x 2 � y2 � z2 � 1

2x 2 � 4y2 � z2 � 1

i � j � ki � j � k
�1, 2, �3�19.

10. ,
,

11. , , ,
,

12. , ,

13–18 Match the equations with the graphs labeled I–VI and 
give reasons for your answers. Determine which families of grid
curves have constant and which have constant.

14. ,

15.

16. ,
,

17. , ,

18. , ,

y

x

x

y

y

z

z

x

z

z

x y

III

V

x
y

z

IV

I II

VI

y

z

x

z � uy � �1 � � u ��sin vx � �1 � � u ��cos v

z � sin3vy � sin3u cos3vx � cos3u cos3v

z � 3u � �1 � u� sin v
y � �1 � u��3 � cos v� sin 4�u

x � �1 � u��3 � cos v� cos 4�u

r�u, v� � sin v i � cos u sin 2v j � sin u sin 2v k

�� 	 u 	 �r�u, v� � u cos v i � u sin v j � sin u k

r�u, v� � u cos v i � u sin v j � v k13.

vu

z � u sin vy � u cos u cos vx � u sin u cos v

���2 	 v 	 ��20 	 u 	 2�
z � sin 2u sin 4vy � cos u sin 4vx � sin v

0.1 	 v 	 6.20 	 u 	 2�
r�u, v� � �cos u sin v, sin u sin v, cos v � ln tan�v�2�	
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51. (a) Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with six squares to estimate the area of the 
surface , , .

(b) Use a computer algebra system to approximate the
surface area in part (a) to four decimal places. Compare
with the answer to part (a).

52. Find the area of the surface with vector equation
, ,

. State your answer correct to four decimal
places.

53. Find the exact area of the surface ,
, .

54. (a) Set up, but do not evaluate, a double integral for the area
of the surface with parametric equations ,

, , , .
(b) Eliminate the parameters to show that the surface is an

elliptic paraboloid and set up another double integral for
the surface area.

; (c) Use the parametric equations in part (a) with and
to graph the surface.

(d) For the case , , use a computer algebra 
system to find the surface area correct to four decimal
places.

(a) Show that the parametric equations ,
, , , ,

represent an ellipsoid.

; (b) Use the parametric equations in part (a) to graph the ellip-
soid for the case , , .

(c) Set up, but do not evaluate, a double integral for the sur-
face area of the ellipsoid in part (b).

56. (a) Show that the parametric equations ,
, , represent a hyperboloid

of one sheet.

; (b) Use the parametric equations in part (a) to graph the
hyperboloid for the case , , .

(c) Set up, but do not evaluate, a double integral for the sur-
face area of the part of the hyperboloid in part (b) that lies
between the planes and .

Find the area of the part of the sphere that
lies inside the paraboloid .

58. The figure shows the surface created when the cylinder
intersects the cylinder . Find the 

area of this surface.

z

y
x

x 2 � z 2 � 1y 2 � z 2 � 1

z � x 2 � y 2
x 2 � y 2 � z2 � 4z57.

z � 3z � �3

c � 3b � 2a � 1

z � c sinh uy � b cosh u sin v
x � a cosh u cos v

c � 3b � 2a � 1

0 	 v 	 2�0 	 u 	 �z � c cos uy � b sin u sin v
x � a sin u cos v55.

b � 3a � 2CAS

b � 3
a � 2

0 	 v 	 2�0 	 u 	 2z � u 2y � bu sin v
x � au cos v

0 	 y 	 11 	 x 	 4
z � 1 � 2x � 3y � 4y 2CAS

0 	 v 	 2�
0 	 u 	 �r�u, v� � �cos3u cos3v, sin3u cos3v, sin3v	

CAS

CAS

0 	 y 	 40 	 x 	 6z � 1��1 � x 2 � y 2�

33–36 Find an equation of the tangent plane to the given para-
metric surface at the specified point. If you have software that
graphs parametric surfaces, use a computer to graph the surface
and the tangent plane.

, , ;

34. , , ;

35. ;

36. ;

37–47 Find the area of the surface.

The part of the plane that lies in the 
first octant

38. The part of the plane that lies inside the
cylinder 

39. The surface , ,

40. The part of the plane with vector equation
that is given by

, 

The part of the surface that lies within the cylinder

42. The part of the surface that lies above the
triangle with vertices , , and 

43. The part of the hyperbolic paraboloid that lies
between the cylinders and 

44. The part of the paraboloid that lies inside the
cylinder 

45. The part of the surface that lies between the
planes , , , and 

46. The helicoid (or spiral ramp) with vector equation
, , 

The surface with parametric equations , ,
, , 

48–49 Find the area of the surface correct to four decimal places
by expressing the area in terms of a single integral and using your
calculator to estimate the integral.

48. The part of the surface that lies inside the
cylinder 

49. The part of the surface that lies above the disk

50. Find, to four decimal places, the area of the part of the
surface that lies above the square

. Illustrate by graphing this part of the surface.� x � � � y � 	 1
z � �1 � x 2 ���1 � y 2 �

CAS

x 2 � y 2 	 4
z � e�x2�y2

x 2 � y 2 � 1
z � cos�x 2 � y 2�

0 	 v 	 20 	 u 	 1z � 1
2v 2

y � uvx � u247.

0 	 v 	 �0 	 u 	 1r�u, v� � u cos v i � u sin v j � v k

z � 1z � 0x � 1x � 0
y � 4x � z2

y 2 � z2 � 9
x � y 2 � z2

x 2 � y 2 � 4x 2 � y 2 � 1
z � y 2 � x 2

�2, 1��0, 1��0, 0�
z � 1 � 3x � 2y 2

x 2 � y 2 � 1
z � xy41.

0 	 v 	 10 	 u 	 1
r�u, v� � �1 � v, u � 2v, 3 � 5u � v	

0 	 y 	 10 	 x 	 1z � 2
3 �x 3�2 � y 3�2 �

x 2 � y 2 � 9
2x � 5y � z � 10

3x � 2y � z � 637.

u � 0, v � �r�u, v� � uv i � u sin v j � v cos u k

u � 1, v � 0r�u, v� � u 2 i � 2u sin v j � u cos v k

u � 1, v � 1z � uvy � v 2x � u2

�2, 3, 0�z � u � vy � 3u2x � u � v33.
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å
¨

0

(x, y, z)

(b, 0, 0)

z

x

y

59. Find the area of the part of the sphere that
lies inside the cylinder .

60. (a) Find a parametric representation for the torus obtained 
by rotating about the -axis the circle in the -plane with
center and radius . [Hint: Take as parame-
ters the angles and shown in the figure.]

; (b) Use the parametric equations found in part (a) to graph
the torus for several values of a and b.

(c) Use the parametric representation from part (a) to find the
surface area of the torus.


�
a � b�b, 0, 0�

xzz

x 2 � y 2 � ax
x 2 � y 2 � z2 � a 2

SURFACE INTEGRALS

The relationship between surface integrals and surface area is much the same as the rela-
tionship between line integrals and arc length. Suppose is a function of three variables
whose domain includes a surface . We will define the surface integral of over in such
a way that, in the case where , the value of the surface integral is equal to the
surface area of . We start with parametric surfaces and then deal with the special case
where is the graph of a function of two variables.

PARAMETRIC SURFACES

Suppose that a surface has a vector equation

We first assume that the parameter domain is a rectangle and we divide it into subrect-
angles with dimensions and . Then the surface is divided into corresponding
patches as in Figure 1. We evaluate at a point in each patch, multiply by the area

of the patch, and form the Riemann sum

Then we take the limit as the number of patches increases and define the surface integral
of f over the surface S as

Notice the analogy with the definition of a line integral (16.2.2) and also the analogy with
the definition of a double integral (15.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area by the
area of an approximating parallelogram in the tangent plane. In our discussion of surface
area in Section 16.6 we made the approximation

�Sij 
 � ru � rv � �u �v

�Sij

yy
S

 f �x, y, z� dS � lim 
m, n l 


 �
m

i�1
 �

n

j�1
 f �Pij*� �Sij1

�
m

i�1
 �

n

j�1
 f �Pij*� �Sij

�Sij

Pij*fSij

S�v�uRij

D

�u, v� � Dr�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

S

S
S

f �x, y, z� � 1
SfS

f

16.7

FIGURE 1

0

√

u

Rij

Î√

Îu

0

z

y

x

P*
ij

S

Sij

D
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N We assume that the surface is covered only
once as ranges throughout . The value 
of the surface integral does not depend on the
parametrization that is used.

D�u, v�

N Here we use the identities

Instead, we could use Formulas 64 and 67 in 
the Table of Integrals.

sin2� � 1 � cos2�

cos2� � 1
2 �1 � cos 2��

where

are the tangent vectors at a corner of . If the components are continuous and and 
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even
when D is not a rectangle, that

This should be compared with the formula for a line integral:

Observe also that

Formula 2 allows us to compute a surface integral by converting it into a double inte-
gral over the parameter domain . When using this formula, remember that is
evaluated by writing , , and in the formula for .

EXAMPLE 1 Compute the surface integral , where is the unit sphere
.

SOLUTION As in Example 4 in Section 16.6, we use the parametric representation

that is,

As in Example 10 in Section 16.6, we can compute that

Therefore, by Formula 2,

M

Surface integrals have applications similar to those for the integrals we have previously
considered. For example, if a thin sheet (say, of aluminum foil) has the shape of a surface

 � 1
2 [� �

1
2 sin 2�]0

2� [�cos � �
1
3 cos3�]0

�
�

4�

3

 � y
2�

0
 12 �1 � cos 2�� d�  y

�

0
 �sin � � sin � cos2�� d�

 � y
2�

0
 y

�

0
 sin2� cos2� sin � d� d� � y

2�

0
 cos2� d�  y

�

0
 sin3� d�

 yy
S

 x 2 dS � yy
D

 �sin � cos ��2 � r� � r� � dA

� r� � r� � � sin �

r��, �� � sin � cos � i � sin � sin � j � cos � k

0 	 � 	 2�0 	 � 	 �z � cos �y � sin � sin �x � sin � cos �

x 2 � y 2 � z2 � 1
SxxS x

2 dS

f �x, y, z�z � z�u, v�y � y�u, v�x � x�u, v�
f �r�u, v��D

yy
S

 1 dS � yy
D

 � ru � rv � dA � A�S�

y
C
 f �x, y, z� ds � y

b

a
 f �r�t�� � r��t� � dt

yy
S

 f �x, y, z� dS � yy
D

 f �r�u, v�� � ru � rv � dA2

rvruSij

rv �
�x

�v
 i �

�y

�v
 j �

�z

�v
 kru �

�x

�u
 i �

�y

�u
 j �

�z

�u
 k



and the density (mass per unit area) at the point is , then the total mass
of the sheet is

and the center of mass is , where

Moments of inertia can also be defined as before (see Exercise 39).

GRAPHS

Any surface with equation can be regarded as a parametric surface with para-
metric equations

and so we have

Thus

and

Therefore, in this case, Formula 2 becomes

Similar formulas apply when it is more convenient to project onto the -plane or 
-plane. For instance, if is a surface with equation and is its projection on

the -plane, then

EXAMPLE 2 Evaluate , where is the surface , , .
(See Figure 2.)

SOLUTION Since

�z

�y
� 2yand

�z

�x
� 1

0 	 y 	 20 	 x 	 1z � x � y 2SxxS y dS

yy
S

 f �x, y, z� dS � yy
D

 f (x, h�x, z�, z)�
�y

�x�2

� 
�y

�z�2

� 1 dA

xz
Dy � h�x, z�Sxz

yzS

yy
S

 f �x, y, z� dS � yy
D

 f (x, y, t�x, y�)�
 �z

�x�2

� 
 �z

�y�2

� 1 dA4

� rx � ry � � �
 �z

�x�2

� 
 �z

�y�2

� 1

rx � ry � �
�t

�x  
i �

�t

�y  
j � k3

ry � j � 
 �t

�y� krx � i � 
 �t

�x� k

z � t�x, y�y � yx � x

z � t�x, y�S

z �
1

m
 yy

S

 z ��x, y, z� dSy �
1

m
 yy

S

 y ��x, y, z� dSx �
1

m
 yy

S

 x ��x, y, z� dS

�x, y, z�

m � yy
S

 ��x, y, z� dS

��x, y, z��x, y, z�S
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FIGURE 2
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Formula 4 gives

M

If is a piecewise-smooth surface, that is, a finite union of smooth surfaces , 
that intersect only along their boundaries, then the surface integral of over is defined

by

EXAMPLE 3 Evaluate , where is the surface whose sides are given by the
cylinder , whose bottom is the disk in the plane , and
whose top is the part of the plane that lies above .

SOLUTION The surface is shown in Figure 3. (We have changed the usual position of 
the axes to get a better look at .) For we use and as parameters (see Example 5 
in Section 16.6) and write its parametric equations as

where

Therefore

and

Thus the surface integral over is
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Since lies in the plane , we have

The top surface lies above the unit disk and is part of the plane . So,
taking in Formula 4 and converting to polar coordinates, we have

Therefore

M

ORIENTED SURFACES

To define surface integrals of vector fields, we need to rule out nonorientable surfaces such
as the Möbius strip shown in Figure 4. [It is named after the German geometer August
Möbius (1790–1868).] You can construct one for yourself by taking a long rectangular
strip of paper, giving it a half-twist, and taping the short edges together as in Figure 5. 
If an ant were to crawl along the Möbius strip starting at a point , it would end up on 
the “other side” of the strip (that is, with its upper side pointing in the opposite direction).
Then, if the ant continued to crawl in the same direction, it would end up back at the 
same point without ever having crossed an edge. (If you have constructed a Möbius strip,
try drawing a pencil line down the middle.) Therefore a Möbius strip really has only 
one side. You can graph the Möbius strip using the parametric equations in Exercise 32 in 
Section 16.6.

FIGURE 5
Constructing a Möbius strip
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FIGURE 4
A Möbius strip
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Visual 16.7 shows a Möbius strip 
with a normal vector that can be moved
along the surface.
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From now on we consider only orientable (two-sided) surfaces. We start with a surface
that has a tangent plane at every point on (except at any boundary point). There

are two unit normal vectors and at . (See Figure 6.) 
If it is possible to choose a unit normal vector at every such point so that 

varies continuously over , then is called an oriented surface and the given choice of 
provides with an orientation. There are two possible orientations for any orientable sur-
face (see Figure 7).

For a surface given as the graph of , we use Equation 3 to associate with
the surface a natural orientation given by the unit normal vector

Since the -component is positive, this gives the upward orientation of the surface.
If is a smooth orientable surface given in parametric form by a vector function 

, then it is automatically supplied with the orientation of the unit normal vector

and the opposite orientation is given by . For instance, in Example 4 in Section 16.6 we
found the parametric representation

for the sphere . Then in Example 10 in Section 16.6 we found that

and

So the orientation induced by is defined by the unit normal vector

Observe that points in the same direction as the position vector, that is, outward from the
sphere (see Figure 8). The opposite (inward) orientation would have been obtained (see
Figure 9) if we had reversed the order of the parameters because .

For a closed surface, that is, a surface that is the boundary of a solid region , the 
convention is that the positive orientation is the one for which the normal vectors point
outward from , and inward-pointing normals give the negative orientation (see Figures 8
and 9).
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SURFACE INTEGRALS OF VECTOR FIELDS

Suppose that is an oriented surface with unit normal vector , and imagine a fluid with
density and velocity field flowing through . (Think of as an imagi-
nary surface that doesn’t impede the fluid flow, like a fishing net across a stream.) Then the
rate of flow (mass per unit time) per unit area is . If we divide into small patches ,
as in Figure 10 (compare with Figure 1), then is nearly planar and so we can approxi-
mate the mass of fluid crossing in the direction of the normal per unit time by the
quantity

where , , and are evaluated at some point on . (Recall that the component of the vec-
tor in the direction of the unit vector is .) By summing these quantities and tak-
ing the limit we get, according to Definition 1, the surface integral of the function 
over :

and this is interpreted physically as the rate of flow through .
If we write , then is also a vector field on and the integral in Equation 7

becomes

A surface integral of this form occurs frequently in physics, even when is not , and is
called the surface integral (or flux integral ) of over .

DEFINITION If is a continuous vector field defined on an oriented surface 
with unit normal vector , then the surface integral of over S is

This integral is also called the flux of across .

In words, Definition 8 says that the surface integral of a vector field over is equal to
the surface integral of its normal component over (as previously defined).

If is given by a vector function , then is given by Equation 6, and from Def-
inition 8 and Equation 2 we have

where is the parameter domain. Thus we have
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N Compare Equation 9 to the similar expres-
sion for evaluating line integrals of vector fields
in Definition 16.2.13:
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EXAMPLE 4 Find the flux of the vector field across the unit
sphere .

SOLUTION Using the parametric representation

we have

and, from Example 10 in Section 16.6,

Therefore

and, by Formula 9, the flux is

by the same calculation as in Example 1. M

If, for instance, the vector field in Example 4 is a velocity field describing the flow of a
fluid with density 1, then the answer, , represents the rate of flow through the unit
sphere in units of mass per unit time.

In the case of a surface given by a graph , we can think of and as param-
eters and use Equation 3 to write

Thus Formula 9 becomes

This formula assumes the upward orientation of ; for a downward orientation we multi-
ply by . Similar formulas can be worked out if is given by or .
(See Exercises 35 and 36.)
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N Figure 11 shows the vector field in 
Example 4 at points on the unit sphere.
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EXAMPLE 5 Evaluate , where and is the
boundary of the solid region enclosed by the paraboloid and the
plane .

SOLUTION consists of a parabolic top surface and a circular bottom surface . (See
Figure 12.) Since is a closed surface, we use the convention of positive (outward) 
orientation. This means that is oriented upward and we can use Equation 10 with 

being the projection of on the -plane, namely, the disk . Since

on and

we have

The disk is oriented downward, so its unit normal vector is and we have

since on . Finally, we compute, by definition, as the sum of the sur-
face integrals of over the pieces and :

M

Although we motivated the surface integral of a vector field using the example of fluid
flow, this concept also arises in other physical situations. For instance, if is an electric
field (see Example 5 in Section 16.1), then the surface integral

is called the electric flux of through the surface . One of the important laws of electro-SE
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statics is Gauss’s Law, which says that the net charge enclosed by a closed surface is

where is a constant (called the permittivity of free space) that depends on the units used.
(In the SI system, .) Therefore, if the vector field in
Example 4 represents an electric field, we can conclude that the charge enclosed by is

.
Another application of surface integrals occurs in the study of heat flow. Suppose the

temperature at a point in a body is . Then the heat flow is defined as the
vector field

where is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface in the body is then given by the surface
integral

EXAMPLE 6 The temperature in a metal ball is proportional to the square of the
distance from the center of the ball. Find the rate of heat flow across a sphere of 
radius with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have

where is the proportionality constant. Then the heat flow is

where is the conductivity of the metal. Instead of using the usual parametrization of
the sphere as in Example 4, we observe that the outward unit normal to the sphere

at the point is

and so

But on we have , so . Therefore the rate of heat
flow across is
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13. ,
is the part of the paraboloid that lies inside the

cylinder 

14. ,
is the part of the sphere that lies 

inside the cylinder and above the -plane

,
is the hemisphere , 

16. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

17. ,
is the part of the cylinder that lies between the

planes and in the first octant

18. ,
is the part of the cylinder between the planes

and , together with its top and bottom disks

19–30 Evaluate the surface integral for the given vector
field and the oriented surface . In other words, find the flux of 
across . For closed surfaces, use the positive (outward) orientation.

, is the part of the 
paraboloid that lies above the square

, and has upward orientation

20. ,
is the helicoid of Exercise 10 with upward orientation

21. ,
is the part of the plane in the first octant and

has downward orientation

22. ,
is the part of the cone beneath the plane 

with downward orientation

23. ,
is the part of the sphere in the first octant,

with orientation toward the origin

24. ,
is the hemisphere , , oriented in the

direction of the positive -axis

,
consists of the paraboloid , , 

and the disk , 

26. , S is the surface ,
, , with upward orientation0 	 y 	 10 	 x 	 1
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2 dS

x 2 � z2 � 4
y � x 2 � z2S

xxS y dS1. Let be the boundary surface of the box enclosed by the
planes , , , , , and . Approx-
imate by using a Riemann sum as in Defini-
tion 1, taking the patches to be the rectangles that are the
faces of the box and the points to be the centers of the
rectangles.

2. A surface consists of the cylinder , ,
together with its top and bottom disks. Suppose you know that

is a continuous function with 

Estimate the value of by using a Riemann sum,
taking the patches to be four quarter-cylinders and the top
and bottom disks.

3. Let be the hemisphere , and 
suppose is a continuous function with 

, and . 
By dividing into four patches, estimate the value of

.

Suppose that , where is a 
function of one variable such that . Evaluate

, where is the sphere .

5–18 Evaluate the surface integral.

,
is the part of the plane that lies above the

rectangle 

6. ,
is the triangular region with vertices (1, 0, 0), (0, 2, 0), 

and (0, 0, 2)

7. ,
is the part of the plane that lies in the 

first octant

8. ,

is the surface , , 

9. ,
is the surface with parametric equations , ,

, 

10. ,
is the helicoid with vector equation

, , 

11. ,
is the part of the cone that lies between the

planes and 

12. ,
is the surface , , 0 	 z 	 10 	 y 	 1x � y � 2z 2S
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39. (a) Give an integral expression for the moment of inertia 
about the -axis of a thin sheet in the shape of a surface 
if the density function is .

(b) Find the moment of inertia about the -axis of the funnel
in Exercise 38.

40. Let be the part of the sphere that lies
above the plane . If has constant density , find 
(a) the center of mass and (b) the moment of inertia about 
the -axis.

41. A fluid has density and flows with velocity
, where and are measured in

meters and the components of in meters per second. Find
the rate of flow outward through the cylinder ,

.

42. Seawater has density and flows in a velocity field
, where and are measured in meters and

the components of in meters per second. Find the rate of
flow outward through the hemisphere ,

.

43. Use Gauss’s Law to find the charge contained in the solid
hemisphere , , if the electric field is 

44. Use Gauss’s Law to find the charge enclosed by the cube 
with vertices if the electric field is 

The temperature at the point in a substance with con-
ductivity is . Find the rate of
heat flow inward across the cylindrical surface ,

.

46. The temperature at a point in a ball with conductivity is
inversely proportional to the distance from the center of the
ball. Find the rate of heat flow across a sphere of radius 
with center at the center of the ball.

47. Let be an inverse square field, that is, for
some constant , where . Show that the
flux of across a sphere with center the origin is inde-
pendent of the radius of .S

SF
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 r 
3F
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K
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�x, y, z�45.
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�
1, 
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E�x, y, z� � x i � y j � 2z k

z � 0x 2 � y 2 � z2 	 a 2

z � 0
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v
zy,x,v � y i � x j
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0 	 z 	 1
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v
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z

kSz � 4
x 2 � y2 � z2 � 25S

z
�

Sz
Iz27. ,

is the cube with vertices 

28. , is the boundary of the region
enclosed by the cylinder and the planes 
and 

29. , is the boundary of the
solid half-cylinder , 

30. ,
is the surface of the tetrahedron with vertices ,

, , and 

31. Evaluate correct to four decimal places, where is
the surface , , .

32. Find the exact value of , where is the surface in
Exercise 31.

33. Find the value of correct to four decimal places,
where is the part of the paraboloid that
lies above the -plane.

34. Find the flux of 

across the part of the cylinder that lies above 
the -plane and between the planes and with
upward orientation. Illustrate by using a computer algebra
system to draw the cylinder and the vector field on the same
screen.

35. Find a formula for similar to Formula 10 for the
case where is given by and is the unit normal
that points toward the left.

36. Find a formula for similar to Formula 10 for the
case where is given by and is the unit normal
that points forward (that is, toward the viewer when the axes
are drawn in the usual way).

Find the center of mass of the hemisphere 
, if it has constant density.

38. Find the mass of a thin funnel in the shape of a cone
, , if its density function is

.��x, y, z� � 10 � z
1 	 z 	 4z � sx 2 � y 2 

z � 0
x 2 � y 2 � z2 � a 2,37.

nx � k�y, z�S
xxS F � dS

ny � h�x, z�S
xxS F � dS

x � 2x � �2xy
4y 2 � z2 � 4

F�x, y, z� � sin�xyz� i � x 2 y j � z2e x�5 k

CAS

xy
z � 3 � 2x 2 � y 2S

xxS x
2 y 2z2 dSCAS

SxxS x
2 yz dSCAS

0 	 y 	 10 	 x 	 1z � xy
SxxS xyz dSCAS

�0, 0, 1��0, 1, 0��1, 0, 0�
�0, 0, 0�S

F�x, y, z� � y i � �z � y� j � x k

0 	 x 	 20 	 z 	 s1 � y 2
  

SF�x, y, z� � x 2 i � y 2 j � z2 k

x � y � 2
y � 0x 2 � z2 � 1

SF�x, y, z� � x i � y j � 5 k

�
1, 
1, 
1�S
F�x, y, z� � x i � 2y j � 3z k
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STOKES’ THEOREM

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theorem.
Whereas Green’s Theorem relates a double integral over a plane region to a line integral
around its plane boundary curve, Stokes’ Theorem relates a surface integral over a surface

to a line integral around the boundary curve of (which is a space curve). Figure 1 shows SS

D

16.8



an oriented surface with unit normal vector . The orientation of induces the positive
orientation of the boundary curve C shown in the figure. This means that if you walk in
the positive direction around with your head pointing in the direction of , then the sur-
face will always be on your left.

STOKES’ THEOREM Let be an oriented piecewise-smooth surface that is bounded
by a simple, closed, piecewise-smooth boundary curve with positive orientation.
Let be a vector field whose components have continuous partial derivatives on 
an open region in that contains . Then

Since

Stokes’ Theorem says that the line integral around the boundary curve of of the tangen-
tial component of is equal to the surface integral of the normal component of the curl 
of .

The positively oriented boundary curve of the oriented surface is often written as 
, so Stokes’ Theorem can be expressed as

There is an analogy among Stokes’ Theorem, Green’s Theorem, and the Fundamental 
Theorem of Calculus. As before, there is an integral involving derivatives on the left side
of Equation 1 (recall that is a sort of derivative of ) and the right side involves the
values of only on the boundary of .

In fact, in the special case where the surface is flat and lies in the -plane with
upward orientation, the unit normal is , the surface integral becomes a double integral,
and Stokes’ Theorem becomes

This is precisely the vector form of Green’s Theorem given in Equation 16.5.12. Thus we
see that Green’s Theorem is really a special case of Stokes’ Theorem.

Although Stokes’ Theorem is too difficult for us to prove in its full generality, we can
give a proof when is a graph and , , and are well behaved.

PROOF OF A SPECIAL CASE OF STOKES’ THEOREM We assume that the equation of is 
, where has continuous second-order partial derivatives and is a simple

plane region whose boundary curve corresponds to . If the orientation of is
upward, then the positive orientation of corresponds to the positive orientation of .
(See Figure 2.) We are also given that , where the partial deriva-
tives of , , and are continuous.RQP

F � P i � Q j � R k
C1C

SCC1

Dt�x, y� � D
z � t�x, y�,S

CSFS

y
C
 F � dr � yy

S

 curl F � dS � yy
S

 �curl F� � k dA

k
xyS

SF
Fcurl F

yy
S

 curl F � dS � y
�S

 F � dr1

�S
S

F
F

S

yy
S

 curl F � dS � yy
S

 curl F � n dSandy
C
 F � dr � y

C
 F � T ds

y
C
 F � dr � yy

S

 curl F � dS

S� 3
F

C
S

nC

Sn

SECTION 16.8 STOKES’ THEOREM | | | | 1093

S

y

z

x

C

0

n

n

FIGURE 1

N Stokes’ Theorem is named after the Irish
mathematical physicist Sir George Stokes
(1819–1903). Stokes was a professor at Cam-
bridge University (in fact he held the same 
position as Newton, Lucasian Professor of 
Mathematics) and was especially noted for his
studies of fluid flow and light. What we call
Stokes’ Theorem was actually discovered by 
the Scottish physicist Sir William Thomson
(1824–1907, known as Lord Kelvin). Stokes
learned of this theorem in a letter from Thomson
in 1850 and asked students to prove it on an
examination at Cambridge University in 1854.
We don’t know if any of those students was 
able to do so.

FIGURE 2
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Since is a graph of a function, we can apply Formula 16.7.10 with replaced by
. The result is

where the partial derivatives of , , and are evaluated at . If

is a parametric representation of , then a parametric representation of is

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

where we have used Green’s Theorem in the last step. Then, using the Chain Rule again
and remembering that , , and are functions of , , and and that is itself a func-
tion of and , we get

Four of the terms in this double integral cancel and the remaining six terms can be
arranged to coincide with the right side of Equation 2. Therefore

My
C
 F � dr � yy

S

 curl F � dS

� ��P

�y
�

�P

�z
 
�z

�y
�

�R

�y
 
�z

�x
�

�R

�z
 
�z

�y
 
�z

�x
� R 

�2z

�y �x�� dA

y
C
 F � dr � yy

D

 ���Q

�x
�

�Q

�z
 
�z

�x
�

�R

�x
 
�z

�y
�

�R

�z
 
�z

�x
 
�z

�y
� R 

�2z

�x �y�
yx

zzyxRQP

 � yy
D

 � �

�x
 �Q � R 

�z

�y� �
�

�y
 �P � R 

�z

�x�� dA

 � y
C1

 �P � R 
�z

�x� dx � �Q � R 
�z

�y� dy

 � y
b

a

 ��P � R 
�z

�x� 
dx

dt
� �Q � R 

�z

�y� 
dy

dt � dt

 � y
b

a

 �P 
dx

dt
� Q 

dy

dt
� R� �z

�x
 
dx

dt
�

�z

�y
 
dy

dt �� dt

 y
C
 F � dr � y

b

a

 �P 
dx

dt
� Q 

dy

dt
� R 

dz

dt� dt

a 	 t 	 bz � t�x�t�, y�t��y � y�t�x � x�t�

CC1

a 	 t 	 by � y�t�x � x�t�

�x, y, t�x, y��RQP

� yy
D

 ����R

�y
�

�Q

�z � 
�z

�x
� ��P

�z
�

�R

�x � 
�z

�y
� ��Q

�x
�

�P

�y �� dA 

yy
S

 curl F � dS2

curl F
FS
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EXAMPLE 1 Evaluate , where and is the
curve of intersection of the plane and the cylinder . (Orient to
be counterclockwise when viewed from above.)

SOLUTION The curve (an ellipse) is shown in Figure 3. Although could be 
evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

Although there are many surfaces with boundary C, the most convenient choice is the
elliptical region S in the plane that is bounded by . If we orient upward,
then has the induced positive orientation. The projection of on the -plane is the
disk and so using Equation 16.7.10 with , we have

M

EXAMPLE 2 Use Stokes’ Theorem to compute the integral , where
and is the part of the sphere that 

lies inside the cylinder and above the -plane. (See Figure 4.)

SOLUTION To find the boundary curve we solve the equations and
. Subtracting, we get and so (since ). Thus is the

circle given by the equations , . A vector equation of is

so

Also, we have

Therefore, by Stokes’ Theorem,

M � s3  y
2�

0
 0 dt � 0

 � y
2�

0
 (�s3  cos t sin t � s3  sin t cos t) dt

 yy
S

 curl F � dS � y
C
 F � dr � y

2�

0
 F�r�t�� � r��t� dt

F�r�t�� � s3  cos t i � s3  sin t j � cos t sin t k

 r��t� � �sin t i � cos t j

0 	 t 	 2� r�t� � cos t i � sin t j � s3  k

Cz � s3 x 2 � y 2 � 1
Cz � 0z � s3 z2 � 3x 2 � y 2 � 1

x 2 � y 2 � z2 � 4C

xyx 2 � y 2 � 1
x 2 � y 2 � z2 � 4SF�x, y, z� � xz i � yz j � xy k

xxS curl F � dSV

 � 1
2 �2�� � 0 � �

 � y
2�

0

 � r 2

2
� 2 

r 3

3
 sin ��

0

1

 d� � y
2�

0
 ( 1

2 �
2
3 sin �) d�

 � y
2�

0
 y

1

0
 �1 � 2r sin �� r dr d�

 y
C
 F � dr � yy

S

 curl F � dS � yy
D

 �1 � 2y� dA

z � t�x, y� � 2 � yx 2 � y 2 	 1
xySDC

SCy � z � 2

curl F � 
 i
�

�x

�y 2

j
�

�y

x

k
�

�z

z2 
 � �1 � 2y� k

x
C
 F � drC

Cx 2 � y 2 � 1y � z � 2
CF�x, y, z� � �y 2 i � x j � z2 kx

C
 F � drV
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Note that in Example 2 we computed a surface integral simply by knowing the values
of on the boundary curve . This means that if we have another oriented surface with the
same boundary curve , then we get exactly the same value for the surface integral!

In general, if and are oriented surfaces with the same oriented boundary curve 
and both satisfy the hypotheses of Stokes’ Theorem, then

This fact is useful when it is difficult to integrate over one surface but easy to integrate over
the other.

We now use Stokes’ Theorem to throw some light on the meaning of the curl vector.
Suppose that is an oriented closed curve and represents the velocity field in fluid flow.
Consider the line integral

and recall that is the component of in the direction of the unit tangent vector .
This means that the closer the direction of is to the direction of , the larger the value of

. Thus is a measure of the tendency of the fluid to move around and is
called the circulation of around . (See Figure 5.)

Now let be a point in the fluid and let be a small disk with radius and
center Then ( for all points on because is con-
tinuous. Thus, by Stokes’ Theorem, we get the following approximation to the circulation
around the boundary circle :

This approximation becomes better as and we have

Equation 4 gives the relationship between the curl and the circulation. It shows that
is a measure of the rotating effect of the fluid about the axis n. The curling effect

is greatest about the axis parallel to .
Finally, we mention that Stokes’ Theorem can be used to prove Theorem 16.5.4 (which

states that if on all of , then is conservative). From our previous work
(Theorems 16.3.3 and 16.3.4), we know that is conservative if for every
closed path . Given , suppose we can find an orientable surface whose boundary is 

. (This can be done, but the proof requires advanced techniques.) Then Stokes’ Theorem
gives

A curve that is not simple can be broken into a number of simple curves, and the integrals
around these simple curves are all 0. Adding these integrals, we obtain for
any closed curve .C

x
C
 F � dr � 0

y
C
 F � dr � yy

S

 curl F � dS � yy
S

 0 � dS � 0

C
SCC

0x
C
 F � dr �F

F� 3curl F � 0

curl v
curl v � n

curl v�P0 � � n�P0 � � lim 
a l 0

 
1

�a 2  y
Ca

 v � dr4

a l 0

 	 yy
Sa

 curl v�P0 � � n�P0 � dS � curl v�P0 � � n�P0 ��a 2

 y
Ca

 v � dr � yy
Sa

 curl v � dS � yy
Sa

 curl v � n dS

Ca

curl FSaPcurl F��P� 	 �curl F��P0�P0.
aSaP0�x0, y0, z0 �

Cv
Cx

C
 v � drv � T

Tv
Tvv � T

y
C
 v � dr � y

C
 v � T ds

vC

yy
S1

 curl F � dS � y
C
 F � dr � yy

S2

 curl F � dS3

CS2S1

C
CF
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N Imagine a tiny paddle wheel placed in the 
fluid at a point , as in Figure 6; the paddle
wheel rotates fastest when its axis is parallel 
to .curl v

P

FIGURE 6

curl v

FIGURE 5

T

v

C

T

vC

(b) j
C
 v � dr<0, negative circulation

(a) j
C
 v � dr>0, positive circulation
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10. , is the curve of intersection
of the plane and the cylinder 

11. (a) Use Stokes’ Theorem to evaluate , where

and is the curve of intersection of the plane
and the cylinder oriented

counterclockwise as viewed from above.

; (b) Graph both the plane and the cylinder with domains 
chosen so that you can see the curve and the surface 
that you used in part (a).

; (c) Find parametric equations for and use them to graph .

12. (a) Use Stokes’ Theorem to evaluate , where
and is the curve of

intersection of the hyperbolic paraboloid and
the cylinder oriented counterclockwise as
viewed from above.

; (b) Graph both the hyperbolic paraboloid and the cylinder with
domains chosen so that you can see the curve and the
surface that you used in part (a).

; (c) Find parametric equations for and use them to graph .

13–15 Verify that Stokes’ Theorem is true for the given vector 
field and surface .

13. ,
is the part of the paraboloid that lies below the

plane oriented upward

14. ,
is the part of the plane that lies in the first

octant, oriented upward

,
is the hemisphere , , oriented in the

direction of the positive -axis

16. Let be a simple closed smooth curve that lies in the plane
. Show that the line integral

depends only on the area of the region enclosed by and not
on the shape of or its location in the plane.

17. A particle moves along line segments from the origin to 
the points , , , and back to the 
origin under the influence of the force field 

Find the work done.

F�x, y, z� � z 2 i � 2xy j � 4y 2 k

�0, 2, 1��1, 2, 1��1, 0, 0�

C
C

xC z dx � 2x dy � 3y dz

x � y � z � 1
C

y
y � 0x 2 � y 2 � z 2 � 1S

F�x, y, z� � y i � z j � x k15.

2x � y � z � 2S
F�x, y, z� � x i � y j � xyz k

z � 1,
z � x 2 � y 2S

F�x, y, z� � y 2 i � x j � z2 k

SF

CC

C

x 2 � y 2 � 1
z � y 2 � x 2

CF�x, y, z� � x 2 y i �
1
3 x 3 j � xy k

xC F � dr

CC

C

x 2 � y 2 � 9x � y � z � 1
C

F�x, y, z� � x 2z i � xy 2 j � z2 k

xC F � dr

x 2 � y 2 � 9x � z � 5
CF�x, y, z� � xy i � 2z j � 3y kA hemisphere and a portion of a paraboloid are shown.

Suppose is a vector field on whose components have con-
tinuous partial derivatives. Explain why

2–6 Use Stokes’ Theorem to evaluate .

2. ,
is the hemisphere , , oriented 

upward

3. ,
is the part of the paraboloid that lies inside the

cylinder , oriented upward

4. ,
is the part of the cone that lies between the

planes and , oriented in the direction of the
positive -axis

,
consists of the top and the four sides (but not the bottom) 

of the cube with vertices , oriented outward
[Hint: Use Equation 3.]

6. ,
is the hemisphere , oriented in the direc-

tion of the positive -axis [Hint: Use Equation 3.]

7–10 Use Stokes’ Theorem to evaluate . In each case is
oriented counterclockwise as viewed from above.

,
is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

8. ,
is the boundary of the part of the plane 

in the first octant

9. ,
is the circle x 2 � y 2 � 16, z � 5C

F�x, y, z� � yz i � 2xz j � e xy k

2x � y � 2z � 2C
F�x, y, z� � e�x i � e x j � e z k

C
F�x, y, z� � �x � y 2 � i � �y � z2 � j � �z � x 2 � k7.

CxC F � dr

x
x � s1 � y 2 � z 2 S

F�x, y, z� � e xy cos z i � x 2z j � xy k

�
1, 
1, 
1�
S
F�x, y, z� � xyz i � xy j � x 2 yz k5.

y
y � 3y � 0

y 2 � x 2 � z 2S
F�x, y, z� � x 2 y 3z i � sin�xyz� j � xyz k

x 2 � y2 � 4
z � x 2 � y2S

F�x, y, z� � x 2z2 i � y2z2 j � xyz k

z � 0x 2 � y 2 � z2 � 9S
F�x, y, z� � 2y cos z i � e x sin z j � xe y k

xxS curl F � dS

H

4

z

x y22

P

4

z

x y22

yy
H

 curl F � dS � yy
P

 curl F � dS

�3F
PH1.

EXERCISES16.8



20. Suppose and satisfy the hypotheses of Stokes’ Theorem
and , have continuous second-order partial derivatives. Use
Exercises 24 and 26 in Section 16.5 to show the following.

(a)

(b)

(c) xC � f �t � t� f � � dr � 0

xC � f � f � � dr � 0

x
C
 � f �t� � dr � xx

S
 �� f � �t� � dS

tf
CS18. Evaluate 

where is the curve , .
[Hint: Observe that lies on the surface .]

If is a sphere and satisfies the hypotheses of Stokes’
Theorem, show that .xxS curl F � dS � 0

FS19.

z � 2xyC
0 � t � 2�r�t� � �sin t, cos t, sin 2t �C

xC �y � sin x� dx � �z2 � cos y� dy � x 3 dz
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Although two of the most important theorems in vector calculus are named after George Green 
and George Stokes, a third man, William Thomson (also known as Lord Kelvin), played a large
role in the formulation, dissemination, and application of both of these results. All three men 
were interested in how the two theorems could help to explain and predict physical phenomena 
in electricity and magnetism and fluid flow. The basic facts of the story are given in the margin
notes on pages 1056 and 1093.

Write a report on the historical origins of Green’s Theorem and Stokes’ Theorem. Explain the
similarities and relationship between the theorems. Discuss the roles that Green, Thomson, and
Stokes played in discovering these theorems and making them widely known. Show how both
theorems arose from the investigation of electricity and magnetism and were later used to study a
variety of physical problems.

The dictionary edited by Gillispie [2] is a good source for both biographical and scientific 
information. The book by Hutchinson [5] gives an account of Stokes’ life and the book by 
Thompson [8] is a biography of Lord Kelvin. The articles by Grattan-Guinness [3] and Gray [4]
and the book by Cannell [1] give background on the extraordinary life and works of Green. 
Additional historical and mathematical information is found in the books by Katz [6] and 
Kline [7].

1. D. M. Cannell, George Green, Mathematician and Physicist 1793–1841: The Background to
His Life and Work (Philadelphia: Society for Industrial and Applied Mathematics, 2001).

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See the
article on Green by P. J. Wallis in Volume XV and the articles on Thomson by Jed Buchwald
and on Stokes by E. M. Parkinson in Volume XIII.

3. I. Grattan-Guinness, “Why did George Green write his essay of 1828 on electricity and 
magnetism?” Amer. Math. Monthly, Vol. 102 (1995), pp. 387–396.

4. J. Gray, “There was a jolly miller.” The New Scientist, Vol. 139 (1993), pp. 24–27.

5. G. E. Hutchinson, The Enchanted Voyage and Other Studies (Westport, CT : Greenwood 
Press, 1978).

6. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993), 
pp. 678–680.

7. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), pp. 683–685.

8. Sylvanus P. Thompson, The Life of Lord Kelvin (New York: Chelsea, 1976).

THREE MEN AND TWO THEOREMSW R I T I N G
P R O J E C T

N The photograph shows a stained-glass 
window at Cambridge University in honor of
George Green.

Courtesy of the Masters and Fellows of Gonville and 
Caius College, University of Cambridge, England

www.stewartcalculus.com
The Internet is another source of infor-
mation for this project. Click on History 
of Mathematics. Follow the links to the 
St. Andrew’s site and that of the British
Society for the History of Mathematics.



THE DIVERGENCE THEOREM

In Section 16.5 we rewrote Green’s Theorem in a vector version as

where is the positively oriented boundary curve of the plane region . If we were seek-
ing to extend this theorem to vector fields on , we might make the guess that

where is the boundary surface of the solid region . It turns out that Equation 1 is true,
under appropriate hypotheses, and is called the Divergence Theorem. Notice its similarity
to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a derivative of a
function ( in this case) over a region to the integral of the original function over the
boundary of the region.

At this stage you may wish to review the various types of regions over which we were
able to evaluate triple integrals in Section 15.6. We state and prove the Divergence Theo-
rem for regions that are simultaneously of types 1, 2, and 3 and we call such regions 
simple solid regions. (For instance, regions bounded by ellipsoids or rectangular boxes are
simple solid regions.) The boundary of is a closed surface, and we use the convention,
introduced in Section 16.7, that the positive orientation is outward; that is, the unit normal
vector is directed outward from .

THE DIVERGENCE THEOREM Let be a simple solid region and let S be the bound-
ary surface of E, given with positive (outward) orientation. Let be a vector field
whose component functions have continuous partial derivatives on an open region
that contains . Then

Thus the Divergence Theorem states that, under the given conditions, the flux of 
across the boundary surface of is equal to the triple integral of the divergence of 

over .

PROOF Let . Then

so

If is the unit outward normal of , then the surface integral on the left side of the Sn

yyy
E

 div F dV � yyy
E

 
�P

�x
 dV � yyy

E

 
�Q

�y
 dV � yyy

E

 
�R

�z
 dV

div F �
�P

�x
�

�Q

�y
�

�R

�z

F � P i � Q j � R k

EF
E

F

yy
S

 F � dS � yyy
E

 div F dV

E

F
E

En

E

E

Fdiv F

ES

yy
S

 F � n dS � yyy
E

 div F�x, y, z� dV1

� 3
DC

y
C
 F � n ds � yy

D

 div F�x, y� dA

16.9
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N The Divergence Theorem is sometimes called
Gauss’s Theorem after the great German mathe-
matician Karl Friedrich Gauss (1777–1855), who
discovered this theorem during his investigation
of electrostatics. In Eastern Europe the Diver-
gence Theorem is known as Ostrogradsky’s 
Theorem after the Russian mathematician
Mikhail Ostrogradsky (1801–1862), who pub-
lished this result in 1826.



Divergence Theorem is

Therefore, to prove the Divergence Theorem, it suffices to prove the following three
equations:

To prove Equation 4 we use the fact that is a type 1 region:

where is the projection of onto the -plane. By Equation 15.6.6, we have

and therefore, by the Fundamental Theorem of Calculus,

The boundary surface consists of three pieces: the bottom surface , the top surface
, and possibly a vertical surface , which lies above the boundary curve of D. (See

Figure 1. It might happen that doesn’t appear, as in the case of a sphere.) Notice that
on we have , because k is vertical and n is horizontal, and so

Thus, regardless of whether there is a vertical surface, we can write

The equation of is , , and the outward normal points
upward, so from Equation 16.7.10 (with replaced by ) we have

On we have , but here the outward normal points downward, so nz � u1�x, y�S1

yy
S2

 R k � n dS � yy
D

 R(x, y, u2�x, y�) dA

R kF
n�x, y� � Dz � u2�x, y�S2

yy
S

 R k � n dS � yy
S1

 R k � n dS � yy
S2

 R k � n dS6

yy
S3

 R k � n dS � yy
S3

 0 dS � 0

k � n � 0S3

S3

S3S2

S1S

yyy
E

 
�R

�z
 dV � yy

D

 [R(x, y, u2�x, y�) � R(x, y, u1�x, y�)] dA5

yyy
E

 
�R

�z
 dV � yy

D

 �y
u2�x, y�

u1�x, y�
 
�R

�z
 �x, y, z� dz� dA

xyED

E � ��x, y, z� 	 �x, y� � D, u1�x, y� � z � u2�x, y�

E

 yy
S

 R k � n dS � yyy
E

 
�R

�z
 dV4

 yy
S

 Q j � n dS � yyy
E

 
�Q

�y
 dV3

 yy
S

 P i � n dS � yyy
E

 
�P

�x
 dV2

 � yy
S

 P i � n dS � yy
S

 Q j � n dS � yy
S

 R k � n dS

 yy
S

 F � dS � yy
S

 F � n dS � yy
S

 �P i � Q j � R k� � n dS
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we multiply by :

Therefore Equation 6 gives

Comparison with Equation 5 shows that

Equations 2 and 3 are proved in a similar manner using the expressions for as a type 2
or type 3 region, respectively. M

EXAMPLE 1 Find the flux of the vector field over the unit
sphere .

SOLUTION First we compute the divergence of :

The unit sphere is the boundary of the unit ball given by . Thus the
Divergence Theorem gives the flux as

M

EXAMPLE 2 Evaluate , where

and is the surface of the region bounded by the parabolic cylinder and
the planes , , and . (See Figure 2.)

SOLUTION It would be extremely difficult to evaluate the given surface integral directly.
(We would have to evaluate four surface integrals corresponding to the four pieces of .)
Furthermore, the divergence of is much less complicated than itself:

Therefore we use the Divergence Theorem to transform the given surface integral into a
triple integral. The easiest way to evaluate the triple integral is to express as a type 3
region:

E � ��x, y, z� 	 �1 � x � 1, 0 � z � 1 � x 2, 0 � y � 2 � z 


E

� y � 2y � 3y div F �
�

�x
 �xy� �

�

�y
 (y 2 � exz2) �

�

�z
 �sin xy�

FF
S

y � z � 2y � 0z � 0
z � 1 � x 2ES

F�x, y, z� � xy i � (y 2 � exz2) 

j � sin�xy� k

yy
S

 F � dSV

� V�B� � 4
3 � �1�3 �

4�

3
 yy
S

 F � dS � yyy
B

 div F dV � yyy
B

 1 dV

x 2 � y 2 � z2 � 1BS

div F �
�

�x
 �z� �

�

�y
 �y� �

�

�z
 �x� � 1

F

x 2 � y 2 � z2 � 1
F�x, y, z� � z i � y j � x kV

E

yy
S

 R k � n dS � yyy
E

 
�R

�z
 dV

yy
S

 R k � n dS � yy
D

 [R(x, y, u2�x, y�) � R(x, y, u1�x, y�)] dA

yy
S1

 R k � n dS � �yy
D

 R(x, y, u1�x, y�) dA

�1
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N Notice that the method of proof of the 
Divergence Theorem is very similar to that of
Green’s Theorem.

N The solution in Example 1 should be 
compared with the solution in Example 4 
in Section 16.7.
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Then we have

M

Although we have proved the Divergence Theorem only for simple solid regions, it can be
proved for regions that are finite unions of simple solid regions. (The procedure is similar
to the one we used in Section 16.4 to extend Green’s Theorem.)

For example, let’s consider the region that lies between the closed surfaces and ,
where lies inside . Let and be outward normals of and . Then the boundary
surface of is and its normal is given by on and on 
(See Figure 3.) Applying the Divergence Theorem to , we get

Let’s apply this to the electric field (see Example 5 in Section 16.1):

where is a small sphere with radius and center the origin. You can verify that
. (See Exercise 23.) Therefore Equation 7 gives

The point of this calculation is that we can compute the surface integral over because 
is a sphere. The normal vector at is . Therefore

since the equation of is . Thus we have

This shows that the electric flux of is through any closed surface that contains S24�	QE

�
	Q

a 2  4�a 2 � 4�	Q�
	Q

a 2  A�S1�

�
	Q

a 2  yy
S1

 dSyy
S2

 E � dS � yy
S1

 E � n dS

	 x 	 � aS1

�
	Q

	 x 	2 �
	Q

a 2 E � n �
	Q

	 x 	3  x � � x

	 x 	 � �
	Q

	 x 	4  x � x

x
	 x 	x
S1S1

� yy
S1

 E � dS � yy
S1

 E � n dS yy
S2

 E � dS � yy
S1

 E � dS � yyy
E

 div E dV

div E � 0
aS1

E�x� �
	Q

	 x 	3  x

 � �yy
S1

 F � dS � yy
S2

 F � dS

 � yy
S1

  F � ��n1� dS � yy
S2

 F � n2  dS

 yyy
E

 div F dV � yy
S

 F � dS � yy
S

 F � n dS7

S
S2.n � n2S1n � �n1nS � S1 � S2E

S2S1n2n1S2S1

S2S1E

� �y
1

0
 �x 6 � 3x 4 � 3x 2 � 7� dx � 184

35

� �
1
2 y

1

�1
 ��x 2 � 1�3 � 8� dx�

3

2
 y

1

�1

 ��
�2 � z�3

3 �
0

1�x2

dx

� 3 y
1

�1
 y

1�x2

0
 
�2 � z�2

2
 dz dx� 3 y

1

�1
 y

1�x2

0
 y

2�z

0
 y dy dz dx

yy
S

 F � dS � yyy
E

 div F dV � yyy
E

 3y dV
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the origin. [This is a special case of Gauss’s Law (Equation 16.7.11) for a single charge.
The relationship between and is .]

Another application of the Divergence Theorem occurs in fluid flow. Let be
the velocity field of a fluid with constant density . Then is the rate of flow per
unit area. If is a point in the fluid and is a ball with center and very small
radius , then for all points in since is continuous. We
approximate the flux over the boundary sphere as follows:

This approximation becomes better as and suggests that

Equation 8 says that is the net rate of outward flux per unit volume at . (This
is the reason for the name divergence.) If , the net flow is outward near and

is called a source. If , the net flow is inward near and is called a sink.
For the vector field in Figure 4, it appears that the vectors that end near are shorter

than the vectors that start near Thus the net flow is outward near so 
and is a source. Near on the other hand, the incoming arrows are longer than the 
outgoing arrows. Here the net flow is inward, so and is a sink. We 
can use the formula for F to confirm this impression. Since , we have

, which is positive when . So the points above the line 
are sources and those below are sinks.

y � �xy 
 �xdiv F � 2x � 2y
F � x 2 i � y 2 j

P2div F�P2 � � 0
P2,P1

div F�P1� 
 0P1,P1.
P1

PPdiv F�P� � 0P
Pdiv F�P� 
 0

P0div F�P0 �

div F�P0 � � lim 
a l 0

 
1

V�Ba �
 yy

Sa

 F � dS8

a l 0

� div F�P0 �V�Ba �� yyy
Ba

 div F�P0 � dVyy
Sa

 F � dS � yyy
Ba

 div F dV

Sa

div FBadiv F�P� � div F�P0 �a
P0BaP0�x0, y0, z0 �

F � �v�
v�x, y, z�

	 � 1
�4�	0 �	0	
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FIGURE 4
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y

x

,
is the surface of the solid bounded by the cylinder

and the planes and 

8. ,
is the surface of the solid bounded by the hyperboloid

and the planes and 

,
is the ellipsoid 

10. ,
is the surface of the tetrahedron bounded by the planes

, , and 

11. ,
is the surface of the solid bounded by the paraboloid

and the plane 

12. ,
is the surface of the solid bounded by the cylinder

and the planes and 

13. ,
is the sphere with radius and center the originRS

F�x, y, z� � 4x 3z i � 4y 3z j � 3z 4 k

z � 0z � x � 2x 2 � y 2 � 1
S
F�x, y, z� � x 4 i � x 3z 2 j � 4xy 2z k

z � 4z � x 2 � y 2
S
F�x, y, z� � �cos z � xy 2� i � xe�z j � �sin y � x 2z� k

x � 2y � z � 2z � 0y � 0x � 0,
S
F�x, y, z� � x 2y i � xy 2 j � 2xyz k

x 2
a2 � y 2
b2 � z 2
c2 � 1S
F�x, y, z� � xy sin z i � cos�xz� j � y cos z k9.

z � 2z � �2x 2 � y 2 � z2 � 1
S
F�x, y, z� � x 3y i � x 2y 2 j � x 2yz k

x � 2x � �1y 2 � z2 � 1
S
F�x, y, z� � 3xy 2 i � xe z j � z3 k7.1–4 Verify that the Divergence Theorem is true for the vector field

on the region .

,
is the cube bounded by the planes , , ,

, , and 

2. ,
is the solid bounded by the paraboloid 

and the -plane

3. ,
is the solid cylinder , 

4. ,
is the unit ball 

5–15 Use the Divergence Theorem to calculate the surface integral
; that is, calculate the flux of across .

5. ,
is the surface of the box bounded by the planes , 

, , , , and 

6. ,
is the surface of the box with vertices �
1, 
2, 
3�S

F�x, y, z� � x 2z3 i � 2xyz3 j � xz4 k

z � 2z � 0y � 1y � 0x � 1
x � 0S

F�x, y, z� � e x sin y i � e x cos y j � yz2 k

SFxxS F � dS

x 2 � y 2 � z2 � 1E
F�x, y, z� � x i � y j � z k

0 � z � 1x 2 � y 2 � 1E
F�x, y, z� � xy i � yz j � zx k

xy
z � 4 � x 2 � y 2E

F�x, y, z� � x 2 i � xy j � z k

z � 1z � 0y � 1
y � 0x � 1x � 0E

F�x, y, z� � 3x i � xy j � 2xz k1.

EF

EXERCISES16.9



22.

23. Verify that for the electric field .

24. Use the Divergence Theorem to evaluate 
where is the sphere 

25–30 Prove each identity, assuming that and satisfy the con-
ditions of the Divergence Theorem and the scalar functions and
components of the vector fields have continuous second-order 
partial derivatives.

, where is a constant vector

26. , where 

27.

28.

29.

30.

31. Suppose and satisfy the conditions of the Divergence The-
orem and is a scalar function with continuous partial deriva-
tives. Prove that

These surface and triple integrals of vector functions are 
vectors defined by integrating each component function.
[Hint: Start by applying the Divergence Theorem to ,
where is an arbitrary constant vector.]

32. A solid occupies a region with surface and is immersed in
a liquid with constant density . We set up a coordinate
system so that the -plane coincides with the surface of the
liquid and positive values of are measured downward into
the liquid. Then the pressure at depth is , where is
the acceleration due to gravity (see Section 6.5). The total
buoyant force on the solid due to the pressure distribution is
given by the surface integral

where is the outer unit normal. Use the result of Exercise 31
to show that , where is the weight of the liquid
displaced by the solid. (Note that is directed upward
because is directed downward.) The result is Archimedes’
principle: The buoyant force on an object equals the weight of
the displaced liquid.

z
F

WF � �Wk
n

F � �yy
S

 pn dS

tp � �tzz
z

xy
�

SE

c
F � f c

yy
S

 f n dS � yyy
E

 � f dV

f
ES

yy
S

 � f �t � t� f � � n dS � yyy
E

 � f � 2
t � t� 2f � dV

yy
S

 � f �t� � n dS � yyy
E

 � f � 2
t � � f � �t� dV

yy
S

 Dn f dS � yyy
E

 � 2f dV

yy
S

 curl F � dS � 0

F�x, y, z� � x i � y j � z kV�E � � 1
3 yy

S

 F � dS

ayy
S

 a � n dS � 025.

ES

x 2 � y 2 � z2 � 1.S
xx

S
 �2x � 2y � z2� dS

E�x� �
	Q

	 x 	3  xdiv E � 0

F�x, y� � �x 2, y 2 �14. , where , 
consists of the hemisphere and the 

disk in the -plane

15. ,
is the surface of the solid that lies above the -plane 

and below the surface , 

16. Use a computer algebra system to plot the vector field

in the cube cut from the first octant by the planes ,
, and . Then compute the flux across the 

surface of the cube.

17. Use the Divergence Theorem to evaluate , where 

and is the top half of the sphere .
[Hint: Note that is not a closed surface. First compute 
integrals over and , where is the disk ,
oriented downward, and .]

18. Let . 
Find the flux of across the part of the paraboloid

that lies above the plane and is 
oriented upward.

A vector field is shown. Use the interpretation of diver-
gence derived in this section to determine whether 
is positive or negative at and at 

20. (a) Are the points and sources or sinks for the vector
field shown in the figure? Give an explanation based
solely on the picture.

(b) Given that , use the definition of diver-
gence to verify your answer to part (a).

21–22 Plot the vector field and guess where and
where . Then calculate to check your guess.

21. F�x, y� � �xy, x � y 2 �

div Fdiv F � 0
div F 
 0CAS

2

_2

_2 2

P¡

P™

F�x, y� � �x, y 2�

F
P2P1

2

_2

_2 2

P¡

P™

P2.P1

div F
F19.

z � 1x 2 � y 2 � z � 2
F

F�x, y, z� � z tan�1�y 2 � i � z3 ln�x 2 � 1� j � z k

S2 � S � S1

x 2 � y 2 � 1S1S2S1

S
x 2 � y 2 � z2 � 1S

F�x, y, z� � z2x i � ( 1
3 y

3 � tan z) j � �x 2z � y 2 � k
xxS F � dS

z � �
2y � �
2
x � �
2

F�x, y, z� � sin x cos2 y i � sin3y cos4z j � sin5z cos6x k
CAS

�1 � y � 1
�1 � x � 1,z � 2 � x 4 � y 4

xyS
F�x, y, z� � e y tan z i � ys3 � x 2  j � x sin y kCAS

xyx 2 � y2 � 1
z � s1 � x 2 � y 2 S

r � x i � y j � z kF � r
	 r 	
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SUMMARY

The main results of this chapter are all higher-dimensional versions of the Fundamental
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in
each case we have an integral of a “derivative” over a region on the left side, and the right
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem E

S

n

nyyy
E

 div F dV � yy
S

 F � dS

C

S

n

yy
S

 curl F � dS � y
C
 F � dr

C

Dyy
D

 ��Q

�x
�

�P

�y � dA � y
C
 P dx � Q dy

r(a)

r(b)

C
y

C
 � f � dr � f �r�b�� � f �r�a��

a by
b

a
 F��x� dx � F�b� � F�a�

16.10
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REVIEW

C O N C E P T  C H E C K

16

(c) If is a velocity field in fluid flow, what are the physical
interpretations of curl and div ?

10. If , how do you test to determine whether is
conservative? What if is a vector field on ?

11. (a) What is a parametric surface? What are its grid curves?
(b) Write an expression for the area of a parametric surface.
(c) What is the area of a surface given by an equation

?

12. (a) Write the definition of the surface integral of a scalar func-
tion over a surface .

(b) How do you evaluate such an integral if is a parametric
surface given by a vector function ?

(c) What if is given by an equation ?
(d) If a thin sheet has the shape of a surface , and the density

at is , write expressions for the mass and
center of mass of the sheet.

13. (a) What is an oriented surface? Give an example of a non-
orientable surface.

(b) Define the surface integral (or flux) of a vector field F over
an oriented surface S with unit normal vector n.

(c) How do you evaluate such an integral if S is a parametric
surface given by a vector function ?

(d) What if S is given by an equation ?

14. State Stokes’ Theorem.

15. State the Divergence Theorem.

16. In what ways are the Fundamental Theorem for Line Integrals,
Green’s Theorem, Stokes’ Theorem, and the Divergence 
Theorem similar?

z � t�x, y�
r�u, v�

��x, y, z��x, y, z�
S

z � t�x, y�S
r�u, v�

S
Sf

z � t�x, y�

�3F
FF � P i � Q j

FF
F1. What is a vector field? Give three examples that have physical

meaning.

2. (a) What is a conservative vector field?
(b) What is a potential function?

3. (a) Write the definition of the line integral of a scalar function
along a smooth curve with respect to arc length.

(b) How do you evaluate such a line integral?
(c) Write expressions for the mass and center of mass of a thin

wire shaped like a curve if the wire has linear density
function .

(d) Write the definitions of the line integrals along of a
scalar function with respect to , , and .

(e) How do you evaluate these line integrals?

4. (a) Define the line integral of a vector field along a smooth
curve given by a vector function .

(b) If is a force field, what does this line integral represent?
(c) If , what is the connection between the line

integral of and the line integrals of the component func-
tions , , and ?

5. State the Fundamental Theorem for Line Integrals.

6. (a) What does it mean to say that is independent 
of path?

(b) If you know that is independent of path, what can
you say about ?

7. State Green’s Theorem.

8. Write expressions for the area enclosed by a curve in terms
of line integrals around .

9. Suppose is a vector field on .
(a) Define curl .
(b) Define div .F

F
�3F

C
C

F
xC F � dr

xC F � dr

RQP
F

F � �P, Q, R�
F

r�t�C
F

zyxf
C

��x, y�
C

Cf

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If is a vector field, then div is a vector field.

2. If is a vector field, then curl is a vector field.

3. If has continuous partial derivatives of all orders on , then
.

4. If has continuous partial derivatives on and is any 
circle, then .x

C
 � f � dr � 0

C� 3f

� f � � 0div�curl
� 3f

FF

FF

5. If and in an open region , then is
conservative.

6.

7. If is a sphere and is a constant vector field, then
.

8. There is a vector field such that

curl F � x i � y j � z k

F

xx
S
 F � dS � 0

FS

x
�C f �x, y� ds � �xC f �x, y� ds

FDPy � QxF � P i � Q j

T R U E - F A L S E  Q U I Z
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1. A vector field , a curve , and a point are shown.
(a) Is positive, negative, or zero? Explain.
(b) Is positive, negative, or zero? Explain.

2–9 Evaluate the line integral.

2. ,
is the arc of the parabola from (0, 0) to (1, 1)

3. ,
: , , ,

4. , is the ellipse with
counterclockwise orientation

5. , is the arc of the parabola 
from to 

6. ,
is given by , 

7. ,
is the line segment from , to 

8. , where and is given by
, 

9. , where and 
is given by , 

10. Find the work done by the force field
in moving a particle from the

point to the point along
(a) a straight line
(b) the helix , ,

11–12 Show that is a conservative vector field. Then find a func-
tion such that .

11.

12. F�x, y, z� � sin y i � x cos y j � sin z k

F�x, y� � �1 � xy�e xy i � �e y � x 2e xy � j

F � ∇ ff
F

z � 3 sin ty � tx � 3 cos t

�0, �
2, 3��3, 0, 0�
F�x, y, z� � z i � x j � y k

0 � t � 1r�t� � t 2 i � t 3 j � t kC
F�x, y, z� � e z i � xz j � �x � y� kx

C
 F � dr

0 � t � �r�t� � sin t i � �1 � t� j
CF�x, y� � xy i � x 2 jxC F � dr

�3, 4, 2��1, 0, �1�C
xC xy dx � y 2 dy � yz dz

0 � t � 1r�t� � t 4 i � t 2 j � t 3 kC
xC sxy dx � e y dy � xz dz

�0, 1��0, �1�
x � 1 � y 2CxC y 3 dx � x 2 dy

4x 2 � 9y 2 � 36CxC y dx � �x � y 2� dy

0 � t � �z � 3 sin ty � 3 cos tx � tC
xC yz cos x ds

y � x 2C
xC x ds

y

x

P

C

div F�P�
x

C
 F � dr

PCF 13–14 Show that is conservative and use this fact to evaluate
along the given curve.

13. ,
: ,

14. ,
is the line segment from to 

15. Verify that Green’s Theorem is true for the line integral
, where consists of the parabola 

from to and the line segment from to
.

16. Use Green’s Theorem to evaluate ,
where is the triangle with vertices , , and 

17. Use Green’s Theorem to evaluate , 
where is the circle with counterclockwise 
orientation.

18. Find curl and div if

19. Show that there is no vector field such that
.

20. Show that, under conditions to be stated on the vector fields 
and ,

21. If is any piecewise-smooth simple closed plane curve 
and and are differentiable functions, show that

.

22. If and are twice differentiable functions, show that

23. If is a harmonic function, that is, , show that the line
integral is independent of path in any simple
region .

24. (a) Sketch the curve with parametric equations

(b) Find .

25. Find the area of the part of the surface that lies
above the triangle with vertices , , and .

26. (a) Find an equation of the tangent plane at the point
to the parametric surface S given by

, �3 � v � 30 � u � 3r�u, v� � v2 i � uv j � u 2 k

�4, �2, 1�

�1, 2��1, 0��0, 0�
z � x 2 � 2y

x
C
 2xe 2y dx � �2x 2e 2y � 2y cot z� dy � y 2 csc2z dz

0 � t � 2�z � sin ty � sin tx � cos t

C

D
x fy dx � fx dy

� 2 f � 0f

� 2� ft� � f � 2
t � t� 2f � 2� f � �t

tf

xC f �x� dx � t�y� dy � 0
tf

C

curl�F � G� � F div G � G div F � �G � � �F � �F � � �G

G
F

curl G � 2x i � 3yz j � xz2 k
G

F�x, y, z� � e�x sin y i � e�y sin z j � e�z sin x k

FF

x 2 � y 2 � 4C
xC x 2 y dx � xy 2 dy

�1, 3�.�1, 0��0, 0�C
xC s1 � x 3  dx � 2xy dy

��1, 1�
�1, 1��1, 1���1, 1�

y � x 2Cx
C
 xy 2 dx � x 2 y dy

�4, 0, 3��0, 2, 0�C
F�x, y, z� � e y i � �xe y � e z� j � ye z k

0 � t � 1r�t� � �t � sin � t� i � �2t � cos � t� jC
F�x, y� � �4x 3y 2 � 2xy 3� i � �2x 4 y � 3x 2y 2 � 4y 3� j

x
C
 F � dr

F

E X E R C I S E S
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Evaluate , where is the curve with initial point
and terminal point shown in the figure.

38. Let

Evaluate , where is shown in the figure.

39. Find , where and is
the outwardly oriented surface shown in the figure (the
boundary surface of a cube with a unit corner cube removed).

40. If the components of have continuous second partial deriva-
tives and is the boundary surface of a simple solid region,
show that .

41. If is a constant vector, , and is an ori-
ented, smooth surface with a simple, closed, smooth,
positively oriented boundary curve , show that

yy
S

 2a � dS � y
C
 �a � r� � dr

C

Sr � x i � y j � z ka

xx
S
 curl F � dS � 0

S
F

(0, 2, 2)

(2, 0, 2)

(2, 2, 0)S

y

z

x

1

1
1

SF�x, y, z� � x i � y j � z kxxS F � n dS

0 x

y

C

C�xC F � dr

F�x, y� �
�2x 3 � 2xy 2 � 2y� i � �2y 3 � 2x 2 y � 2x� j

x 2 � y 2

0

(0, 0, 2)

(0, 3, 0)

(1, 1, 0)

(3, 0, 0)

z

x

y

�0, 3, 0��0, 0, 2�
CxC F � dr; (b) Use a computer to graph the surface and the tangent

plane found in part (a).
(c) Set up, but do not evaluate, an integral for the surface area

of .
(d) If

find correct to four decimal places.

27–30 Evaluate the surface integral.

27. , where is the part of the paraboloid 
that lies under the plane 

28. , where is the part of the plane
that lies inside the cylinder 

29. , where and is
the sphere with outward orientation

30. , where and is the
part of the paraboloid below the plane 
with upward orientation 

31. Verify that Stokes’ Theorem is true for the vector field
, where is the part of the

paraboloid that lies above the -plane and
has upward orientation.

32. Use Stokes’ Theorem to evaluate , where
, is the part of the

sphere that lies above the plane , and
is oriented upward.

33. Use Stokes’ Theorem to evaluate , where
, and is the triangle with

vertices , , and , oriented counter-
clockwise as viewed from above.

34. Use the Divergence Theorem to calculate the surface integral
, where and is the

surface of the solid bounded by the cylinder and
the planes and .

35. Verify that the Divergence Theorem is true for the vector 
field , where is the unit ball

.

36. Compute the outward flux of

through the ellipsoid .

37. Let

F�x, y, z� � �3x 2 yz � 3y� i � �x 3z � 3x� j � �x 3 y � 2z� k

4x 2 � 9y 2 � 6z2 � 36

F�x, y, z� �
x i � y j � z k

�x 2 � y 2 � z2 �3
2

x 2 � y 2 � z2 � 1
EF�x, y, z� � x i � y j � z k

z � 2z � 0
x 2 � y 2 � 1

SF�x, y, z� � x 3 i � y 3 j � z3 kxxS F � dS

�0, 0, 1��0, 1, 0��1, 0, 0�
CF�x, y, z� � xy i � yz j � zx k

xC F � dr

S
z � 1x 2 � y 2 � z2 � 5

SF�x, y, z� � x 2 yz i � yz2 j � z3e xy k
xxS curl F � dS

S
xyz � 1 � x 2 � y 2

SF�x, y, z� � x 2 i � y 2 j � z2 k

z � 1z � x 2 � y 2
SF�x, y, z� � x 2 i � xy j � z kxxS F � dS

x 2 � y 2 � z2 � 4
SF�x, y, z� � xz i � 2y j � 3x kxxS F � dS

x 2 � y 2 � 4z � 4 � x � y
SxxS �x 2z � y 2z� dS

z � 4
z � x 2 � y 2SxxS z dS

xxS F � dS

F�x, y, z� �
z2

1 � x 2  i �
x 2

1 � y 2  j �
 y 2

1 � z2  k

CAS

S

S
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1109

1. Let be a smooth parametric surface and let be a point such that each line that starts 
at intersects at most once. The solid angle subtended by at is the set of lines
starting at and passing through . Let be the intersection of with the surface of
the sphere with center and radius . Then the measure of the solid angle (in steradians) is
defined to be

Apply the Divergence Theorem to the part of between and to show that

where is the radius vector from to any point on , , and the unit normal vector is
directed away from .

This shows that the definition of the measure of a solid angle is independent of the radius 
of the sphere. Thus the measure of the solid angle is equal to the area subtended on a unit
sphere. (Note the analogy with the definition of radian measure.) The total solid angle sub-
tended by a sphere at its center is thus steradians.

2. Find the positively oriented simple closed curve for which the value of the line integral
is a maximum.

3. Let be a simple closed piecewise-smooth space curve that lies in a plane with unit normal
vector and has positive orientation with respect to . Show that the plane area
enclosed by is .

; 4. Investigate the shape of the surface with parametric equations 
. Start by graphing the surface from several points of view. Explain the 

appearance of the graphs by determining the traces in the horizontal planes , ,
and .

5. Prove the following identity:

6. The figure depicts the sequence of events in each cylinder of a four-cylinder internal combus-
tion engine. Each piston moves up and down and is connected by a pivoted arm to a rotating
crankshaft. Let and be the pressure and volume within a cylinder at time , where

gives the time required for a complete cycle. The graph shows how and vary
through one cycle of a four-stroke engine. During the intake stroke (from ① to ②) a mixture
of air and gasoline at atmospheric pressure is drawn into a cylinder through the intake valve 
as the piston moves downward. Then the piston rapidly compresses the mix with the valves
closed in the compression stroke (from ② to ③) during which the pressure rises and the vol-
ume decreases. At ③ the sparkplug ignites the fuel, raising the temperature and pressure at
almost constant volume to ④. Then, with valves closed, the rapid expansion forces the piston
downward during the power stroke (from ④ to ⑤). The exhaust valve opens, temperature and
pressure drop, and mechanical energy stored in a rotating flywheel pushes the piston upward,
forcing the waste products out of the exhaust valve in the exhaust stroke. The exhaust valve
closes and the intake valve opens. We’re now back at ① and the cycle starts again.

(a) Show that the work done on the piston during one cycle of a four-stroke engine is
, where is the curve in the -plane shown in the figure.

[Hint: Let be the distance from the piston to the top of the cylinder and note that
the force on the piston is , where is the area of the top of the piston. Then

, where is given by . An alternative approach is 
to work directly with Riemann sums.]

(b) Use Formula 16.4.5 to show that the work is the difference of the areas enclosed by the
two loops of .C

r�t� � x�t� i, a � t � bC1W � x
C 1

 F � dr
AF � AP�t� i

x�t�
PVCW � x

C P dV

VPa � t � b
tV�t�P�t�

��F � G� � �F � ��G � �G � ��F � F � curl G � G � curl F

z � 

1
2

z � 
1z � 0
z � sin�u � v� 

y � sin v,x � sin u,

1
2 xC �bz � cy� dx � �cx � az� dy � �ay � bx� dz C

nn � �a, b, c�
C

xC �y3 � y� dx � 2x3 dy 
C

4�

a
P

nr � 	 r 	SPr

	 ��S � 	 � yy
S

 
r � n

r 3   dS

SS�a���S �

	 ��S � 	 �
area of S�a�

a2

aP
��S �S�a�SP

PS��S �SP
PS

P R O B L E M S  P L U S

P

S

S(a)

a
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The basic ideas of differential equations were explained in Chapter 9; there we concen-

trated on first-order equations. In this chapter we study second-order linear differential

equations and learn how they can be applied to solve problems concerning the vibrations

of springs and the analysis of electric circuits. We will also see how infinite series can be

used to solve differential equations.

Most of the solutions of the differential equation 
resemble sine functions when is negative but they all look like 
exponential functions when is large.x

x

y � � 4y � e3x

SECOND-ORDER 
DIFFERENTIAL EQUATIONS

17

x

y



SECOND-ORDER LINEAR EQUATIONS

A second-order linear differential equation has the form

where , , , and are continuous functions. We saw in Section 9.1 that equations of
this type arise in the study of the motion of a spring. In Section 17.3 we will further pur-
sue this application as well as the application to electric circuits.

In this section we study the case where , for all , in Equation 1. Such equa-
tions are called homogeneous linear equations. Thus the form of a second-order linear homo-
geneous differential equation is

If for some , Equation 1 is nonhomogeneous and is discussed in Section 17.2.
Two basic facts enable us to solve homogeneous linear equations. The first of these says

that if we know two solutions and of such an equation, then the linear combination
is also a solution.

THEOREM If and are both solutions of the linear homogeneous
equation (2) and and are any constants, then the function

is also a solution of Equation 2.

PROOF Since and are solutions of Equation 2, we have

and

Therefore, using the basic rules for differentiation, we have

Thus is a solution of Equation 2. My � c1y1 � c2y2

 � c1�0� � c2�0� � 0

 � c1�P�x�y1� � Q�x�y1� � R�x�y1� � c2 �P�x�y2� � Q�x�y2� � R�x�y2�

 � P�x��c1y1� � c2y2�� � Q�x��c1y1� � c2y2�� � R�x��c1y1 � c2y2�

 � P�x��c1y1 � c2y2�� � Q�x��c1y1 � c2y2�� � R�x��c1y1 � c2y2�

P�x�y� � Q�x�y� � R�x�y

 P�x�y2� � Q�x�y2� � R�x�y2 � 0

 P�x�y1� � Q�x�y1� � R�x�y1 � 0

y2y1

y�x� � c1y1�x� � c2y2�x�

c2c1

y2�x�y1�x�3

y � c1y1 � c2y2

y2y1

xG�x� � 0

P�x� 
d 2y

dx 2 � Q�x� 
dy

dx
� R�x�y � 02

xG�x� � 0

GRQP

P�x� 
d 2y

dx 2 � Q�x� 
dy

dx
� R�x�y � G�x�1

17.1

1111



The other fact we need is given by the following theorem, which is proved in more
advanced courses. It says that the general solution is a linear combination of two linearly
independent solutions and This means that neither nor is a constant multiple
of the other. For instance, the functions and are linearly dependent,
but and are linearly independent.

THEOREM If and are linearly independent solutions of Equation 2, and
is never 0, then the general solution is given by

where and are arbitrary constants.

Theorem 4 is very useful because it says that if we know two particular linearly inde-
pendent solutions, then we know every solution.

In general, it is not easy to discover particular solutions to a second-order linear equa-
tion. But it is always possible to do so if the coefficient functions , , and are constant
functions, that is, if the differential equation has the form

where , , and are constants and .
It’s not hard to think of some likely candidates for particular solutions of Equation 5 if

we state the equation verbally. We are looking for a function such that a constant times
its second derivative plus another constant times plus a third constant times is equal
to 0. We know that the exponential function (where is a constant) has the prop-
erty that its derivative is a constant multiple of itself: . Furthermore, .
If we substitute these expressions into Equation 5, we see that is a solution if

or

But is never 0. Thus is a solution of Equation 5 if is a root of the equation

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation . Notice that it is an algebraic equation that is obtained
from the differential equation by replacing by , by , and by .

Sometimes the roots and of the auxiliary equation can be found by factoring. In
other cases they are found by using the quadratic formula:

We distinguish three cases according to the sign of the discriminant .b 2 � 4ac

r2 �
�b � sb 2 � 4ac

2a
r1 �

�b � sb 2 � 4ac

2a
7

r2r1

1yry�r 2y�
ay� � by� � cy � 0

ar 2 � br � c � 06

ry � erxe rx

 �ar 2 � br � c�erx � 0

 ar 2erx � brerx � cerx � 0

y � erx
y� � r 2erxy� � re rx

ry � erx
yy�y�

y

a � 0cba

ay� � by� � cy � 05

RQP

c2c1

y�x� � c1y1�x� � c2y2�x�

P�x�
y2y14

t�x� � xexf �x� � ex
t�x� � 5x 2f �x� � x 2

y2y1y2.y1
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N CASE I
In this case the roots and of the auxiliary equation are real and distinct, so 
and are two linearly independent solutions of Equation 5. (Note that is not a
constant multiple of .) Therefore, by Theorem 4, we have the following fact.

If the roots and of the auxiliary equation are real and
unequal, then the general solution of is

EXAMPLE 1 Solve the equation .

SOLUTION The auxiliary equation is

whose roots are , . Therefore, by (8), the general solution of the given differen-
tial equation is

We could verify that this is indeed a solution by differentiating and substituting into the
differential equation. M

EXAMPLE 2 Solve .

SOLUTION To solve the auxiliary equation , we use the quadratic formula:

Since the roots are real and distinct, the general solution is

M

N CASE II
In this case ; that is, the roots of the auxiliary equation are real and equal. Let’s
denote by the common value of and Then, from Equations 7, we have

We know that is one solution of Equation 5. We now verify that is also
a solution:

 � 0�erx � � 0�xerx� � 0

 � �2ar � b�erx � �ar 2 � br � c�xerx

 ay2� � by2� � cy2 � a�2re rx � r 2xerx� � b�erx � rxe rx � � cxerx

y2 � xerxy1 � erx

2ar � b � 0sor � �
b

2a
9

r2.r1r
r1 � r2

b 2 � 4ac � 0

y � c1e (�1�s13 )x�6 � c2e (�1�s13 )x�6

r �
�1 � s13

6

3r 2 � r � 1 � 0

3 
d 2y

dx 2 �
dy

dx
� y � 0

y � c1e 2x � c2e�3x

�3r � 2

r 2 � r � 6 � �r � 2��r � 3� � 0

y� � y� � 6y � 0

y � c1er1x � c2er2 x

ay� � by� � cy � 0
ar 2 � br � c � 0r2r18

er1x
e r2 xy2 � er2 x

y1 � er1xr2r1

b2 � 4ac � 0

SECTION 17.1 SECOND-ORDER LINEAR EQUATIONS | | | | 1113
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FIGURE 1

N In Figure 1 the graphs of the basic solutions
and of the differential

equation in Example 1 are shown in blue and
red, respectively. Some of the other solutions, 
linear combinations of and , are shown 
in black.
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The first term is 0 by Equations 9; the second term is 0 because is a root of the auxiliary
equation. Since and are linearly independent solutions, Theorem 4 pro-
vides us with the general solution.

If the auxiliary equation has only one real root , then the
general solution of is

EXAMPLE 3 Solve the equation .

SOLUTION The auxiliary equation can be factored as

so the only root is . By (10), the general solution is

M

N CASE III
In this case the roots and of the auxiliary equation are complex numbers. (See Appen-
dix H for information about complex numbers.) We can write

where and are real numbers. [In fact, , .] Then,
using Euler’s equation

from Appendix H, we write the solution of the differential equation as

where , . This gives all solutions (real or complex) of the dif-
ferential equation. The solutions are real when the constants and are real. We summa-
rize the discussion as follows.

If the roots of the auxiliary equation are the complex num-
bers , , then the general solution of 
is

y � e � x�c1 cos 	x � c2 sin 	x�

ay� � by� � cy � 0r2 � � � i	r1 � � � i	
ar 2 � br � c � 011

c2c1

c2 � i�C1 � C2�c1 � C1 � C2

 � e � x�c1 cos 	x � c2 sin 	x�

 � e � x��C1 � C2 � cos 	x � i�C1 � C2 � sin 	x�

 � C1e � x�cos 	x � i sin 	x� � C2e � x�cos 	x � i sin 	x�

  y � C1er1x � C2er2 x � C1e ���i	�x � C2e ���i	�x

e i
 � cos 
 � i sin 


	 � s4ac � b 2 ��2a�� � �b��2a�	�

r2 � � � i	r1 � � � i	

r2r1

b 2 � 4ac � 0

y � c1e�3x�2 � c2 xe�3x�2

r � �
3
2

�2r � 3�2 � 0

4r 2 � 12r � 9 � 0

4y� � 12y� � 9y � 0V

y � c1erx � c2 xerx

ay� � by� � cy � 0
rar 2 � br � c � 010

y2 � xerxy1 � erx
r

1114 | | | | CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

N Figure 2 shows the basic solutions
and in 

Example 3 and some other members of the 
family of solutions. Notice that all of them
approach 0 as .x l �

t�x� � xe�3x�2f �x� � e�3x�2

FIGURE 2
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EXAMPLE 4 Solve the equation .

SOLUTION The auxiliary equation is . By the quadratic formula, the roots
are

By (11), the general solution of the differential equation is

M

INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solu-
tion of the differential equation that also satisfies initial conditions of the form

where and are given constants. If , , , and are continuous on an interval and
there, then a theorem found in more advanced books guarantees the existence

and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the
technique for solving such a problem.

EXAMPLE 5 Solve the initial-value problem

SOLUTION From Example 1 we know that the general solution of the differential equa-
tion is

Differentiating this solution, we get

To satisfy the initial conditions we require that

From (13), we have and so (12) gives

Thus the required solution of the initial-value problem is

M

EXAMPLE 6 Solve the initial-value problem

SOLUTION The auxiliary equation is , or , whose roots are . Thus
, , and since , the general solution is

Since  y��x� � �c1 sin x � c2 cos x

 y�x� � c1 cos x � c2 sin x

e 0x � 1	 � 1� � 0
�ir 2 � �1r 2 � 1 � 0

y��0� � 3y�0� � 2y� � y � 0

y � 3
5 e 2x �

2
5 e�3x

c2 � 2
5 c1 � 3

5c1 �
2
3 c1 � 1

c2 � 2
3 c1

 y��0� � 2c1 � 3c2 � 013

 y�0� � c1 � c2 � 112

y��x� � 2c1e 2x � 3c2e�3x

y�x� � c1e 2x � c2e�3x

y��0� � 0y�0� � 1y� � y� � 6y � 0

P�x� � 0
GRQPy1y0

y��x0 � � y1y�x0 � � y0

y

y � e 3x�c1 cos 2x � c2 sin 2x�

r �
6 � s36 � 52

2
�

6 � s�16

2
� 3 � 2i

r 2 � 6r � 13 � 0

y� � 6y� � 13y � 0V
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N Figure 3 shows the graphs of the solu-
tions in Example 4, and

, together with some linear
combinations. All solutions approach 0 
as .x l ��

t�x� � e 3x sin 2x
f �x� � e 3x cos 2x

FIGURE 3
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_3

_3 2

f

g

f-g

f+g

N Figure 4 shows the graph of the solution of the
initial-value problem in Example 5. Compare with
Figure 1.

FIGURE 4
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the initial conditions become

Therefore the solution of the initial-value problem is

M

A boundary-value problem for Equation 1 or 2 consists of finding a solution of the
differential equation that also satisfies boundary conditions of the form

In contrast with the situation for initial-value problems, a boundary-value problem does
not always have a solution. The method is illustrated in Example 7.

EXAMPLE 7 Solve the boundary-value problem

SOLUTION The auxiliary equation is

whose only root is . Therefore the general solution is

The boundary conditions are satisfied if

The first condition gives , so the second condition becomes

Solving this equation for by first multiplying through by , we get

so

Thus the solution of the boundary-value problem is

M

SUMMARY: SOLUTIONS OF ay���� �� by�� �� c 

 0

y � e�x � �3e � 1�xe�x

c2 � 3e � 11 � c2 � 3e

ec2

e�1 � c2e�1 � 3

c1 � 1

 y�1� � c1e�1 � c2e�1 � 3

 y�0� � c1 � 1

y�x� � c1e�x � c2 xe�x

r � �1

�r � 1�2 � 0orr 2 � 2r � 1 � 0

y�1� � 3y�0� � 1y� � 2y� � y � 0

V

y�x1 � � y1y�x0 � � y0

y

y�x� � 2 cos x � 3 sin x

y��0� � c2 � 3y�0� � c1 � 2
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Roots of General solution

y � e� x�c1 cos 	x � c2 sin 	x�r1, r2 complex: � � i	

y � c1erx � c2 xerxr1 � r2 � r

y � c1er1x � c2er2 xr1, r2 real and distinct

ar 2 � br � c � 0

N The solution to Example 6 is graphed in 
Figure 5. It appears to be a shifted sine curve
and, indeed, you can verify that another way of
writing the solution is

where tan � � 2
3y � s13 sin�x � ��

FIGURE 5

5

_5

_2π 2π

N Figure 6 shows the graph of the solution of 
the boundary-value problem in Example 7.

FIGURE 6

5

_5

_1 5



SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS | | | | 1117

19. , ,

20. , ,

, ,

22. , ,

, ,

24. , ,

25–32 Solve the boundary-value problem, if possible.

25. , ,

26. , ,

27. , ,

28. , ,

29. , ,

, ,

31. , ,

32. , ,

33. Let be a nonzero real number.
(a) Show that the boundary-value problem ,

, has only the trivial solution for
the cases and .

(b) For the case , find the values of for which this
problem has a nontrivial solution and give the corre-
sponding solution.

34. If , , and are all positive constants and is a solution 
of the differential equation , show that

.lim x l � y�x� � 0
ay� � by� � cy � 0

y�x�cba

�� � 0
� � 0� � 0

y � 0y�L� � 0y�0� � 0
y� � �y � 0

L

y��� � 1y�0� � 09y� � 18y� � 10y � 0

y���2� � 1y�0� � 2y� � 4y� � 13y � 0

y�1� � 0y�0� � 1y� � 6y� � 9y � 030.

y��� � 2y�0� � 1y� � 6y� � 25y � 0

y��� � 5y�0� � 2y� � 100y � 0

y�3� � 0y�0� � 1y� � 3y� � 2y � 0

y�1� � 2y�0� � 1y� � 2y� � 0

y��� � �4y�0� � 34y� � y � 0

y��1� � 1y�1� � 0y� � 12y� � 36y � 0

y��0� � 1y�0� � 2y� � 2y� � 2y � 023.

y���� � 2y��� � 0y� � 2y� � 5y � 0

y����4� � 4y���4� � �3y� � 16y � 021.

y��0� � 4y�0� � 12y� � 5y� � 3y � 0

y��0� � �1.5y�0� � 14y� � 4y� � y � 01–13 Solve the differential equation.

2.

3. 4.

5. 6.

7. 8.

10.

12.

13.

; 14–16 Graph the two basic solutions of the differential equation
and several other solutions. What features do the solutions have in
common?

14.

15.

16.

17–24 Solve the initial-value problem.

, ,

18. , , y��0� � 3y�0� � 1y� � 3y � 0

y��0� � �4y�0� � 32y� � 5y� � 3y � 017.

9 
d 2y

dx 2 � 6 
dy

dx
� y � 0

5 
d 2y

dx 2 � 2 
dy

dx
� 3y � 0

d 2y

dx 2 � 4 
dy

dx
� 20y � 0

100 
d 2P

dt 2 � 200 
dP

dt
� 101P � 0

8 
d 2y

dt 2 � 12 
dy

dt
� 5y � 0

2 
d 2y

dt 2 � 2 
dy

dt
� y � 011.

y� � 3y� � 0y� � 4y� � 13y � 09.

y� � 4y� � y � 0y� � 2y�

25y� � 9y � 09y� � 12y� � 4y � 0

y� � 8y� � 12y � 0y� � 16y � 0

y� � 4y� � 4y � 0y� � y� � 6y � 01.

EXERCISES17.1

NONHOMOGENEOUS LINEAR EQUATIONS

In this section we learn how to solve second-order nonhomogeneous linear differential equa-
tions with constant coefficients, that is, equations of the form

where , , and are constants and is a continuous function. The related homogeneous
equation

is called the complementary equation and plays an important role in the solution of the
original nonhomogeneous equation (1).

ay� � by� � cy � 02

Gcba

ay� � by� � cy � G�x�1

17.2



THEOREM The general solution of the nonhomogeneous differential equation
(1) can be written as

where is a particular solution of Equation 1 and is the general solution of the
complementary Equation 2.

PROOF All we have to do is verify that if is any solution of Equation 1, then is a
solution of the complementary Equation 2. Indeed

M

We know from Section 17.1 how to solve the complementary equation. (Recall that the
solution is , where and are linearly independent solutions of Equa-
tion 2.) Therefore Theorem 3 says that we know the general solution of the nonhomoge-
neous equation as soon as we know a particular solution . There are two methods for
finding a particular solution: The method of undetermined coefficients is straightforward
but works only for a restricted class of functions . The method of variation of parameters
works for every function but is usually more difficult to apply in practice.

THE METHOD OF UNDETERMINED COEFFICIENTS

We first illustrate the method of undetermined coefficients for the equation

where ) is a polynomial. It is reasonable to guess that there is a particular solution 
that is a polynomial of the same degree as because if is a polynomial, then

is also a polynomial. We therefore substitute a polynomial (of the
same degree as ) into the differential equation and determine the coefficients.

EXAMPLE 1 Solve the equation .

SOLUTION The auxiliary equation of is

with roots , . So the solution of the complementary equation is

Since is a polynomial of degree 2, we seek a particular solution of the form

Then and so, substituting into the given differential equation, we
have

 �2A� � �2Ax � B� � 2�Ax 2 � Bx � C � � x 2

yp� � 2Ayp� � 2Ax � B

yp�x� � Ax 2 � Bx � C

G�x� � x 2

yc � c1ex � c2e�2x

�2r � 1

r 2 � r � 2 � �r � 1��r � 2� � 0

y� � y� � 2y � 0

y� � y� � 2y � x 2V

G
yp�x� �ay� � by� � cy

yGyp

G�x

ay� � by� � cy � G�x�

G
G

yp

y2y1yc � c1y1 � c2y2

� t�x� � t�x� � 0

 � �ay� � by� � cy� � �ayp� � byp� � cyp �

 a�y � yp �� � b�y � yp �� � c�y � yp � � ay� � ayp� � by� � byp� � cy � cyp

y � ypy

ycyp

y�x� � yp�x� � yc�x�

3
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or

Polynomials are equal when their coefficients are equal. Thus

The solution of this system of equations is

A particular solution is therefore

and, by Theorem 3, the general solution is

M

If (the right side of Equation 1) is of the form , where and are constants,
then we take as a trial solution a function of the same form, , because the
derivatives of are constant multiples of .

EXAMPLE 2 Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the com-
plementary equation is

For a particular solution we try . Then and . Substi-
tuting into the differential equation, we have

so and . Thus a particular solution is

and the general solution is

M

If is either or , then, because of the rules for differentiating the
sine and cosine functions, we take as a trial particular solution a function of the form 

EXAMPLE 3 Solve .

SOLUTION We try a particular solution

Then yp� � �A cos x � B sin xyp� � �A sin x � B cos x

yp�x� � A cos x � B sin x

y� � y� � 2y � sin xV

yp�x� � A cos kx � B sin kx

C sin kxC cos kxG�x�

y�x� � c1 cos 2x � c2 sin 2x �
1
13 e 3x

yp�x� � 1
13 e 3x

A � 1
1313Ae 3x � e 3x

9Ae 3x � 4�Ae 3x � � e 3x

yp� � 9Ae 3xyp� � 3Ae 3xyp�x� � Ae 3x

yc�x� � c1 cos 2x � c2 sin 2x

�2ir 2 � 4 � 0

y� � 4y � e 3x

e k xe k x
yp�x� � Aek x

kCCek xG�x�

y � yc � yp � c1ex � c2e�2x �
1
2 x 2 �

1
2 x �

3
4 

yp�x� � �
1
2 x 2 �

1
2 x �

3
4

C � �
3
4B � �

1
2A � �

1
2

2A � B � 2C � 02A � 2B � 0�2A � 1

 �2Ax 2 � �2A � 2B�x � �2A � B � 2C � � x 2
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N Figure 1 shows four solutions of the differen-
tial equation in Example 1 in terms of the partic-
ular solution and the functions 
and .t�x� � e�2x

f �x� � e xyp

FIGURE 1

8

_5

_3 3
yp

yp+3g
yp+2f

yp+2f+3g

N Figure 2 shows solutions of the differential
equation in Example 2 in terms of and the
functions and .
Notice that all solutions approach as 
and all solutions (except ) resemble sine 
functions when is negative.x

yp

x l ��

t�x� � sin 2xf �x� � cos 2x
yp

FIGURE 2

4

_2

_4 2
yp

yp+g

yp+f

yp+f+g



so substitution in the differential equation gives

or

This is true if

The solution of this system is

so a particular solution is

In Example 1 we determined that the solution of the complementary equation is
. Thus the general solution of the given equation is

M

If is a product of functions of the preceding types, then we take the trial solu-
tion to be a product of functions of the same type. For instance, in solving the differential
equation

we would try

If is a sum of functions of these types, we use the easily verified principle of super-
position, which says that if and are solutions of

respectively, then is a solution of

EXAMPLE 4 Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the com-
plementary equation is . For the equation we try

Then , , so substitution in the equation
gives

or  ��3Ax � 2A � 3B�ex � xex

 �Ax � 2A � B�ex � 4�Ax � B�ex � xex

yp1� � �Ax � 2A � B�exyp1� � �Ax � A � B�ex

yp1�x� � �Ax � B�ex

y� � 4y � xexyc�x� � c1e 2x � c2e�2x
�2r 2 � 4 � 0

y� � 4y � xex � cos 2xV

ay� � by� � cy � G1�x� � G2�x�

yp1
� yp2

ay� � by� � cy � G2�x�ay� � by� � cy � G1�x�

yp2
yp1

G�x�

yp�x� � �Ax � B� cos 3x � �Cx � D� sin 3x

y� � 2y� � 4y � x cos 3x

G�x�

y�x� � c1ex � c2e�2x �
1
10 �cos x � 3 sin x�

yc � c1ex � c2e�2x

yp�x� � �
1
10 cos x �

3
10 sin x

B � �
3
10A � �

1
10

�A � 3B � 1and�3A � B � 0

 ��3A � B� cos x � ��A � 3B� sin x � sin x

 ��A cos x � B sin x� � ��A sin x � B cos x� � 2�A cos x � B sin x� � sin x
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Thus and , so , , and

For the equation , we try

Substitution gives

or

Therefore , , and

By the superposition principle, the general solution is

M

Finally we note that the recommended trial solution sometimes turns out to be a solu-
tion of the complementary equation and therefore can’t be a solution of the nonhomoge-
neous equation. In such cases we multiply the recommended trial solution by (or by 
if necessary) so that no term in is a solution of the complementary equation.

EXAMPLE 5 Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the com-
plementary equation is

Ordinarily, we would use the trial solution

but we observe that it is a solution of the complementary equation, so instead we try

Then

Substitution in the differential equation gives

yp� � yp � �2A sin x � 2B cos x � sin x

 yp��x� � �2A sin x � Ax cos x � 2B cos x � Bx sin x

 yp��x� � A cos x � Ax sin x � B sin x � Bx cos x

yp�x� � Ax cos x � Bx sin x

yp�x� � A cos x � B sin x

yc�x� � c1 cos x � c2 sin x

�ir 2 � 1 � 0

y� � y � sin x

yp�x�
x 2x

yp

y � yc � yp1 � yp2 � c1e 2x � c2e�2x � ( 1
3 x �

2
9 )ex �

1
8 cos 2x 

yp2
�x� � �

1
8 cos 2x

�8D � 0�8C � 1

 �8C cos 2x � 8D sin 2x � cos 2x

 �4C cos 2x � 4D sin 2x � 4�C cos 2x � D sin 2x� � cos 2x

yp2
�x� � C cos 2x � D sin 2x

y� � 4y � cos 2x

yp1
�x� � (� 1

3 x �
2
9 )ex

B � �
2
9A � �

1
32A � 3B � 0�3A � 1

SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS | | | | 1121

N In Figure 3 we show the particular solution
of the differential equation in

Example 4. The other solutions are given in terms
of and .t�x� � e�2xf �x� � e 2x

yp � yp1
� yp2

FIGURE 3

5

_2

_4 1
yp

yp+g

yp+f

yp+2f+g



so , , and

The general solution is

M

We summarize the method of undetermined coefficients as follows:

SUMMARY OF THE METHOD OF UNDETERMINED COEFFICIENTS

1. If , where is a polynomial of degree , then try ,
where is an th-degree polynomial (whose coefficients are determined by 
substituting in the differential equation).

2. If or , where is an th-degree
polynomial, then try

where and are th-degree polynomials.

Modification: If any term of is a solution of the complementary equation, 
multiply by (or by if necessary).

EXAMPLE 6 Determine the form of the trial solution for the differential equation
.

SOLUTION Here has the form of part 2 of the summary, where , , and
. So, at first glance, the form of the trial solution would be

But the auxiliary equation is , with roots , so the solution
of the complementary equation is

This means that we have to multiply the suggested trial solution by . So, instead, we
use

M

THE METHOD OF VARIATION OF PARAMETERS

Suppose we have already solved the homogeneous equation and writ-
ten the solution as

where and are linearly independent solutions. Let’s replace the constants (or parame-
ters) and in Equation 4 by arbitrary functions and . We look for a particu-u2�x�u1�x�c2c1

y2y1

y�x� � c1y1�x� � c2y2�x�4

ay� � by� � cy � 0

yp�x� � xe 2x�A cos 3x � B sin 3x�

x

yc�x� � e 2x�c1 cos 3x � c2 sin 3x�

r � 2 � 3ir 2 � 4r � 13 � 0

yp�x� � e 2x�A cos 3x � B sin 3x�

P�x� � 1
m � 3k � 2G�x�

y� � 4y� � 13y � e 2x cos 3x

x 2xyp

yp

nRQ

yp�x� � ekxQ�x� cos mx � ekxR�x� sin mx

nPG�x� � ekxP�x� sin mxG�x� � ekxP�x� cos mx

nQ�x�
yp�x� � ekxQ�x�nPG�x� � ekxP�x�

y�x� � c1 cos x � c2 sin x �
1
2 x cos x 

yp�x� � �
1
2 x cos x

B � 0A � �
1
2
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FIGURE 4

4

_4

_2π 2π

yp

N The graphs of four solutions of the differential
equation in Example 5 are shown in Figure 4.



lar solution of the nonhomogeneous equation of the form

(This method is called variation of parameters because we have varied the parameters 
and to make them functions.) Differentiating Equation 5, we get

Since and are arbitrary functions, we can impose two conditions on them. One con-
dition is that is a solution of the differential equation; we can choose the other condition
so as to simplify our calculations. In view of the expression in Equation 6, let’s impose the
condition that

Then

Substituting in the differential equation, we get

or

But and are solutions of the complementary equation, so

and Equation 8 simplifies to

Equations 7 and 9 form a system of two equations in the unknown functions and .
After solving this system we may be able to integrate to find and and then the partic-
ular solution is given by Equation 5.

EXAMPLE 7 Solve the equation , .

SOLUTION The auxiliary equation is with roots , so the solution of
is . Using variation of parameters, we seek a solution 

of the form

Then

Set

u1� sin x � u2� cos x � 010

yp� � �u1� sin x � u2� cos x� � �u1 cos x � u2 sin x�

yp�x� � u1�x� sin x � u2�x� cos x

c1 sin x � c2 cos xy� � y � 0
�ir 2 � 1 � 0

0 � x � ��2y� � y � tan x

u2u1

u2�u1�

a�u1�y1� � u2�y2�� � G9

ay2� � by2� � cy2 � 0anday1� � by1� � cy1 � 0

y2y1

u1�ay1� � by1� � cy1� � u2�ay2� � by2� � cy2 � � a�u1�y1� � u2�y2�� � G8

a�u1�y1� � u2�y2� � u1y1� � u2y2�� � b�u1y1� � u2y2�� � c�u1y1 � u2y2 � � G

yp� � u1�y1� � u2�y2� � u1y1� � u2y2�

u1�y1 � u2�y2 � 07

yp

u2u1

yp� � �u1�y1 � u2�y2 � � �u1y1� � u2y2��6

c2

c1

yp�x� � u1�x� y1�x� � u2�x� y2�x�5

ay� � by� � cy � G�x�
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Then

For to be a solution we must have

Solving Equations 10 and 11, we get

(We seek a particular solution, so we don’t need a constant of integration here.) Then,
from Equation 10, we obtain

So

(Note that for .) Therefore

and the general solution is

My�x� � c1 sin x � c2 cos x � cos x ln�sec x � tan x�

 � �cos x ln�sec x � tan x�

 yp�x� � �cos x sin x � �sin x � ln�sec x � tan x�� cos x

0 � x � ��2sec x � tan x 	 0

u2�x� � sin x � ln�sec x � tan x�

u2� � �
sin x

cos x
 u1� � �

sin2x

cos x
�

cos2x � 1

cos x
� cos x � sec x

u1�x� � �cos xu1� � sin x

u1��sin2x � cos2x� � cos x tan x

yp� � yp � u1� cos x � u2� sin x � tan x11

yp

yp� � u1� cos x � u2� sin x � u1 sin x � u2 cos x
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; 11–12 Graph the particular solution and several other solutions.
What characteristics do these solutions have in common?

11. 12.

13–18 Write a trial solution for the method of undetermined
coefficients. Do not determine the coefficients.

13.

14.

15.

17.

y� � 4y � e 3x � x sin 2x18.

y� � 2y� � 10y � x 2e�x cos 3x

y� � 3y� � 4y � �x 3 � x�e x16.

y� � 9y� � 1 � xe 9x

y� � 9y� � xe�x cos �x

y� � 9y � e 2x � x 2 sin x

y� � 4y � e�xy� � 3y� � 2y � cos x

1–10 Solve the differential equation or initial-value problem
using the method of undetermined coefficients.

1.

2.

3.

4.

6.

7. , ,

8. , ,

, ,

10. , , y��0� � 0y �0� � 1y� � y� � 2y � x � sin 2x

y��0� � 1y�0� � 2y� � y� � xe x9.

y��0� � 2y�0� � 1y� � 4y � e x cos x

y��0� � 0y�0� � 2y� � y � e x � x 3

y� � 2y� � y � xe�x

y� � 4y� � 5y � e�x5.

y� � 6y� � 9y � 1 � x

y� � 2y� � sin 4x

y� � 9y � e 3x

y� � 3y� � 2y � x 2

EXERCISES17.2

FIGURE 5

π
2

2.5

_1

0
yp

N Figure 5 shows four solutions of the 
differential equation in Example 7.
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24. ,

26.

27.

28. y� � 4y� � 4y �
e�2x

x 3

y� � 2y� � y �
e x

1 � x 2

y� � 3y� � 2y � sin�e x �

y� � 3y� � 2y �
1

1 � e�x
25.

0 � x � ��2y� � y � sec3x19–22 Solve the differential equation using (a) undetermined coef-
ficients and (b) variation of parameters.

19. 20.

22.

23–28 Solve the differential equation using the method of
variation of parameters.

23. , 0 � x � ��2y� � y � sec2x

y� � y� � e x

y� � 2y� � y � e2x21.

y� � 2y� � 3y � x � 24y� � y � cos x

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

Second-order linear differential equations have a variety of applications in science and
engineering. In this section we explore two of them: the vibration of springs and electric
circuits.

VIBRATING SPRINGS

We consider the motion of an object with mass at the end of a spring that is either ver-
tical (as in Figure 1) or horizontal on a level surface (as in Figure 2).

In Section 6.4 we discussed Hooke’s Law, which says that if the spring is stretched (or
compressed) units from its natural length, then it exerts a force that is proportional to :

where is a positive constant (called the spring constant). If we ignore any external resist-
ing forces (due to air resistance or friction) then, by Newton’s Second Law (force equals
mass times acceleration), we have

This is a second-order linear differential equation. Its auxiliary equation is 
with roots , where . Thus the general solution is

which can also be written as

where (frequency)

(amplitude)

(See Exercise 17.) This type of motion is called simple harmonic motion.

�
 is the phase angle�sin 
 � �
c2

A
cos 
 �

c1

A

 A � sc1
2 � c2

2 

 � � sk�m 

x�t� � A cos��t � 
�

x�t� � c1 cos �t � c2 sin �t

 � � sk�m r � ��i
mr 2 � k � 0

m 
d 2x

dt 2 � kx � 0orm 
d 2x

dt 2 � �kx1

k

restoring force � �kx

xx

m

17.3

FIGURE 2

FIGURE 1

x0 x

equilibrium position

m

m

x

0

x m

equilibrium
position



EXAMPLE 1 A spring with a mass of 2 kg has natural length m. A force of N
is required to maintain it stretched to a length of m. If the spring is stretched to a
length of m and then released with initial velocity 0, find the position of the mass at
any time .

SOLUTION From Hooke’s Law, the force required to stretch the spring is

so . Using this value of the spring constant , together with 
in Equation 1, we have

As in the earlier general discussion, the solution of this equation is

We are given the initial condition that . But, from Equation 2, 
Therefore . Differentiating Equation 2, we get

Since the initial velocity is given as , we have and so the solution is

M

DAMPED VIBRATIONS

We next consider the motion of a spring that is subject to a frictional force (in the case of
the horizontal spring of Figure 2) or a damping force (in the case where a vertical spring
moves through a fluid as in Figure 3). An example is the damping force supplied by a
shock absorber in a car or a bicycle.

We assume that the damping force is proportional to the velocity of the mass and acts
in the direction opposite to the motion. (This has been confirmed, at least approximately,
by some physical experiments.) Thus

where is a positive constant, called the damping constant. Thus, in this case, Newton’s
Second Law gives

or

m 
d 2x

dt 2 � c 
dx

dt
� kx � 03

m 
d 2x

dt 2 � restoring force � damping force � �kx � c 
dx

dt

c

damping force � �c 
dx

dt

x�t� � 1
5 cos 8t

c2 � 0x��0� � 0

x��t� � �8c1 sin 8t � 8c2 cos 8t

c1 � 0.2
x�0� � c1.x�0� � 0.2

x�t� � c1 cos 8t � c2 sin 8t2

2 
d 2x

dt 2 � 128x � 0

m � 2kk � 25.6�0.2 � 128

k�0.2� � 25.6

t
0.7

0.7
25.60.5V
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Equation 3 is a second-order linear differential equation and its auxiliary equation is
. The roots are

According to Section 17.1 we need to discuss three cases.

N CASE I (overdamping)
In this case and are distinct real roots and

Since , , and are all positive, we have , so the roots and given by
Equations 4 must both be negative. This shows that as . Typical graphs of 

as a function of are shown in Figure 4. Notice that oscillations do not occur. (It’s pos-
sible for the mass to pass through the equilibrium position once, but only once.) This is
because means that there is a strong damping force (high-viscosity oil or grease)
compared with a weak spring or small mass.

N CASE II (critical damping)
This case corresponds to equal roots

and the solution is given by

It is similar to Case I, and typical graphs resemble those in Figure 4 (see Exercise 12), but
the damping is just sufficient to suppress vibrations. Any decrease in the viscosity of the
fluid leads to the vibrations of the following case.

N CASE III (underdamping)
Here the roots are complex:

where

The solution is given by

We see that there are oscillations that are damped by the factor . Since and
, we have so as . This implies that as

that is, the motion decays to 0 as time increases. A typical graph is shown in Figure 5.
t l �;x l 0t l �e��c�2m�t l 0��c�2m� � 0m 	 0

c 	 0e��c�2m�t

x � e��c�2m�t�c1 cos �t � c2 sin �t�

� �
s4mk � c 2 

2m

r1

r2
� � �

c

2m
� �i

c2 � 4mk � 0

x � �c1 � c2t�e��c�2m�t

r1 � r2 � �
c

2m

c2 � 4mk � 0

c 2 	 4mk

tx
t l �x l 0

r2r1sc 2 � 4mk � ckmc

x � c1er1t � c2er2t

r2r1

c2 � 4mk 	 0

r2 �
�c � sc 2 � 4mk

2m
r1 �

�c � sc 2 � 4mk

2m
4

mr 2 � cr � k � 0
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EXAMPLE 2 Suppose that the spring of Example 1 is immersed in a fluid with 
damping constant . Find the position of the mass at any time if it starts from the
equilibrium position and is given a push to start it with an initial velocity of m�s.

SOLUTION From Example 1, the mass is and the spring constant is , so the
differential equation (3) becomes

or

The auxiliary equation is with roots 
and , so the motion is overdamped and the solution is

We are given that , so . Differentiating, we get

so

Since , this gives or . Therefore

M

FORCED VIBRATIONS

Suppose that, in addition to the restoring force and the damping force, the motion of the
spring is affected by an external force . Then Newton’s Second Law gives

Thus, instead of the homogeneous equation (3), the motion of the spring is now governed
by the following nonhomogeneous differential equation:

The motion of the spring can be determined by the methods of Section 17.2.

m 
d 2x

dt 2 � c 
dx

dt
� kx � F�t�5

 � �kx � c 
dx

dt
� F�t�

 m 
d 2x

dt 2 � restoring force � damping force � external force

F�t�

x � 0.05�e�4t � e�16t �

c1 � 0.0512c1 � 0.6c2 � �c1

 x��0� � �4c1 � 16c2 � 0.6

 x��t� � �4c1e�4t � 16c2e�16t

c1 � c2 � 0x�0� � 0

x�t� � c1e�4t � c2e�16t

�16
�4r 2 � 20r � 64 � �r � 4��r � 16� � 0

 
d 2x

dt 2 � 20 
dx

dt
� 64x � 0

 2 
d 2x

dt 2 � 40 
dx

dt
� 128x � 0

k � 128m � 2

0.6
tc � 40

V
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N Figure 6 shows the graph of the position func-
tion for the overdamped motion in Example 2.
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A commonly occurring type of external force is a periodic force function

In this case, and in the absence of a damping force ( ), you are asked in Exercise 9 to
use the method of undetermined coefficients to show that

If , then the applied frequency reinforces the natural frequency and the result is
vibrations of large amplitude. This is the phenomenon of resonance (see Exercise 10).

ELECTRIC CIRCUITS

In Sections 9.3 and 9.5 we were able to use first-order separable and linear equations to
analyze electric circuits that contain a resistor and inductor (see Figure 5 on page 582 or
Figure 4 on page 605) or a resistor and capacitor (see Exercise 29 on page 607). Now that
we know how to solve second-order linear equations, we are in a position to analyze the
circuit shown in Figure 7. It contains an electromotive force (supplied by a battery or
generator), a resistor , an inductor , and a capacitor , in series. If the charge on the
capacitor at time is , then the current is the rate of change of with respect 
to : . As in Section 9.5, it is known from physics that the voltage drops across
the resistor, inductor, and capacitor are

respectively. Kirchhoff’s voltage law says that the sum of these voltage drops is equal to
the supplied voltage:

Since , this equation becomes

which is a second-order linear differential equation with constant coefficients. If the charge
and the current are known at time 0, then we have the initial conditions

and the initial-value problem can be solved by the methods of Section 17.2.

Q��0� � I�0� � I0Q�0� � Q0

I0Q0

L 
d 2Q

dt 2 � R 
dQ

dt
�

1

C
 Q � E�t�7

I � dQ�dt

L 
dI

dt
� RI �

Q

C
� E�t�

Q

C
L 

dI

dt
RI

I � dQ�dtt
QQ � Q�t�t

CLR
E

�0 � �

x�t� � c1 cos �t � c2 sin �t �
F0

m��2 � � 0
2 �

 cos �0t 6

c � 0

where �0 � � � sk�m F�t� � F0 cos �0t
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A differential equation for the current can be obtained by differentiating Equation 7
with respect to and remembering that :

EXAMPLE 3 Find the charge and current at time in the circuit of Figure 7 if
, H, F, , and the initial charge and

current are both 0.

SOLUTION With the given values of , , , and , Equation 7 becomes

The auxiliary equation is with roots

so the solution of the complementary equation is

For the method of undetermined coefficients we try the particular solution

Then

Substituting into Equation 8, we have

or

Equating coefficients, we have

or
or

The solution of this system is and , so a particular solution is

and the general solution is

 � e�20t�c1 cos 15t � c2 sin 15t� �
4

697 �21 cos 10t � 16 sin 10t�

Q�t� � Qc�t� � Qp�t�

Qp�t� � 1
697 �84 cos 10t � 64 sin 10t�

B � 64
697A � 84

697

 �16A � 21B � 0 �400A � 525B � 0

 21A � 16B � 4 525A � 400B � 100

�525A � 400B� cos 10t � ��400A � 525B� sin 10t � 100 cos 10t

� 625�A cos 10t � B sin 10t� � 100 cos 10t

��100A cos 10t � 100B sin 10t� � 40��10A sin 10t � 10B cos 10t�

 Qp��t� � �100A cos 10t � 100B sin 10t

 Qp��t� � �10A sin 10t � 10B cos 10t

 Qp�t� � A cos 10t � B sin 10t

Qc�t� � e�20t�c1 cos 15t � c2 sin 15t�

r �
�40 � s�900 

2
� �20 � 15i

r 2 � 40r � 625 � 0

d 2Q

dt 2 � 40 
dQ

dt
� 625Q � 100 cos 10t8

E�t�CRL

E�t� � 100 cos 10tC � 16 � 10�4L � 1R � 40 �
tV

L 
d 2I

dt 2 � R 
dI

dt
�

1

C
 I � E��t�

I � dQ�dtt
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Imposing the initial condition , we get

To impose the other initial condition, we first differentiate to find the current:

Thus the formula for the charge is

and the expression for the current is

M

In Example 3 the solution for consists of two parts. Since as
and both and are bounded functions,

So, for large values of ,

and, for this reason, is called the steady state solution. Figure 8 shows how the graph
of the steady state solution compares with the graph of in this case.

Comparing Equations 5 and 7, we see that mathematically they are identical.
This suggests the analogies given in the following chart between physical situations that,
at first glance, are very different.

We can also transfer other ideas from one situation to the other. For instance, the steady
state solution discussed in Note 1 makes sense in the spring system. And the phenomenon
of resonance in the spring system can be usefully carried over to electric circuits as elec-
trical resonance.

NOTE 2

Q
Qp�t�

Q�t� � Qp�t� � 4
697 �21 cos 10t � 16 sin 10t�

t

as t l 	Qc�t� � 4
2091 e�20t��63 cos 15t � 116 sin 15t� l 0

sin 15tcos 15tt l 	
e�20t l 0Q�t�NOTE 1

I�t� � 1
2091 �e�20t��1920 cos 15t � 13,060 sin 15t� � 120��21 sin 10t � 16 cos 10t��

Q�t� �
4

697
 � e�20t

3
 ��63 cos 15t � 116 sin 15t� � �21 cos 10t � 16 sin 10t�	

c2 � �
464
2091 I�0� � �20c1 � 15c2 �

640
697 � 0

� 40
697 ��21 sin 10t � 16 cos 10t�

 I �
dQ

dt
� e�20t ���20c1 � 15c2 � cos 15t � ��15c1 � 20c2 � sin 15t�

c1 � �
84
697Q�0� � c1 �

84
697 � 0

Q�0� � 0
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 L 
d 2Q

dt 2 �  R 
dQ

dt
�  

1

C
 Q � E�t�7

 m 
d 2x

dt 2 �  c 
dx

dt
�  kx � F�t�5

Spring system Electric circuit

x displacement Q charge
velocity current

m mass L inductance
c damping constant R resistance
k spring constant elastance

external force electromotive forceE�t�F�t�
1�C

I � dQ�dtdx�dt
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12. Consider a spring subject to a frictional or damping force.
(a) In the critically damped case, the motion is given by

. Show that the graph of crosses the 
-axis whenever and have opposite signs.

(b) In the overdamped case, the motion is given by
, where . Determine a condition

on the relative magnitudes of and under which the
graph of crosses the -axis at a positive value of .

A series circuit consists of a resistor with , an
inductor with H, a capacitor with F, and a
12-V battery. If the initial charge and current are both 0, find
the charge and current at time t.

14. A series circuit contains a resistor with , an induc-
tor with H, a capacitor with F, and a 12-V
battery. The initial charge is C and the initial cur-
rent is 0.
(a) Find the charge and current at time t.

; (b) Graph the charge and current functions.

15. The battery in Exercise 13 is replaced by a generator produc-
ing a voltage of . Find the charge at time t.

16. The battery in Exercise 14 is replaced by a generator pro-
ducing a voltage of .
(a) Find the charge at time t.

; (b) Graph the charge function.

Verify that the solution to Equation 1 can be written in the
form .

18. The figure shows a pendulum with length L and the angle 
from the vertical to the pendulum. It can be shown that , as a
function of time, satisfies the nonlinear differential equation

where is the acceleration due to gravity. For small values of 
we can use the linear approximation and then the

differential equation becomes linear.
(a) Find the equation of motion of a pendulum with length

1 m if is initially 0.2 rad and the initial angular velocity
is .

(b) What is the maximum angle from the vertical?
(c) What is the period of the pendulum (that is, the time to

complete one back-and-forth swing)?
(d) When will the pendulum first be vertical?
(e) What is the angular velocity when the pendulum is 

vertical?

¨
L

d
�dt � 1 rad�s



sin 
 � 


t

d 2


dt 2 �
t

L
 sin 
 � 0






x�t� � A cos��t � ��
17.

E�t� � 12 sin 10t

E�t� � 12 sin 10t

Q � 0.001
C � 0.005L � 2

�R � 24

C � 0.002L � 1
�R � 2013.

ttx
c2c1

r1 
 r2x � c1er 1 t � c2er 2 t

c2c1t
xx � c1ert � c2tert

1. A spring has natural length and a mass. A force of
is needed to keep the spring stretched to a length of .

If the spring is stretched to a length of and then released
with velocity , find the position of the mass after seconds.

2. A spring with an mass is kept stretched beyond its
natural length by a force of . The spring starts at its equi-
librium position and is given an initial velocity of . Find
the position of the mass at any time .

A spring with a mass of 2 kg has damping constant 14, and 
a force of 6 N is required to keep the spring stretched m
beyond its natural length. The spring is stretched 1 m beyond
its natural length and then released with zero velocity. Find the
position of the mass at any time t.

4. A force of 13 N is needed to keep a spring with a 2-kg mass
stretched 0.25 m beyond its natural length. The damping con-
stant of the spring is .
(a) If the mass starts at the equilibrium position with a 

velocity of , find its position at time .

; (b) Graph the position function of the mass.

5. For the spring in Exercise 3, find the mass that would produce
critical damping.

6. For the spring in Exercise 4, find the damping constant that
would produce critical damping.

; 7. A spring has a mass of 1 kg and its spring constant is .
The spring is released at a point 0.1 m above its equilibrium
position. Graph the position function for the following values
of the damping constant c: 10, 15, 20, 25, 30. What type of
damping occurs in each case?

; 8. A spring has a mass of 1 kg and its damping constant is
The spring starts from its equilibrium position with a

velocity of 1 m�s. Graph the position function for the follow-
ing values of the spring constant k: 10, 20, 25, 30, 40. What
type of damping occurs in each case?

Suppose a spring has mass and spring constant and let
. Suppose that the damping constant is so small 

that the damping force is negligible. If an external force
is applied, where , use the method 

of undetermined coefficients to show that the motion of the
mass is described by Equation 6.

10. As in Exercise 9, consider a spring with mass , spring con-
stant , and damping constant , and let . 
If an external force is applied (the applied 
frequency equals the natural frequency), use the method of
undetermined coefficients to show that the motion of the mass
is given by .

11. Show that if , but is a rational number, then the
motion described by Equation 6 is periodic.

���0�0 � �

x�t� � c1 cos �t � c2 sin �t � �F0 ��2m���t sin �t

F�t� � F0 cos �t
� � sk�m c � 0k

m

�0 � �F�t� � F0 cos �0t

� � sk�m 
km9.

c � 10.

k � 100

t0.5 m�s

c � 8

0.5
3.

t
1 m�s

32 N
0.4 m8-kg

t0
1.1 m

1 m25 N
5-kg0.75 m

EXERCISES17.3



SERIES SOLUTIONS

Many differential equations can’t be solved explicitly in terms of finite combinations of
simple familiar functions. This is true even for a simple-looking equation like

But it is important to be able to solve equations such as Equation 1 because they arise from
physical problems and, in particular, in connection with the Schrödinger equation in quan-
tum mechanics. In such a case we use the method of power series; that is, we look for a
solution of the form

The method is to substitute this expression into the differential equation and determine the
values of the coefficients This technique resembles the method of undeter-
mined coefficients discussed in Section 17.2.

Before using power series to solve Equation 1, we illustrate the method on the simpler
equation in Example 1. It’s true that we already know how to solve this equa-
tion by the techniques of Section 17.1, but it’s easier to understand the power series
method when it is applied to this simpler equation.

EXAMPLE 1 Use power series to solve the equation .

SOLUTION We assume there is a solution of the form

We can differentiate power series term by term, so

In order to compare the expressions for and more easily, we rewrite as follows:

Substituting the expressions in Equations 2 and 4 into the differential equation, we
obtain

or



	

n�0
 ��n � 2��n � 1�cn�2 � cn �xn � 05



	

n�0
 �n � 2��n � 1�cn�2 xn � 


	

n�0
 cn xn � 0

y� � 

	

n�0
 �n � 2��n � 1�cn�2 xn4

y�y�y

 y� � 2c2 � 2 � 3c3 x � � � � � 

	

n�2
 n�n � 1�cn xn�23

 y� � c1 � 2c2 x � 3c3 x 2 � � � � � 

	

n�1
 ncn xn�1

y � c0 � c1 x � c2 x 2 � c3 x 3 � � � � � 

	

n�0
 cn xn2

y� � y � 0V

y� � y � 0

c0, c1, c2, . . . .

y � f �x� � 

	

n�0
 cn xn � c0 � c1 x � c2 x 2 � c3 x 3 � � � �

y� � 2xy� � y � 01

17.4
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N By writing out the first few terms of (4), you
can see that it is the same as (3). To obtain (4),
we replaced by and began the sum-
mation at 0 instead of 2.

n � 2n



If two power series are equal, then the corresponding coefficients must be equal. There-
fore the coefficients of in Equation 5 must be 0:

Equation 6 is called a recursion relation. If and are known, this equation allows 
us to determine the remaining coefficients recursively by putting in 
succession.

By now we see the pattern:

Putting these values back into Equation 2, we write the solution as

Notice that there are two arbitrary constants, and Mc1.c0

 � c0 

	

n�0
 ��1�n 

x 2n

�2n�!
� c1 


	

n�0
 ��1�n 

x 2n�1

�2n � 1�!

 � � c1�x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � � � ��1�n 

x 2n�1

�2n � 1�!
� � � ��

 � c0�1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � � � � ��1�n 

x 2n

�2n�!
� � � ��

 y � c0 � c1x � c2x 2 � c3x 3 � c4x 4 � c5x 5 � � � �

 For the odd coefficients, c2n�1 � ��1�n 
c1

�2n � 1�!

 For the even coefficients, c2n � ��1�n 
c0

�2n�!

 Put n � 5: c7 � �
c5

6 � 7
� �

c1

5! 6 � 7
� �

c1

7!

 Put n � 4: c6 � �
c4

5 � 6
� �

c0

4! 5 � 6
� �

c0

6!

 Put n � 3: c5 � �
c3

4 � 5
�

c1

2 � 3 � 4 � 5
�

c1

5!

 Put n � 2: c4 � �
c2

3 � 4
�

c0

1 � 2 � 3 � 4
�

c0

4!

 Put n � 1: c3 � �
c1

2 � 3

 Put n � 0: c2 � �
c0

1 � 2

n � 0, 1, 2, 3, . . .
c1c0

n � 0, 1, 2, 3, . . .cn�2 � �
cn

�n � 1��n � 2�
6

�n � 2��n � 1�cn�2 � cn � 0

xn
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We recognize the series obtained in Example 1 as being the Maclaurin series
for and . (See Equations 11.10.16 and 11.10.15.) Therefore we could write the
solution as

But we are not usually able to express power series solutions of differential equations in
terms of known functions.

EXAMPLE 2 Solve .

SOLUTION We assume there is a solution of the form

Then

and

as in Example 1. Substituting in the differential equation, we get

This equation is true if the coefficient of is 0:

We solve this recursion relation by putting successively in Equation 7:

 Put n � 3: c5 �
5

4 � 5
 c3 �

1 � 5

2 � 3 � 4 � 5
 c1 �

1 � 5

5!
 c1

 Put n � 2: c4 �
3

3 � 4
 c2 � �

3

1 � 2 � 3 � 4
 c0 � �

3

4!
 c0

 Put n � 1: c3 �
1

2 � 3
 c1

 Put n � 0: c2 �
�1

1 � 2
 c0

n � 0, 1, 2, 3, . . .

n � 0, 1, 2, 3, . . .cn�2 �
2n � 1

�n � 1��n � 2�
 cn7

�n � 2��n � 1�cn�2 � �2n � 1�cn � 0

xn

 

	

n�0
 ��n � 2��n � 1�cn�2 � �2n � 1�cn �xn � 0

 

	

n�0
 �n � 2��n � 1�cn�2 xn �  


	

n�1
 2ncn xn � 


	

n�0
 cn xn � 0

 

	

n�0
 �n � 2��n � 1�cn�2 xn � 2x 


	

n�1
 ncn xn�1 � 


	

n�0
 cn xn � 0

 y� � 

	

n�2
 n�n � 1�cn xn�2 � 


	

n�0
 �n � 2��n � 1�cn�2 xn

 y� � 

	

n�1
 ncn xn�1

 y � 

	

n�0
 cn xn

y� � 2xy� � y � 0V

y�x� � c0 cos x � c1 sin x

sin xcos x
NOTE 1
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n�1
 2ncn x n � 


	

n�0
 2ncn x n



In general, the even coefficients are given by

and the odd coefficients are given by

The solution is

or

M

In Example 2 we had to assume that the differential equation had a series solu-
tion. But now we could verify directly that the function given by Equation 8 is indeed a
solution.

Unlike the situation of Example 1, the power series that arise in the solution of
Example 2 do not define elementary functions. The functions

and  y2�x� � x � 

	

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1

 y1�x� � 1 �
1

2!
 x 2 � 


	

n�2
 
3 � 7 � � � � � �4n � 5�

�2n�!
 x 2n

NOTE 3

NOTE 2

 � � c1�x � 

	

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1�

 y � c0�1 �
1

2!
 x 2 � 


	

n�2
 
3 � 7 � � � � � �4n � 5�

�2n�!
 x 2n�8

 � � c1�x �
1

3!
 x 3 �

1 � 5

5!
 x 5 �

1 � 5 � 9

7!
 x 7 �

1 � 5 � 9 � 13

9!
 x 9 � � � ��

 � c0�1 �
1

2!
 x 2 �

3

4!
 x 4 �

3 � 7

6!
 x 6 �

3 � 7 � 11

8!
 x 8 � � � ��

 y � c0 � c1 x � c2 x 2 � c3 x 3 � c4 x 4 � � � �

c2n�1 �
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 c1

c2n � �
3 � 7 � 11 � � � � � �4n � 5�

�2n�!
 c0

 Put n � 7: c9 �
13

8 � 9
 c7 �

1 � 5 � 9 � 13

9!
 c1

 Put n � 6: c8 �
11

7 � 8
 c6 � �

3 � 7 � 11

8!
 c0

 Put n � 5: c7 �
9

6 � 7
 c5 �

1 � 5 � 9

5! 6 � 7
 c1 �

1 � 5 � 9

7!
 c1

 Put n � 4: c6 �
7

5 � 6
 c4 � �

3 � 7

4! 5 � 6
 c0 � �

3 � 7

6!
 c0
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are perfectly good functions but they can’t be expressed in terms of familiar functions. We
can use these power series expressions for and to compute approximate values of the
functions and even to graph them. Figure 1 shows the first few partial sums 
(Taylor polynomials) for , and we see how they converge to . In this way we can
graph both and in Figure 2.

If we were asked to solve the initial-value problem

we would observe from Theorem 11.10.5 that

This would simplify the calculations in Example 2, since all of the even coefficients would
be 0. The solution to the initial-value problem is

y�x� � x � 

	

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1

c1 � y��0� � 1c0 � y�0� � 0

 y��0� � 1y�0� � 0y� � 2xy� � y � 0

NOTE 4

y2y1

y1y1�x�
T0, T2, T4, . . .

y2y1
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11. , ,

12. The solution of the initial-value problem

is called a Bessel function of order 0.
(a) Solve the initial-value problem to find a power series

expansion for the Bessel function.

; (b) Graph several Taylor polynomials until you reach one that
looks like a good approximation to the Bessel function on
the interval .��5, 5�

y��0� � 0y�0� � 1x 2 y� � xy� � x 2 y � 0

y��0� � 1y�0� � 0y� � x 2 y� � xy � 01–11 Use power series to solve the differential equation. 

1. 2.

4.

5. 6.

7.

8.

, ,

10. , , y��0� � 0y�0� � 1y� � x 2 y � 0

y��0� � 0y�0� � 1y� � xy� � y � 09.

y� � xy

�x � 1�y� � y� � 0

y� � yy� � xy� � y � 0

�x � 3�y� � 2y � 0y� � x 2 y3.

y� � xyy� � y � 0

EXERCISES17.4

15

_15

_2.5 2.5

›

fi

FIGURE 1

2

_8

_2 2

T¸

T¡¸

FIGURE 2
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17

(b) What is the complementary equation? How does it help
solve the original differential equation?

(c) Explain how the method of undetermined coefficients
works.

(d) Explain how the method of variation of parameters works.

4. Discuss two applications of second-order linear differential
equations.

5. How do you use power series to solve a differential equation?

1. (a) Write the general form of a second-order homogeneous 
linear differential equation with constant coefficients.

(b) Write the auxiliary equation.
(c) How do you use the roots of the auxiliary equation to solve

the differential equation? Write the form of the solution for
each of the three cases that can occur.

2. (a) What is an initial-value problem for a second-order differ-
ential equation?

(b) What is a boundary-value problem for such an equation?

3. (a) Write the general form of a second-order nonhomogeneous
linear differential equation with constant coefficients.



Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If and are solutions of , then is also 
a solution of the equation.

2. If and are solutions of , then
is also a solution of the equation.c1 y1 � c2 y2

y� � 6y� � 5y � xy2y1

y1 � y2y� � y � 0y2y1

3. The general solution of can be written as

4. The equation has a particular solution of the form

yp � Ae x

y� � y � e x

y � c1 cosh x � c2 sinh x

y� � y � 0

T R U E - F A L S E  Q U I Z

1–10 Solve the differential equation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. ,

11–14 Solve the initial-value problem.

11. , ,

12. , ,

13. , ,

14. , ,

15. Use power series to solve the initial-value problem

y��0� � 1y�0� � 0y� � xy� � y � 0

y��0� � 2y�0� � 19y� � y � 3x � e �x

y��0� � 1y�0� � 0y� � 5y� � 4y � 0

y��0� � 1y�0� � 2y� � 6y� � 25y � 0

y��1� � 12y�1� � 3y� � 6y� � 0

0 � x � ��2
d 2y

dx 2 � y � csc x

d 2y

dx 2 �
dy

dx
� 6y � 1 � e�2x

d 2y

dx 2 � 4y � sin 2x

d 2y

dx 2 � 2 
dy

dx
� y � x cos x

d 2y

dx 2 �
dy

dx
� 2y � x 2

d 2y

dx 2 � 4 
dy

dx
� 5y � e 2x

4y� � 4y� � y � 0

y� � 3y � 0

y� � 4y� � 13y � 0

y� � 2y� � 15y � 0

16. Use power series to solve the equation

17. A series circuit contains a resistor with , an inductor
with H, a capacitor with F, and a 12-V bat-
tery. The initial charge is C and the initial current 
is 0. Find the charge at time t.

18. A spring with a mass of 2 kg has damping constant 16, and a
force of N keeps the spring stretched m beyond its 
natural length. Find the position of the mass at time if it 
starts at the equilibrium position with a velocity of m�s.

19. Assume that the earth is a solid sphere of uniform density with
mass and radius mi. For a particle of mass 
within the earth at a distance from the earth’s center, the
gravitational force attracting the particle to the center is

where is the gravitational constant and is the mass of the
earth within the sphere of radius .

(a) Show that .

(b) Suppose a hole is drilled through the earth along a diame-
ter. Show that if a particle of mass is dropped from rest
at the surface, into the hole, then the distance of
the particle from the center of the earth at time is given by

where .
(c) Conclude from part (b) that the particle undergoes simple

harmonic motion. Find the period T.
(d) With what speed does the particle pass through the center

of the earth?

k 2 � GM�R3 � t�R

y��t� � �k 2 y�t�

t
y � y�t�

m

Fr �
�GMm

R3  r

r
MrG

Fr �
�GMr m

r 2

r
mR � 3960M

2.4
t

0.212.8

Q � 0.01
C � 0.0025L � 2

�R � 40

y� � xy� � 2y � 0

E X E R C I S E S
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NUMBERS, INEQUALITIES, AND ABSOLUTE VALUES

Calculus is based on the real number system. We start with the integers:

Then we construct the rational numbers, which are ratios of integers. Thus any rational
number can be expressed as

Examples are

(Recall that division by is always ruled out, so expressions like and are undefined.)
Some real numbers, such as , can’t be expressed as a ratio of integers and are therefore
called irrational numbers. It can be shown, with varying degrees of difficulty, that the fol-
lowing are also irrational numbers:

The set of all real numbers is usually denoted by the symbol . When we use the word
number without qualification, we mean “real number.”

Every number has a decimal representation. If the number is rational, then the corre-
sponding decimal is repeating. For example,

(The bar indicates that the sequence of digits repeats forever.) On the other hand, if the
number is irrational, the decimal is nonrepeating:

If we stop the decimal expansion of any number at a certain place, we get an approxima-
tion to the number. For instance, we can write

where the symbol is read “is approximately equal to.” The more decimal places we
retain, the better the approximation we get.

The real numbers can be represented by points on a line as in Figure 1. The positive
direction (to the right) is indicated by an arrow. We choose an arbitrary reference point ,
called the origin, which corresponds to the real number . Given any convenient unit of
measurement, each positive number is represented by the point on the line a distance of

units to the right of the origin, and each negative number is represented by the point
units to the left of the origin. Thus every real number is represented by a point on the

line, and every point on the line corresponds to exactly one real number. The number
associated with the point is called the coordinate of and the line is then called a coor-PP

P
x

�xx
x

0
O

�

� � 3.14159265

� � 3.141592653589793 . . .s2 � 1.414213562373095 . . .

 157
495 � 0.317171717 . . . � 0.317 9

7 � 1.285714285714 . . . � 1.285714

 12 � 0.5000 . . . � 0.50  2
3 � 0.66666 . . . � 0.6

�

log10 2sin 1��s
3 2 

s5 
s3 

s2 

0
0

3
00

0.17 � 17
10046 � 46

1�
3
7

1
2

where m and n are integers and n � 0r �
m

n

r

. . . , �3, �2, �1, 0, 1, 2, 3, 4, . . .

A
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dinate line, or a real number line, or simply a real line. Often we identify the point with
its coordinate and think of a number as being a point on the real line.

The real numbers are ordered. We say is less than and write if is a pos-
itive number. Geometrically this means that lies to the left of on the number line.
(Equivalently, we say is greater than and write .) The symbol (or )
means that either or and is read “ is less than or equal to .” For instance,
the following are true inequalities:

In what follows we need to use set notation. A set is a collection of objects, and these
objects are called the elements of the set. If is a set, the notation means that is
an element of , and means that is not an element of . For example, if repre-
sents the set of integers, then but . If and are sets, then their union

is the set consisting of all elements that are in or (or in both and ). The inter-
section of and is the set consisting of all elements that are in both and . In
other words, is the common part of and . The empty set, denoted by ∅, is the set
that contains no element.

Some sets can be described by listing their elements between braces. For instance, the
set consisting of all positive integers less than 7 can be written as

We could also write in set-builder notation as

which is read “ is the set of such that is an integer and .”

INTERVALS

Certain sets of real numbers, called intervals, occur frequently in calculus and correspond
geometrically to line segments. For example, if , the open interval from to con-
sists of all numbers between and and is denoted by the symbol . Using set-builder
notation, we can write

Notice that the endpoints of the interval—namely, and —are excluded. This is indicated
by the round brackets and by the open dots in Figure 2. The closed interval from to

is the set

Here the endpoints of the interval are included. This is indicated by the square brackets 
and by the solid dots in Figure 3. It is also possible to include only one endpoint in an inter-
val, as shown in Table 1.

� �

�a, b� � �x � a � x � b�

b
a� 	

ba

�a, b	 � �x � a � x � b�

�a, b	ba
baa � b

0 � x � 7xxA

A � �x � x is an integer and 0 � x � 7�

A

A � �1, 2, 3, 4, 5, 6�

A

TSS � T
TSS � TTS

TSTSS � T
TS� � Z�3 � Z

ZSaa � SS
aa � SS

2 � 2s2 � 2s2 � 2�3 � ��7 � 7.4 � 7.5

baa � ba � b
b � aa � bb � aab

ba
b � aa � bba

FIGURE 1 0 1 2 3 4_1_2_3

_2.63 2 π_ œ„
1
2

3
7
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FIGURE 2
Open interval (a, b)

a b

FIGURE 3
Closed interval [a, b]

a b



TABLE OF INTERVALS

We also need to consider infinite intervals such as

This does not mean that (“infinity”) is a number. The notation stands for the set
of all numbers that are greater than , so the symbol simply indicates that the interval
extends indefinitely far in the positive direction.

INEQUALITIES

When working with inequalities, note the following rules.

RULES FOR INEQUALITIES

1. If , then .

2. If and , then .

3. If and , then .

4. If and , then .

5. If , then .

Rule 1 says that we can add any number to both sides of an inequality, and Rule 2 says
that two inequalities can be added. However, we have to be careful with multiplication.
Rule 3 says that we can multiply both sides of an inequality by a positive number, but

| Rule 4 says that if we multiply both sides of an inequality by a negative number, then we
reverse the direction of the inequality. For example, if we take the inequality and
multiply by , we get , but if we multiply by , we get . Finally, Rule 5
says that if we take reciprocals, then we reverse the direction of an inequality (provided
the numbers are positive).

EXAMPLE 1 Solve the inequality .

SOLUTION The given inequality is satisfied by some values of but not by others. To solve
an inequality means to determine the set of numbers for which the inequality is true.
This is called the solution set.

x
x

1 	 x � 7x 	 5

�6 � �10�26 � 102
3 � 5

1
a � 1
b0 � a � b

ac � bcc � 0a � b

ac � bcc � 0a � b

a 	 c � b 	 dc � da � b

a 	 c � b 	 ca � b

2


a
�a, 
	


�a, 
	 � �x � x � a�

1
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Notation Set description Picture

(set of all real numbers)���
, 
	

�x � x � b���
, b�

�x � x � b���
, b	

�x � x � a��a, 
	

�x � x � a��a, 
	

�x � a � x � b��a, b�

�x � a � x � b��a, b	

�x � a � x � b��a, b�

�x � a � x � b��a, b	

N Table 1 lists the nine possible types of inter-
vals. When these intervals are discussed, it is
always assumed that .a � b

a b

a b

a b

a b

a

a

b

b



First we subtract 1 from each side of the inequality (using Rule 1 with ):

Then we subtract from both sides (Rule 1 with ):

Now we divide both sides by (Rule 4 with ):

These steps can all be reversed, so the solution set consists of all numbers greater than
. In other words, the solution of the inequality is the interval . M

EXAMPLE 2 Solve the inequalities .

SOLUTION Here the solution set consists of all values of that satisfy both inequalities.
Using the rules given in (2), we see that the following inequalities are equivalent:

(add 2)

(divide by 3)

Therefore the solution set is . M

EXAMPLE 3 Solve the inequality .

SOLUTION First we factor the left side:

We know that the corresponding equation has the solutions 2 and 3.
The numbers 2 and 3 divide the real line into three intervals:

On each of these intervals we determine the signs of the factors. For instance,

Then we record these signs in the following chart:

Another method for obtaining the information in the chart is to use test values. For
instance, if we use the test value for the interval , then substitution in

gives

12 � 5�1	 	 6 � 2

x 2 � 5x 	 6
��
, 2	x � 1

x � 2 � 0 ? x � 2 ? x � ��
, 2	

�3, 
	�2, 3	��
, 2	

�x � 2	�x � 3	 � 0

�x � 2	�x � 3	 � 0

x 2 � 5x 	 6 � 0

�2, 5	

 2 � x � 5

 6 � 3x � 15

 4 � 3x � 2 � 13

x

4 � 3x � 2 � 13

(� 2
3, 
)�

2
3

x � �
4
6 � �

2
3

c � �
1
6�6

�6x � 4

c � �7x7x

x � 7x 	 4

c � �1
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FIGURE 4

x0

y

y=≈-5x+6

1 2 3 4

N A visual method for solving Example 3 is to
use a graphing device to graph the parabola

(as in Figure 4) and observe
that the curve lies on or below the -axis when

.2 � x � 3
x

y � x 2 � 5x 	 6

Interval

� � 	

	 � �

	 	 	 x � 3
 2 � x � 3

 x � 2

�x � 2	�x � 3	x � 3x � 2



The polynomial doesn’t change sign inside any of the three intervals, so we
conclude that it is positive on .

Then we read from the chart that is negative when . Thus
the solution of the inequality is

Notice that we have included the endpoints 2 and 3 because we are looking for values of
such that the product is either negative or zero. The solution is illustrated in Figure 5. M

EXAMPLE 4 Solve .

SOLUTION First we take all nonzero terms to one side of the inequality sign and factor the
resulting expression:

As in Example 3 we solve the corresponding equation and use the
solutions , , and to divide the real line into four intervals ,

, , and . On each interval the product keeps a constant sign as shown
in the following chart:

Then we read from the chart that the solution set is

The solution is illustrated in Figure 6. M

ABSOLUTE VALUE

The absolute value of a number , denoted by , is the distance from to on the real
number line. Distances are always positive or , so we have

For example,

In general, we have

 � a � � �a if a � 0

 � a � � a  if a � 03

� 3 � � � � � � 3� s2 � 1 � � s2 � 1� 0 � � 0� �3 � � 3� 3 � � 3

for every number a� a � � 0

0
0a� a �a

�x � �4 � x � 0 or x � 1� � ��4, 0	 � �1, 
	

�1, 
	�0, 1	��4, 0	
��
, �4	x � 1x � 0x � �4

x�x � 1	�x 	 4	 � 0

x�x � 1	�x 	 4	 � 0 orx 3 	 3x 2 � 4x � 0

x 3 	 3x 2 � 4x

x

�x � 2 � x � 3� � �2, 3�

�x � 2	�x � 3	 � 0
2 � x � 3�x � 2	�x � 3	

��
, 2	
x 2 � 5x 	 6

A6 || | | APPENDIX A NUMBERS, INEQUALITIES, AND ABSOLUTE VALUES

0 2 3

+ - +

FIGURE 5

x

Interval x

� � � �

� � 	 	

	 � 	 �

	 	 	 	 x � 1
 0 � x � 1

 �4 � x � 0
 x � �4

x �x � 1	�x 	 4	x 	 4x � 1

0 1_4

FIGURE 6

N Remember that if is negative, then 
is positive.

�aa
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0 a_a x

a a

| x |

FIGURE 7

| a-b |

ab

| a-b |

ba

FIGURE 8
Length of a line segment=|a-b |

EXAMPLE 5 Express without using the absolute-value symbol.

SOLUTION

M

Recall that the symbol means “the positive square root of.” Thus means
| and . Therefore, the equation is not always true. It is true only when

. If , then , so we have . In view of (3), we then have the
equation

which is true for all values of .
Hints for the proofs of the following properties are given in the exercises.

PROPERTIES OF ABSOLUTE VALUES Suppose and are any real numbers and
is an integer. Then

1. 2. 3.

For solving equations or inequalities involving absolute values, it’s often very helpful
to use the following statements.

Suppose . Then

4. if and only if

5. if and only if

6. if and only if or

For instance, the inequality says that the distance from to the origin is less
than , and you can see from Figure 7 that this is true if and only if lies between and .

If and are any real numbers, then the distance between and is the absolute value
of the difference, namely, , which is also equal to . (See Figure 8.)

EXAMPLE 6 Solve .

SOLUTION By Property 4 of (6), is equivalent to

So or . Thus or . Mx � 1x � 42x � 22x � 8

2x � 5 � �3or2x � 5 � 3

� 2x � 5 � � 3

� 2x � 5 � � 3

� b � a �� a � b �
baba

a�axa
x� x � � a

x � �ax � a� x � � a

�a � x � a� x � � a

x � �a� x � � a

a � 06

� an � � � a �n�b � 0	� a

b � � � a �
� b �� ab � � � a � � b �

n
ba5

a

sa 2 � � a �4

sa 2 � �a�a � 0a � 0a � 0
sa 2 � as � 0s 2 � r

sr � ss1

 � �3x � 2

2 � 3x

if x �
2
3

if x �
2
3

 � 3x � 2 � � �3x � 2

��3x � 2	
if 3x � 2 � 0

if 3x � 2 � 0

� 3x � 2 �



EXAMPLE 7 Solve .

SOLUTION 1 By Property 5 of (6), is equivalent to

Therefore, adding 5 to each side, we have

and the solution set is the open interval .

SOLUTION 2 Geometrically the solution set consists of all numbers whose distance from 5
is less than 2. From Figure 9 we see that this is the interval . M

EXAMPLE 8 Solve .

SOLUTION By Properties 4 and 6 of (6), is equivalent to

In the first case , which gives . In the second case , which gives
. So the solution set is

M

Another important property of absolute value, called the Triangle Inequality, is used fre-
quently not only in calculus but throughout mathematics in general.

THE TRIANGLE INEQUALITY If and are any real numbers, then

Observe that if the numbers and are both positive or both negative, then the two
sides in the Triangle Inequality are actually equal. But if and have opposite signs,
the left side involves a subtraction and the right side does not. This makes the Triangle
Inequality seem reasonable, but we can prove it as follows.

Notice that

is always true because equals either or . The corresponding statement for is

Adding these inequalities, we get

If we now apply Properties 4 and 5 (with replaced by and by ), we
obtain

which is what we wanted to show.

� a 	 b � � � a � 	 � b �

� a � 	 � b �aa 	 bx

�(� a � 	 � b �) � a 	 b � � a � 	 � b �

�� b � � b � � b �

b�� a �� a �a

�� a � � a � � a �

ba
ba

� a 	 b � � � a � 	 � b �
ba7

{x � x � �2 or x �
2
3 } � ��
, �2� � [ 2

3, 
)

x � �2
3x � �6x �

2
33x � 2

3x 	 2 � �4or3x 	 2 � 4

� 3x 	 2 � � 4

� 3x 	 2 � � 4

�3, 7	
x

�3, 7	

3 � x � 7

�2 � x � 5 � 2

� x � 5 � � 2

� x � 5 � � 2
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EXAMPLE 9 If and , use the Triangle Inequality to estimate
.

SOLUTION In order to use the given information, we use the Triangle Inequality with
and :

Thus M� �x 	 y	 � 11 � � 0.3

 � 0.1 	 0.2 � 0.3

 � � x � 4 � 	 � y � 7 �
 � �x 	 y	 � 11 � � � �x � 4	 	 �y � 7	 �

b � y � 7a � x � 4

� �x 	 y	 � 11 �
� y � 7 � � 0.2� x � 4 � � 0.1
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ature in degrees Celsius and is the temperature in degrees
Fahrenheit. What interval on the Celsius scale corresponds to
the temperature range ?

40. Use the relationship between and given in Exercise 39 to
find the interval on the Fahrenheit scale corresponding to the
temperature range .

41. As dry air moves upward, it expands and in so doing cools at a
rate of about C for each 100-m rise, up to about 12 km.
(a) If the ground temperature is C, write a formula for the

temperature at height .
(b) What range of temperature can be expected if a plane takes

off and reaches a maximum height of 5 km?

42. If a ball is thrown upward from the top of a building 128 ft
high with an initial velocity of 16 ft
s, then the height above
the ground seconds later will be

During what time interval will the ball be at least 32 ft above
the ground?

43–46 Solve the equation for .

43. 44.

45. 46.

47–56 Solve the inequality.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56. 0 � � x � 5 � �
1
21 � � x � � 4

� 5x � 2 � � 6� 2x � 3 � � 0.4

� x 	 1 � � 3� x 	 5 � � 2

� x � 6 � � 0.1� x � 4 � � 1

� x � � 3� x � � 3

� 2x � 1

x 	 1 � � 3� x 	 3 � � � 2x 	 1 �

� 3x 	 5 � � 1� 2x � � 3

x

h � 128 	 16t � 16t 2

t
h

h
20�

1�

20 � C � 30

FC

50 � F � 95

F1–12 Rewrite the expression without using the absolute value 
symbol.

1. 2.

3. 4.

5. 6.

7. if 8. if 

9. 10.

11. 12.

13–38 Solve the inequality in terms of intervals and illustrate the
solution set on the real number line.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35. 36.

37. 38.

39. The relationship between the Celsius and Fahrenheit tempera-
ture scales is given by , where is the temper-CC � 5

9 �F � 32	

�3 �
1

x
� 1

1

x
� 4

x 3 	 3x � 4x 2x 3 � x

�x 	 1	�x � 2	�x 	 3	 � 0

x 3 � x 2 � 0

x 2 � 5x 2 � 3

x 2 	 x � 1x 2 	 x 	 1 � 0

�2x 	 3	�x � 1	 � 02x 2 	 x � 1

�2x 	 3	�x � 1	 � 0�x � 1	�x � 2	 � 0

2x � 3 � x 	 4 � 3x � 24x � 2x 	 1 � 3x 	 2

�5 � 3 � 2x � 90 � 1 � x � 1

1 � 3x 	 4 � 16�1 � 2x � 5 � 7

1 	 5x � 5 � 3x2x 	 1 � 5x � 8

4 � 3x � 61 � x � 2

3x � 11 � 42x 	 7 � 3

� 1 � 2x 2 �� x 2 	 1 �
� 2x � 1 �� x 	 1 �

x � 2� x � 2 �x � 2� x � 2 �
�� �2 � � � �3 ��� s5 � 5 �
� � � 2 �� �� �
� 5 � � � �23 �� 5 � 23 �
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65. Prove that . [Hint: Use Equation 4.]

66. Prove that .

67. Show that if , then .

68. Prove that . [Hint: Use the Triangle
Inequality with and .]

69. Show that the sum, difference, and product of rational numbers
are rational numbers.

70. (a) Is the sum of two irrational numbers always an irrational
number?

(b) Is the product of two irrational numbers always an
irrational number?

b � ya � x � y
� x � y � � � x � � � y �

a 2 � b 20 � a � b

� a

b � � � a �
� b �

� ab � � � a � � b �57–58 Solve for , assuming , , and are positive constants.

57. 58.

59–60 Solve for , assuming , , and are negative constants.

59. 60.

61. Suppose that and . Use the 
Triangle Inequality to show that .

62. Show that if , then .

63. Show that if , then .

64. Use Rule 3 to prove Rule 5 of (2).

a �
a 	 b

2
� ba � b

� 4x 	 13 � � 3� x 	 3 � �
1
2

� �x 	 y	 � 5 � � 0.05
� y � 3 � � 0.04� x � 2 � � 0.01

ax 	 b

c
� bax 	 b � c

cbax

a � bx 	 c � 2aa�bx � c	 � bc

cbax
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COORDINATE GEOMETRY AND LINES

Just as the points on a line can be identified with real numbers by assigning them coordi-
nates, as described in Appendix A, so the points in a plane can be identified with ordered
pairs of real numbers. We start by drawing two perpendicular coordinate lines that inter-
sect at the origin on each line. Usually one line is horizontal with positive direction to
the right and is called the -axis; the other line is vertical with positive direction upward
and is called the -axis.

Any point in the plane can be located by a unique ordered pair of numbers as follows.
Draw lines through perpendicular to the - and -axes. These lines intersect the axes in
points with coordinates and as shown in Figure 1. Then the point is assigned the
ordered pair . The first number is called the x-coordinate of ; the second number

is called the y-coordinate of . We say that is the point with coordinates , and
we denote the point by the symbol . Several points are labeled with their coordi-
nates in Figure 2.

By reversing the preceding process we can start with an ordered pair and arrive
at the corresponding point . Often we identify the point with the ordered pair and
refer to “the point .” [Although the notation used for an open interval is the �a, b	�a, b	

�a, b	PP
�a, b	

0 x1 2 3 4 5_1_2_3

1

2

3

4

_2

_3

_1

y

_4

(5, 0)

(1, 3)
(_2, 2)

(_3, _2))

(2, _4)

FIGURE 2

x1 2 3 4 5_1_2_3

a

O

2

4

_2

_1

b

y

1

3

P(a, b)

III

IVIII
_3

FIGURE 1

_4

P�a, b	
�a, b	PPb

Pa�a, b	
Pba

yxP
P

y
x

O

B



same as the notation used for a point , you will be able to tell from the context which
meaning is intended.]

This coordinate system is called the rectangular coordinate system or the Cartesian
coordinate system in honor of the French mathematician René Descartes (1596–1650),
even though another Frenchman, Pierre Fermat (1601–1665), invented the principles of
analytic geometry at about the same time as Descartes. The plane supplied with this coor-
dinate system is called the coordinate plane or the Cartesian plane and is denoted by .

The - and -axes are called the coordinate axes and divide the Cartesian plane into
four quadrants, which are labeled I, II, III, and IV in Figure 1. Notice that the first quad-
rant consists of those points whose - and -coordinates are both positive.

EXAMPLE 1 Describe and sketch the regions given by the following sets.

(a) (b) (c )

SOLUTION
(a) The points whose -coordinates are 0 or positive lie on the -axis or to the right of it
as indicated by the shaded region in Figure 3(a).

(b) The set of all points with -coordinate 1 is a horizontal line one unit above the -axis
[see Figure 3(b)].

(c) Recall from Appendix A that

The given region consists of those points in the plane whose -coordinates lie between
and . Thus the region consists of all points that lie between (but not on) the hori-

zontal lines and . [These lines are shown as dashed lines in Figure 3(c) to
indicate that the points on these lines don’t lie in the set.] M

Recall from Appendix A that the distance between points and on a number line is
. Thus the distance between points and on a hor-

izontal line must be and the distance between and on a ver-
tical line must be . (See Figure 4.)

To find the distance between any two points and , we note
that triangle in Figure 4 is a right triangle, and so by the Pythagorean Theorem 
we have

 � s�x2 � x1	2 	 �y2 � y1	2 

 � P1P2 � � s� P1P3 �2 	 � P2P3 �2 � s� x2 � x1 �2 	 � y2 � y1 �2 

P1P2P3

P2�x2, y2 	P1�x1, y1	� P1P2 �
� y2 � y1 �

P3�x2, y1	P2�x2, y2 	� x2 � x1 �
P3�x2, y1	P1�x1, y1	� a � b � � � b � a �

ba

y � �1y � 1
1�1

y

�1 � y � 1if and only if� y � � 1

xy

FIGURE 3

x0

y

x0

y

y=1

x0

y

y=1

y=_1

(a) x � 0 (b) y=1 (c) | y |<1

yx

{�x, y	 � � y � � 1}��x, y	 � y � 1���x, y	 � x � 0�

yx

yx
� 2

�a, b	
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DISTANCE FORMULA The distance between the points and is

EXAMPLE 2 The distance between and is

M

LINES

We want to find an equation of a given line ; such an equation is satisfied by the coordi-
nates of the points on and by no other point. To find the equation of we use its slope,
which is a measure of the steepness of the line.

DEFINITION The slope of a nonvertical line that passes through the points
and is

The slope of a vertical line is not defined.

Thus the slope of a line is the ratio of the change in , , to the change in , . (See
Figure 5.) The slope is therefore the rate of change of y with respect to x. The fact that the
line is straight means that the rate of change is constant.

Figure 6 shows several lines labeled with their slopes. Notice that lines with positive
slope slant upward to the right, whereas lines with negative slope slant downward to the
right. Notice also that the steepest lines are the ones for which the absolute value of the
slope is largest, and a horizontal line has slope 0.

Now let’s find an equation of the line that passes through a given point and
has slope . A point with lies on this line if and only if the slope of the line
through and is equal to ; that is,

This equation can be rewritten in the form

and we observe that this equation is also satisfied when and . Therefore it is
an equation of the given line.

POINT-SLOPE FORM OF THE EQUATION OF A LINE An equation of the line
passing through the point and having slope is

y � y1 � m�x � x1�

mP1�x1, y1�
3

y � y1x � x1

y � y1 � m�x � x1�

y � y1

x � x1
� m

mPP1

x � x1P�x, y�m
P1�x1, y1�

�xx�yy

m �
�y

�x
�

y2 � y1

x2 � x1

P2�x2, y2 �P1�x1, y1�
2

LL
L

s�5 � 1� 2 � �3 � ��2�� 2 � s42 � 52 � s41

�5, 3��1, �2�

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2 

P2�x2, y2 �P1�x1, y1�1

FIGURE 5

P™(x™, y™)

P¡(x¡, y¡)

L

Îy=fi-›
=rise

Îx=¤-⁄
=run

x0

y

x0

y

m=1

m=0

m=_1

m=_2

m=_5

m=2
m=5

m=
1
2

m=_
1
2

FIGURE 6



EXAMPLE 3 Find an equation of the line through with slope .

SOLUTION Using with , , and , we obtain an equation of the line
as

which we can rewrite as

M

EXAMPLE 4 Find an equation of the line through the points and .

SOLUTION By Definition 2 the slope of the line is

Using the point-slope form with and , we obtain

which simplifies to M

Suppose a nonvertical line has slope and -intercept . (See Figure 7.) This means it
intersects the -axis at the point , so the point-slope form of the equation of the line,
with and , becomes

This simplifies as follows.

SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE An equation of the line
with slope and -intercept is

In particular, if a line is horizontal, its slope is , so its equation is , where
is the -intercept (see Figure 8). A vertical line does not have a slope, but we can write

its equation as , where is the -intercept, because the -coordinate of every point
on the line is .

Observe that the equation of every line can be written in the form

because a vertical line has the equation or ( , , ) and
a nonvertical line has the equation or ( , ,

). Conversely, if we start with a general first-degree equation, that is, an equation
of the form (5), where , , and are constants and and are not both 0, then we can
show that it is the equation of a line. If , the equation becomes or

, which represents a vertical line with -intercept . If , the equation B � 0�C�Axx � �C�A
Ax � C � 0B � 0

BACBA
C � �b

B � 1A � �m�mx � y � b � 0y � mx � b
C � �aB � 0A � 1x � a � 0x � a

Ax � By � C � 05

a
xxax � a

yb
y � bm � 0

y � mx � b

bym
4

y � b � m�x � 0�

y1 � bx1 � 0
�0, b�y

bym

3x � 2y � 1

y � 2 � �
3
2 �x � 1�

y1 � 2x1 � �1

m �
�4 � 2

3 � ��1�
� �

3

2

�3, �4���1, 2�

x � 2y � 13 � 0or2y � 14 � �x � 1

y � 7 � �
1
2 �x � 1�

y1 � �7x1 � 1m � �
1
2�3�

�
1
2�1, �7�
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can be rewritten by solving for :

and we recognize this as being the slope-intercept form of the equation of a line
( , ). Therefore an equation of the form (5) is called a linear 
equation or the general equation of a line. For brevity, we often refer to “the line

” instead of “the line whose equation is .”

EXAMPLE 5 Sketch the graph of the equation .

SOLUTION Since the equation is linear, its graph is a line. To draw the graph, we can sim-
ply find two points on the line. It’s easiest to find the intercepts. Substituting (the
equation of the -axis) in the given equation, we get , so is the -intercept.
Substituting in the equation, we see that the -intercept is . This allows us to
sketch the graph as in Figure 9. M

EXAMPLE 6 Graph the inequality .

SOLUTION We are asked to sketch the graph of the set and we do so by
solving the inequality for :

Compare this inequality with the equation , which represents a line with
slope and -intercept . We see that the given graph consists of points whose 
-coordinates are larger than those on the line . Thus the graph is the

region that lies above the line, as illustrated in Figure 10. M

PARALLEL AND PERPENDICULAR LINES

Slopes can be used to show that lines are parallel or perpendicular. The following facts are
proved, for instance, in Precalculus: Mathematics for Calculus, Fifth Edition by Stewart,
Redlin, and Watson (Thomson Brooks�Cole, Belmont, CA, 2006).

PARALLEL AND PERPENDICULAR LINES

1. Two nonvertical lines are parallel if and only if they have the same slope.

2. Two lines with slopes and are perpendicular if and only if ;
that is, their slopes are negative reciprocals:

EXAMPLE 7 Find an equation of the line through the point that is parallel to the
line .

SOLUTION The given line can be written in the form

y � �
2
3 x �

5
6

4x � 6y � 5 � 0
�5, 2�

m2 � �
1

m1

m1m2 � �1m2m1

6

y � �
1
2 x �

5
2y

5
2y�

1
2

y � �
1
2 x �

5
2

 y � �
1
2 x �

5
2

 2y � �x � 5

 x � 2y � 5

y
��x, y� � x � 2y � 5	

x � 2y � 5

�3yx � 0
xx � 53x � 15x

y � 0

3x � 5y � 15

Ax � By � C � 0Ax � By � C � 0

b � �C�Bm � �A�B

y � �
A

B
 x �

C

B

y
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which is in slope-intercept form with . Parallel lines have the same slope, so the
required line has slope and its equation in point-slope form is

We can write this equation as . M

EXAMPLE 8 Show that the lines and are perpendicular.

SOLUTION The equations can be written as

from which we see that the slopes are

Since , the lines are perpendicular. Mm1m2 � �1

m2 � 3
2andm1 � �

2
3

y � 3
2 x �

1
4andy � �

2
3 x �

1
3

6x � 4y � 1 � 02x � 3y � 1

2x � 3y � 16

y � 2 � �
2
3 �x � 5�

�
2
3

m � �
2
3
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19. 20.

21–36 Find an equation of the line that satisfies the given 
conditions.

21. Through , slope 

22. Through , slope 

23. Through , slope 

24. Through , slope 

25. Through and 

26. Through and 

27. Slope , -intercept 

28. Slope , -intercept 

29. -intercept , -intercept 

30. -intercept , -intercept 

31. Through , parallel to the -axis

32. Through , parallel to the -axis

33. Through , parallel to the line 

34. -intercept , parallel to the line 

35. Through , perpendicular to the line 

36. Through , perpendicular to the line 

37–42 Find the slope and -intercept of the line and draw 
its graph.

37. 38. 2x � 5y � 0x � 3y � 0

y

4x � 8y � 1( 1
2, � 2

3 )
2x � 5y � 8 � 0��1, �2�

2x � 3y � 4 � 06y

x � 2y � 6�1, �6�

y�4, 5�

x�4, 5�

6y�8x

�3y1x

4y2
5

�2y3

�4, 3���1, �2�

�1, 6��2, 1�

�
7
2��3, �5�

2
3�1, 7�

�3��1, 4�

6�2, �3�

� y � � 1xy � 01–6 Find the distance between the points.

1. , 2. ,

3. , 4. ,

5. , 6. ,

7–10 Find the slope of the line through and .

7. 8. ,

9. , 10. ,

11. Show that the triangle with vertices , , and
is isosceles.

12. (a) Show that the triangle with vertices , ,
and is a right triangle using the converse of the
Pythagorean Theorem.

(b) Use slopes to show that is a right triangle.
(c) Find the area of the triangle.

13. Show that the points , , , and are the
vertices of a square.

14. (a) Show that the points , , and 
are collinear (lie on the same line) by showing that

.
(b) Use slopes to show that , , and are collinear.

15. Show that , , , and are vertices
of a parallelogram.

16. Show that , , , and are vertices
of a rectangle.

17–20 Sketch the graph of the equation.

17. 18. y � �2x � 3

D�0, 6�C�10, 8�B�11, 3�A�1, 1�

D��1, 7�C�5, 10�B�7, 4�A�1, 1�

CBA
� AB � � � BC � � � AC �

C�5, 15�B�3, 11�A��1, 3�

��5, 3��1, 0��4, 6���2, 9�

ABC

C�2, �2�
B�11, �3�A�6, �7�

C��4, 3�
B��3, �1�A�0, 2�

Q�6, 0�P��1, �4�Q��1, �6�P��3, 3�

Q�4, �3�P��1, 6�Q�4, 11�P�1, 5�, 

QP

�b, a��a, b��4, �7��2, 5�

��1, �3��1, �6���1, 3��6, �2�

�5, 7��1, �3��4, 5��1, 1�
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57. Show that the lines and are not 
parallel and find their point of intersection.

58. Show that the lines and 
are perpendicular and find their point of intersection.

59. Find an equation of the perpendicular bisector of the line seg-
ment joining the points and .

60. (a) Find equations for the sides of the triangle with vertices
, , and .

(b) Find equations for the medians of this triangle. Where do
they intersect?

61. (a) Show that if the - and -intercepts of a line are nonzero
numbers and , then the equation of the line can be put in
the form

This equation is called the two-intercept form of an equa-
tion of a line.

(b) Use part (a) to find an equation of the line whose 
-intercept is 6 and whose -intercept is .

62. A car leaves Detroit at 2:00 PM, traveling at a constant speed
west along I-96. It passes Ann Arbor, 40 mi from Detroit, at
2:50 PM.
(a) Express the distance traveled in terms of the time elapsed.
(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

�8yx

x

a
�

y

b
� 1

ba
yx

R��1, 6�Q�3, 4�P�1, 0�

B�7, �2�A�1, 4�

10x � 6y � 50 � 03x � 5y � 19 � 0

6x � 2y � 102x � y � 439. 40.

41. 42.

43–52 Sketch the region in the -plane.

43. 44.

45. 46.

47.

48.

49.

50.

51.

52.

53. Find a point on the -axis that is equidistant from 
and .

54. Show that the midpoint of the line segment from to
is

55. Find the midpoint of the line segment joining the given points.
(a) and (b) and 

56. Find the lengths of the medians of the triangle with vertices
, , and . (A median is a line segment from

a vertex to the midpoint of the opposite side.)
C�8, 2�B�3, 6�A�1, 0�

�8, �12���1, 6��7, 15��1, 3�


 x1 � x2

2
, 

 y1 � y2

2 �
P2�x2, y2 �

P1�x1, y1�

�1, 1�
�5, �5�y

{�x, y� � �x � y �
1
2 �x � 3�}

��x, y� � 1 � x � y � 1 � 2x	

��x, y� � y � 2x � 1	

��x, y� � 0 � y � 4 and x � 2	

{�x, y� � � x � � 3 and � y � � 2}
{�x, y� � � x � � 2}

��x, y� � x � 1 and y � 3	��x, y� � xy � 0	

��x, y� � y � 0	��x, y� � x � 0	

xy
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GRAPHS OF SECOND-DEGREE EQUATIONS

In Appendix B we saw that a first-degree, or linear, equation represents
a line. In this section we discuss second-degree equations such as

which represent a circle, a parabola, an ellipse, and a hyperbola, respectively.
The graph of such an equation in and is the set of all points that satisfy the

equation; it gives a visual representation of the equation. Conversely, given a curve in the
-plane, we may have to find an equation that represents it, that is, an equation satisfied

by the coordinates of the points on the curve and by no other point. This is the other half
of the basic principle of analytic geometry as formulated by Descartes and Fermat. The
idea is that if a geometric curve can be represented by an algebraic equation, then the rules
of algebra can be used to analyze the geometric problem.

CIRCLES

As an example of this type of problem, let’s find an equation of the circle with radius and
center . By definition, the circle is the set of all points whose distance fromP�x, y��h, k�

r

xy

�x, y�yx

x 2 � y 2 � 1
x 2

9
�

 y 2

4
� 1y � x 2 � 1x 2 � y 2 � 1

Ax � By � C � 0

C



the center is . (See Figure 1.) Thus is on the circle if and only if . From
the distance formula, we have

or equivalently, squaring both sides, we get

This is the desired equation.

EQUATION OF A CIRCLE An equation of the circle with center and 
radius is

In particular, if the center is the origin , the equation is

EXAMPLE 1 Find an equation of the circle with radius 3 and center .

SOLUTION From Equation 1 with , , and , we obtain

M

EXAMPLE 2 Sketch the graph of the equation by first show-
ing that it represents a circle and then finding its center and radius.

SOLUTION We first group the -terms and -terms as follows:

Then we complete the square within each grouping, adding the appropriate constants to
both sides of the equation:

or

Comparing this equation with the standard equation of a circle (1), we see that ,
, and , so the given equation represents a circle with center and

radius . It is sketched in Figure 2.

M
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PARABOLAS

The geometric properties of parabolas are reviewed in Section 10.5. Here we regard a
parabola as a graph of an equation of the form .

EXAMPLE 3 Draw the graph of the parabola .

SOLUTION We set up a table of values, plot points, and join them by a smooth curve to
obtain the graph in Figure 3.

. M

Figure 4 shows the graphs of several parabolas with equations of the form for
various values of the number . In each case the vertex, the point where the parabola
changes direction, is the origin. We see that the parabola opens upward if 
and downward if (as in Figure 5).

Notice that if satisfies , then so does . This corresponds to the geo-
metric fact that if the right half of the graph is reflected about the -axis, then the left half
of the graph is obtained. We say that the graph is symmetric with respect to the y-axis.

The graph of an equation is symmetric with respect to the -axis if the equation is
unchanged when is replaced by .

If we interchange and in the equation , the result is , which also rep-
resents a parabola. (Interchanging and amounts to reflecting about the diagonal line

.) The parabola opens to the right if and to the left if . (Seea � 0a � 0x � ay 2y � x
yx

x � ay 2y � ax 2yx

�xx
y

y
��x, y�y � ax 2�x, y�

FIGURE 5
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Figure 6.) This time the parabola is symmetric with respect to the -axis because if 
satisfies , then so does .

The graph of an equation is symmetric with respect to the -axis if the equation is
unchanged when is replaced by .

EXAMPLE 4 Sketch the region bounded by the parabola and the line .

SOLUTION First we find the points of intersection by solving the two equations. Substituting
into the equation , we get , which gives

so or . Thus the points of intersection are and , and we draw 
the line passing through these points. We then sketch the parabola by
referring to Figure 6(a) and having the parabola pass through and . The
region bounded by and means the finite region whose boundaries are
these curves. It is sketched in Figure 7. M

ELLIPSES

The curve with equation

where and are positive numbers, is called an ellipse in standard position. (Geometric
properties of ellipses are discussed in Section 10.5.) Observe that Equation 2 is unchanged
if is replaced by or is replaced by , so the ellipse is symmetric with respect to
both axes. As a further aid to sketching the ellipse, we find its intercepts.

The x-intercepts of a graph are the -coordinates of the points where the graph
intersects the -axis. They are found by setting in the equation of the graph.

The y-intercepts are the -coordinates of the points where the graph intersects the
-axis. They are found by setting in its equation.

If we set in Equation 2, we get and so the -intercepts are . Setting
, we get , so the -intercepts are . Using this information, together with

symmetry, we sketch the ellipse in Figure 8. If , the ellipse is a circle with radius .aa � b
	byy 2 � b 2x � 0

	axx 2 � a 2y � 0

x � 0y
y

y � 0x
x

�yy�xx
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�yy
x
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EXAMPLE 5 Sketch the graph of .

SOLUTION We divide both sides of the equation by 144:

The equation is now in the standard form for an ellipse (2), so we have , ,
, and . The -intercepts are ; the -intercepts are . The graph is

sketched in Figure 9.

M

HYPERBOLAS

The curve with equation

is called a hyperbola in standard position. Again, Equation 3 is unchanged when is
replaced by or is replaced by , so the hyperbola is symmetric with respect to both
axes. To find the -intercepts we set and obtain and . However, if
we put in Equation 3, we get , which is impossible, so there is no -inter-
cept. In fact, from Equation 3 we obtain

which shows that and so . Therefore we have or .
This means that the hyperbola consists of two parts, called its branches. It is sketched in
Figure 10.

In drawing a hyperbola it is useful to draw first its asymptotes, which are the lines
and shown in Figure 10. Both branches of the hyperbola

approach the asymptotes; that is, they come arbitrarily close to the asymptotes. This
involves the idea of a limit, which is discussed in Chapter 2. (See also Exercise 55 in
Section 4.5.)

By interchanging the roles of and we get an equation of the form

which also represents a hyperbola and is sketched in Figure 11.
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x � 	ax 2 � a 2y � 0x

�yy�x
x

x 2

a 2 �
 y 2

b 2 � 13

0 x

y

(0, 3)

(4, 0)(_4, 0)

(0, _3)FIGURE 9
9≈+16¥=144

	3y	4xb � 3a � 4
b 2 � 9a 2 � 16

x 2

16
�

 y 2

9
� 1

9x 2 � 16y 2 � 144

A20 || | | APPENDIX C GRAPHS OF SECOND-DEGREE EQUATIONS

0

y

x(_a, 0) (a, 0)

y=_     x
b
a

y=    x
b
a

FIGURE 10

The hyperbola      -     =1
≈

a@

¥

b@

FIGURE 11

The hyperbola      -     =1
¥

a@

≈

b@

y

0
x

(0, a)

(0, _a)

y=_    x
a
b

y=    x
a
b



EXAMPLE 6 Sketch the curve .

SOLUTION Dividing both sides by 36, we obtain

which is the standard form of the equation of a hyperbola (Equation 3). Since ,
the -intercepts are . Since , we have and the asymptotes are .
The hyperbola is sketched in Figure 12.

M

If , a hyperbola has the equation (or ) and is called an
equilateral hyperbola [see Figure 13(a)]. Its asymptotes are , which are perpendi-
cular. If an equilateral hyperbola is rotated by , the asymptotes become the - and 
-axes, and it can be shown that the new equation of the hyperbola is , where is a

constant [see Figure 13(b)].

SHIFTED CONICS

Recall that an equation of the circle with center the origin and radius is , but
if the center is the point , then the equation of the circle becomes

Similarly, if we take the ellipse with equation
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and translate it (shift it) so that its center is the point , then its equation becomes

(See Figure 14.)

Notice that in shifting the ellipse, we replaced by and by in Equation 4
to obtain Equation 5. We use the same procedure to shift the parabola so that its
vertex (the origin) becomes the point as in Figure 15. Replacing by and by

, we see that the new equation is

EXAMPLE 7 Sketch the graph of the equation .

SOLUTION First we complete the square:

In this form we see that the equation represents the parabola obtained by shifting
so that its vertex is at the point . The graph is sketched in Figure 16.

M

FIGURE 16
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EXAMPLE 8 Sketch the curve .

SOLUTION This time we start with the parabola (as in Figure 6 with ) 
and shift one unit to the right to get the graph of . (See Figure 17.)

MFIGURE 17 (a) x=_¥
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15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25.

26.

27. 28.

29. 30.

31.

32.

33–34 Sketch the region bounded by the curves.

33. , 34. ,

35. Find an equation of the parabola with vertex that
passes through the points and .

36. Find an equation of the ellipse with center at the origin that
passes through the points and .

37– 40 Sketch the graph of the set.

37. 38.

39. 40. ��x, y� � x 2 � 4y 2 � 4���x, y� � y � x 2 � 1�

��x, y� � x 2 � y 2 � 4���x, y� � x 2 � y 2 � 1�

(�2, 5s5 �3)(1, �10s2 �3)

�3, 3���1, 3�
�1, �1�

x � 2y � 2y � 4 � x 2y � x 2y � 3x

4x 2 � 9y 2 � 16x � 54y � 61 � 0

x 2 � 4y 2 � 6x � 5 � 0

y 2 � 2x � 6y � 5 � 0x � 4 � y 2

x 2 � y 2 � 4x � 3 � 0y � x 2 � 6x � 13

16x 2 � 9y 2 � 36y � 108

9�x � 1�2 � 4�y � 2�2 � 36

y � x 2 � 2xxy � 4

2x 2 � 5y 2 � 109y 2 � x 2 � 9

9x 2 � 25y 2 � 225x � y 2 � 1

y � x 2 � 24x 2 � y 2 � 1

25x 2 � 4y 2 � 10016x 2 � 25y 2 � 4001–4 Find an equation of a circle that satisfies the given conditions.

1. Center , radius 

2. Center , radius 

3. Center at the origin, passes through 

4. Center , passes through 

5–9 Show that the equation represents a circle and find the 
center and radius.

5.

6.

7.

8.

9.

10. Under what condition on the coefficients , , and does the
equation represent a circle? 
When that condition is satisfied, find the center and radius of
the circle.

11–32 Identify the type of curve and sketch the graph. Do not plot
points. Just use the standard graphs given in Figures 5, 6, 8, 10,
and 11 and shift if necessary.

11. 12.

13. 14. x � �2y 2x 2 � 4y 2 � 16

y 2 � x 2 � 1y � �x 2

x 2 � y 2 � ax � by � c � 0
cba

2x 2 � 2y 2 � x � y � 1

16x 2 � 16y 2 � 8x � 32y � 1 � 0

x 2 � y 2 � x � 0

x 2 � y 2 � 6y � 2 � 0

x 2 � y 2 � 4x � 10y � 13 � 0

��4, �6���1, 5�

�4, 7�

10��2, �8�

5�3, �1�
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TRIGONOMETRY

ANGLES

Angles can be measured in degrees or in radians (abbreviated as rad). The angle given by
a complete revolution contains , which is the same as rad. Therefore

and

EXAMPLE 1
(a) Find the radian measure of . (b) Express rad in degrees.

SOLUTION
(a) From Equation 1 or 2 we see that to convert from degrees to radians we multiply by

. Therefore

(b) To convert from radians to degrees we multiply by . Thus

M

In calculus we use radians to measure angles except when otherwise indicated. The fol-
lowing table gives the correspondence between degree and radian measures of some com-
mon angles.

Figure 1 shows a sector of a circle with central angle and radius subtending an arc
with length . Since the length of the arc is proportional to the size of the angle, and since
the entire circle has circumference and central angle , we have

Solving this equation for and for , we obtain

Remember that Equations 3 are valid only when is measured in radians.�

a � r�� �
a

r
3
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2�
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2�r

2�2�r
a

r�

5�

4
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4 �180

�
	 � 225	

180��

60	 � 60� �

180	 �
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3
 rad

��180

5��460	

1	 �
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180
 rad 
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In particular, putting in Equation 3, we see that an angle of 1 rad is the angle sub-
tended at the center of a circle by an arc equal in length to the radius of the circle (see
Figure 2).

EXAMPLE 2
(a) If the radius of a circle is 5 cm, what angle is subtended by an arc of 6 cm?
(b) If a circle has radius 3 cm, what is the length of an arc subtended by a central angle
of rad?

SOLUTION
(a) Using Equation 3 with and , we see that the angle is

(b) With cm and rad, the arc length is

M

The standard position of an angle occurs when we place its vertex at the origin of a
coordinate system and its initial side on the positive -axis as in Figure 3. A positive angle
is obtained by rotating the initial side counterclockwise until it coincides with the termi-
nal side. Likewise, negative angles are obtained by clockwise rotation as in Figure 4.

Figure 5 shows several examples of angles in standard position. Notice that different
angles can have the same terminal side. For instance, the angles , , and 
have the same initial and terminal sides because

and rad represents a complete revolution.

FIGURE 5
Angles in standard position
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THE TRIGONOMETRIC FUNCTIONS

For an acute angle the six trigonometric functions are defined as ratios of lengths of sides
of a right triangle as follows (see Figure 6).

This definition doesn’t apply to obtuse or negative angles, so for a general angle in
standard position we let be any point on the terminal side of and we let be the
distance as in Figure 7. Then we define

Since division by 0 is not defined, and are undefined when and 
and are undefined when . Notice that the definitions in (4) and (5) are consis-
tent when is an acute angle.

If is a number, the convention is that means the sine of the angle whose radian
measure is . For example, the expression implies that we are dealing with an angle
of 3 rad. When finding a calculator approximation to this number, we must remember to
set our calculator in radian mode, and then we obtain

If we want to know the sine of the angle we would write and, with our calculator
in degree mode, we find that

The exact trigonometric ratios for certain angles can be read from the triangles in Fig-
ure 8. For instance,
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The signs of the trigonometric functions for angles in each of the four quadrants can be
remembered by means of the rule “All Students Take Calculus” shown in Figure 9.

EXAMPLE 3 Find the exact trigonometric ratios for .

SOLUTION From Figure 10 we see that a point on the terminal line for is
. Therefore, taking

in the definitions of the trigonometric ratios, we have

M

The following table gives some values of and found by the method of
Example 3.

EXAMPLE 4 If and , find the other five trigonometric functions 
of .

SOLUTION Since , we can label the hypotenuse as having length 5 and the 
adjacent side as having length 2 in Figure 11. If the opposite side has length , then the
Pythagorean Theorem gives and so , . We can now use 
the diagram to write the other five trigonometric functions:

M

EXAMPLE 5 Use a calculator to approximate the value of in Figure 12.

SOLUTION From the diagram we see that

Therefore Mx �
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� � 2��3
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TRIGONOMETRIC IDENTITIES

A trigonometric identity is a relationship among the trigonometric functions. The most ele-
mentary are the following, which are immediate consequences of the definitions of the trig-
onometric functions.

For the next identity we refer back to Figure 7. The distance formula (or, equivalently,
the Pythagorean Theorem) tells us that . Therefore

We have therefore proved one of the most useful of all trigonometric identities:

If we now divide both sides of Equation 7 by and use Equations 6, we get

Similarly, if we divide both sides of Equation 7 by , we get

The identities

show that is an odd function and is an even function. They are easily proved by
drawing a diagram showing and in standard position (see Exercise 39).

Since the angles and have the same terminal side, we have

These identities show that the sine and cosine functions are periodic with period .
The remaining trigonometric identities are all consequences of two basic identities

called the addition formulas:

2�

cos�� � 2�� � cos �sin�� � 2�� � sin �11

� � 2��
���

cossin

 cos���� � cos �10b

 sin���� � �sin �10a

1 � cot2� � csc2�9

sin2�

tan2� � 1 � sec2�8

cos2�

sin2� � cos2� � 17

sin2� � cos2� �
 y 2

r 2 �
x 2

r 2 �
x 2 � y 2

r 2 �
r 2

r 2 � 1

x 2 � y 2 � r 2

cot � �
cos �

sin �
tan � �

sin �

cos �

cot � �
1

tan �
sec � �

1

cos �
csc � �

1

sin �
6
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N Odd functions and even functions are
discussed in Section 1.1.



The proofs of these addition formulas are outlined in Exercises 85, 86, and 87.
By substituting for in Equations 12a and 12b and using Equations 10a and 10b,

we obtain the following subtraction formulas:

Then, by dividing the formulas in Equations 12 or Equations 13, we obtain the corre-
sponding formulas for :

If we put in the addition formulas (12), we get the double-angle formulas:

Then, by using the identity , we obtain the following alternate forms of
the double-angle formulas for :

If we now solve these equations for and , we get the following half-angle for-
mulas, which are useful in integral calculus:

Finally, we state the product formulas, which can be deduced from Equations 12 
and 13:

 sin2x �
1 � cos 2x

2
17b

 cos2x �
1 � cos 2x

2
17a

sin2xcos2x

 cos 2x � 1 � 2 sin2x16b

 cos 2x � 2 cos2x � 116a

cos 2x
sin2x � cos2x � 1

 cos 2x � cos2x � sin2x15b

 sin 2x � 2 sin x cos x15a

y � x

 tan�x � y� �
tan x � tan y

1 � tan x tan y
14b

 tan�x � y� �
tan x � tan y

1 � tan x tan y
14a

tan�x � y�

 cos�x � y� � cos x cos y � sin x sin y13b

 sin�x � y� � sin x cos y � cos x sin y13a

y�y

 cos�x � y� � cos x cos y � sin x sin y12b

 sin�x � y� � sin x cos y � cos x sin y12a
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There are many other trigonometric identities, but those we have stated are the ones
used most often in calculus. If you forget any of them, remember that they can all be
deduced from Equations 12a and 12b.

EXAMPLE 6 Find all values of in the interval such that .

SOLUTION Using the double-angle formula (15a), we rewrite the given equation as

Therefore, there are two possibilities:

The given equation has five solutions: , , , , and . M

GRAPHS OF THE TRIGONOMETRIC FUNCTIONS

The graph of the function , shown in Figure 13(a), is obtained by plotting
points for and then using the periodic nature of the function (from Equa-
tion 11) to complete the graph. Notice that the zeros of the sine function occur at the 

FIGURE 13

y

1

_1
x

π_π

2π

3π

0
_

π
2

π
2

3π
2

5π
2

(b) ©=cos x

y

1

_1

0 xπ_π 2π 3π

_
π
2

π
2

3π

2

5π
2

(a) ƒ=sin x

0 � x � 2�
f �x� � sin x

2�5��3���30

 x �  or  x �
�

3
, 

5�

3

 x � 0, �, 2� or  cos x � 1
2

 sin x � 0  or 1 � 2 cos x � 0

sin x �1 � 2 cos x� � 0orsin x � 2 sin x cos x

sin x � sin 2x�0, 2��x

 sin x sin y � 1
2 �cos�x � y� � cos�x � y��18c

 cos x cos y � 1
2 �cos�x � y� � cos�x � y��18b

 sin x cos y � 1
2 �sin�x � y� � sin�x � y��18a
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integer multiples of , that is,

Because of the identity

(which can be verified using Equation 12a), the graph of cosine is obtained by shifting the
graph of sine by an amount to the left [see Figure 13(b)]. Note that for both the sine
and cosine functions the domain is and the range is the closed interval .
Thus, for all values of , we have

The graphs of the remaining four trigonometric functions are shown in Figure 14 and
their domains are indicated there. Notice that tangent and cotangent have range ,
whereas cosecant and secant have range . All four functions are peri-
odic: tangent and cotangent have period , whereas cosecant and secant have period .

FIGURE 14 (c) y=csc x

y

1

_1

0

xπ

y=sin x

_
π
2

π
2

3π
2

(d) y=sec x

y

0

xπ

_π

_1

1

y=cos x

_
π
2

π
2

3π
2

(a) y=tan x (b) y=cot x

y

0 xπ_π
_

π
2

π
2

3π
2

y

1

_1

0

xπ

_π

_
π
2

π
2

3π
2

2��
���, �1� � �1, ��

���, ��

�1 � cos x � 1�1 � sin x � 1

x
��1, 1����, ��

��2

cos x � sin�x �
�

2 	

whenever x � n�, n an integersin x � 0

�
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34. ,

35–38 Find, correct to five decimal places, the length of the side
labeled .

35. 36.

37. 38.

39–41 Prove each equation.

39. (a) Equation 10a (b) Equation 10b

40. (a) Equation 14a (b) Equation 14b

41. (a) Equation 18a (b) Equation 18b
(c) Equation 18c

42–58 Prove the identity.

42.

43. 44.

45. 46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
sin �

1 � cos �
� csc � � cot �

sin2x � sin2 y � sin�x � y� sin�x � y�

sin x sin 2x � cos x cos 2x � cos x

1

1 � sin �
�

1

1 � sin �
� 2 sec2�

tan 2� �
2 tan �

1 � tan2�

2 csc 2t � sec t csc t

cot2� � sec2� � tan2� � csc2�

tan2� � sin2� � tan2� sin2�

sec y � cos y � tan y sin y

�sin x � cos x�2 � 1 � sin 2xsin � cot � � cos �

sin�� � x� � sin xsin��

2
� x� � cos x

cos��

2
� x� � sin x

22 cm
x

3π
8

8 cm

x

2π
5

25 cm

x

40°
10 cm

x

35°

x

3�

2
� � � 2�csc � � �

4

3
1–6 Convert from degrees to radians.

1. 2. 3.

4. 5. 6.

7–12 Convert from radians to degrees.

7. 8. 9.

10. 11. 12.

13. Find the length of a circular arc subtended by an angle of 
rad if the radius of the circle is 36 cm.

14. If a circle has radius 10 cm, find the length of the arc
subtended by a central angle of .

15. A circle has radius m. What angle is subtended at the center
of the circle by an arc 1 m long?

16. Find the radius of a circular sector with angle and arc
length 6 cm.

17–22 Draw, in standard position, the angle whose measure is
given.

17. 18. 19. rad

20. rad 21. rad 22. rad

23–28 Find the exact trigonometric ratios for the angle whose
radian measure is given.

23. 24. 25.

26. 27. 28.

29–34 Find the remaining trigonometric ratios.

29. ,

30. ,

31. ,

32. ,

33. , � � 	 � 2�cot 	 � 3

� � x �
3�

2
cos x � �

1

3

�

2
� � � �sec � � �1.5

0 � � �
�

2
tan � � 2

0 � � �
�

2
sin � �

3

5

11�

4

5�

6
�5�

9�

2

4�

3

3�

4

�32
7�

3

�
3�

4
�150
315


3��4

1.5

72


��12

5�
3�

8

8�

3

5�

12
�

7�

2
4�

36
900
�315


9
300
210


EXERCISESD
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position as in the figure. Express and in terms of and then
use the distance formula to compute .]

84. In order to find the distance across a small inlet, a point
is located as in the figure and the following measurements

were recorded:

m m

Use the Law of Cosines from Exercise 83 to find the required
distance.

85. Use the figure to prove the subtraction formula 

[Hint: Compute in two ways (using the Law of Cosines from
Exercise 83 and also using the distance formula) and compare
the two expressions.]

86. Use the formula in Exercise 85 to prove the addition formula
for cosine (12b).

87. Use the addition formula for cosine and the identities 

to prove the subtraction formula for the sine function.

88. Show that the area of a triangle with sides of lengths and 
and with included angle is

89. Find the area of triangle , correct to five decimal places, if

cm cm �ABC � 107
� BC � � 3� AB � � 10

ABC

A � 1
2 ab sin �

�
ba

sin��

2
� �� � cos �cos��

2
� �� � sin �

0

y

B(cos ∫, sin ∫)

∫

1

A(cos å, sin å)

1

å

c

x

c2

cos�� � 	� � cos � cos 	 � sin � sin 	

A

C

B

� BC � � 910� AC � � 820�C � 103


C
� AB �

c
�yx

56.

57.

58.

59–64 If and , where and lie between and
, evaluate the expression.

59. 60.

61. 62.

63. 64.

65–72 Find all values of in the interval that satisfy the
equation.

65. 66.

67. 68.

69. 70.

71. 72.

73–76 Find all values of in the interval that satisfy the
inequality.

73. 74.

75. 76.

77–82 Graph the function by starting with the graphs in Figures 13
and 14 and applying the transformations of Section 1.3 where
appropriate.

77. 78.

79. 80.

81. 82.

83. Prove the Law of Cosines: If a triangle has sides with lengths
, , and , and is the angle between the sides with lengths 

and , then

[Hint: Introduce a coordinate system so that is in standard�

0

y
P(x, y)

¨

cb

(a, 0) x

c 2 � a 2 � b 2 � 2ab cos �

b
a�cba

y � 2 � sin�x �
�

4 �y � � sin x �

y � 1 � sec xy �
1

3
 tan�x �

�

2 �
y � tan 2xy � cos�x �

�

3 �

sin x � cos x�1 � tan x � 1

2 cos x � 1 � 0sin x �
1
2

�0, 2�	x

2 � cos 2x � 3 cos xsin x � tan x

2 cos x � sin 2x � 0sin 2x � cos x

� tan x � � 12 sin2x � 1

3 cot2x � 12 cos x � 1 � 0

�0, 2�	x

cos 2ysin 2y

sin�x � y�cos�x � y�

cos�x � y�sin�x � y�

��2
0yxsec y � 5

4sin x � 1
3

cos 3� � 4 cos3� � 3 cos �

sin 3� � sin � � 2 sin 2� cos �

tan x � tan y �
sin�x � y�
cos x cos y



SIGMA NOTATION

A convenient way of writing sums uses the Greek letter (capital sigma, corresponding to
our letter S) and is called sigma notation.

DEFINITION If are real numbers and and are integers
such that then

With function notation, Definition 1 can be written as

Thus the symbol indicates a summation in which the letter (called the index of 
summation) takes on consecutive integer values beginning with m and ending with n, that
is, . Other letters can also be used as the index of summation.

EXAMPLE 1

(a)

(b)

(c)

(d)

(e)

(f) M

EXAMPLE 2 Write the sum in sigma notation.

SOLUTION There is no unique way of writing a sum in sigma notation. We could write

or

or M

The following theorem gives three simple rules for working with sigma notation.

 23 � 33 � 
 
 
 � n 3 � 

n�2

k�0
 �k � 2�3

 23 � 33 � 
 
 
 � n 3 � 

n�1

j�1
 � j � 1�3

 23 � 33 � 
 
 
 � n 3 � 

n

i�2
 i 3

23 � 33 � 
 
 
 � n 3



4

i�1
 2 � 2 � 2 � 2 � 2 � 8



3

i�1
 

i � 1

i 2 � 3
�

1 � 1

12 � 3
�

2 � 1

22 � 3
�

3 � 1

32 � 3
� 0 �

1

7
�

1

6
�

13

42



n

k�1
 
1

k
� 1 �

1

2
�

1

3
� 
 
 
 �

1

n



5

j�0
 2 j � 20 � 21 � 22 � 23 � 24 � 25 � 63



n

i�3
 i � 3 � 4 � 5 � 
 
 
 � �n � 1� � n



4

i�1
 i 2 � 12 � 22 � 32 � 42 � 30

m, m � 1, . . . , n

i�n
i�m



n

i�m
 f �i� � f �m� � f �m � 1� � f �m � 2� � 
 
 
 � f �n � 1� � f �n�



n

i�m
 ai � am � am�1 � am�2 � 
 
 
 � an�1 � an

m � n, 
nmam, am�1, . . . , an1

�
E
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This tells us to
end with i=n.

This tells us
to add.

This tells us to
start with i=m.

μ ai

n

i�m



THEOREM If is any constant (that is, it does not depend on ), then

(a) (b)

(c)

PROOF To see why these rules are true, all we have to do is write both sides in expanded
form. Rule (a) is just the distributive property of real numbers:

Rule (b) follows from the associative and commutative properties:

Rule (c) is proved similarly. M

EXAMPLE 3 Find 

SOLUTION M

EXAMPLE 4 Prove the formula for the sum of the first positive integers:

SOLUTION This formula can be proved by mathematical induction (see page 77) or by the
following method used by the German mathematician Karl Friedrich Gauss (1777–1855)
when he was ten years old.

Write the sum twice, once in the usual order and once in reverse order:

Adding all columns vertically, we get

On the right side there are terms, each of which is , so

M

EXAMPLE 5 Prove the formula for the sum of the squares of the first positive 
integers:



n

i�1
 i 2 � 12 � 22 � 32 � 
 
 
 � n 2 �

n�n � 1��2n � 1�
6

n

S �
n�n � 1�

2
or2S � n�n � 1�

n � 1n

2S � �n � 1� � �n � 1� � �n � 1� � 
 
 
 � �n � 1� � �n � 1�

 S � n �  �n � 1� �  �n � 2� � 
 
 
 �  2  �  1

 S � 1 �  2  �  3  � 
 
 
 �  �n � 1� �  n

S



n

i�1
 i � 1 � 2 � 3 � 
 
 
 � n �

n�n � 1�
2

n



n

i�1
 1 � 1 � 1 � 
 
 
 � 1 � n



n

i�1
 1.

� �am � am�1 � 
 
 
 � an � � �bm � bm�1 � 
 
 
 � bn �

 �am � bm � � �am�1 � bm�1� � 
 
 
 � �an � bn �

cam � cam�1 � 
 
 
 � can � c�am � am�1 � 
 
 
 � an �



n

i�m
 �ai � bi� � 


n

i�m
 ai � 


n

i�m
 bi



n

i�m
 �ai � bi� � 


n

i�m
 ai � 


n

i�m
 bi


n

i�m
 cai � c 


n

i�m
 ai

ic2
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n terms



SOLUTION 1 Let be the desired sum. We start with the telescoping sum (or collapsing
sum):

On the other hand, using Theorem 2 and Examples 3 and 4, we have

Thus we have

Solving this equation for , we obtain

or

SOLUTION 2 Let be the given formula.

1. is true because

2. Assume that is true; that is,

Then

So is true.

By the Principle of Mathematical Induction, is true for all . MnSn

Sk�1

 �
�k � 1���k � 1� � 1	�2�k � 1� � 1	

6

 �
�k � 1��k � 2��2k � 3�

6

 � �k � 1� 
2k 2 � 7k � 6

6

 � �k � 1� 
k�2k � 1� � 6�k � 1�

6

 �
k�k � 1��2k � 1�

6
� �k � 1�2

 12 � 22 � 32 � 
 
 
 � �k � 1�2 � �12 � 22 � 32 � 
 
 
 � k 2 � � �k � 1�2

12 � 22 � 32 � 
 
 
 � k 2 �
k�k � 1��2k � 1�

6

Sk

12 �
1�1 � 1��2 � 1 � 1�

6
S1

Sn

 S �
2n 3 � 3n 2 � n

6
�

n�n � 1��2n � 1�
6

 3S � n 3 �
3
2 n 2 �

1
2 n

S

n 3 � 3n 2 � 3n � 3S �
3
2 n 2 �

5
2 n

 � 3S � 3 
n�n � 1�

2
� n � 3S �

3
2 n 2 �

5
2 n

 

n

i�1
 ��1 � i �3 � i 3 	 � 


n

i�1
 �3i 2 � 3i � 1	 � 3 


n

i�1
 i 2 � 3 


n

i�1
 i � 


n

i�1
 1

 � �n � 1�3 � 13 � n 3 � 3n 2 � 3n

 

n

i�1
 ��1 � i�3 � i 3 	 � �23 � 13 � � �33 � 23 � � �43 � 33 � � 
 
 
 � ��n � 1�3 � n 3 	

S
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Most terms cancel in pairs.

N See pages 55 and 58 for a more thorough 
discussion of mathematical induction.

N PRINCIPLE OF MATHEMATICAL INDUCTION

Let be a statement involving the positive inte-
ger . Suppose that

1. is true.

2. If is true, then is true.

Then is true for all positive integers .nSn

Sk�1Sk

S1

n
Sn



We list the results of Examples 3, 4, and 5 together with a similar result for cubes (see
Exercises 37–40) as Theorem 3. These formulas are needed for finding areas and evalu-
ating integrals in Chapter 5.

THEOREM Let be a constant and a positive integer. Then

(a) (b)

(c) (d)

(e)

EXAMPLE 6 Evaluate .

SOLUTION Using Theorems 2 and 3, we have

M

EXAMPLE 7 Find .

SOLUTION

M � 1
2 � 1 � 1 � 2 � 3 � 4

 � lim 
nl�

 �1

2
� 1�1 �

1

n��2 �
1

n� � 3

 � lim 

nl�
 �1

2
�

n

n
� �n � 1

n ��2n � 1

n � � 3

 � lim 

nl�
 � 3

n 3  
n�n � 1��2n � 1�

6
�

3

n
� n


   � lim
n l �

 � 3

n 3  

n

i�1
 i 2 �

3

n
 


n

i�1
 1


 lim 
nl�

 

n

i�1
 
3

n
 �� i

n�
2

� 1
 � lim 
nl�

 

n

i�1
 � 3

n 3  i 2 �
3

n

lim 
n l �

 

n

i�1
 
3

n
 �� i

n�
2

� 1

 �

n�n � 1��2n 2 � 2n � 3�
2

 �
n�n � 1��2n�n � 1� � 3	

2

 � 4�n�n � 1�
2 
2

� 3 
n�n � 1�

2

 

n

i�1
 i�4i 2 � 3� � 


n

i�1
 �4i 3 � 3i� � 4 


n

i�1
 i 3 � 3 


n

i�1
 i



n

i�1
 i�4i 2 � 3�



n

i�1
 i 3 � �n�n � 1�

2 
2



n

i�1
 i 2 �

n�n � 1��2n � 1�
6


n

i�1
 i �

n�n � 1�
2



n

i�1
 c � nc


n

i�1
 1 � n

nc3
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N The type of calculation in Example 7 arises 
in Chapter 5 when we compute areas.
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35.

36. Find the number such that .

37. Prove formula (b) of Theorem 3.

38. Prove formula (e) of Theorem 3 using mathematical 
induction.

39. Prove formula (e) of Theorem 3 using a method similar to that
of Example 5, Solution 1 [start with .

40. Prove formula (e) of Theorem 3 using the following method
published by Abu Bekr Mohammed ibn Alhusain Alkarchi in
about AD 1010. The figure shows a square in which
sides and have been divided into segments of lengths ,
, , . . . , Thus the side of the square has length 

so the area is . But the area is also the sum of the
areas of the n “gnomons” , , . . . , shown in the figure.
Show that the area of is and conclude that formula (e) is
true.

41. Evaluate each telescoping sum.

(a) (b)

(c) (d)

42. Prove the generalized triangle inequality:

43–46 Find the limit.

43. 44.

45. lim 
n l �

 

n

i�1
 
2

n
 ��2i

n �
3

� 5�2i

n �

lim 

n l �
 


n

i�1
 
1

n
 �� i

n�
3

� 1
lim 
n l �

 

n

i�1
 
1

n
 � i

n�
2

� 
n
i�1

 ai � � 

n

i�1
 � ai �



n

i�1
 �ai � ai�1�


99

i�3
 �1

i
�

1

i � 1�


100

i�1
 �5 i � 5 i�1 �


n

i�1
 �i 4 � �i � 1�4 	

1 2 3 4 5 . . . n BA
1
2
3

4

5

n

D

...

C

Gn

G™

G£

G¢

G∞

    .  ..

i 3Gi

GnG2G1

�n�n � 1��2	2
n�n � 1��2n.32

1ADAB
ABCD

�1 � i �4 � i 4 	



n

i�1
 i � 78n



n

i�1
 �i 3 � i � 2�1–10 Write the sum in expanded form.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11–20 Write the sum in sigma notation.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21–35 Find the value of the sum.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. 

n

i�1
 i�i � 1��i � 2�


n

i�1
 �i � 1��i � 2�



n

i�1
 �3 � 2i �2


n

i�1
 �i 2 � 3i � 4�



n

i�1
 �2 � 5i �


n

i�1
 2i



4

i��2
 23�i


4

i�0
 �2 i � i 2�



100

i�1
 4


20

n�1
 ��1�n



8

k�0
 cos k�


6

j�1
 3 j�1



6

i�3
 i�i � 2�


8

i�4
 �3i � 2�

1 � x � x 2 � x 3 � 
 
 
 � ��1�nx n

x � x 2 � x 3 � 
 
 
 � x n

1
1 �

1
4 �

1
9 �

1
16 �

1
25 �

1
36

1 � 2 � 4 � 8 � 16 � 32

1 � 3 � 5 � 7 � 
 
 
 � �2n � 1�

2 � 4 � 6 � 8 � 
 
 
 � 2n

3
7 �

4
8 �

5
9 �

6
10 � 
 
 
 �

23
27

1
2 �

2
3 �

3
4 �

4
5 � 
 
 
 �

19
20

s3 � s4 � s5 � s6 � s7 

1 � 2 � 3 � 4 � 
 
 
 � 10



n

i�1
 f �xi � �xi


n�1

j�0
 ��1� j



n�3

j�n
 j 2


n

i�1
 i 10



8

k�5
 x k


4

k�0
 
2k � 1

2k � 1



6

i�4
 i 3


6

i�4
 3i



6

i�1
 

1

i � 1

5

i�1
 si 

EXERCISESE
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48. Evaluate .

49. Evaluate .

50. Evaluate .

m

i�1
 �


n

j�1
 �i � j �




n

i�1
 �2i � 2 i �



n

i�1
 

3

2 i�1
46.

47. Prove the formula for the sum of a finite geometric series with
first term and common ratio :



n

i�1
 ar i�1 � a � ar � ar 2 � 
 
 
 � ar n�1 �

a�r n � 1�
r � 1

r � 1a

lim
n l �

 

n

i�1
 
3

n
 ��1 �

3i

n �
3

� 2�1 �
3i

n �


PROOFS OF THEOREMS

In this appendix we present proofs of several theorems that are stated in the main body of
the text. The sections in which they occur are indicated in the margin.

SECTION 2.3 LIMIT LAWS Suppose that is a constant and the limits

and

exist. Then

1. 2.

3. 4.

5. if 

PROOF OF LAW 4 Let be given. We want to find such that

In order to get terms that contain and , we add and subtract 
as follows:

(Triangle Inequality)

We want to make each of these terms less than .
Since , there is a number such that

Also, there is a number such that if , then

and therefore

� t�x� � � � t�x� � M � M � � � t�x� � M � � � M � � 1 � � M �

� t�x� � M � � 1

0 � � x � a � � �2�2 � 0

� t�x� � M � �
�

2(1 � � L �)then0 � � x � a � � �1if

�1 � 0lim x l a t�x� � M
��2

 � � f �x� � L � � t�x� � � � L � � t�x� � M �
 � � � f �x� � L	t�x� � � � L�t�x� � M	 �
 � � � f �x� � L	t�x� � L�t�x� � M	 �

 � f �x�t�x� � LM � � � f �x�t�x� � Lt�x� � Lt�x� � LM �

Lt�x�� t�x� � M �� f �x� � L �
� f �x�t�x� � LM � � �then0 � � x � a � � �if

� � 0� � 0

M � 0lim 
x l a

 
 f �x�
t�x�

�
L

M

lim
x l

 

a
 � f �x�t�x�	 � LMlim 

x l a
 �cf �x�	 � cL

lim 
x l a

 � f �x� � t�x�	 � L � Mlim 
x l a

 � f �x� � t�x�	 � L � M

lim 
x l a

 t�x� � Mlim 
x l a

 f �x� � L

c

F



Since , there is a number such that

Let min . If , then we have ,
, and , so we can combine the inequalities to obtain

This shows that . M

PROOF OF LAW 3 If we take in Law 4, we get

(by Law 7) M

PROOF OF LAW 2 Using Law 1 and Law 3 with , we have

M

PROOF OF LAW 5 First let us show that

To do this we must show that, given , there exists such that

Observe that

We know that we can make the numerator small. But we also need to know that the
denominator is not small when is near . Since , there is a number

such that, whenever , we have

and therefore

 � � M �
2

� � t�x� �

 � M � � � M � t�x� � t�x� � � � M � t�x� � � � t�x� �

� t�x� � M � � � M �
2

0 � � x � a � � �1�1 � 0
lim x l a t�x� � Max

� 1

t�x�
�

1

M � � � M � t�x� �
� Mt�x� �

� 1

t�x�
�

1

M � � �then0 � � x � a � � �if

� � 0� � 0

lim 
x l a

 
1

t�x�
�

1

M

 � lim 
x l a

 f �x� � ��1� lim 
x l a

 t�x� � lim 
x l a

 f �x� � lim 
x l a

 t�x�

 lim
x l a

 � f �x� � t�x�	 � lim
x l a

 � f �x� � ��1�t�x�	 � lim
x l a

 f �x� � lim
x l a

 ��1�t�x�

c � �1

 � c lim 
x l a

 f �x�

 � lim 
x l a

 c � lim 
x l a

 f �x�

 lim 
x l a

 �cf �x�	 � lim 
x l a

 �t�x� f �x�	 � lim 
x l a

 t�x� � lim 
x l a

 f �x�

t�x� � c

lim x l a f �x�t�x� � LM

 �
�

2
�

�

2
� �

 �
�

2(1 � � M �)  (1 � � M �) � � L �  
�

2(1 � � L �)

 � f �x�t�x� � LM � � � f �x� � L � � t�x� � � � L � � t�x� � M �

0 � � x � a � � �30 � � x � a � � �2

0 � � x � a � � �10 � � x � a � � ���1, �2, �3 �� �

� f �x� � L � �
�

2(1 � � M �)then0 � � x � a � � �3if

�3 � 0lim x l a f �x� � L
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This shows that

and so, for these values of ,

Also, there exists such that

Let min . Then, for , we have

It follows that . Finally, using Law 4, we obtain

M

THEOREM If for all in an open interval that contains (except
possibly at ) and

and

then .

PROOF We use the method of proof by contradiction. Suppose, if possible, that .
Law 2 of limits says that

Therefore, for any , there exists such that

In particular, taking (noting that by hypothesis), we have a
number such that

then

Since for any number , we have

then

which simplifies to

then

But this contradicts . Thus the inequality must be false. Therefore
. ML � M

L � Mf �x� � t�x�

t�x� � f �x�0 � � x � a � � �if

�t�x� � f �x�	 � �M � L� � L � M0 � � x � a � � �if

aa � � a �
� �t�x� � f �x�	 � �M � L� � � L � M0 � � x � a � � �if

� � 0
L � M � 0� � L � M

� �t�x� � f �x�	 � �M � L� � � �then0 � � x � a � � �if

� � 0� � 0

lim 
x l a

 �t�x� � f �x�	 � M � L

L � M

L � M

lim 
x l a

 t�x� � Mlim 
x l a

 f �x� � L

a
axf �x� � t�x�2

� lim
x l a

 f �x� lim
x l a

 
1

t�x�
� L �

1

M
�

L

M
 lim
x l a

 
 f �x�
t�x�

� lim
x l a

 f �x�� 1

t�x��
lim x l a 1�t�x� � 1�M

� 1

t�x�
�

1

M � � � M � t�x� �
� Mt�x� � �

2

M 2  
M 2

2
 � � �

0 � � x � a � � ���1, �2 �� �

� t�x� � M � �
M 2

2
 �then0 � � x � a � � �2if

�2 � 0

1

� Mt�x� � �
1

� M � � t�x� � �
1

� M � �
2

� M � �
2

M 2

x

� t�x� � � � M �
2

then0 � � x � a � � �1if
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THE SQUEEZE THEOREM If for all in an open interval that
contains (except possibly at ) and

then

PROOF Let be given. Since , there is a number such that

if then

that is,
if then

Since , there is a number such that

then

that is,
then

Let min . If , then and ,
so

In particular,

and so . Therefore . M

SECTION 2.5 THEOREM If is a one-to-one continuous function defined on an interval ,
then its inverse function is also continuous.

PROOF First we show that if is both one-to-one and continuous on , then it must
be either increasing or decreasing on . If it were neither increasing nor decreasing,
then there would exist numbers , , and in with such that 
does not lie between and . There are two possibilities: either (1) lies
between and or (2) lies between and . (Draw a picture.) In
case (1) we apply the Intermediate Value Theorem to the continuous function to get a
number between and such that . In case (2) the Intermediate Value
Theorem gives a number between and such that . In either case we
have contradicted the fact that is one-to-one.

Let us assume, for the sake of definiteness, that is increasing on . We take any
number in the domain of and we let ; that is, is the number in

such that . To show that is continuous at we take any such
that the interval is contained in the interval . Since is increasing,
it maps the numbers in the interval onto the numbers in the interval

and reverses the correspondence. If we let denote the
smaller of the numbers and , then the interval

is contained in the interval and so is mapped
into the interval by . (See the arrow diagram in Figure 1.) We have f �1�x0 � �, x0 � ��

� f �x0 � ��, f �x0 � ����y0 � �, y0 � ��
�2 � f �x0 � �� � y0�1 � y0 � f �x0 � ��

�f �1� f �x0 � ��, f �x0 � ���
�x0 � �, x0 � ��

f�a, b��x0 � �, x0 � ��
� � 0y0f �1f �x0� � y0�a, b�

x0f �1�y0 � � x0f �1y0

�a, b�f
f

f �c� � f �x1�x3x2c
f �c� � f �x3 �x2x1c

f
f �x3 �f �x2 �f �x1�f �x2 �f �x1�

f �x3 �f �x3 �f �x1�
f �x2 �x1 � x2 � x3�a, b�x3x2x1

�a, b�
�a, b�f

f �1
�a, b�f

lim x l a t�x� � L� t�x� � L � � �

L � � � t�x� � L � �

L � � � f �x� � t�x� � h�x� � L � �

0 � � x � a � � � 20 � � x � a � � �10 � � x � a � � ���1, � 2 �� �

L � � � h�x� � L � �0 � � x � a � � �2if

� h�x� � L � � �0 � � x � a � � �2if

�2 � 0lim x l a h�x� � L

L � � � f �x� � L � �0 � � x � a � � �1

� f �x� � L � � �0 � � x � a � � �1

�1 � 0lim x l a f �x� � L� � 0

lim 
x l a

 t�x� � L

lim 
x l a

 f �x� � lim 
x l a

 h�x� � L

aa
xf �x� � t�x� � h�x�3
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therefore found a number such that

This shows that and so is continuous at any number in
its domain. M

THEOREM If is continuous at and , then

PROOF Let be given. We want to find a number such that

then

Since is continuous at , we have

and so there exists such that

then

Since , there exists such that

then

Combining these two statements, we see that whenever we have
, which implies that . Therefore we have proved

that . M

SECTION 3.3 The proof of the following result was promised when we proved that .

THEOREM If , then .

PROOF Figure 2 shows a sector of a circle with center , central angle , and radius 1.
Then

We approximate the arc by an inscribed polygon consisting of equal line segments nAB

� AD � � � OA � tan 	 � tan 	

	O

	 � tan 	0 � 	 � 
�2

lim 
	 l 0

 
sin 	

	
� 1

limx l a f �t�x�� � f �b�
� f �t�x�� � f �b� � � �� t�x� � b � � �1

0 � � x � a � � �

� t�x� � b � � �10 � � x � a � � �if

� � 0lim x l a t�x� � b

� f �y� � f �b� � � �0 � � y � b � � �1if

�1 � 0

lim 
y l b

 f �y� � f �b�

bf

� f �t�x�� � f �b� � � �0 � � x � a � � �if

� � 0� � 0

lim 
x l a

 f �t�x�� � f �b�

lim x l a t�x� � bbf8

y0f �1lim y l y0 f
�1�y� � f �1�y0�

x

y

x¸

y¸

f f –!

ba

f(x¸-∑) f(x¸+∑)

x¸-∑ x¸+∑

∂¡ ∂™

}

{ }{ }

{

FIGURE 1

f

� f �1�y� � f �1�y0 � � � �then� y � y0 � � �if

� � 0
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and we look at a typical segment . We extend the lines and to meet in the
points and . Then we draw as in Figure 2. Observe that

and so . Therefore we have

If we add such inequalities, we get

where is the length of the inscribed polygon. Thus, by Theorem 2.3.2, we have

But the arc length is defined in Equation 8.1.1 as the limit of the lengths of inscribed
polygons, so

M

SECTION 4.3 CONCAVITY TEST

(a) If for all in , then the graph of is concave upward on .

(b) If for all in , then the graph of is concave downward on .

PROOF OF (a) Let be any number in . We must show that the curve lies above
the tangent line at the point . The equation of this tangent is

So we must show that

whenever . (See Figure 3.)
First let us take the case where . Applying the Mean Value Theorem to on the

interval , we get a number , with , such that

Since on , we know from the Increasing/Decreasing Test that is increasing 
on . Thus, since , we have

and so, multiplying this inequality by the positive number , we get

f ��a��x � a� � f ��c��x � a�2

x � a

f ��a� � f ��c�

a � cI
f �If � � 0

f �x� � f �a� � f ��c��x � a�1

a � c � xc�a, x	
fx � a

�x � a�x � I

f �x� � f �a� � f ��a��x � a�

y � f �a� � f ��a��x � a�

�a, f �a��
y � f �x�Ia

IfIxf ��x� � 0

IfIxf ��x� � 0

	 � lim
n l 


 Ln � tan 	

lim
n l 


 Ln � tan 	

Ln

Ln � � AD � � tan 	

n

� PQ � � � RT � � � RS �

�RTS � 90�

�RTO � �PQO � 90�

RT 
 PQSR
ADOQOPPQ
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Now we add to both sides of this inequality:

But from Equation 1 we have . So this inequality becomes

which is what we wanted to prove.
For the case where we have , but multiplication by the negative

number reverses the inequality, so we get (2) and (3) as before. M

SECTION 4.4 In order to give the promised proof of l’Hospital’s Rule, we first need a generalization of
the Mean Value Theorem. The following theorem is named after another French mathema-
tician, Augustin-Louis Cauchy (1789–1857).

CAUCHY’S MEAN VALUE THEOREM Suppose that the functions and are con-
tinuous on and differentiable on , and for all in . Then
there is a number in such that

Notice that if we take the special case in which , then and Theorem 1
is just the ordinary Mean Value Theorem. Furthermore, Theorem 1 can be proved in a sim-
ilar manner. You can verify that all we have to do is change the function given by Equa-
tion 4.2.4 to the function

and apply Rolle’s Theorem as before.

L’HOSPITAL’S RULE Suppose and are differentiable and on an open
interval that contains (except possibly at ). Suppose that

and

or that and

(In other words, we have an indeterminate form of type or .) Then

if the limit on the right side exists (or is or ).�



lim
x l a

 
 f �x�
t�x�

� lim
x l a

 
 f ��x�
t��x�


�

0
0

 lim
x l a

 t�x� � �
 lim
x l a

 f �x� � �


 lim
x l a

 t�x� � 0 lim
x l a

 f �x� � 0

aaI
t��x� � 0tf

h�x� � f �x� � f �a� �
 f �b� � f �a�
t�b� � t�a�

 �t�x� � t�a�	

h

t��c� � 1t�x� � x

 f ��c�
t��c�

�
 f �b� � f �a�
t�b� � t�a�

�a, b�c
�a, b�xt��x� � 0�a, b��a, b	

tf1

x � a
f ��c� � f ��a�x � a

f �x� � f �a� � f ��a��x � a�3

f �x� � f �a� � f ��c��x � a�

f �a� � f ��a��x � a� � f �a� � f ��c��x � a�

f �a�
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PROOF OF L’HOSPITAL’S RULE We are assuming that and . 
Let

We must show that . Define

Then is continuous on since is continuous on and

Likewise, is continuous on . Let and . Then and are continuous on
and differentiable on and there (since and ). There-

fore, by Cauchy’s Mean Value Theorem, there is a number such that and

Here we have used the fact that, by definition, and . Now, if we let
, then (since ), so

A similar argument shows that the left-hand limit is also . Therefore

This proves l’Hospital’s Rule for the case where is finite.
If is infinite, we let . Then as , so we have

(by l’Hospital’s Rule for finite a)

M

SECTION 11.8 In order to prove Theorem 11.8.3, we first need the following results.

THEOREM

1. If a power series converges when (where ), then it converges
whenever .

2. If a power series diverges when (where ), then it diverges
whenever .� x � � � d �

d � 0x � d� cnxn

� x � � � b �
b � 0x � b� cnxn

 � lim 
t l 0�

 
f ��1�t�
t��1�t�

� lim 
x l 


 
 f ��x�
t��x�

 � lim 
t l 0�

 
f ��1�t���1�t 2 �
t��1�t���1�t 2 �

 lim 
x l 


 
 f �x�
t�x�

� lim 
t l 0�

 
f �1�t�
t�1�t�

x l 
t l 0�t � 1�xa
a

lim 
x l a

 
 f �x�
t�x�

� L

L

lim
x l

 

a�
 
 f �x�
t�x�

� lim
x l

 

a�
 
F�x�
G�x�

� lim
yl

 

a�
 
F��y�
G��y�

� lim
yl

 

a�
 
 f ��y�
t��y�

� L

a � y � xy l a�x l a�

G�a� � 0F�a� � 0

F��y�
G��y�

�
F�x� � F�a�
G�x� � G�a�

�
F�x�
G�x�

a � y � xy
G� � t�F� � f �G� � 0�a, x��a, x	

GFx � ax � IIG

lim 
x l a

 F�x� � lim 
x l a

 f �x� � 0 � F�a�

�x � I � x � a�fIF

F�x� � �f �x�
0

if x � a

if x � a
G�x� � �t�x�

0

if x � a

if x � a

lim x l a f �x��t�x� � L

L � lim 
x l a

 
 f ��x�
t��x�

lim x l a t�x� � 0lim x l a f �x� � 0
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PROOF OF 1 Suppose that converges. Then, by Theorem 11.2.6, we have
. According to Definition 11.1.2 with , there is a positive integer 

such that whenever . Thus, for , we have

If , then , so is a convergent geometric series. Therefore,
by the Comparison Test, the series is convergent. Thus the series is
absolutely convergent and therefore convergent. M

PROOF OF 2 Suppose that diverges. If is any number such that , then
cannot converge because, by part 1, the convergence of would imply the

convergence of . Therefore diverges whenever . M

THEOREM For a power series there are only three possibilities:

1. The series converges only when .

2. The series converges for all .

3. There is a positive number such that the series converges if and
diverges if .

PROOF Suppose that neither case 1 nor case 2 is true. Then there are nonzero numbers 
and such that converges for and diverges for . Therefore the set

is not empty. By the preceding theorem, the series diverges if
, so for all . This says that is an upper bound for the set .

Thus, by the Completeness Axiom (see Section 11.1), has a least upper bound . If
, then , so diverges. If , then is not an upper bound for

and so there exists such that . Since , converges, so by the
preceding theorem converges. M

THEOREM For a power series there are only three possibilities:

1. The series converges only when .

2. The series converges for all .

3. There is a positive number such that the series converges if and
diverges if .

PROOF If we make the change of variable , then the power series becomes
and we can apply the preceding theorem to this series. In case 3 we have con-

vergence for and divergence for . Thus we have convergence for
and divergence for . M� x � a � � R� x � a � � R

� u � � R� u � � R
� cnun

u � x � a

� x � a � � R
� x � a � � RR

x

x � a

� cn�x � a�n3

� cnxn

� cnbnb � Sb � � x �b � SS
� x �� x � � R� cnxnx � S� x � � R

RS
S� d �x � S� x � � � d �� x � � � d �

S � �x � � cnxn converges�
x � dx � b� cnxnd

b

� x � � R
� x � � RR

x

x � 0

� cnxn

� x � � � d �� cnxn� cndn

� cnxn� cnxn
� x � � � d �x� cndn

� cnxn�

n�N �cnxn �

� � x�b �n� x�b � � 1� x � � � b �

�cnxn � � 
 cnbnxn

bn 
 � �cnbn � 
 x

b 
 n

� 
 x

b 
 n

n � Nn � N�cnbn � � 1N
� � 1lim n l 
 cnbn � 0

� cnbn
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SECTION 14.3 CLAIRAUT’S THEOREM Suppose is defined on a disk that contains the point
. If the functions and are both continuous on , then .

PROOF For small values of , , consider the difference

Notice that if we let , then

By the Mean Value Theorem, there is a number between and such that

Applying the Mean Value Theorem again, this time to we get a number between 
and such that

Combining these equations, we obtain

If , then , so the continuity of at gives

Similarly, by writing

and using the Mean Value Theorem twice and the continuity of at , we obtain

It follows that . M

SECTION 14.4 THEOREM If the partial derivatives and exist near and are continu-
ous at , then f is differentiable at .

PROOF Let

According to (14.4.7), to prove that f is differentiable at we have to show that we
can write in the form

where and as .��x, �y� l �0, 0��2 l 0�1

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�z
�a, b�

�z � f �a � �x, b � �y� � f �a, b�

�a, b��a, b�
�a, b�fyfx8

fxy�a, b� � fyx�a, b�

lim 
h l 0

 
��h�
h 2 � fyx�a, b�

�a, b�fyx

��h� � � f �a � h, b � h� � f �a, b � h�� � � f �a � h, b� � f �a, b��

lim 
h l 0

 
��h�
h 2 � lim 

�c, d� l �a, b�
 fxy�c, d � � fxy�a, b�

�a, b�fxy�c, d � l �a, b�h l 0

��h� � h 2fxy�c, d �

fx�c, b � h� � fx�c, b� � fxy�c, d �h

b � h
bdfx ,

t�a � h� � t�a� � t��c�h � h � fx�c, b � h� � fx�c, b��

a � hac

��h� � t�a � h� � t�a�

t�x� � f �x, b � h� � f �x, b�

��h� � � f �a � h, b � h� � f �a � h, b�� � � f �a, b � h� � f �a, b��

h � 0h

fxy�a, b� � fyx�a, b�Dfyxfxy�a, b�
Df
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Referring to Figure 4, we write

Observe that the function of a single variable

is defined on the interval and . If we apply the Mean
Value Theorem to , we get

where is some number between and . In terms of , this equation becomes

This gives us an expression for the first part of the right side of Equation 1. For the 
second part we let . Then is a function of a single variable defined on 
the interval and . A second application of the Mean Value
Theorem then gives

where is some number between and . In terms of , this becomes

We now substitute these expressions into Equation 1 and obtain

where

Since and as and since and 
are continuous at , we see that and as .

Therefore is differentiable at . M�a, b�f
��x, �y� l �0, 0��2 l 0�1 l 0�a, b�

fyfx��x, �y� l �0, 0��a, v� l �a, b��u, b � �y� l �a, b�

 �2 � fy�a, v� � fy�a, b�

 �1 � fx�u, b � �y� � fx�a, b�

 � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

 � � � fy�a, v� � fy�a, b�� �y

 � fx�a, b� �x � � fx�u, b � �y� � fx�a, b�� �x � fy�a, b� �y

 �z � fx�u, b � �y� �x � fy�a, v� �y

f �a, b � �y� � f �a, b� � fy�a, v� �y

fb � �ybv

h�b � �y� � h�b� � h��v� �y

h��y� � fy�a, y��b, b � �y�
hh�y� � f �a, y�

f �a � �x, b � �y� � f �a, b � �y� � fx�u, b � �y� �x

fa � �xau

t�a � �x� � t�a� � t��u� �x

t

t��x� � fx�x, b � �y��a, a � �x�

t�x� � f �x, b � �y�

FIGURE 4
x

y

0

R
(a, √)

(a, b+Îy)

(a+Îx, b+Îy)

(u, b+Îy)

(a, b)

�z � � f �a � �x, b � �y� � f �a, b � �y�� � � f �a, b � �y� � f �a, b��1
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THE LOGARITHM DEFINED AS AN INTEGRAL

Our treatment of exponential and logarithmic functions until now has relied on our intuition,
which is based on numerical and visual evidence. (See Sections 1.5, 1.6, and 3.1.) Here we
use the Fundamental Theorem of Calculus to give an alternative treatment that provides a
surer footing for these functions.

Instead of starting with and defining as its inverse, this time we start by defin-
ing as an integral and then define the exponential function as its inverse. You should
bear in mind that we do not use any of our previous definitions and results concerning
exponential and logarithmic functions.

THE NATURAL LOGARITHM

We first define as an integral.

DEFINITION The natural logarithmic function is the function defined by

The existence of this function depends on the fact that the integral of a continuous func-
tion always exists. If , then can be interpreted geometrically as the area under
the hyperbola from to . (See Figure 1.) For , we have

For ,

and so is the negative of the area shown in Figure 2.

EXAMPLE 1
(a) By comparing areas, show that .
(b) Use the Midpoint Rule with to estimate the value of .

SOLUTION
(a) We can interpret as the area under the curve from 1 to 2. From Figure 3
we see that this area is larger than the area of rectangle and smaller than the area
of trapezoid . Thus we have

(b) If we use the Midpoint Rule with , and , we get

M � �0.1�� 1

1.05
�

1

1.15
� � � � �

1

1.95� � 0.693

 ln 2 � y
2

1
 
1

t
 dt � �0.1�� f �1.05� � f �1.15� � � � � � f �1.95��

�t � 0.1f �t� � 1	t, n � 10

 12 � ln 2 �
3
4

 12 � 1 � ln 2 � 1 � 1
2 (1 �

1
2 )

ABCD
BCDE

y � 1	tln 2

ln 2n � 10

1
2 � ln 2 �

3
4

V

ln x

ln x � y
x

1
 
1

t
 dt � �y

1

x
 
1

t
 dt � 00 � x � 1

ln 1 � y
1

1
 
1

t
 dt � 0

x � 1t � xt � 1y � 1	t
ln xx � 1

x � 0ln x � y
x

1
 
1

t
 dt

1

ln x

ln x
loga xax

G
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Notice that the integral that defines is exactly the type of integral discussed in Part 1
of the Fundamental Theorem of Calculus (see Section 5.3). In fact, using that theorem,
we have

and so

We now use this differentiation rule to prove the following properties of the logarithm
function.

LAWS OF LOGARITHMS If and are positive numbers and is a rational
number, then

1. 2. 3.

PROOF
1. Let , where is a positive constant. Then, using Equation 2 and the

Chain Rule, we have

Therefore and have the same derivative and so they must differ by a constant:

Putting in this equation, we get . Thus

If we now replace the constant by any number , we have

2. Using Law 1 with , we have

and so

Using Law 1 again, we have

The proof of Law 3 is left as an exercise. M

ln� x

y� � ln�x �
1

y� � ln x � ln 
1

y
� ln x � ln y

 ln 
1

y
� �ln y

 ln 
1

y
� ln y � ln�1

y
� y� � ln 1 � 0

x � 1	y

ln�xy� � ln x � ln y

ya

ln�ax� � ln x � ln a

ln a � ln 1 � C � 0 � C � Cx � 1

ln�ax� � ln x � C

ln xf �x�

f ��x� �
1

ax
 

d

dx
 �ax� �

1

ax
� a �

1

x

af �x� � ln�ax�

ln�xr � � r ln xln� x

y� � ln x � ln yln�xy� � ln x � ln y

ryx3

d

dx
 �ln x� �

1

x
2

d

dx
 y

x

1
 
1

t
 dt �

1

x

ln x
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In order to graph , we first determine its limits:

(a) (b)

PROOF
(a) Using Law 3 with and (where n is any positive integer), we have

. Now , so this shows that as . But is an
increasing function since its derivative . Therefore as .

(b) If we let , then as . Thus, using (a), we have

M

If , then

and

which shows that is increasing and concave downward on . Putting this informa-
tion together with (4), we draw the graph of in Figure 4.

Since and is an increasing continuous function that takes on arbitrarily
large values, the Intermediate Value Theorem shows that there is a number where takes
on the value 1. (See Figure 5.) This important number is denoted by .

DEFINITION is the number such that .

We will show (in Theorem 19) that this definition is consistent with our previous defi-
nition of e.

THE NATURAL EXPONENTIAL FUNCTION

Since ln is an increasing function, it is one-to-one and therefore has an inverse function,
which we denote by exp. Thus, according to the definition of an inverse function,

and the cancellation equations are

In particular, we have

We obtain the graph of by reflecting the graph of about the line y � x.y � ln xy � exp x

 exp�1� � e since ln e � 1

 exp�0� � 1 since ln 1 � 0

exp�ln x� � x and ln�exp x� � x7

exp�x� � y &? ln y � x6

ln e � 1e5

e
ln x

ln xln 1 � 0
y � ln x

�0, 	�ln x

d 2y

dx 2 � �
1

x 2 � 0
dy

dx
�

1

x
� 0

y � ln x, x � 0

lim
x l

 

0�
 ln x � lim

t l 	
 ln�1

t � � lim
t l 	

 ��ln t� � �	

x l 0�t l 	t � 1	x
x l 	ln x l 	1	x � 0

ln xn l 	ln�2n � l 	ln 2 � 0ln�2n � � n ln 2
r � nx � 2

lim
x l

 

0�
 ln x � �	lim 

x l 	
 ln x � 	4

y � ln x
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f �1�x� � y &? f �y� � x

f � f �1�x�� � x

 f �1� f �x�� � x



(See Figure 6.) The domain of is the range of ln, that is, ; the range of exp is
the domain of ln, that is, .

If is any rational number, then the third law of logarithms gives

Therefore, by (6),

Thus whenever is a rational number. This leads us to define , even for irra-
tional values of , by the equation

In other words, for the reasons given, we define to be the inverse of the function . In
this notation (6) becomes

and the cancellation equations (7) become

The natural exponential function is one of the most frequently occurring
functions in calculus and its applications, so it is important to be familiar with its graph
(Figure 7) and its properties (which follow from the fact that it is the inverse of the natural
logarithmic function).

PROPERTIES OF THE EXPONENTIAL FUNCTION The exponential function 
is an increasing continuous function with domain and range . Thus 
for all . Also

So the -axis is a horizontal asymptote of .

We now verify that has the other properties expected of an exponential function.

LAWS OF EXPONENTS If and are real numbers and is rational, then

1. 2. 3. �ex�r � erxe x�y �
ex

eye x�y � exey

ryx11

f

f �x� � exx

lim
x l 	

 ex � 	lim
x l�	

 ex � 0

x
ex � 0�0, 	��

f �x� � ex

f �x� � ex

 ln�ex� � x for all x10

 e ln x � x x � 09

ex � y &? ln y � x8

ln xex

ex � exp�x�

x
exxexp�x� � ex

 exp�r� � er

 ln�er � � r ln e � r

r
�0, 	�

��	, 	�exp
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PROOF OF LAW 1 Using the first law of logarithms and Equation 10, we have

Since ln is a one-to-one function, it follows that 
Laws 2 and 3 are proved similarly (see Exercises 6 and 7). As we will soon see,

Law 3 actually holds when is any real number. M

We now prove the differentiation formula for .

PROOF The function is differentiable because it is the inverse function of ,
which we know is differentiable with nonzero derivative. To find its derivative, we use
the inverse function method. Let . Then and, differentiating this latter
equation implicitly with respect to , we get

M

GENERAL EXPONENTIAL FUNCTIONS

If and is any rational number, then by (9) and (11),

Therefore, even for irrational numbers , we define

Thus, for instance,

The function is called the exponential function with base a. Notice that is
positive for all because is positive for all .

Definition 13 allows us to extend one of the laws of logarithms. We already know that
when is rational. But if we now let be any real number we have, from

Definition 13,

Thus

ln a r � r ln a for any real number r14

ln ar � ln�er ln a � � r ln a

rrln�ar� � r ln a

xexx
a xf �x� � ax

2s3 

� es3  ln 2 � e1.20 � 3.32

ax � ex ln a13

x

ar � �e ln a �r � er ln a

ra � 0

 
dy

dx
� y � ex

 
1

y
 

dy

dx
� 1

x
ln y � xy � ex

y � ln xy � ex

d

dx
 �ex � � ex12

ex

r

exe y � ex�y.

ln�exe y� � ln�ex� � ln�ey � � x � y � ln�ex�y �



The general laws of exponents follow from Definition 13 together with the laws of expo-
nents for .

LAWS OF EXPONENTS If and are real numbers and , , then

1. 2. 3. 4.

PROOF
1. Using Definition 13 and the laws of exponents for , we have

3. Using Equation 14 we obtain

The remaining proofs are left as exercises. M

The differentiation formula for exponential functions is also a consequence of Defini-
tion 13:

PROOF

M

If , then , so , which shows that is
increasing (see Figure 8). If , then and so is decreasing (see
Figure 9).

GENERAL LOGARITHMIC FUNCTIONS

If and , then is a one-to-one function. Its inverse function is called
the logarithmic function with base a and is denoted by . Thus

In particular, we see that
loge x � ln x

loga x � y &? ay � x17

loga

f �x� � a xa � 1a � 0

y � a xln a � 00 � a � 1
y � ax�d�dx� ax � ax ln a � 0ln a � 0a � 1

� a x ln a 
d

dx
 �ax � �

d

dx
 �ex ln a � � ex ln a 

d

dx
 �x ln a�

d

dx
 �ax� � a x ln a16

� exy ln a � axy �ax�y � ey ln�ax� � eyx ln a

 � ex ln ae y ln a � axay

 ax�y � e �x�y� ln a � ex ln a � y ln a

e x

�ab�x � axbx�ax �y � axyax�y � ax�ayax�y � axay

b � 0ayx15

ex
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(b) Use part (a) to show that .

By comparing areas, show that

4. (a) By comparing areas, show that .
(b) Deduce that .2 � e � 3

ln 2 � 1 � ln 3

1

2
�

1

3
� � � � �

1

n
� ln n � 1 �

1

2
�

1

3
� � � � �

1

n � 1

3.

ln 2 � 0.66(a) By comparing areas, show that

(b) Use the Midpoint Rule with to estimate .

2. Refer to Example 1.
(a) Find the equation of the tangent line to the curve 

that is parallel to the secant line .AD
y � 1�t

ln 1.5n � 10

1
3 � ln 1.5 �

5
12

1.

EXERCISESG

The laws of logarithms are similar to those for the natural logarithm and can be deduced
from the laws of exponents (see Exercise 10).

To differentiate , we write the equation as . From Equation 14 we have
, so

Since is a constant, we can differentiate as follows:

THE NUMBER e EXPRESSED AS A LIMIT

In this section we defined e as the number such that ln e � 1. The next theorem shows that
this is the same as the number e defined in Section 3.1 (see Equation 3.6.5).

PROOF Let . Then , so . But, by the definition of 
derivative,

Because , we have

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

Me � e1 � elimx l 0 ln�1�x�1�x

� lim
x l 0

 eln�1�x�1�x

� lim
x l 0

 �1 � x�1�x

lim
x l 0

 ln�1 � x�1�x � 1

f ��1� � 1

 � lim
x l 0

 
ln�1 � x� � ln 1

x
� lim

x l 0
 
1

x
 ln�1 � x� � lim

x l 0
 ln�1 � x�1�x

 f ��1� � lim
hl0

 
 f �1 � h� � f �1�

h
� lim

xl0
 
 f �1 � x� � f �1�

x

f ��1� � 1f ��x� � 1�xf �x� � ln x

e � lim 
x l 0

 �1 � x�1�x19

d

dx
 �loga x� �

1

x ln a
18

d

dx
 �loga x� �

d

dx
 
ln x

ln a
�

1

ln a
 

d

dx
 �ln x� �

1

x ln a

ln a

loga x � y �
ln x

ln a

y ln a � ln x
ay � xy � loga x
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COMPLEX NUMBERS

A complex number can be represented by an expression of the form , where and
are real numbers and is a symbol with the property that . The complex num-

ber can also be represented by the ordered pair and plotted as a point in a
plane (called the Argand plane) as in Figure 1. Thus the complex number is
identified with the point .

The real part of the complex number is the real number and the imaginary
part is the real number . Thus the real part of is and the imaginary part is .
Two complex numbers and are equal if and ; that is, their real
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis
is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting
their real parts and their imaginary parts:

For instance,

The product of complex numbers is defined so that the usual commutative and distributive
laws hold:

Since , this becomes

EXAMPLE 1

M

Division of complex numbers is much like rationalizing the denominator of a rational
expression. For the complex number , we define its complex conjugate to be

. To find the quotient of two complex numbers we multiply numerator and
denominator by the complex conjugate of the denominator.

EXAMPLE 2 Express the number in the form .a � bi
�1 � 3i

2 � 5i

z � a � bi
z � a � bi

 � �2 � 5i � 6i � 15��1� � 13 � 11i

 ��1 � 3i��2 � 5i� � ��1��2 � 5i� � 3i�2 � 5i�

�a � bi��c � di� � �ac � bd � � �ad � bc�i

i 2 � �1

 � ac � adi � bci � bdi 2

 �a � bi��c � di� � a�c � di� � �bi��c � di�

�1 � i� � �4 � 7i� � �1 � 4� � ��1 � 7�i � 5 � 6i

 �a � bi� � �c � di� � �a � c� � �b � d �i

 �a � bi� � �c � di� � �a � c� � �b � d �i

b � da � cc � dia � bi
�344 � 3ib

aa � bi
�0, 1�

i � 0 � 1 � i
�a, b�a � bi

i 2 � �1ib
aa � bi

H

FIGURE 1
Complex numbers as points in
the Argand plane

Re

Im

0

i

_2-2i

_i

3-2i

2+3i

_4+2i

1

9. Prove the fourth law of exponents [see (15)].

10. Deduce the following laws of logarithms from (15):
(a)

(b)

(c) loga�x y � � y loga x

loga�x�y� � loga x � loga y

loga�xy� � loga x � loga y

Prove the third law of logarithms. [Hint: Start by showing that
both sides of the equation have the same derivative.]

6. Prove the second law of exponents for [see (11)].

7. Prove the third law of exponents for [see (11)].

8. Prove the second law of exponents [see (15)].

e x

e x

5.



SOLUTION We multiply numerator and denominator by the complex conjugate of ,
namely , and we take advantage of the result of Example 1:

M

The geometric interpretation of the complex conjugate is shown in Figure 2: is the
reflection of in the real axis. We list some of the properties of the complex conjugate in
the following box. The proofs follow from the definition and are requested in Exercise 18.

PROPERTIES OF CONJUGATES

The modulus, or absolute value, of a complex number is its distance
from the origin. From Figure 3 we see that if , then

Notice that

and so

This explains why the division procedure in Example 2 works in general:

Since , we can think of as a square root of . But notice that we also have
and so is also a square root of . We say that is the principal

square root of and write . In general, if is any positive number, we write

With this convention, the usual derivation and formula for the roots of the quadratic equa-
tion are valid even when :

EXAMPLE 3 Find the roots of the equation .

SOLUTION Using the quadratic formula, we have

Mx �
�1 � s12 � 4 � 1 

2
�

�1 � s�3 

2
�

�1 � s3 i

2

x 2 � x � 1 � 0

x �
�b � sb 2 � 4ac 

2a

b 2 � 4ac � 0ax 2 � bx � c � 0

s�c � sc  i

cs�1 � i�1
i�1�i��i�2 � i 2 � �1

�1ii 2 � �1

z

w
�

zw

ww
�

zw

� w �2

zz � � z �2

zz � �a � bi��a � bi� � a 2 � abi � abi � b 2i 2 � a 2 � b 2

� z � � sa 2 � b 2 

z � a � bi
z � a � bi� z �

z n � z nzw � z wz � w � z � w

z
z

�1 � 3i

2 � 5i
�

�1 � 3i

2 � 5i
�

2 � 5i

2 � 5i
�

13 � 11i

22 � 52 �
13

29
�

11

29
 i

2 � 5i
2 � 5i
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FIGURE 3
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We observe that the solutions of the equation in Example 3 are complex conjugates of
each other. In general, the solutions of any quadratic equation with real
coefficients , , and are always complex conjugates. (If is real, , so is its own
conjugate.)

We have seen that if we allow complex numbers as solutions, then every quadratic equa-
tion has a solution. More generally, it is true that every polynomial equation

of degree at least one has a solution among the complex numbers. This fact is known as
the Fundamental Theorem of Algebra and was proved by Gauss.

POLAR FORM

We know that any complex number can be considered as a point and that
any such point can be represented by polar coordinates with . In fact,

as in Figure 4. Therefore we have

Thus we can write any complex number in the form

where

The angle is called the argument of and we write . Note that is not
unique; any two arguments of differ by an integer multiple of .

EXAMPLE 4 Write the following numbers in polar form.

(a) (b)

SOLUTION
(a) We have and , so we can take .
Therefore the polar form is

(b) Here we have and . Since lies in the 
fourth quadrant, we take and

The numbers and are shown in Figure 5. Mwz

w � 2�cos��
	

6 	 � i sin��
	

6 	


 � �	�6

wtan 
 � �1�s3 r � � w � � s3 � 1 � 2

z � s2  �cos 
	

4
� i sin 

	

4 	

 � 	�4tan 
 � 1r � � z � � s12 � 12 � s2 

w � s3 � iz � 1 � i

2	z
arg�z�
 � arg�z�z


tan 
 �
b

a
andr � � z � � sa 2 � b 2 

z � r�cos 
 � i sin 
�

z

z � a � bi � �r cos 
� � �r sin 
�i

b � r sin 
a � r cos 


r � 0�r, 
�
�a, b�z � a � bi

anxn � an�1 xn�1 � � � � � a1x � a0 � 0

zz � zzcba
ax 2 � bx � c � 0
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The polar form of complex numbers gives insight into multiplication and division. Let

be two complex numbers written in polar form. Then

Therefore, using the addition formulas for cosine and sine, we have

This formula says that to multiply two complex numbers we multiply the moduli and add
the arguments. (See Figure 6.)

A similar argument using the subtraction formulas for sine and cosine shows that to
divide two complex numbers we divide the moduli and subtract the arguments.

In particular, taking and (and therefore and ), we have the fol-
lowing, which is illustrated in Figure 7.

EXAMPLE 5 Find the product of the complex numbers and in polar form.

SOLUTION From Example 4 we have

and

So, by Equation 1,

This is illustrated in Figure 8. M

 � 2s2  �cos 
	

12
� i sin 

	

12	
 �1 � i�(s3 � i) � 2s2  �cos�	

4
�

	

6 	 � i sin�	

4
�

	

6 	


 s3 � i � 2�cos��
	

6 	 � i sin��
	

6 	

 1 � i � s2  �cos 

	

4
� i sin 

	

4 	

s3 � i1 � i

1

z
�

1

r
 �cos 
 � i sin 
�.thenz � r�cos 
 � i sin 
�,If


 2 � 

1 � 0z2 � zz1 � 1

z2 � 0
z1

z2
�

r1

r2
 �cos�
1 � 
2 � � i sin�
1 � 
2 ��

z1z2 � r1r2�cos�
1 � 
2 � � i sin�
1 � 
2 ��1

 � r1r2��cos 
1 cos 
2 � sin 
1 sin 
2 � � i�sin 
1 cos 
2 � cos 
1 sin 
2 ��

 z1z2 � r1r2�cos 
1 � i sin 
1��cos 
2 � i sin 
2 �

z2 � r2�cos 
2 � i sin 
2 �z1 � r1�cos 
1 � i sin 
1�
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Repeated use of Formula 1 shows how to compute powers of a complex number. If

then

and

In general, we obtain the following result, which is named after the French mathematician
Abraham De Moivre (1667–1754).

DE MOIVRE’S THEOREM If and is a positive integer,
then

This says that to take the nth power of a complex number we take the nth power of the
modulus and multiply the argument by n.

EXAMPLE 6 Find .

SOLUTION Since , it follows from Example 4(a) that has the polar
form

So by De Moivre’s Theorem,

M

De Moivre’s Theorem can also be used to find the th roots of complex numbers. An 
th root of the complex number is a complex number such that

Writing these two numbers in trigonometric form as

and using De Moivre’s Theorem, we get

The equality of these two complex numbers shows that

and sin n� � sin 
andcos n� � cos 


s � r 1�norsn � r

sn�cos n� � i sin n�� � r�cos 
 � i sin 
�

z � r�cos 
 � i sin 
�andw � s�cos � � i sin ��

wn � z

wzn
n

 �
25

210  �cos 
5	

2
� i sin 

5	

2 	 �
1

32
 i

�1

2
�

1

2
 i	10

� �s2 

2 	10�cos 
10	

4
� i sin 

10	

4 	

1

2
�

1

2
 i �

s2 

2
 �cos 

	

4
� i sin 

	

4 	
1
2 �

1
2 i1

2 �
1
2 i � 1

2 �1 � i�

( 1
2 �

1
2 i)10

z n � �r�cos 
 � i sin 
��n � rn�cos n
 � i sin n
�

nz � r�cos 
 � i sin 
�2

 z 3 � zz 2 � r 3�cos 3
 � i sin 3
�

 z 2 � r 2�cos 2
 � i sin 2
�

 z � r�cos 
 � i sin 
�
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From the fact that sine and cosine have period it follows that

Thus

Since this expression gives a different value of for , 1, 2, . . . , , we have the
following.

ROOTS OF A COMPLEX NUMBER Let and let be a posi-
tive integer. Then has the distinct th roots

where , 1, 2 , . . . , .

Notice that each of the th roots of has modulus . Thus all the th roots 
of lie on the circle of radius in the complex plane. Also, since the argument of each
successive th root exceeds the argument of the previous root by , we see that the 

th roots of are equally spaced on this circle.

EXAMPLE 7 Find the six sixth roots of and graph these roots in the complex
plane.

SOLUTION In trigonometric form, . Applying Equation 3 with ,
we get

We get the six sixth roots of by taking in this formula:

All these points lie on the circle of radius as shown in Figure 9. Ms2

 w5 � 81�6�cos 
11	

6
� i sin 

11	

6 	 � s2  �s3 

2
�

1

2
 i	

 w4 � 81�6�cos 
3	

2
� i sin 

3	

2 	 � �s2  i

 w3 � 81�6�cos 
7	

6
� i sin 

7	

6 	 � s2  ��
s3 

2
�

1

2
 i	

 w2 � 81�6�cos 
5	

6
� i sin 

5	

6 	 � s2  ��
s3 

2
�

1

2
 i	

 w1 � 81�6�cos 
	

2
� i sin 

	

2 	 � s2  i

 w0 � 81�6�cos 
	

6
� i sin 

	

6 	 � s2  �s3 

2
�

1

2
 i	

k � 0, 1, 2, 3, 4, 5�8

wk � 81�6�cos 
	 � 2k	

6
� i sin 

	 � 2k	

6 	
n � 6z � 8�cos 	 � i sin 	�

z � �8

zn
2	�nn

r 1�nz
n� wk � � r 1�nzn

n � 1k � 0

wk � r 1�n�cos� 
 � 2k	

n 	 � i sin� 
 � 2k	

n 	

nnz

nz � r�cos 
 � i sin 
�3

n � 1k � 0w

w � r 1�n�cos� 
 � 2k	

n 	 � i sin� 
 � 2k	

n 	

� �


 � 2k	

n
orn� � 
 � 2k	

2	
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FIGURE 9
The six sixth roots of z=_8
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COMPLEX EXPONENTIALS

We also need to give a meaning to the expression when is a complex num-
ber. The theory of infinite series as developed in Chapter 11 can be extended to the case
where the terms are complex numbers. Using the Taylor series for (11.10.11) as our
guide, we define

and it turns out that this complex exponential function has the same properties as the real
exponential function. In particular, it is true that

If we put , where is a real number, in Equation 4, and use the facts that

. . .

we get

Here we have used the Taylor series for and (Equations 11.10.16 and 11.10.15).
The result is a famous formula called Euler’s formula:

Combining Euler’s formula with Equation 5, we get

EXAMPLE 8 Evaluate: (a) (b)

SOLUTION
(a) From Euler’s equation (6) we have

(b) Using Equation 7 we get

M

Finally, we note that Euler’s equation provides us with an easier method of proving 
De Moivre’s Theorem:

�r�cos 
 � i sin 
��n � �re i
 �n � rne in
 � rn�cos n
 � i sin n
�

e�1�i	�2 � e�1�cos 
	

2
� i sin 

	

2 	 �
1

e
 �0 � i�1�� �

i

e

e i	 � cos 	 � i sin 	 � �1 � i�0� � �1

e�1�i	�2e i	

ex�iy � exe iy � ex�cos y � i sin y�7

e iy � cos y � i sin y6

sin ycos y

 � cos y � i sin y

 � �1 �
 y 2

2!
�

 y 4

4!
�

 y 6

6!
� � � �	 � i�y �

 y 3

3!
�

 y 5

5!
� � � �	

 � 1 � iy �
 y 2

2!
� i 

 y 3

3!
�

 y 4

4!
� i 

 y 5

5!
� � � �

 e iy � 1 � iy �
�iy�2

2!
�

�iy�3

3!
�

�iy�4

4!
�

�iy�5

5!
� � � �

i 5 � i,i 4 � 1,i 3 � i 2i � �i,i 2 � �1,

yz � iy

e z1�z2 � e z1e z25

e z � 




n�0
 
zn

n!
� 1 � z �

z2

2!
�

z3

3!
� � � �4

ex

z � x � iye z
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N We could write the result of Example 8(a) as

This equation relates the five most famous num-
bers in all of mathematics: and .	0, 1, e, i,

e i	 � 1 � 0
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33–36 Find the indicated power using De Moivre’s Theorem.

33. 34.

35. 36.

37–40 Find the indicated roots. Sketch the roots in the complex
plane.

37. The eighth roots of 1 38. The fifth roots of 32

39. The cube roots of 40. The cube roots of 

41–46 Write the number in the form .

41. 42.

43. 44.

45. 46.

47. Use De Moivre’s Theorem with to express and
in terms of and .

48. Use Euler’s formula to prove the following formulas for 
and :

49. If is a complex-valued function of a real
variable and the real and imaginary parts and are
differentiable functions of , then the derivative of is defined
to be . Use this together with Equation 7
to prove that if , then when 
is a complex number.

50. (a) If is a complex-valued function of a real variable, its
indefinite integral is an antiderivative of . 
Evaluate

(b) By considering the real and imaginary parts of the integral
in part (a), evaluate the real integrals

and

(c) Compare with the method used in Example 4 in Sec-
tion 7.1.

y e x sin x dxy e x cos x dx

y e �1�i �x dx

ux u�x� dx
u

r � a � biF��x� � re rxF�x� � e rx
u��x� � f ��x� � it��x�

ux
t�x�f �x�x

u�x� � f �x� � it�x�

sin x �
eix � e�ix

2i
cos x �

eix � e�ix

2

sin x
cos x

sin 
cos 
sin 3

cos 3
n � 3

e	�ie 2�i	

e �i	e i	�3

e 2	 ie i	�2

a � bi

1 � ii

�1 � i �8(2s3 � 2i )5

(1 � s3 i )5�1 � i �20

1–14 Evaluate the expression and write your answer in the 
form .

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15–17 Find the complex conjugate and the modulus of the 
number.

15. 16.

17.

18. Prove the following properties of complex numbers.
(a) (b)
(c) , where is a positive integer

[Hint: Write , .]

19–24 Find all solutions of the equation.

19. 20.

21. 22.

23. 24.

25–28 Write the number in polar form with argument between 
and .

25. 26.

27. 28.

29–32 Find polar forms for , , and by first putting and
into polar form.

29. ,

30. ,

31. ,

32. , w � �3 � 3iz � 4(s3 � i )
w � �1 � iz � 2s3 � 2i

w � 8iz � 4s3 � 4i

w � 1 � s3 iz � s3 � i

w
z1�zz�wzw

8i3 � 4i

1 � s3 i�3 � 3i

2	
0

z2 �
1
2 z �

1
4 � 0z2 � z � 2 � 0

2x 2 � 2x � 1 � 0x 2 � 2x � 5 � 0

x 4 � 14x 2 � 9 � 0

w � c � diz � a � bi
nz n � z n

zw � z wz � w � z � w

�4i

�1 � 2s2 i12 � 5i

s�3 
s�12 

s�25 

i 100i 3

3

4 � 3i

1

1 � i

3 � 2i

1 � 4i

1 � 4i

3 � 2i

2i ( 1
2 � i)12 � 7i

�1 � 2i ��8 � 3i ��2 � 5i ��4 � i�

(4 �
1
2 i) � (9 �

5
2 i)�5 � 6i � � �3 � 2i �

a � bi

EXERCISESH



ANSWERS TO ODD-NUMBERED EXERCISESI

CHAPTER 1

EXERCISES 1.1 N PAGE 20

1. (a) �2 (b) 2.8 (c) �3, 1 (d) �2.5, 0.3
(e) (f )
3. 5. No
7. Yes, 
9. Diet, exercise, or illness
11.

13.

15.

17.

19. (a) (b) In millions: 
92; 485

21. 12, 16, , , ,
, , ,

, 
23. 25.
27.
29. 31. ���, 0� � �5, ���0, ��

{x � x � 1
3} � (��, 13) � ( 1

3 , �)
�1��ax��3 � h

3a2 � 6ah � 3h2 � a � h � 29a4 � 6a3 � 13a2 � 4a � 4
3a4 � a2 � 212a2 � 2a � 26a2 � 2a � 4

3a2 � 5a � 43a2 � a � 23a2 � a � 2

N

0 t19921990 19961994 1998 2000

100

200

300

400

500

600

Height
of grass

tWed.Wed.Wed. Wed. Wed.

0

amount

price

T

tmidnight noon

T

0 t

��3, 2�, ��3, �2� � ��1, 3�
��85, 115�

��1, 3���3, 3�, ��2, 3�

33. 35.

37. 39.

41. 43.

45. 47.

49.

51.
53. 55.
57.
59. (a) (b) $400, $1900

(c) 

61. is odd, is even
63. (a) (b)
65. Odd 67. Neither 69. Even

EXERCISES 1.2 N PAGE 34

1. (a) Root (b) Algebraic (c) Polynomial (degree 9)
(d) Rational (e) Trigonometric (f) Logarithmic
3. (a) h (b) f (c) t

��5, �3���5, 3�
tf

T (in dollars)

0 I (in dollars)10,000 20,000

1000

2500

30,000

R (%)

0 I (in dollars)10,000 20,000

10

15

V�x� � 4x 3 � 64x 2 � 240x, 0 � x � 6
S�x� � x 2 � �8�x�, x � 0A�x� � s3x 2�4, x � 0

A�L� � 10L � L2, 0 � L � 10

f �x� � ��x � 3

2x � 6

if 0 � x � 3

if 3 � x � 5

f �x� � 1 � s�xf �x� � 5
2 x �

11
2 , 1 � x � 5

x

y

1

�1 0
x

(0, 2)
(0, 1)

_2 1

y

0

���, �����, ��

x

2

y

0

4
y

x0 5

���, 0� � �0, ���5, ��

y

t0 6

_9

y

x0

5

���, �����, ��
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5. (a) , 
where b is the y-intercept.

(b) , 
where m is the slope.
See graph at right.
(c)

7. Their graphs have slope .

9.
11. (a) 8.34, change in mg for every 1 year change
(b) 8.34 mg

13. (a) (b) , change in for every
change; 32, Fahrenheit

temperature corresponding
to 

15. (a) (b) , change in for every chirp per
minute change (c)
17. (a) (b) 196 ft
19. (a) Cosine (b) Linear
21. (a) Linear model is 

appropriate

(b) 15

0 61,000

(b)

(c)

y � �0.000105x � 14.521

15

0 61,000

P � 0.434d � 15
76�F

�F1
6T � 1

6 N �
307

6

0�C

1�C
�F9

5F

C

(100, 212)

F=   C+32
9

5

(_40, _40)

32

f �x� � �3x�x � 1��x � 2�

y

x

c=_2

c=_1

0 c=2

c=1

c=0

�1

y � 2x � 3

y

x

m=_1

m=1

m=0

y-1=m(x-2)

(2, 1)

y � mx � 1 � 2m

y

x

b=3 b=0

b=_1

y=2x+b

y � 2x � b (c) [See graph in (b).]
(d) About 11.5 per 100 population (e) About 6% (f) No
23. (a)

Linear model is appropriate
(b) (c) 20 ft (d) No

25.
1914 million

EXERCISES 1.3 N PAGE 43

1. (a) (b) (c)
(d) (e) (f)
(g) (h)
3. (a) 3 (b) 1 (c) 4 (d) 5 (e) 2
5. (a) (b)

(c) (d)

7.
9. 11.

13. y

x0

3

π

y=1+2 cos x

y

x0_1

1

y=(x+1)@

y

x0

y=_x#

y � �s�x 2 � 5x � 4 � 1

y

0 x

y

0 x

y

0 x

y

0 x

y � 1
3 f �x�y � 3f �x�

y � f ��x�y � �f �x�y � f �x � 3�
y � f �x � 3�y � f �x� � 3y � f �x� � 3

y 	 0.0012937x 3 � 7.06142x 2 � 12,823x � 7,743,770;

20 (ft)

10
2000 (year)1896

y � 0.08912x � 158.24

20 (ft)

10
2000 (year)1896

y � �0.00009979x � 13.951
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15. 17.

19. 21.

23.

25.

27. (a) The portion of the graph of to the right of the 
y-axis is reflected about the y-axis.
(b) (c)

29. , 
, 

, 
, 

31. (a) , 
(b) , 
(c) , 
(d) , 

33. (a) , 
(b) , 
(c) , 
(d) , 

35. (a) ,

(b) , 

(c) , 

(d) , 

37.

39.

41.

43. t�x� � s
3 x , f �x� � x��1 � x�

t�x� � x 2 � 1, f �x� � x 10

� f � t � h��x� � sx 6 � 4x 3 � 1

� f � t � h��x� � 2x � 1

{x � x � �2, �5
3}�t � t��x� � �2x � 3���3x � 5�

{x � x � 0
� f � f ��x� � �x 4 � 3x 2 � 1���x�x 2 � 1��
{x � x � �1, 0
�t � f ��x� � �x 2 � x � 1���x � 1�2

�x � x � �2, �1

�2x 2 � 6x � 5����x � 2��x � 1��� f � t��x� �

���, ���t � t��x� � cos �cos x�
���, ��� f � f ��x� � 9x � 2

���, ���t � f ��x� � cos �1 � 3x�
���, ��� f � t��x� � 1 � 3 cos x

���, ���t � t��x� � 4x � 3
���, ��� f � f ��x� � x 4 � 2x 2

���, ���t � f ��x� � 2x 2 � 1
���, ��� f � t��x� � 4x 2 � 4x

{x � x � 	1�s3}� f�t��x� � �x 3 � 2x 2 ���3x 2 � 1�
���, ��� ft��x� � 3x 5 � 6x 4 � x 3 � 2x 2

���, ��� f � t��x� � x 3 � x 2 � 1
���, ��� f � t��x� � x 3 � 5x 2 � 1

y

x0

y=œ„„|x|

x

y
y=  |x|

0

sin

y � f �x�

L�t� � 12 � 2 sin� 2


365
 �t � 80�


y

x0

y=|sin x |

π

1

y

x0

y=
2

x+1
2

x=_1

y=_(≈+8x)
1

2

y

x0_4

_8

y

x0_3

y=œ„„„„x+3
y

x0

1 2π

y=sin(x/2)

45.

47. , , 

49. , , 
51. (a) 4 (b) 3 (c) 0 (d) Does not exist; is not
in the domain of . (e) 4 (f)
53. (a) (b) ; the area of the 
circle as a function of time
55. (a) (b)
(c) ; the distance between the lighthouse and the
ship as a function of the time elapsed since noon
57. (a) (b) 

(c) 

59. Yes; 
61. (a) (b)
63. (a) Even; even (b) Odd; even
65. Yes

EXERCISES 1.4 N PAGE 51

1. (c) 3.

5. 7.

9. 11.

1.5

_1.5

1000

_0.01 0.01
0

1.1

3500

_3500

20_20

4

�1

�4 4

150

_50

30_10

t�x� � x 2 � x � 1f (x� � x 2 � 6
m1m2

V�t� � 240H�t � 5�

V

t

240

0 5

V�t� � 120H�t�

V

t

120

0

H

t

1

0

s � s900t 2 � 36
d � 30ts � sd 2 � 36

�A � r��t� � 3600
t 2r�t� � 60t
�2t

f �6� � 6
f �x� � x 4

t�x� � sec xh�x� � sx

f �x� � 1 � xt�x� � 3xh�x� � x 2

t�t� � cos t, f � t � � st 
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13.

15.

17. No 19. 9.05 21. 0, 0.88 23.
25.
27. (a) (b)

(c) (d) Graphs of even roots are
similar to , graphs of odd
roots are similar to . As n
increases, the graph of

becomes steeper near
0 and flatter for .

29.

If , the graph has three humps: two minimum points and
a maximum point. These humps get flatter as c increases until at

two of the humps disappear and there is only one mini-
mum point. This single hump then moves to the right and
approaches the origin as c increases.
31. The hump gets larger and moves to the right.
33. If , the loop is to the right of the origin; if , the
loop is to the left. The closer c is to 0, the larger the loop.

EXERCISES 1.5 N PAGE 58

1. (a) (b) (c)
(d) See Figures 4(c), 4(b), and 4(a), respectively.

�0, ���f �x� � a x, a � 0

c � 0c � 0

c � �1.5

c � �1.5

2

_4

_2.5 2.5

_1.5 -1 -2 -31

x � 1
y � s

n x

s
3 x

sx
2

_1

_1 3

$œ„x

œ„x
Œ„x

%œ„x

2

_2

_3 3
x %œ„x

Œ„x

3

_1

_1 4
œ̂„x

$œ„xœ„x

�0.85 � x � 0.85
t

1

_1

_1 1

2

_2

_
π
25

π
25

11

_11

2π_2π

3. All approach 0 as ,
all pass through , and
all are increasing. The larger
the base, the faster the rate of
increase.

5. The functions with base
greater than 1 are increasing
and those with base less than
1 are decreasing. The latter
are reflections of the former
about the y-axis.

7. 9.

11.

13. (a) (b) (c)
(d) (e)
15. (a) (b)
17. 23. At 
25. (a) 3200 (b) (c) 10,159
(d)

27. , where and
; 5498 million; 7417 million

EXERCISES 1.6 N PAGE 70
1. (a) See Definition 1.
(b) It must pass the Horizontal Line Test.
3. No 5. Yes 7. No 9. No 11. Yes
13. No 15. 2 17. 0
19. ; the Fahrenheit temperature as a function of the
Celsius temperature; 

21. 23. f �1�x� � s
3 ln xf �1�x� � �

1
3 x

2 �
10
3 ,  x � 0

��273.15, ��
F � 9

5 C � 32

b 	 1.017764706
a 	 3.154832569 � 10�12y � ab t

t 	 26.9 h60,000

0 40

100 � 2 t�3
x 	 35.8f �x� � 3 � 2x

���, 0� � �0, �����, ��
y � �e�xy � e�x

y � �e xy � e x�2y � e x � 2

x

y

0

y=1-   e–®

y=1

1
2

”0,    ’
1
2

x
_1

y

0

y=_2–®

x

_2

y

0

y=4®-3

y=_3

5

_2 2

y=3®y=10®

0

y=”   ’®
1
3

y=”    ’®
1
10

�0, 1�
x l ��y=20® y=5® y=´

y=2®

5

_1 2
0
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25.

27. 29.

31. (a) It’s defined as the inverse of the exponential function with
base a, that is, .
(b) (c) (d) See Figure 11.

33. (a) 3 (b) 35. (a) 3 (b) 37.

39.

41. All graphs approach
as , all pass

through , and all
are increasing. The
larger the base, the
slower the rate of
increase.

43. About 1,084,588 mi
45. (a) (b)

47. (a) (b)
49. (a) (b)
51. (a) (b)

53. (a) (b) , 

55.

The graph passes the 
Horizontal Line Test.

,
where ; two of the expressions are
complex.

57. (a) ; the time elapsed when there
are n bacteria (b) After about 26.9 hours

59. (a) (b) 61. (a) (b)

63. (a) 10 (b) 67. x�s1 � x 2 
�3


�4
�4

�3

f �1�n� � �3�ln 2� ln�n�100�

D � 3s3s27x 4 � 40x 2 � 16
f �1(x) � �(s3 4�6)(s3 D � 27x 2 � 20 � s

3 D � 27x 2 � 20 � s
3 2 )

5

_1

4_2

[0, s3)f �1�x� � 1
2 ln�3 � x2�(��, 12 ln 3]

x � 1�ex � ln 10

1
2 (1 � s1 � 4e )5 � log2 3 or 5 � �ln 3��ln 2

�ln 5se

1 x

y

0

y=-ln x

_5 _4 x

y

0

y=log10 (x+5)

�1, 0�
x l 0���

3

�5

4

y=log1.5 x

y=log10 x

0

y=ln x

y=log50 x

ln 
(1 � x2)sx

sin x

ln 1215�2�3

��0, ��
loga x � y &? a y � x

x

y

f

f–!

0

6

60

f–!

f

f �1�x� � s
4 x � 1

y � e x � 3 69.

The second graph is 
the reflection of the 
first graph about the 
line .

71. (a) (b)

73. (a) (b)

CHAPTER 1 REVIEW N PAGE 73

True-False Quiz

1. False 3. False 5. True 7. False 9. True
11. False 13. False

Exercises
1. (a) 2.7 (b) 2.3, 5.6 (c) (d)
(e) (f) No; it fails the Horizontal Line Test.
(g) Odd; its graph is symmetric about the origin.
3. 5. ,
7.
9. (a) Shift the graph 8 units upward.
(b) Shift the graph 8 units to the left.
(c) Stretch the graph vertically by a factor of 2, then shift it 
1 unit upward.
(d) Shift the graph 2 units to the right and 2 units downward.
(e) Reflect the graph about the x-axis.
(f) Reflect the graph about the line (assuming f is 
one-to-one).

11. 13.

15.

17. (a) Neither (b) Odd (c) Even (d) Neither
19. (a) , 
(b) , 
(c) , 
(d) , 
21. ; about 77.6 yearsy � 0.2493x � 423.4818

���, ���t � t��x� � �x 2 � 9�2 � 9
�1, ��� f � f ��x� � ln ln x

�0, ���t � f ��x� � �ln x�2 � 9
���, �3� � �3, ��� f � t��x� � ln�x 2 � 9�

y

x0

y=
1

x+2
1
2

x=_2

x

y

0

(1+´)

1 y=
1
2

y=
1
2

y

x0

y=_sin 2x

π

y � x

��6, ��, �
���, 0� � �0, ��(��, 1

3) � ( 1
3 , �)2a � h � 2

��4, 4�
��4, 4���6, 6�

h�1�x� � �1�c� f �1�x�t
�1 �x� � f �1�x� � c

��
�2, 
�2���2
3, 0�

y � x

y=sin– ! x

π

2

π

2
_

y=sin x

π

2
_

π

2
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23. 1 25. (a) 9 (b) 2 (c) (d)

27. (a) years

(b) the time required for the population

to reach a given number .
(c) years

PRINCIPLES OF PROBLEM SOLVING N PAGE 81

1. , where a is the length of the altitude and 
h is the length of the hypotenuse
3.
5. 7.

9.

11. 5 13.
15. 19.

CHAPTER 2

EXERCISES 2.1 N PAGE 87

1. (a) , , , , 
(b) (c)
3. (a) (i) 0.333333 (ii) 0.263158 (iii) 0.251256
(iv) 0.250125 (v) 0.2 (vi) 0.238095 (vii) 0.248756
(viii) 0.249875 (b) (c)
5. (a) (i) (ii) (iii)
(iv) (b)
7. (a) (i) (ii) (iii)
(iv) (b)
9. (a) 0, 1.7321, �1.0847, �2.7433, 4.3301, �2.8173, 0,
�2.1651, �2.6061, �5, 3.4202; no (c) �31.4

EXERCISES 2.2 N PAGE 96

1. Yes
3. (a) means that the values of can be
made arbitrarily large (as large as we please) by taking x sufficient-
ly close to �3 (but not equal to �3).

f �x�lim x l�3 f �x� � �

6.3 m�s7 m�s
7.55 m�s5.6 m�s4.65 m�s

�24 ft�s�24.16 ft�s
�24.8 ft�s�25.6 ft�s�32 ft�s

y � 1
4 x �

1
4

1
4

�33 13�33.3
�16.6�22.2�27.8�38.8�44.4

fn�x� � x 2 n�1
40 mi�h

x � [�1, 1 � s3) � (1 � s3, 3]

y

x10

1

y

x0

1 x

y

�
7
3 , 9

a � 4sh 2 � 16�h

ln 81 	 4.4
P

t � �ln�1000 � P

9P �;

	 4.41000

10
0

3
51�s3 (b) means that the values of can be made

arbitrarily large negative by taking x sufficiently close to 4 through
values larger than 4.
5. (a) 2 (b) (c) Does not exist (d) 4
(e) Does not exist
7. (a) (b) (c) Does not exist (d) 2 (e) 0
(f) Does not exist (g) 1 (h) 3
9. (a) (b) (c) (d) (e)
(f)
11. (a) (b) (c) Does not exist
13. 15.

17. 19. 21. 23. 25.
27. 29. 31. 33.
35. (a) 2.71828 (b)

37. (a) 0.998000, 0.638259, 0.358484, 0.158680, 0.038851,
0.008928, 0.001465; 0
(b) 0.000572, �0.000614, �0.000907, �0.000978, �0.000993,
�0.001000; �0.001
39. No matter how many times we zoom in toward the origin, the
graph appears to consist of almost-vertical lines. This indicates
more and more frequent oscillations as .
41. , ; , 

EXERCISES 2.3 N PAGE 106

1. (a) (b) (c) 2 (d)
(e) Does not exist (f) 0

3. 5. 390 7. 9. 0 11. 5
13. Does not exist 15. 17. 19. 21.
23. 25. 27. 29. 31. (a), (b)
35. 39. 41. 43. Does not exist
45. (a) (b) (i)

(ii)
(iii) Does not exist
(iv)

47. (a) (i) (ii) (b) No (c)

1 x

2

y

0

�22

1

�1
1

x

1

y

0

�467

2
3�

1
2

1
128�

1
16

1
6

61
1286

5

1
859

�6�8�6

	�
 � sin�1�
�4��x � 	sin�1�
�4�	2.24x 	 	0.90
x l 0

6

4_4

_2

��; ������
��

3
5

1
4

1
2

2
3

y

0 x1

y

x

01
x � �7, x � �3, x � 0, x � 6

�������

�2�1

3

f �x�lim x l 4� f �x� � ��
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49. (a) (i) (ii) Does not exist (iii)
(b) (i) (ii) (c) is not an integer.
55. 61.

EXERCISES 2.4 N PAGE 117
1. (or any smaller positive number)
3. 1.44 (or any smaller positive number)
5. (or any smaller positive number)
7. 0.11, 0.012 (or smaller positive numbers)
9. (a) (b)
11. (a) (b) Within approximately 0.0445 cm
(c) Radius; area; ; 1000; 5; 
13. (a) (b)
35. (a) (b) , where

41. Within 0.1

EXERCISES 2.5 N PAGE 128
1.
3. (a) (removable), ( jump), 2 ( jump), 4 (infinite)
(b) , neither; , left; 2, right; 4, right
5.

7. (a) (b) Discontinuous at , 2, 3, 4

9.

15. is not defined. 17. does not exist.

19. 21.

23. 25. 27. ���, �1� � �1, �����, � �[ 1
2, �)

y

0 x1_π

�x � x � �3, �2
lim
x l 0

  f �x� � f �0�

x

y

0

y=´

y=≈

1x

y

0

x=2

lim
x l 0

 f �x�f �2�
6

t � 1
Cost

(in dollars)

0 Time
(in hours)

1

1

y

0 x2

1

�2�4
�2�4

lim x l 4 f �x� � f �4�

B � 216 � 108
 � 12s336 � 324
 � 81
2

� � �B 2�3 � 12���6B 1�3� � 10.093
0.00250.025

	0.0445s1000�
 
s1000�
  cm

0.0100.031

0.0906

4
7

15; �18
ann � 1

�3�2 29.

31. 33.
37. 0, left 39. 0, right; 1, left

41. 43. (a) (b)
51. (b) 53. (b)
59. None 61. Yes

EXERCISES 2.6 N PAGE 140

1. (a) As becomes large, approaches .
(b) As becomes large negative, approaches 3.
3. (a) (b) (c) (d) 1 (e) 2
(f)
5. 7.

9.

11. 13. 15. 0 17. 19. 21.

23. 25. 27. 29. 31.

33. 35. 37. (a), (b) 39.
41. 43. 45.

47.

49. 51.

0 1

3

y

x

0 1

y

x

��, ���, ��

f �x� �
2 � x

x 2�x � 3�

y � 3x � 5y � 2; x � �2, x � 1
y � 2; x � 2�

1
20�

1
2

���
1
2�a � b�1

63

21
2�

1
2

3
20

x

y

0

y=3

x=4

x

y

0

x=2

x

y

0

1

1

x � �1, x � 2, y � 1, y � 2
����

f �x�x
5f �x�x

70.347�0.86, 0.87�
t �x� � x 2 � xt �x� � x 3 � x 2 � x � 12

3

y

x0

(1, e)

(1, 1)
(0, 1)

(0, 2)

x

y

0

(0, 1)

(0, 2)

(2, 0)

17
3

3

4_4

_1

x � 0
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53. (a) 0 (b) An infinite number of times

55. (a) (b) 57.

59. (a) (b) s

61. 63. 65. (a)

EXERCISES 2.7 N PAGE 150

1. (a) (b)

3. (a) (b) (c)

5. 7.

9. (a) (b)
(c)

11. (a) Right: and ; left: ; 
standing still: and 

(b)

13. 15. ; ; ; 
17. t��0�, 0, t��4�, t��2�, t���2�

�
2

27 m�s�
1
4 m�s�2 m�s�2�a3 m�s�24 ft�s

t
(seconds)

v (m/s)

0 1

1

3 � t � 41 � t � 2
2 � t � 34 � t � 60 � t � 1

10

_3

4_2

y � 2x � 3, y � �8x � 198a � 6a 2

y � 1
2 x �

1
2y � �x � 5

6

0
5_1

y � 2x � 12

lim
x l 3

 
 f �x� � f �3�

x � 3

 f �x� � f �3�
x � 3

x � 100N � �6, N � �22N � 15

	 0.471.2

0 1

v*

5	�0

_0.5

1

-25 25

19. 21. 7; 

23. (a) (b)

25. 27. 29.

31. or , 
33.
35. or , 
37. ; 
39. Greater (in magnitude)

41. (a) (i) (ii)
(iii)
(b) (c)
43. (a) (i) (ii) (b)
45. (a) The rate at which the cost is changing per ounce of gold
produced; dollars per ounce
(b) When the 800th ounce of gold is produced, the cost of 
production is 
(c) Decrease in the short term; increase in the long term
47. The rate at which the temperature is changing at 10:00 AM;

49. (a) The rate at which the oxygen solubility changes with
respect to the water temperature; 
(b) as the temperature increases past , 
the oxygen solubility is decreasing at a rate of .
51. Does not exist

EXERCISES 2.8 N PAGE 162

1. (a) 1.5

(b) 1

(c) 0

(d) �4

(e) 0

(f) 1

(g) 1.5

x0

y

fª

0.25 �mg�L���C
16�CS��16� 	 �0.25;

�mg�L���C

4�F�h

$17�oz.

$20�unit$20.05�unit$20.25�unit
15 percent�year14.5 percent�year

16 percent�year
13 percent�year11 percent�year

Temperature
(in °F)

0 Time
(in hours)

1

38

2

72

1 m�s1 m�s
a � 0f �x� � cos�
 � x�f �x� � cos x, a � 


f �x� � 2x, a � 5
a � 0f �x� � �1 � x�10f �x� � x 10, a � 1

�1

2�a � 2�3�2

5

�a � 3�2�2 � 8a

4

_2

6_1

�
3
5; y � �

3
5 x �

16
5

y � 7x � 12y

0
x1

1
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3. (a) II (b) IV (c) I (d) III
5. 7.

9. 11.

13. 1963 to 1971

15.

17. (a) 0, 1, 2, 4 (b) �1, �2, �4 (c)

19. , 21.

23.

25.

27. , , 

29. 31. (a)

33. (a) The rate at which the unemployment rate is changing, in
percent unemployed per year
(b)

35.
37. �1 �vertical tangent�; 4 �corner�

�4 �corner�; 0 �discontinuity�

f ��x� � 4x 3 � 2f ��x� � 4x 3, �, �

���, �1� � ��1, �����, �1� � ��1, ��G��t� �
4

�t � 1�2

t��x� � 1�s1 � 2x, [� 1
2 , �), (� 1

2 , �)
f ��x� � 3x 2 � 3, �, �

f ��t� � 5 � 18t, �, ��, �f ��x� � 1
2

f ��x� � 2x

f ��x� � e x
y

x1

1

0

f, f ª

0.05

19901980197019601950

_0.03
t

y=Mª(t)0.1

y

x0

y

f ª

y

0 x

f ª

x

y

0

fªf ª

x

y

0

39.

Differentiable at �1;
not differentiable at 0

41.
43.
45.

,

47. , 

,

,

49. (a)

51.

or

53. (a) (b) All x
(c)

57.

CHAPTER 2 REVIEW N PAGE 166

True-False Quiz

1. False 3. True 5. False 7. True 9. True
11. False 13. True 15. True 17. False 19. False

Exercises

1. (a) (i) 3 (ii) 0 (iii) Does not exist (iv) 2
(v) (vi) (vii) 4 (viii) �1
(b) , (c) , (d) �3, 0, 2, 4
3. 1 5. 7. 3 9. 11. 13.
15. 17. 19. 21. 23. 1
29. (a) (i) 3 (ii) 0 (iii) Does not exist (iv) 0 (v) 0 (vi) 0

x � 0, y � 0
�22��

1
2

4
7�

3
2

x � 2x � 0y � �1y � 4
���

63�

f ��x� � 2� x �

x
0

y

f ��x� �
x � 6

� x � 6 �
x

y

0 6

1

_1

f ªf ��x� � ��1

1

if x � 6

if x � 6

1
3 a�2�3

f �4��x� � 0

f ��x� � �6

f ��x� � 4 � 6x

f ��x� � 4x � 3x 2
3

6�4

�7

f

fª

f ·

f ªªª

f ��x� � �2

f ��x� � 4 � 2x
6

10�6

�10

ffª

f ·

a � acceleration, b � velocity, c � position
a � f, b � f �, c � f �

2

_1

_2 1

t t

1993 1998
1994 1999
1995 2000
1996 2001
1997 2002 1.10�0.45

0.90�0.35
0.25�0.35

�0.25�0.65
�0.35�0.80

U��t�U��t�
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(b) At 0 and 3 (c)

31. 35. (a) (b)
37. (a) (i) (ii) (iii)
(iv) (b)
39. (a) (b)
(c)

41. (a) The rate at which the cost changes with respect to the 
interest rate; dollars�(percent per year)
(b) As the interest rate increases past 10%, the cost is increasing 
at a rate of $1200�(percent per year).
(c) Always positive
43.

45. (a) (b)
(c)

47. �4 (discontinuity), �1 (corner), 2 (discontinuity), 
5 (vertical tangent)
49. The rate at which the total value of US currency in circulation
is changing in billions of dollars per year; 
51. 0

PROBLEMS PLUS N PAGE 170

1. 3. �4 5. 1 7.
9. 11. (b) Yes (c) Yes; no
13. (a) 0 (b) 1 (c)

CHAPTER 3

EXERCISES 3.1 N PAGE 180

1. (a) See Definition of the Number e (page 179).
(b) 0.99, 1.03; 
3. 5. 7. f ��x� � 3x 2 � 4f ��t� � �

2
3f ��x� � 0

2.7 � e � 2.8

f ��x� � x 2 � 1

3
4

a � 1
2 	

1
2 s52

3

$22.2 billion�year

6

1_3

_6

f

f ª

(��, 35 ], (��, 35 )f ��x� � �
5
2 �3 � 5x��1�2

x

y

0

fª

4– 4

–12

12

y � 10x � 1610
2.5 m�s2.525 m�s

2.625 m�s2.75 m�s3 m�s
y � �8x � 17�8�

x0

y

3

3

9. 11. 13.
15. 17.

19. 21.

23.
25. 27.
29. 31.
33.
35. Tangent: ; normal: 
37. 39. 41.
43. (a) (c)

45.

47.

49. (a) (b)

(c) 51.

55. , 57.
59. 63.
65.
67. No 

69. (a) Not differentiable at 3 or �3

(b)

71. 73. 75.
77. 79.

EXERCISES 3.2 N PAGE 187

1.
3.
5. 7.
9.
11.

13. 15. y� �
2t��t 4 � 4t 2 � 7�

�t 4 � 3t 2 � 1�2y� �
x 2�3 � x 2�
�1 � x 2�2

F��y� � 5 � 14�y 2 � 9�y 4

V��x� � 14x 6 � 4x 3 � 6
t��x� � 5��2x � 1�2y� � �x � 2�e x�x 3

f ��x� � e x�x 3 � 3x 2 � 2x � 2�
y� � 5x 4 � 3x 2 � 2x

3; 11000
m � 4, b � �4a � �

1
2 , b � 2y � 2x 2 � x

�3 3 x
0

y

ƒ�

�3 3 x0

9

y

ƒ

f ��x� � �2x

�2x

if � x � � 3

if � x � � 3

x

y

0

(1, 1)

ƒ

x

y

0 1

ƒ�

y � 3
16 x 3 �

9
4 x � 3

P�x� � x 2 � x � 3�	2, 4�
y � 1

3 x �
1
3y � 12x � 17y � 12x � 15

��2, 21�, �1, �6�a�1� � 6 m�s2

12 m�s2v�t� � 3t 2 � 3, a�t� � 6t

f ��x� � 2 �
15
4 x�1�4, f ��x� � 15

16 x
�5�4

f ��x� � 4x 3 � 9x 2 � 16, f ��x� � 12x 2 � 18x

100

�40

�3 5

50

�10

�3 5

4x 3 � 9x 2 � 12x � 7
45x 14 � 15x 2e x � 5y � 3x � 1

y � �
1
2 x � 2y � 2x � 2

y � 1
4 x �

3
4

z� � �10A�y11 � Be yu� � 1
5 t �4�5 � 10t 3�2

H��x� � 3x 2 � 3 � 3x �2 � 3x �4y� � 0
y� � 3

2 sx � (2�sx ) � 3�(2xsx )
y� � 2ax � bF��x� � 5

32 x 4

G��x� � 1�(2sx ) � 2e xA��s� � 60�s 6

V��r� � 4
r 2y� � �
2
5 x

�7�5f ��t� � t 3



APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES | | | | A75

17. 19.

21. 23.

25.
27.

29.

31. 33. ;

35. (a) (b)

37. (a) 39. , 

41. 43. (a) �16 (b) (c) 20

45. 7 47. (a) 0 (b)
49. (a) (b)
(c)
51. Two, 
53. 55. (c)
57. ,

, 

EXERCISES 3.3 N PAGE 195

1. 3.

5.

7.

9. 11.

13.
15.
21. 23.
25. (a) (b)

27. (a)

29. ; 

31. (a) (b)

33. , n an integer

35. (a) , 

(b) ; to the left

37. 39. 41. 43.

45. 47. �s21
2

sin 1335 ft�rad

4s3, �4, �4s3

a�t� � �8 sin tv�t� � 8 cos t

�2n � 1�
 	
1
3


f ��x� � cos x � sin xf ��x� � �1 � tan x��sec x

2 cos � � � sin �� cos � � sin �

sec x tan x � 1

π0

3π

2

”    , π’
π

2

y � 2x
y � x � 1y � 2s3x �

2
3 s3
 � 2

f ��x� � e x csc x ��x cot x � x � 1�
y� � �x cos x � 2 sin x��x 3

f ���� �
sec � tan �

�1 � sec ��2y� �
2 � tan x � x sec2x

�2 � tan x�2

h���� � �csc � cot � � e� �cot � � csc2��
t��t� � 3t 2 cos t � t 3 sin t

f ��x� � cos x �
1
2 csc2xf ��x� � 6x � 2 sin x

f (n)�x� � �x 2 � 2nx � n�n � 1��e xf �5��x� � �x 2 � 10x � 20�e x;
f �4��x� � �x 2 � 8x � 12�e x,f ��x� � �x 2 � 6x � 6�e x

f ��x� � �x 2 � 2x�e x, f ��x� � �x 2 � 4x � 2�e x

3e 3x$1.627 billion�year
(�2 	 s3, (1 � s3)�2)

y� � �xt��x� � t�x���x 2
y� � �t�x� � xt��x����t�x�� 2y� � xt��x� � t�x�

�
2
3

�
20
9

1
4

�x � 1�e xxe xe x �x � 3��x 4

(_1, 0.5)

1.5

�0.5

�4 4

y � 1
2 x � 1

y � �
1
2 xy � 2xy � 1

2 x �
1
2

2x 2 � 2x

�1 � 2x�2 ; 
2

�1 � 2x�3

�x 4 � 4x 3�e x; �x4 � 8x3 � 12x 2�e x
f ��x� � 2cx��x 2 � c�2

f ��x� � �ACe x��B � Ce x�2f ��t� �
4 � t 1�2

(2 � st )2

y� � 2v � 1�svy� � �r 2 � 2�e r 49. (a) (b)
(c)
51. 1

EXERCISES 3.4 N PAGE 203

1. 3. 5.
7.

9. 11.

13. 15.
17.
19.

21. 23.

25.
27. 29.
31. 33.

35.

37.

39.

41.

43.

45.

47.

49. ; 
51. 53.
55. (a) (b)

57. (a)
59. , n an integer
61. 24 63. (a) 30 (b) 36
65. (a) (b) Does not exist (c) �2
67. (a) (b)
69. 120 71. 96 75.
77.

79. (a) (b) 0.16

81.
15

�7

0 2

√

2

�1

0 2

s

v�t� � 2e�1.5 t�2
 cos 2
t � 1.5 sin 2
t�

dB

dt
�

7


54
 cos 

2
 t

5.4

v�t� � 5
2
 cos�10
 t� cm�s

�250 cos 2x
G��x� � e f �x� f ��x�F��x� � e x f ��e x�

3
4

��
�2� � 2n
, 3�, ��3
�2� � 2n
, �1�
f ��x� � �2 � 2x 2��s2 � x 2

3

_1.5

_3 3

(0, 1)

y � 1
2 x � 1

y � �x � 
y � 20x � 1
e�x��� 2 � � 2� sin �x � 2�� cos �x�e�x�� cos �x � � sin �x�

h��x� � x�sx 2 � 1, h ��x� � 1��x 2 � 1�3�2

y� �
�
 cos�tan 
x� sec2�
x� sinssin �tan 
x�

2ssin �tan 
x�

t��x� � 2r 2 p�ln a� �2ra rx � n� p�1 a rx

f ��t� � 4 sin �esin2 t � cos �esin2t � esin2 t sin t cos t

f ��t� � sec2 �et�et � e tan t sec2t

y� � �2 cos � cot�sin �� csc2�sin ��

y� �
4e2x

�1 � e2x�2
 sin 

1 � e2x

1 � e2x

y� � 4 sec 2x tan xy� � 2sin 
x�
 ln 2� cos 
x
y� � 2 cos�tan 2x� sec2�2x�y� � �r 2 � 1��3�2

F��z� � 1���z � 1�1�2�z � 1�3�2�

y� � �cos x � x sin x�e x cos xy� �
�12x �x 2 � 1�2

�x 2 � 1�4

y� � 8�2x � 5�3 �8x2 � 5��4 ��4x2 � 30x � 5�
t��x� � 4�1 � 4x�4�3 � x � x 2�7�17 � 9x � 21x 2�

y� � e�kx ��kx � 1�y� � �3x 2 sin�a 3 � x 3 �

t��t� � �
12t 3

�t 4 � 1�4F��x� �
2 � 3x 2

4�1 � 2x � x3�3�4

F��x� � 10x�x4 � 3x 2 � 2�4 �2x 2 � 3�
esx�(2sx )�20x�1 � x 2�94 cos 4x

cos x � sin x � �cot x � 1��csc x
sec x tan x � �sin x��cos2xsec2x � 1�cos2x
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83. is the rate of change of velocity with respect to time;
is the rate of change of velocity with respect to displacement

85. (a) where and 
(b) �A
87. (b) The factored form
91. (b)

EXERCISES 3.5 N PAGE 213

1. (a)
(b) , 
3. (a) (b) , 
5.

7. 9.

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.
31. (a) (b)

33. 35.
37. (a) Eight; 

(b) , (c)

39. 41.

45. 47.

49. 51.

53. 55.

59. 61.

x

y

x

y

1 �
x arcsin x

s1 � x 2
y� � �2e2x�s1 � e 4x

h��t� � 0G��x� � �1 �
x arccos x

s1 � x 2

y� �
1

s�x 2 � x
y� �

1

2sx �1 � x�

�x0 x�a 2 � � �y0y�b 2 � � 1(�5
4s3, �5

4)
1 �

1
3s3y � 1

3 x � 2y � �x � 1

x � 0.42, 1.584

5_2

_3

�2x�y 5�81�y 3

5

2_2

_2

(1, 2)

y � 9
2 x �

5
2

y � �
9
13 x �

40
13y � x �

1
2

y � �x � 2x� �
�2x4y � x3 � 6xy2

4x3y2 � 3x 2y � 2y3

�
16
13y� �

e y sin x � y cos�xy�
e y cos x � x cos�xy�

y� �
4xysxy � y

x � 2x 2
sxy

y� �
y�y � e x�y�
y 2 � xe x�y

y� � tan x tan yy� �
�2xy 2 � sin y

2x 2y � x cos y

y� �
3y2 � 5x4 � 4x 3y

x 4 � 3y 2 � 6xy
y� �

2x � y

2y � x

y� � �x 2�y 2
y� � �1��x � 1�2y � x��x � 1�y� � �y 2�x 2

y� � ��4�x 2 � � 3y � �4�x� � 2 � 3x
y� � ��y � 2 � 6x��x

�n cos n�1x sin��n � 1�x�

�670.63
b � 0.000045146a � 100.01244y � abt

dv�ds
dv�dt 63. 65. 67. (b) 69.

EXERCISES 3.6 N PAGE 220

1. The differentiation formula is simplest.

3. 5.

7. 9.

11. 13.

15. 17.

19. 21.

23.

25.

27. ; 

29.

31. 1 33. 35.

37.

39.

41.

43.

45.

47.

49. 51.

EXERCISES 3.7 N PAGE 230

1. (a) (b) (c)
(d)
(e)
(f) (g)

(h) (i) Speeding up when
; 

slowing down when
0 � t 	 2 or 4 	 t 	 6

2 	 t 	 4 or t 
 6
s

40

80

�25

√

a

6t � 24; �6 m�s2

t � 2,
s � 32t � 0,

s � 0

t � 6,
s � 0

t � 8,
s � 32

s0 20

96 ft
0 � t 	 2, t 
 6

t � 2, 6�9 ft�s3t 2 � 24t � 36

f �n��x� �
��1�n�1�n � 1�!

�x � 1�ny� �
2x

x 2 � y 2 � 2y

y� � �tan x�1�x� sec2x

x tan x
�

ln tan x

x 2 	
y� � �cos x�x��x tan x � ln cos x�

y� � x sin x�sin x

x
� cos x ln x	

y� � x x�1 � ln x�

y� �
sin2x tan4x

�x 2 � 1�2  �2 cot x �
4 sec2x

tan x
�

4x

x 2 � 1	
y� � �2x � 1�5�x 4 � 3�6� 10

2x � 1
�

24x 3

x 4 � 3	
cos x � 1�xy � 3x � 2

f ��x� �
2�x � 1�
x �x � 2�

; ���, 0� � �2, ��

�1, 1 � e� � �1 � e, ��

f ��x� �
2x � 1 � �x � 1� ln�x � 1�

�x � 1��1 � ln�x � 1�� 2

y� �
1

s1 � x 2 ; y 
 �
�x

�1 � x 2�3�2

y� � x � 2x ln�2x�; y
 � 3 � 2 ln�2x�

y� �
1

ln 10
� log10 xy� �

�x

1 � x

y� �
10x � 1

5x 2 � x � 2
f ��u� �

1 � ln 2

u�1 � ln�2u��2

t��x� �
2x 2 � 1

x �x 2 � 1�
F��t� �

6

2t � 1
�

12

3t � 1

f ��x� �
sin x

x
� cos x ln�5x�f ��x� �

1

5xs
5 �ln x�4

f ��x� �
3

�3x � 1� ln 2
f ��x� �

cos�ln x�
x

23
2��1, �1�, �1, 1�(�s3, 0)



APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES | | | | A77

3. (a) (b) (c) 

(d) (e) 4 ft
(f)

(g)
(h)

(i) Speeding up when , ; 
slowing down when , 
5. (a) Speeding up when or ; 
slowing down when 
(b) Speeding up when or ;
slowing down when or 
7. (a)
(b) ; the velocity has an absolute minimum.
9. (a) (b)
11. (a) ; the rate at which the area is increasing 
with respect to side length as x reaches 15 mm
(b)
13. (a) (i) (ii) (iii)
(b) (c)
15. (a) (b) (c)
The rate increases as the radius increases.
17. (a) (b) (c)
At the right end; at the left end
19. (a) 4.75 A (b) 5 A; 
21. (a) (b) At the beginning

23.

25. (a)
(b) , where ,

, , 
(c)
(d) ; (smaller)
(e)

27. (a) ; ; 0
(b) 0; ; 
(c) At the center; at the edge

29. (a)
(b) ; the cost of producing the 201st yard
(c) $32.20

31. (a) ; the average productivity increases as
new workers are added.

33.

35. (a) 0 and 0 (b)
(c) it is possible for the species to coexist.�0, 0�, �500, 50�;

C � 0

�0.2436 K�min

�xp��x� � p�x���x 2

$32�yard
C��x � � 12 � 0.2x � 0.0015x 2

�185.2 �cm�s��cm�92.6 �cm�s��cm
0.694 cm�s0.926 cm�s

81.62 million�year
75.29 million�year14.48 million�year

P��t� � 3at 2 � 2bt � c
d � �7,743,770c � 12,822.979b � �7.061422

a � 0.00129371P�t� � at 3 � bt 2 � ct � d
78.5 million�year16 million�year;

400�3t� ln 3; �6850 bacteria�h

dV�dP � �C�P 2

t � 2
3 s

18 kg�m12 kg�m6 kg�m

24� ft2�ft16� ft2�ft8� ft2�ft
�A � 2�r �r4�

4.1�4.5�5�
�A � 2x �x

30 mm2�mm
s17 m�s5.02 m�s

t � 1.5 s
t � 4 s

2 	 t 	 30 	 t 	 1
3 	 t 	 41 	 t 	 2

1 	 t 	 2
2 	 t 	 30 	 t 	 1

6 	 t 	 82 	 t 	 4
4 	 t 	 60 	 t 	 2

_1

1

80

a

√

s

1
32� 2

s2 ft�s2�
1
16�

2 cos�� t�4�;

t � 0, s � 1

t � 4,
s � _1

t � 8, s � 1

s0

t =10,
s=0

4 	 t 	 8

t � 0, 4, 8�
1
8�s2 ft�s�

�

4
 sin�� t

4 	 EXERCISES 3.8 N PAGE 239

1. About 235
3. (a) (b) (c)
(d)
5. (a) 1508 million, 1871 million (b) 2161 million
(c) 3972 million; wars in the first half of century, increased life
expectancy in second half
7. (a) (b)
9. (a) (b) (c)
11. 13. (a) (b)

15. (a) (b)
17. (a) (b)
19. (a) (i) $3828.84 (ii) $3840.25 (iii) $3850.08
(iv) $3851.61 (v) $3852.01 (vi) $3852.08
(b) , 

EXERCISES 3.9 N PAGE 245

1. 3. 5.
7. 9.
11. (a) The plane’s altitude is 1 mi and its speed is .
(b) The rate at which the distance from the plane to the station is
increasing when the plane is 2 mi from the station
(c) (d)

(e)

13. (a) The height of the pole (15 ft), the height of the man (6 ft),
and the speed of the man (5 ft�s)
(b) The rate at which the tip of the man’s shadow is moving when
he is 40 ft from the pole

(c) (d) (e)

15. 17.

19. 21.
23.
25. 27. 29.
31. 33. 35.

37. (a) (b) 39.

41. 43.

EXERCISES 3.10 N PAGE 252

1. 3.

5. ;

,

7. 9.

11. (a) (b) dy �
t

1 � t 2  dtdy � 2x�x cos 2x � sin 2x� dx

�0.045 	 x 	 0.055�1.204 	 x 	 0.706

s0.99 � 0.995
s0.9 � 0.95

3

3_3

_1

(0, 1)

(1, 0)

y=œ„„„„1-x

y=1-   x
1
2

s1 � x � 1 �
1
2 x

L�x� � �x � ��2L�x� � �10x � 6

7
4 s15 � 6.78 m�s1650�s31 � 296 km�h

10
9 � km�min0.096 rad�s360 ft�s

0.396 m�min107
810 � 0.132 ��s80 cm3�min

0.3 m2�s6��5�� � 0.38 ft�min10
3  cm�min
�10,000 � 800,000��9� � 2.89 � 105 cm3�min

720
13 � 55.4 km�h�1.6 cm�min

837�s8674 � 8.99 ft�s65 mi�h

25
3  ft�s

15

6
�

x � y

y

yx

15

6

250s3 mi�h
y 2 � x 2 � 1

y

x

1

500 mi�h
�

46
1370

3��25�� m�min48 cm2�sdV�dt � 3x 2 dx�dt

A�0� � 3000dA�dt � 0.05A

�39.9 kPa�64.5 kPa
�67.74 min13.3�C

�116 min�137�F�2500 years
�199.3 years� 9.92 mg100 � 2�t�30 mg

�2000 ln 0.9 � 211 sCe�0.0005t

�ln 100���ln 4.2� � 3.2 h
�10,632 bacteria�h�7409100�4.2� t
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13. (a) (b)

15. (a) (b) ; 

17. (a) (b)

19.

21.

23. 25. 27.

33. (a) , 0.01, 1% (b) , , 
35. (a) ; 
(b) ; 
37. (a) (b)
43. (a) 4.8, 5.2 (b) Too large

EXERCISES 3.11 N PAGE 259

1. (a) 0 (b) 1 3. (a) (b)
5. (a) 1 (b) 0
21.
23. (a) 1 (b) (c) (d) (e) 0 (f ) 1
(g) (h) (i) 0
31. 33.
35. 37.

39. 41.

43. 45.

47.

51. (a) 0.3572 (b) 70.34°
53. (b)
55.

CHAPTER 3 REVIEW N PAGE 261

True-False Quiz

1. True 3. True 5. False 7. False 9. True
11. True

(ln �1 � s2), s2)
y � 2 sinh 3x � 4 cosh 3x

y� �
�1

xsx 2 � 1

y� � sinh�1�x�3�y� �
1

2sx �1 � x�
 

G��x� �
�2 sinh x

�1 � cosh x�2y� �
sech2x

1 � tanh2x

f �� t � � �2et sech2 �et � tanh�e t �y� � 3e cosh 3x sinh 3x
h��x� � tanh xf ��x� � x cosh x

���
����1

csch x � 3
4 , tanh x � 4

5 , coth x � 5
4sech x � 3

5 , sinh x � 4
3 ,

1
2 �e 2 � e�2 � � 3.626863

4

���r�2h2�rh �r

1
56 � 0.0181764�� 2 � 179 cm3

1
84 � 0.01284�� � 27 cm2

0.6%0.00636 cm2270 cm3

1 � ��90 � 0.9654.0232.08

y

x10

1

2

y=
2
x

Îy dy

dx=Îx

�y � �0.1, dy � �0.125

y

10

1
y=2x-≈

Îydy

dx=Îx

�y � 0.64, dy � 0.8

�0.2dy � sec2x dx

0.01010.01dy � 1
10 e

x�10 dx

dy � �
6r 2

�1 � r 3�3 
  drdy �

�2

�u � 1�2 
  du

Exercises

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. 35.

37.

39.

41. 43.

45. 47.

49. 51. 53.

57. 59.
61. ; 

63. (a) (b)

(c)

65. 69. (a) 2 (b) 44
71. 73. 75.

77. 79.

81. 83.
85.

87. ,

89. (a) (b)
(c) (d) (e) ; 0 	 t 	 2t 
 220

0 3

�15

a

v

position

t

y
23

t 
 2; 0 � t 	 2v�t� � 3t 2 � 12; a�t� � 6t
a�t� � Ae�ct ��c 2 � �2 � cos��t � �� � 2c� sin��t � ���

v�t� � �Ae�ct �c cos��t � �� � � sin��t � ���
y � �

2
3 x 2 �

14
3 x

��3, 0�f ��t�sin 4x��t��sin 4x��cos 4x��4�

f ��x��t�x�� 2 � t��x� � f �x�� 2

� f �x� � t�x�� 2t��x��t�x�

t��e x �e x2t�x�t��x�2xt�x� � x 2
t��x�

(��4, s2), (5��4, �s2)

(4, 4)

10

_10

_10 10
(1, 2)

ƒ

y � 7
4 x �

1
4 , y � �x � 8

10 � 3x

2s5 � x

y � x � 2y � �x � 2
y � 2x � 1y � 2s3x � 1 � �s3�3

�5x 4�y 11�
4

27

�3 sin(estan 3x)estan 3x sec2�3x�
2stan 3x

cosh x

ssinh2x � 1
3 tanh 3x

2x 2 cosh�x 2 � � sinh�x 2 �
�x � 2�4�3x 2 � 55x � 52�

2sx � 1 �x � 3�8

2 cos � tan�sin �� sec2�sin ��

cos(tan s1 � x 3 )(sec2
s1 � x 3 ) 3x 2

2s1 � x 3

�6x csc2 �3x2 � 5�5 sec 5x

4x

1 � 16x 2 � tan�1�4x�cot x � sin x cos x

2

�1 � 2x� ln 5

2x � y cos�xy�
x cos�xy� � 1

��x � 1��23x ln x�ln 3��1 � ln x�

�1 � c 2 �e cx sin x
2 sec 2� �tan 2� � 1�

�1 � tan 2��2

1 � y 4 � 2xy

4xy 3 � x 2 � 3
�

e1�x�1 � 2x�
x 4

cossx � sx sin sx

2sx

t 2 � 1

�1 � t 2�2

2 cos 2� esin 2�2�2x 2 � 1�
sx 2 � 1

1

2sx
�

4

3s
3 x7

6x�x 4 � 3x 2 � 5�2�2x 2 � 3�
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91. 93. (a) (b)
(c) (d)
95. (a) (b) 97.
99. 101.
103. (a) ; 
(b)
105. 107. 109. 111.

PROBLEMS PLUS N PAGE 266

1. 9.

11. (a) (b)
(c)
15.
17. (b) (i) (or ) (ii) (or )
19. R approaches the midpoint of the radius AO.
21. 23. 27.
29. 31.

CHAPTER 4

EXERCISES 4.1 N PAGE 277

Abbreviations: abs., absolute; loc., local; max., maximum; min.,
minimum

1. Absolute minimum: smallest function value on the entire
domain of the function; local minimum at c: smallest function
value when x is near c
3. Abs. max. at , abs. min. at , loc. max. at , loc. min. at and 
5. Abs. max. , loc. max. and , 
loc. min. and 
7. 9.

11. (a) (b) 

(c) y

0 x1

_1

2

1

2

3

y

0 x1

_1

2

1

3

y

0 x1

_1

2

1

3

y

x0 54321

3

2

1

y

x0 51 2 3 4

1

2

3

f �5� � 3f �2� � 2
f �6� � 4f �4� � 5f �4� � 5

rbcrs

2 �
375
128� � 11.204 cm3�mins29�58

�1, �2�, ��1, 0�2se�sin a

117�63�127�53�

xT � �3, ��, yT � �2, ��, xN � (0, 53 ), yN � (�5
2 , 0)

�480� sin � (1 � cos ��s8 � cos2� ) cm�s
40(cos � � s8 � cos2� ) cm4�s3�s11 rad�s

(0, 54 )(�1
2 s3, 14 )

1
8 x 21

4
1

3212 �
3
2� � 16.7 cm2

�0.23 	 x 	 0.40
s
3 1.03 � 1.01L�x� � 1 � x; s3 1 � 3x � 1 � x

400 ft�h13 ft�s

4
3 cm2�min�100 hC0 e�kt

�ln 50���ln 3.24� � 3.33 h�25,910 bacteria�h
�22,040200�3.24� t4 kg�m 13. (a) (b)

15. Abs. max. 17. None
19. Abs. min. 
21. Abs. max. , abs. and loc. min. 
23. Abs. max. 
25. Abs. max. 27. Abs. max. 
29. 31. 33. 35.
37. 39. 41. 43.
45. 47. , 
49. , 
51. , 53. , 
55. , 
57.
59. ,
61.

63.

65. (a) (b) , 

67. (a) 0.32, 0.00 (b) 69.
71. Cheapest, (June 1994); 
most expensive, (March 1998)

73. (a) (b)

(c)

EXERCISES 4.2 N PAGE 285

1. 3. 5. is not differentiable on 
7. 0.8, 3.2, 4.4, 6.1 
9. (a), (b) (c)

11. 0 13. 15. is not continous at 

23. 16 25. No 31. No

3f�
1
2 ln[1

6 (1 � e�6)]

10

0 10

10

0
10

2s2

(�1, 1)f9
42

√

0 r

kr#̧
4
27

r¸2
3 r¸

v � 4
27 kr 0

3r � 2
3 r0

t � 4.618
t � 0.855

�3.9665�C3
16 s3, 0

�
6

25 s
3
5 � 26

25 s
3
5 � 22.19, 1.81

f� a

a � b	 �
a abb

�a � b�a�b

f �1� � ln 3, f (�1
2) � ln 34

f ��1� � �1�s
8 ef �2� � 2�se

f ���6� � 3
2s3, f ���2� � 0

f ��1� � �s3f (s2) � 2
f �0� � 0f �1� � 1

2f ��1� � 2f �3� � 66
f �2� � �19f ��1� � 8

f �2� � �7f �0� � 510
0, 23n� �n an integer�0, 87, 40, 4

9

0, 20, 1
2 (�1 � s5 )�4, 2�

2
5

f �3� � 2f �0� � 1
f �2� � ln 2

f �0� � 0f ��3� � 9
f �0� � 0
f �1� � 5

y

0 x

y

0 x2

_1
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EXERCISES 4.3 N PAGE 295

Abbreviations: inc., increasing; dec., decreasing; CD, concave
downward; CU, concave upward; HA, horizontal asymptote; 
VA, vertical asymptote; IP, inflection point(s)

1. (a) (b) (c)
(d) (e)

3. (a) I /D Test (b) Concavity Test
(c) Find points at which the concavity changes.

5. (a) Inc. on ; dec. on 
(b) Loc. max. at , loc. min. at 

7.

9. (a) Inc. on ; 
(b) Loc. max. ; loc. min. 
(c) CU on ; CD on ; IP 

11. (a) Inc. on , ; dec. on , 
(b) Loc. max. ; loc. min. 
(c) CU on , ;
CD on ; IP 

13. (a) Inc. on , ; dec. on 
(b) Loc. max. ; loc. min. 
(c) CU on ; CD on , ; 
IP 

15. (a) Inc. on ; dec. on 
(b) Loc. min. (c) CU on 

17. (a) Inc. on ; dec. on 
(b) Loc. max. 
(c) CU on ; CD on ; IP 

19. Loc. max. , loc. min. 

21. Loc. max. 

23. (a) has a local maximum at 2.
(b) has a horizontal tangent at 6.

25.

27.

29. y

0 x

x

y

0_2
x=2

x

y

0_2 2

x

y

0 1 2 3 4

f
f

f ( 3
4 ) � 5

4

f �1� � �1f ��1� � 7

(e 8�3, 83 e�4�3 )�0, e 8�3 ��e 8�3, ��
f �e 2 � � 2�e

�e 2, ���0, e 2 �
���, ��f (�1

3 ln 2) � 2�2�3 � 21�3

 (��, �1
3 ln 2)(�1

3 ln 2, �)
�3��4, 0�, �7��4, 0�

�7��4, 2���0, 3��4��3��4, 7��4�
f �5��4� � �s2f ���4� � s2

���4, 5��4��5��4, 2���0, ��4�
(�s3�3, 22

9 )(�s3�3, s3�3)
(s3�3, �)(��, �s3�3)

f ��1� � 2f �0� � 3
�0, 1����, �1��1, ����1, 0�

(�1
2, 

37
2 )(��, �1

2)��1
2, ��

f �2� � �44f ��3� � 81
dec. on ��3, 2����, 3�, �2, ��

x � 1, 7

x � 1x � 5
�0, 1� and �5, 6��1, 5�

�2, 3��2, 4�, �4, 6�
�0, 2��0, 1�, �3, 4��1, 3�, �4, 6�

31. (a) Inc. on (0, 2), (4, 6), ;
dec. on (2, 4), (6, 8)
(b) Loc. max. at ;
loc. min. at 
(c) CU on (3, 6), ; 
CD on (0, 3)
(d) 3 (e) See graph at right.

33. (a) Inc. on ;
dec. on 
(b) Loc. max. ;
loc. min. 
(c) CU on ; CD on ;
IP 
(d) See graph at right.

35. (a) Inc. on ;
dec. on 
(b) Loc. max. ;
loc. min. 
(c) CU on ; 
CD on ; 
IP
(d) See graph at right.

37. (a) Inc. on ; 
dec. on 
(b) Loc. max. ; 
loc. min. 
(c) CU on ;
CD on ; IP 
(d) See graph at right.

39. (a) Inc. on ;
dec. on 
(b) Loc. min. 
(c) CU on 
(d) See graph at right.

41. (a) Inc. on ;
dec. on 
(b) Loc. min. 
(c) CU on , ; 
CD on ;
IPs , 
(d) See graph at right.

43. (a) Inc. on ;
dec. on 
(b) Loc. min. 
(c) CU on ; 
CD on , ;
IP , 
(d) See graph at right.

(5��3, 54)(��3, 54)
�5��3, 2���0, ��3�

���3, 5��3�
f ��� � �1

�0, ��

¨

(π, _1)

”   ,    ’

y

π
3

5
4

”    ,    ’
5π
3

5
41

_1
0 π 2π

��, 2��

(2, 6s
3 2 )�0, 0�

�0, 2�
�2, �����, 0�

C��1� � �3
���, �1�

x

y

_4 0

{ 2, 6 Œ„2 }

(_1, _3)

��1, ��

��3, ��
A��2� � �2

��3, �2�

x

y

_3

_2

_2

2

��2, ��

��1, 3����, �1�
��1, ��

h �0� � �1
h ��2� � 7

��2, 0�

x_1

(_1, 3)

(0, _1)

(_2, 7)
y

7
���, �2�, �0, ��

(�1�s3, 23
9 )

(��, �1�s3), �1�s3, �)
(�1�s3, 1�s3)

f �0� � 2
f ��1� � 3, f �1� � 3

��1, 0�, �1, ��

x10

(1, 3)(_1, 3)

”     ,     ’
y

1

23
9

1

œ„3
”_     ,     ’

23
9

1

œ„3

���, �1�, �0, 1�

( 1
2, � 13

2 )
(��, 12 )( 1

2 , �)
f �2� � �20

f ��1� � 7
��1, 2�

y

0 x

(_1, 7)

(2, _20)

”   , _    ’
1
2

13
2

���, �1�, �2, ��

�6, ��
x � 4, 8

x � 2, 6

x

y

0 2 4 6 8

�8, ��
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45. (a) HA , VA , 

(b) Inc. on , ; 

dec. on 

(c) Loc. max. 

(d) CU on , ; 
CD on 
(e) See graph at right.

47. (a) HA 
(b) Dec. on 
(c) None
(d) CU on 
(e) See graph at right.

49. (a) VA 
(b) Dec. on 
(c) None
(d) CU on (0, 1); CD on ; 
IP (1, 0)
(e) See graph at right.

51. (a) HA , VA 
(b) Inc. on , 
(c) None
(d) CU on , ; 

CD on ; IP 
(e) See graph at right.

53.
55. (a) Loc. and abs. max. , no min.
(b)
57. (b) CU on , ; 
CD on , , ; 
IP , , , 
59. CU on ; CD on 
61. (a) The rate of increase is initially very small, increases to a
maximum at , then decreases toward 0.
(b) When (c) CU on ; CD on (d)
63. ; CD
65. 28.57 min, when the rate of increase of drug level in the blood-
stream is greatest; 85.71 min, when rate of decrease is greatest
67.

EXERCISES 4.4 N PAGE 304

1. (a) Indeterminate (b) 0 (c) 0
(d) , , or does not exist (e) Indeterminate
3. (a) (b) Indeterminate (c)
5. 7. 9. 11. 13.
15. 17. 19. 21. 23. 1
25. 27. 1 29. 31. 0 33.

35. 37. 39. 41. 3 43. 0
45. 47. 49. 51. 53. 1�

1
2

1
2�2��

�1
24

1
2 a�a � 1�

�1�� 21
2ln 5

3

1
2���0

p�q���
9
52

���
���

f �x� � 1
9 �2x 3 � 3x 2 � 12x � 7�

K�3� � K�2�
�8, 350��8, 18��0, 8�t � 8

t � 8 h

��0.6, 0.0����, �0.6�, �0.0, ��
�5.35, 0.44��3.71, �0.63��2.57, �0.63��0.94, 0.44�

�5.35, 2���2.57, 3.71��0, 0.94�
�3.71, 5.35��0.94, 2.57�

1
4 (3 � s17)

f �1� � s2
�3, ��

(� 1
2 , 1�e 2)(� 1

2 , �)
(�1, � 1

2 )���, �1�

��1, �����, �1�

x

y

0
x=_1

y=1

x � �1y � 1

�1, e�

�0, e�
y

0 x

(1, 0)1

x=ex=0

x � 0, x � e

���, ��

���, ��

x

y

0

1

y � 0

��1, 1�
�1, �����, �1�

f �0� � 0

�0, 1�, �1, ��
��1, 0����, �1�

x

y

0

x=1x=_1

y=1

x � 1x � �1y � 1 55. 57. 59. 61.
63. 65. 67. 71. 77. 79.
83. (a)

EXERCISES 4.5 N PAGE 314

1. A. B. y-int. 0; x-int. 0
C. About D. None
E. Inc. on F. None
G. CU on ; CD on ; 
IP (0, 0)
H. See graph at right.

3. A. B. y-int. 2; x-int. 2, 
C. None D. None
E. Inc. on (1, 5); 
dec. on 
F. Loc. min. ; 
loc. max. 
G. CU on ; 
CD on ; IP 
H. See graph at right.

5. A. B. y-int. 0; x-int. �4, 0
C. None D. None
E. Inc. on ; 
dec. on 
F. Loc. min. 
G. CU on , ; 
CD on ; IP (0, 0), 
H. See graph at right.

7. A. B. y-int. 1
C. None D. None
E. Inc. on , ; 
dec. on 
F. Loc. max. ; 
loc. min. 
G. CU on ; 
CD on 

IP
H. See graph at right.

9. A. B. y-int. 0; x-int. 0
C. None D. VA , HA 
E. Dec. on 
F. None
G. CU on ; CD on 
H. See graph at right.
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11. A. B. y-int. 
C. About y-axis D. VA , HA 
E. Inc. on , ; 
dec. on (0, 3), 
F. Loc. max. 
G. CU on ; 
CD on 
H. See graph at right.

13. A. B. y-int. 0; x-int. 0
C. About (0, 0) D. HA 
E. Inc. on ; 
dec. on 
F. Loc. min. ;
loc. max. ;

G. CU on , ;

CD on , ;

IP (0, 0), 
H. See graph at right.

15. A. B. x-int. 1
C. None D. HA ; VA
E. Inc. on ; 
dec. on 
F. Loc. max. 
G. CU on ; 
CD on , ; IP 
H. See graph at right

17. A. B. y-int. 0, x-int. 0
C. About y-axis D. HA 
E. Inc. on ; dec. on 
F. Loc. min. 
G. CU on ; 
CD on , ; IP 
H. See graph at right

19. A. B. y-int. 0; x-int. 0, 5
C. None D. None
E. Inc. on ; dec. on 
F. Loc. max. 
G. CD on 
H. See graph at right.

21. A.
B. x-int. 
C. None D. None
E. Inc. on ; dec. on 
F. None
G. CD on 
H. See graph at right.
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(3, 29)�0, 3����, 0�
�3, ��

f �2� � 1
4

���, 0�, �2, ��
�0, 2�
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y

0 1

”2,   ’
1

4

���, 0� � �0,��

(�3s3, �s3�12)
(0, 3s3)(��, �3s3)
(3s3, �)(�3s3, 0)

f �3� � 1
6

f ��3� � �
1
6

���, �3�, �3, ��
��3, 3�

y � 0
y

x
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1

6

”_3, _   ’ 
1

6

�

��3, 3�
���, �3�, �3, ��

f �0� � �
1
9

�3, ��

x

y

x � 3x � �3

��3, 0����, �3�
y � 0x � �3

�
1
9
x � x � �3� 23. A. B. y-int. 0; x-int. 0

C. About the origin
D. HA 
E. Inc. on F. None
G. CU on ; 
CD on ; IP 
H. See graph at right.

25. A.
B. x-int. C. About (0, 0)
D. VA 
E. Dec. on , 
F. None
G. CU on , ;
CD on , ;
IP 
H. See graph at right.

27. A. B. y-int. 0; x-int. C. About the origin
D. None E. Inc. on , ; dec. on 
F. Loc. max. ; 
loc. min. 
G. CU on ; CD on ; 
IP
H. See graph at right.

29. A. B. y-int. ; x-int. 
C. About -axis D. None
E. Inc. on ; dec. on 
F. Loc. min. 
G. CU on ; 
CD on  ; 
IP 
H. See graph at right.

31. A. B. y-int. 0; x-int. ( an integer)
C. About the origin, period D. None
E. Inc. on ;
dec. on 
F. Loc. max. ; 
loc. min. 
G. CU on ; 
CD on ; IP 
H. See graph at right.

33. A. B. y-int. 0; x-int. 0 C. About y-axis
D. VA 
E. Inc. on ; 
dec. on 
F. Loc. min. 
G. CU on 
H. See graph at right.
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35. A. C. None D. None
E. Inc. on , ; 
dec. on , 
F. Loc. min. , ;
loc. max. 
G. CU on , ;
CD on ; 
IP , 
H. See graph at right.

37. A. All reals except ( an integer)
B. y-int. 0; x-int. 
C. About the origin, period 
D. VA 
E. Inc. on F. None
G. CU on ; CD on ; 
IP 
H.

39. A. B. y-int. C. Period D. None
Answers for E–G are for the interval .
E. Inc. on , ; dec. on 
F. Loc. max. ; loc. min. 
G. CU on , where ,

; CD on ; IP when 
H.

41. A. B. y-int. C. None
D. HA 
E. Inc. on F. None
G. CU on ; CD on ;
IP H. See graph at right.

43. A. B. None
C. None D. VA 
E. Inc. on ; dec. on 
F. Loc. min. 
G. CU on 
H. See graph at right.
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1
2 s3
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�7��3, 3�����3, 5��3�

�0, 3�� 45. A. B. y-int. C. None
D. HA 
E. Dec. on F. None
G. CU on ; CD on ;
IP 
H. See graph at right.

47. A. All in ( an integer)
B. x-int. C. Period D. VA 

E. Inc. on ; dec. on 

F. Loc. max. G. CD on 

H.

49. A. B. y-int. 0; x-int. 0 C. About (0, 0) D. HA 

E. Inc. on ; dec. on , 

F. Loc. min. ; loc. max. 

G. CU on , ; CD on , ;

IP , 

H.

51. A. B. y-int. 2
C. None D. None

E. Inc. on ; dec. on 

F. Loc. min. 

G. CU on

H. See graph at right.
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y

xLL/20

m

0 √

(0, m¸) √=c

���, ��
f ( 1

5 ln 23) � ( 2
3)3�5

� (2
3)�2�5

(��, 1
5 ln 23)( 1

5 ln 23, �)

x

y

0

local
minimum (0, 2)

�

1

œ„2

1

œ„„2e
”     ,        ’

x

y

0

�0, 0�(�s3�2, �s3�2e�3�2 )
(0, s3�2)(��, �s3�2)(s3�2, �)(�s3�2, 0)

f (1�s2) � 1�s2ef (�1�s2) � �1�s2e

(1�s2, �)(��, �1�s2)(�1�s2, 1�s2)
y � 0�

x

y

_4π _3π _2π _π π 2π 3π 4π

0

�2n�, �2n � 1���f ���2 � 2n�� � 0

���2 � 2n�, �2n � 1����2n�, ��2 � 2n��
x � n�2���2 � 2n�

n�2n�, �2n � 1���x

(ln 12, 
4
9)

���, ln 12)(ln 1
2, �)

�

y � 0, y � 1
y

0 x

y=1

”ln    ,    ’4
9

1
2

1
4�



A84 || | | APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES

61. A.

B. y-int. 1; x-int. 
C. None
D. VA ; SA 

E. Dec. on , 

F. None

G. CU on ; CD on

H. See graph at right

63. A. B. None
C. About (0, 0) D. VA ; SA 
E. Inc. on , ; 
dec. on , 
F. Loc. max. ;
loc. min. 
G. CU on ; CD on 
H. See graph at right.

65. A. B. y-int. 1; x-int. 
C. None D. SA 
E. Inc. on F. None
G. CU on ,

CD on , ;
IP , 
H. See graph at right.

67. 71. VA , asymptotic to 

EXERCISES 4.6 N PAGE 320

1. Inc. on , ; dec. on , ;
loc. max. ; loc. min. , ;
CU on , ; 
CD on ; IP , 

3. Inc. on , ; 
dec. on , ;
loc. max. ; loc. min. ,

; CU on , ,
; CD on , ; �2.92, 15.08���11.34, 0��15.08, ��

�0, 2.92����, �11.34�f �18.93� � �12,700,000
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5. Inc. on , , ;
dec. on , ; loc. max. ;
CU on , , ;
CD on , ; IP 

7. Inc. on , ; dec. on ,
; loc. max. ; loc. min.

, ; CU on ,
CD on ; IP , 

9. Inc. on ; dec. on ,
, ; CU on ,

CD on , 

11. (a)

(b)
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13. Loc. max. , ,
; loc. min. 

15.

CU on , , , , ;

CD on , , ; 

IP , , , ,

17. Inc. on ; dec. on ; loc. max. ;
CU on ; CD on ; 
IP 

19. Inc. on , , , ,
; 

dec. on , , , ;
loc. max. , , ,

; 
loc. min. , ; CU on ,

; 
CD on , ,

; 
IPs at , 

5

f

0
20_5
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��0.5, 0.00001���1, 0���5.0, �0.005���35.3, �0.015�
��0.5, �0.1���5.0, �1����, �35.3�

�4, ���2, 4���0.1, 2���1, �0.5���35.3, �5.0�
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�x � 2�4�x � 4�6

f ��x� � �
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0
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f �3� � 0f �5.2� � 0.0145
f �0.82� � �281.5f ��5.6� � 0.018 21. Inc. on , ;

CU on , ; 
CD on , ; 
IP 

23. (a) 

(b) , 
(c) Loc. max. (d) IP at 

25. Max. , , ; 
min. , , ;
IP , , , 

, 

27. For , there is no IP and only one extreme point, the 
origin. For , there is a maximum point at the origin, two 
minimum points, and two IPs, which move downward and away
from the origin as .

4

_2.3

_2.1 2.1

_3

_2_114

c l ��

c 	 0
c � 0

1

0.9997
0.55 0.73

1.2

_1.2

_2π 2π

1.2

�1.2

0 π

f

�2.28, 0.34��1.75, 0.77�
�1.17, 0.72��0.66, 0.99998��0.61, 0.99998�

f �2.73� � �0.51f �1.46� � 0.49f �0.64� � 0.99996
f �1.96� � 1f �0.68� � 1f �0.59� � 1

x � 0.58, 4.37f �e� � e 1�e
lim x l � x 1�x � 1lim x l0� x 1�x � 0

2

_1

0 8

� �0.4, �0.8�
�0.4, ����0.4, 0�

�0, 0.4����, �0.4�

_3 3

_1

1

ƒ

ƒ

�0, �����, 0�



A86 || | | APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES

29. There is no maximum or minimum, regardless of the 
value of c. For , there is a vertical asymptote at ,

, and .
is a transitional value at which for .

For , , , and there are 
two IPs, which move away from the y-axis as .

31. For , the maximum and minimum values are always 
, but the extreme points and IPs move closer to the y-axis as c

increases. is a transitional value: when c is replaced by ,
the curve is reflected in the x-axis.

33. For , the graph has local maximum and minimum 
values; for it does not. The function increases for 
and decreases for . As c changes, the IPs move vertically
but not horizontally.

35.

For , and . 
For , and . 
As increases, the maximum and minimum points and the IPs
get closer to the origin.

� c �
lim x l�� f �x� � 0lim x l � f �x� � �c � 0
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lim x l �� f �x� � 1lim x l 0 f�x� � �
x � 0c � 0

37. (a) Positive (b)

EXERCISES 4.7 N PAGE 328

1. (a) 11, 12 (b) 11.5, 11.5 3. 10, 10
5. 25 m by 25 m 7.
9. (a)

(b)

(c) (d) (e)
(f)
11. 1000 ft by 1500 ft 13. 15. $191.28
17. 19. 21. Square, side 
23. 25. Base , height 
27. 29. 31. 24 cm, 36 cm
33. (a) Use all of the wire for the square
(b) m for the square
35. 37.
41.
43. (a) (b)
(c)
45. Row directly to B 47. km east of the refinery
49. ft from the stronger source
51.
53. (b) (i) $342,491; $342�unit; $390�unit (ii) 400
(iii) $320�unit
55. (a) (b) $9.50

57. (a) (b) $175 (c) $100
61. 9.35 m 65. 67.
69. At a distance from A 71.
73. (a) About 5.1 km from B (b) C is close to B; C is close to
D; , where (c) ; no such
value (d) s41�4 � 1.6

�1.07x � � BC �W�L � s25 	 x 2�x

1
2 �L 	 W �25 � 2s5


�6x � 6 in.
p�x� � 550 �

1
10 x

p�x� � 19 �
1

3000 x

�a 2�3 	 b 2�3�3�2
10s

3 3�(1 	 s
3 3 )

� 4.85
6s[h 	 s�(2s2)]

cos�1(1�s3) � 55�
3
2 S

2 csc � �csc � � s3 cot ��
E 2��4r�

V � 2
R3�(9s3)Height � radius � s
3 V�
 cm

40s3�(9 	 4s3)


r 2(1 	 s5)4
r 3�(3s3)
3r�2s3rL�2, s3 L�4

s2r(�1
3 , �4

3 s2)(� 28
17 , 7

17 )
4000 cm3

14,062.5 ft 2
A�x� � 375x �

5
2 x 25x 	 2y � 750A � xy

y

x

75

120 9000 ft@

250

50 12,500 ft@

125

100 12,500 ft@

N � 1

12

_12

_6 6

c=4
c=1

c=0.5

c=_1

c=0.1
c=0.2

c=0

c=_4
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EXERCISES 4.8 N PAGE 338

1. (a) (b) No 3. 5. 1.1797
7. 9. 11. 13. 1.217562
15. 0.876726 17.
19. 21. 0.641714
23. , 
25.
27. 29. (b) 31.622777
35. (a) (b)
37. 39.
41. 0.76286%

EXERCISES 4.9 N PAGE 345

1. 3.

5. 7.

9.

11.

13.

15.

17.

19.

21. 23.

25. 27.
29. 31.
33.
35.

37.

39. 41.

43. 45.
47. 49.
51.

53. 55.

57. 59.
61.
63. (a) (b)
(c) (d) About 9.09 s
67. 225 ft 69. $742.08 71. 130

11 � 11.8 s
�9.8s450�4.9 � �93.9 m�s

s450�4.9 � 9.58 ss�t� � 450 � 4.9t 2

s�t� � �10 sin t � 3 cos t 	 �6�
�t 	 3
s�t� � 1

6 t 3 � t 2 	 3t 	 1s�t� � 1 � cos t � sin t

x0

F

2π_2π

yy

0 x1

_1

2

1

2

3

(1, 1)

(2, 2)

(3, 1)

y

0 x

1 F

1

b10
�ln x 	 �ln 2�x � ln 2x 2 � cos x �

1
2 
x

x 2 � 2x 3 	 9x 	 9�sin � � cos � 	 5� 	 4

2x 4 	
1
3 x 3 	 5x 2 � 22x 	

59
3

3
2 x 2�3 �

1
2 if x � 0; 3

2 x 2�3 �
5
2 if x � 0

2 sin t 	 tan t 	 4 � 2s3
4x 3�2 	 2x 5�2 	 4x � 3x 2 	 8

e t 	
1
2 Ct 2 	 Dt 	 E3

20 x 8�3 	 Cx 	 D

x 3 	 x 4 	 Cx 	 DF�x� � x 5 �
1
3 x 6 	 4

F �x� � 1
2 x 2 � ln � x �� 1�x 2 	 C

F �x� � 5e x � 3 sinh x 	 C

G��� � sin � 	 5 cos � 	 C

F �u� � 1
3 u 3 � 6u�1�2 	 C

F �x� � ��5��4x 8� 	 C1  if x � 0

�5��4x 8� 	 C2  if x � 0

F �x� � 4x 3�2 �
6
7 x 7�6 	 C

F �x� � 4x 5�4 � 4x 7�4 	 CF �x� � 2
3 x 3 	

1
2 x 2 � x 	 C

F �x� � 1
2 x 	

1
4 x3 �

1
5 x4 	 CF �x� � 1

2 x 2 � 3x 	 C

�0.410245, 0.347810��0.904557, 1.855277�
�2.0212�1.293227, �0.441731, 0.507854

0.21916368, 1.08422462
�1.97806681, �0.82646233

1.13929375, 2.98984102�1.93822883, �1.21997997
1.412391, 3.057104

�0.724492, 1.220744
1.82056420�1.251.1785

4
5x2 � 2.3, x3 � 3

73. 75.
77. (a) 22.9125 mi (b) 21.675 mi (c) 30 min 33 s
(d) 55.425 mi

CHAPTER 4 REVIEW N PAGE 347

True-False Quiz

1. False 3. False 5. True 7. False 9. True
11. True 13. False 15. True 17. True 19. True

Exercises

1. Abs. max. , abs. and loc. min. ; 
loc. min. 
3. Abs. max. , abs. and loc. min. 

5. Abs. max. ; abs. min. ; loc. max.
; loc. min. 

7. 9. 8 11. 0 13.
15.

17.

19. A. B. y-int. 2
C. None D. None
E. Dec. on F. None
G. CU on ; 
CD on ; IP 
H. See graph at right.

21. A. B. y-int. 0; x-int. 0, 1
C. None D. None
E. Inc. on , dec. on 

F. Loc. min. 

G. CU on , ; 

CD on ; IP , 
H. See graph at right.

23. A.
B. None C. None
D. HA ; VA , 
E. Inc. on ; dec. on , 

, 
F. Loc. min. 
G. CU on , ; CD on 
H. See graph at right.

���, 0��3, ���0, 3�
f �1� � 1

4

�3, ���0, 1�
���, 0��1, 3�
x � 3x � 0y � 0

y

0 x

x 
 3

�x � x � 0, 3	

�1, 0�( 1
2, � 1

16 )( 1
2, 1)

�1, ��(��, 12 )
f ( 1

4 ) � �
27
256

(��, 14 )( 1
4 , �)

y

0 x1

1

2

2

�

�0, 2��0, ��
���, 0�
���, ��

y

x

2

�

y

x

y=_2

y=2

y

0
x1

�2

9 12

x 
 6

1
2


f �2
�3� � �2
�3� �
1
2 s3f �
�3� � �
�3� 	

1
2 s3

f �0� � 0f �
� � 


f (�1
3) � �

9
2f �2� � 2

5

f �3� � 1
f �3� � 1f �4� � 5

62,500 km�h2 � 4.82 m�s288
15 � 5.87 ft�s2
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25. A.
B. y-int. 0, x-int. 0 C. None
D. VA ; SA 
E. Inc. on , ;
dec. on , 
F. Loc. max. ;
loc. min. 
G. CU on ; CD on 
H. See graph at right.

27. A.
B. y-int. 0; x-int. 
C. None D. None
E. Inc. on , dec. on 
F. Loc. min. 
G. CU on 
H. See graph at right.

29. A. B. y-int. 
C. About -axis, period D. None
E. Inc. on , n an integer; dec. on 
F. Loc. max. ; loc. min. 
G. CU on ;
CD on ; IP 
H.

31. A.
B. None C. About (0, 0)
D. HA 
E. Dec. on , 
F. None
G. CU on ; CD on 
H. See graph at right.

33. A. B. y-int. , C. None D. HA 
E. Inc. on , dec. on F. Loc. max. 
G. CU on ; CD on ; IP 
H.

35. Inc. on , ;
dec. on , ;
loc. max. ,
loc. min. ;
CU on , ;
CD on , ;
IP , (�s6, � 5

36 s6)(s6, 5
36 s6)

(0, s6)(��, �s6)
(s6, �)(�s6, 0)

f (�s3) � �
2
9 s3

f (s3) � 2
9 s3

(s3, �)(��, �s3)
ƒ

1.5

_1.5

_5 5

(0, s3)(�s3, 0)

0

”   ,     e–!’
1
2

1
2 {1, e–@}

y

x1

�1, e�2����, 1��1, ��
f (1

2) � 1��2e�( 1
2, �)(��, 12)

y � 0x-int. 00�

���, �1��1, ��

�1, �����, �1�
y � 0

x

y

0 1_1

π

2

π

2
_

{x � � x � � 1}

y

x

2

π

_2

_π

2π_2π

(2n
 � �
�3�, � 1
4 )�2n
 	 �
�3�, 2n
 	 �5
�3��

�2n
 � �
�3�, 2n
 	 �
�3��
f �2n
� � �2f ��2n 	 1�
� � 2

��2n � 1�
, 2n
��2n
, �2n 	 1�
�
2
y

�2�

��2, ��
f (� 4

3 ) � �
4
9 s6

(�2, � 4
3 )(� 4

3 , �)

�2, 0
y

x

”_   , _       ’
4

3

4œ„6

9


�2, ��

���, �8���8, ��
f �0� � 0

f ��16� � �32
��8, 0���16, �8�

�0, �����, �16�
y � x � 8x � �8

0 x

y

x 
 �8

y 
 x �8��16, �32�

�x � x � �8	 37. Inc. on , ; dec. on , 
loc. max. ; loc. min. , ;
CU on , ; 
CD on ; IP , 

39. ; 

41.

43. For , f is periodic with period and has local 
maxima at , n an integer. For , f has no graph.
For , f has vertical asymptotes. For , f is con-
tinuous on . As C increases, f moves upward and its oscillations
become less pronounced.
49. (a) 0 (b) 53.
55. cm from D 57. 59. $11.50
61. 1.297383 63. 1.16718557
65.

67.

69.

71.

73.

75. (b) (c)

77. No
79. (b) About 8.5 in. by 2 in. (c) , 

PROBLEMS PLUS N PAGE 352

5. 7. 11.
13. 15.
19. (a) , , 

(c)

23. 3�(s3 2 � 1) � 111
2 h

c1 � 3.85 km�s, c2 � 7.66 km�s, h � 0.42 km
T3 � s4h2 	 D 2�c1

T2 � �2h sec ���c1 	 �D � 2h tan ���c2T1 � D�c1

a � e 1�e�m�2, m 2�4�
�3.5 � a � �2.5��2, 4�, �2, �4�24

20s2�3 in.20�s3 in.

5

4

_1

_4

F

0.1e x � cos x 	 0.9

s�t� � t 2 � tan�1t 	 1

f (x� � 1
2 x 2 � x 3 	 4x 4 	 2x 	 1

f �t� � t 2 	 3 cos t 	 2

f �x� � 2
5 x 5�2 	

3
5 x 5�3 	 C

f �x� � sin x � sin�1x 	 C

L � C4�s3
3s3r 2CU on �

�

C � 1�1 � C � 1
C � �12n
 	 
�2

2
C � �1

�2.16, �0.75, 0.46, 2.21�2.96, �0.18, 3.01; �1.57, 1.57;

(�s2�3, e�3�2 )��0.82, 0.22�

5
0

_5

1

2.5

0.4_0.5
1.5

f
f

15

2.1_1

_20

�1.24, �12.1���0.12, 1.98���0.12, 1.24�
�1.24, �����, �0.12�

f �1.62� � �19.2f ��0.23� � 1.96f �0� � 2
�0, 1.62�;���, �0.23��1.62, ����0.23, 0�
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CHAPTER 5

EXERCISES 5.1 N PAGE 364

1. (a) 40, 52 (b) 43.2, 49.2

3. (a) 0.7908, underestimate (b) 1.1835, overestimate

5. (a) 8, 6.875 (b) 5, 5.375

(c) 5.75, 5.9375

(d)

7. 0.2533, 0.2170, 0.2101, 0.2050; 0.2
9. (a) Left: 0.8100, 0.7937, 0.7904; 
right: 0.7600, 0.7770, 0.7804
11. 34.7 ft, 44.8 ft 13. 63.2 L, 70 L 15. 155 ft

17. 19.

21. The region under the graph of from 0 to 

23. (a) (b) (c)

25. sin b, 1

32
3

n 2�n 	 1�2�2n 2 	 2n � 1�
12

lim
n l �

 
64

n 6  �
n

i�1
 i 5


�4y � tan x

lim
n l �

 �
n

i�1
 � i


2n
 cos 

i


2n
 
 


2n
lim
n l �

 �
n

i�1
 s4 1 	 15i�n � �15�n�

M6

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

0 x

1

π
2

3π
8

π
4

π
8

ƒ=cos x

y

0 x

1

π
2

3π
8

π
4

π
8

ƒ=cos x

y

x0
5

5

10

y

x0
5

5

10

y=ƒ y=ƒ

EXERCISES 5.2 N PAGE 376

1.
The Riemann sum represents
the sum of the areas of the two 
rectangles above the -axis minus 
the sum of the areas of the three 
rectangles below the -axis; that is,
the net area of the rectangles with
respect to the -axis.

3. 2.322986
The Riemann sum represents the sum
of the areas of the three rectangles
above the -axis minus the area of the
rectangle below the -axis.

5. (a) 4 (b) 6 (c) 10 7. , 9. 124.1644
11. 0.3084 13. 0.30843908, 0.30981629, 0.31015563
15.

The values of appear to be 
approaching 2.

17. 19. 21. 42

23. 25. 3.75 29.

31.

33. (a) 4 (b) 10 (c) �3 (d) 2 35.
37. 39. 41. 0 43. 3 45.

47. 49.

51. by Comparison Property 8

55. 57.

59. 69. 71.

EXERCISES 5.3 N PAGE 387

1. One process undoes what the other one does. See the
Fundamental Theorem of Calculus, page 387.
3. (a) 0, 2, 5, 7, 3 (d) 

(b) (0, 3)
(c) x � 3

y

0 x

1

1

g

1
2x

1
0  x 4 dx0 � y

2

0
 xe�x dx � 2�e




12
� y


�3


�4
 tan x dx �




12
 s33 � x

4
1  sx dx � 6

2m � x
2

0  f �x� dx � 2M

122x
5
�1 f �x� dx

e 5 � e 32.53 	
9
4


�
3
4

lim
n l �

 �
n

i�1
 �sin 

5
i

n 
 



n
�

2

5

lim
n l �

 �
n

i�1
 

2 	 4i�n

1 	 �2 	 4i�n�5 �
4

n
4
3

x
8

1  s2x 	 x2 dxx
6
2  x ln�1 	 x 2� dx

Rn

�85�475

x
x

y

0 x

2

3

4

5

6

1

_1
1 2

ƒ=´-2

x

x

x

y

0 x

2

3

1

2 4 6

ƒ=3-   x1

2

8 10 12 14

�6

n

5 1.933766
10 1.983524
50 1.999342

100 1.999836

Rn
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5. (a), (b)

7.
9. 11.

13. 15.

17. 19. 21. 63

23. 25. 27. 29. 31. 1 33.
35. 37. 39. 41. 0
43. The function is not continuous on the interval

, so FTC2 cannot be applied.
45. The function is not continuous on the 
interval , so FTC2 cannot be applied.
47. 49. 2
51. 3.75

53.

55. 57. 59. 29

61. (a) , n an integer
(b) , , and ,

an integer (c) 0.74
63. (a) Loc. max. at 1 and 5;
loc. min. at 3 and 7

(b)

(c)

(d) See graph at right.

65. 73.
75. (b) Average expenditure over ; minimize average 
expenditure

EXERCISES 5.4 N PAGE 397

5. 7.

9. 11.

13. 15.

17. tan � 	 C

1
2�

2 	 csc � 	 C�cos x 	 cosh x 	 C

1
3 x 3 � 4sx 	 C2t � t 2 	

1
3 t 3 �

1
4 t 4 	 C

1
5 x 5 �

1
8 x 4 	

1
8 x 2 � 2x 	 C1

3 x 3 � �1�x� 	 C


0, t�
f �x� � x 3�2, a � 91

4

( 1
2, 2), �4, 6�, �8, 9�

x � 9
x

8642

1

0

_1

y

_2

� 0n
(s4n � 1, s4n 	 1)(�s4n � 1, �s4n � 3)�0, 1�

� 0�2sn, s4n � 2

s257y� � 3x 7�2 sin�x 3 � �
sin sx 

2 s
4 x

t��x� �
�2�4x 2 � 1�

4x 2 	 1
	

3�9x 2 � 1�
9x 2 	 1

x

y

0 2

�1

y=˛

243
4



�3, 
�
f ��� � sec � tan �


�2, 1�
f �x� � x �4

e 2 � 1
ln 3

49
3

40
3

156
7

7
8

5
9

3
4y� �

3�1 � 3x�3

1 	 �1 � 3x�2

y� � stan x 	 stan x  sec2xh��x� � �
arctan�1�x�

x 2

F��x� � �s1 	 sec xt��y� � y 2 sin y
t��x� � 1��x 3 	 1�

x 2

0 1

y

tx

y=t@
19.

21. 18 23. 25. 52
27. 29. 31. 33. 35. 8
37. 39. 41. 43.
45. 0, 1.32; 0.84 47.
49. The increase in the child’s weight (in pounds) between the 
ages of 5 and 10
51. Number of gallons of oil leaked in the first 2 hours
53. Increase in revenue when production is increased from 
1000 to 5000 units
55. Newton-meters (or joules) 57. (a) (b)
59. (a) (b)
61. 63. 1.4 mi 65. $58,000
67. (b) At most 40%; 

EXERCISES 5.5 N PAGE 406

1. 3. 5.
7. 9.
11. 13.

15. 17.

19. 21. 23.

25. 27. 29.

31. 33.
35. 37.
39. 41.
43.
45.
47. 49.

51. 0 53. 55.
57. 59. 61. 3 63.

65. 67. 69. 71.
73. 75. All three areas are equal. 77.

79. 81. 5 87.

CHAPTER 5 REVIEW N PAGE 409

True-False Quiz

1. True 3. True 5. False 7. True 9. True
11. False 13. False 15. False


 2�4
5

4

�1 � cos 

2
t

5 
 L

� 4512 L6

s3 �

1
3ln�e 	 1�216

15

1
3 (2s2 � 1)a 3e � se0

4182
9

0.35

_0.35

π0

F

ƒ

1

_1

2_2

F

f

1
4 sin4x 	 C1

8�x 2 � 1�4 	 C

4
7 �x 	 2�7�4 �

8
3 �x 	 2�3�4 	 C

tan�1x 	
1
2 ln�1 	 x 2 � 	 C

ln � sin�1 x � 	 C1
3 sec3x 	 C

ln �sin x � 	 C�ln�1 	 cos2 x� 	 C
�

2
3 �cot x�3�2 	 C�1��sin x� 	 C

e tan x 	 C1
2 �1 	 z3 �2�3 	 C2

3 �1 	 e x �3�2 	 C

1
7 sin7� 	 C2 sin s t 	 C1

3�ln x�3 	 C

2
3 s3ax 	 bx 3 	 C�(1�
� cos 
 t 	 C

�
1
3 ln� 5 � 3x � 	 C1

3�2x 	 x 2�3�2 	 C

1
63 �3x � 2�21 	 C�

1
2 cos�x 2� 	 C

�
1
4 cos4� 	 C2

9 �x 3 	 1�3�2 	 C�e�x 	 C

5
36

46 2
3 kg

416 2
3 mv�t� � 1

2 t 2 	 4t 	 5 m�s

41
6  m�

3
2 m

4
3

�3.5
�6256
51 	 
�4

2s555
63�

63
4

256
15

�2 	 1�e

20

10

_5
0

5

_6

10_10

sin x 	
1
4 x 2 	 C
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Exercises

1. (a) 8 (b) 5.7

3. 5. 3 7.

9. 37 11. 13. 15. 17. Does not exist
19. 21. 0 23.
25. 27.
29. 31.
33. 35. 37.
39. 41. 43.
45. 47.
49. 55. 0.280981
57. Number of barrels of oil consumed from Jan. 1, 2000, through
Jan. 1, 2008
59. 72,400 61. 3 63.
65. 71.

PROBLEMS PLUS N PAGE 413

1. 3. 5. 7. 9.

11. (a) (b)
17.

CHAPTER 6

EXERCISES 6.1 N PAGE 420

1. 3. 5. 19.5 7. 9.
11. 13. 72 15. 17. 19.
21. 23. 25. 27. 29. 6.5

31. 33. 0.6407 35. 0, 0.90; 0.04 37. 8.38
39. 41. 43.
45. (a) Car A (b) The distance by which A is ahead of B after
1 minute (c) Car A (d)
47. 49. 51.
53. ; 

EXERCISES 6.2 N PAGE 430

1. y

1

0 x21 y=0

x=1
x=2

y

0 x

y=2-   
1
2

x
19
�12

m � ln m � 10 � m � 1
�642�324

5 s3
t � 2.2 min

4232 cm2117 1
3 ft12s6 � 9

3
2s3 � 1

ln 2
 �
2
3

1
2

8
3

32
3

59
122 � 2 ln 21

3

ln 2 �
1
2

1
6e � �1�e� 	

10
3

32
3

2(s2 � 1)
1
2 �b��2b � �b� � 1� �

1
2 �a��2a � �a� � 1�1

2�n � 1�n

�1, 2�e�2�1f �x� � 1

2 x
�2

2
3f �x� � e2x�1 	 2x���1 � e�x�

c � 1.62

4 � x
3

1  sx 2 	 3 dx � 4s3
y� � (2e x � e sx )��2x�t��x� � 4x 3 cos�x 8�

F��x� � x 2��1 	 x 3�64
52s1 	 sin x 	 C

23
3ln � 1 	 sec � � 	 C1

4 ln�1 	 x 4 � 	 C
�

1
2 
ln�cos x��2 	 C2e sx 	 C


1�(2
�� sin2
 t 	 Csx2 	 4x 	 C
��1�x� � 2 ln � x � 	 x 	 C1

3 sin 1

21
4�769

10

f is c, f � is b, xx
0 f �t� dt is a1

2 	 
�4

6

2 x

2

0

y=ƒ

y

2 x

2

0

y=ƒ

6

y

3.

5.

7.

9.

11.

13.

y

0 x

y=1 y=1

y=3

y=1+sec x

y

0 x

”   , 3’
π

3”_   , 3’
π

3

2
 ( 4
3
 � s3)

y

0

y=x

y=1

x

y

0 x

(1, 1)y=œ„x


�6

x0

y

(4, 2)

x0

y

x=2y

¥=x

64
�15

y

0 x

(1, 1)

y=˛

y=x

y

0 x

4
�21

y

0 x

(6, 9)

x=2œ„y

y=9

x=0

y

0 x

162



�2
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15.

17.

19. 21. 23. 25.
27. 29. 31.
33.

35.

37. 39.
41. Solid obtained by rotating the region ,

about the x-axis
43. Solid obtained by rotating the region above the bounded
by about the y-axis
45. 47. (a) (b) 838 49.
51. 53. 55. 57. 24

59. 61.

63. (a) (b)

65. (b) 67. 69.

EXERCISES 6.3 N PAGE 436

1. Circumference , height ; 

3. 2



�15� x �x � 1�2� 2
x

8 xr
0 sR 2 � y 2

sr 2 � y 2 dy5
12 
r 3
r 2h

2
 2r 2R8
R xr
0 sr 2 � y 2 dy

8
15

1
3

10 cm32
3 b 2h
h2(r �

1
3h)

1
3
r 2h1961110 cm3

x � y 2 and x � y4
x-axis

0 � x � 
�2
0 � y � cos x

11
8 
 2�1.288, 0.884; 23.780


 x2s2
�2s2 [52

� (s1 	 y 2 	 2)2] dy


 x


0  
12 � �1 � sin x�2 � dx

 x
�4

0  �1 � tan3x�2 dx13
 �305
 �14
7
 �15
 �2
 �10
 �7

(1, 1)

x0

y

x=¥

y=≈

_1 x0

y

x=_1

29
�30

x0

y
x=1

(1, 1)

x0

y

x=¥

x=1

(1, _1)

16
�15 5.

7.

9.

11. 13. 15. 17.

19. 21.

23.

25. 27. 3.68

29. Solid obtained by rotating the region , 
about the -axis

31. Solid obtained by rotating the region bounded by 
(i) , , and , or (ii) , , and 
about the line 

33. 0.13 35. 37. 39.

41. 43. 45.

EXERCISES 6.4 N PAGE 441

1. 588 J 3. 5. 180 J 7.

9. (a) (b) 10.8 cm 11.

13. (a) 625 ft-lb (b) 15.

17. 19. 21.

23. 25. 2.0 m 29. Gm1m2�1

a
�

1

b
�1.04 � 105 ft-lb

�1.06 � 106 J2450 J3857 J

650,000 ft-lb1875
4  ft-lb

W2 � 3W1
25
24 � 1.04 J

15
4  ft-lb9 ft-lb

1
3 
r 2h4

3 
r 34
3


2
�12 � 4 ln 4�8
1
32 
 3

y � 3
y � 0x � 1x � y 2y � 0x � 0x � 1 � y 2

y
0 � x � 30 � y � x 4

x



0  2
 �4 � y�ssin y dy

x
1
0  2
�x 	 1�
sin�
x�2� � x 4 � dx

x
2

1  2
x ln x dx5
�14

8
�37
�1516
�3768
�7

21
�2

0 x

y

(1, 4) (3, 4)

y=4(x-2)@
y=≈-4x+7

2

7

x

y

x 2

16


0 x

y

y=e_≈

1

1

x

y

0

x


 �1 � 1�e�
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EXERCISES 6.5 N PAGE 445

1. 3. 5. 7.

9. (a) 1 (b) 2, 4 (c)

11. (a) (b)
(c)

15. 17. 19.
21.

CHAPTER 6 REVIEW N PAGE 446

Exercises

1. 3. 5. 7. 9.

11. 13.
15. (a) (b) (c)
17. (a) 0.38 (b) 0.87
19. Solid obtained by rotating the region ,

about the y-axis
21. Solid obtained by rotating the region ,

about the -axis
23. 36 25. 27.
29. (a) (b) 2.1 ft 31.

PROBLEMS PLUS N PAGE 448

1. (a) (b) 3.
5. (b) 0.2261 (c) 0.6736 m
(d) (i) (ii)
9.
11. (a) (c)
Advantage: the markings on the container are equally spaced.
13. 15.

CHAPTER 7

EXERCISES 7.1 N PAGE 457

1. 3.
5. 2�r � 2�er�2 	 C

1
5 x sin 5x 	

1
25 cos 5x 	 C1

3 x 3 ln x �
1
9 x 3 	 C

B � 16Ab � 2a

f �y� � skA��
C� y 1�4V � x
h
0  
 
 f �y��2 dy

y � 32
9 x 2

370
�3 s � 6.5 min1��105
� � 0.003 in�s

32
27f �x� � s2x�
 f �t� � 3t 2

f �x�8000
�3 � 8378 ft-lb
3.2 J125

3 s3 m3

x0 � y � 2 � sin x
0 � x � 


0 � x � 
�2
0 � y � cos x

8
�15
�62
�15
x


�3
�
�3 2
 (
�2 � x)(cos2x �

1
4) dx4

3 
 �2ah 	 h 2 �3�2

1656
�564
�154
3 	 4�
7

12
8
3

5��4
� � 0.4 L
6 kg�m�50 	 28�
��F � 59�F381

3

�1.24, 2.814�


2��5
�1
10�1 � e�25 �45

28
8
3

7.

9.

11.

13.

15.

17.
19. 21. 23. 25.
27. 29.
31.

33. 35.
37.
39.

41.

43. (b)
45. (b) 51.
53. 55. 57.
59. 61. 63.
65. 2

EXERCISES 7.2 N PAGE 465

1. 3.

5.

7. 9. 11.

13. 15.

17. 19.

21. 23.

25. 27.
29.

31.

33.
35. 37.

39. 41.

43. 45.

47. 49. 1
10 tan5�t 2� 	 C1

2 sin 2x 	 C

1
8 sin 4� �

1
12 sin 6� 	 C�

1
6 cos 3x �

1
26 cos 13x 	 C

ln � csc x � cot x � 	 C1
3 csc3� �

1
5 csc5� 	 C

s3 �
1
3
x sec x � ln � sec x 	 tan x � 	 C

1
6 tan6� 	

1
4 tan4� 	 C

1
4 sec4x � tan2x 	 ln � sec x � 	 C

1
3 sec3x � sec x 	 C

117
8

1
5 tan5t 	

2
3 tan3t 	 tan t 	 C

tan x � x 	 C1
2 tan2x 	 C

ln � sin x � 	 2 sin x 	 C1
2 cos2x � ln � cos x � 	 C

2
45 ssin � �45 � 18 sin2 � 	 15 sin4 �� 	 C
�16

3
2� 	 2 sin � 	

1
4 sin 2� 	 C3
�8
�4

1

3

 sin3�
x� �

2

5

 sin5�
x� 	

1

7

 sin7�
x� 	 C

�
11

384
1
5 cos5x �

1
3 cos3x 	 C

2 � e�t�t 2 	 2t 	 2� m9
2 ln 3 �

13
92
e

4 � 8�
1.0475, 2.8731; 2.182825
4 �

75
4 e�2

x�ln x�3 � 3x�ln x�2 	 6x ln x � 6x 	 C2
3 , 8

15

�
1
4 cos x sin3x 	

3
8 x �

3
16 sin 2x 	 C

4

_4

2_2

F

f

1
3 x 2�1 	 x 2�3�2 �

2
15�1 	 x 2�5�2 	 C

7

�1

�3.5 1.5

ƒ F

�2x 	 1�e x 	 C

1
2�x 2 � 1� ln�1 	 x� �

1
4 x 2 	

1
2 x 	

3
4 	 C

�
1
2 � 
�42sx sin sx 	 2 cos sx 	 C

32
5 �ln 2�2 �

64
25 ln 2 	

62
125

sin x �ln sin x � 1� 	 C1
6 (
 	 6 � 3s3)

1
4 �

3
4 e�21

2 �
1
2 ln 21 � 1�e
�3

1
13 e 2��2 sin 3� � 3 cos 3�� 	 C

x �ln x�2 � 2x ln x 	 2x 	 C

1
2 t tan 2t �

1
4 ln �sec 2t � 	 C

t arctan 4t �
1
8 ln�1 	 16t 2� 	 C

1
2�2x 	 1� ln�2x 	 1� � x 	 C

�
1



x 2 cos 
x 	

2


 2  x sin 
x 	
2


 3  cos 
x 	 C
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51. 53.

55. 0 57. 1 59. 0 61. 63.
65.

EXERCISES 7.3 N PAGE 472

1. 3.
5. 7.

9. 11.
13.

15. 17.
19. 21.
23.
25.
27.
29.
33. 37. 0.81, 2; 2.10
41. 43.

EXERCISES 7.4 N PAGE 481

1. (a) (b)

3. (a)

(b)

5. (a)

(b)

7.
9. 11.
13. 15.

17.

19.

21.

23.

25.

27.

29.

31.

33. 35. 1
16 ln � x � �

1
32 ln�x 2 	 4� 	

1

8�x 2 	 4�
	 C1

4 ln 83

1
3 ln � x � 1 � �

1
6 ln�x 2 	 x 	 1� �

1

s3
 tan�1 

2x 	 1

s3
	 C

1
2 ln�x 2 	 2x 	 5� 	

3
2 tan�1� x 	 1

2 
 	 C

1
2 ln�x 2 	 1� 	 (1�s2 ) tan�1(x�s2 ) 	 C

ln � x � 1 � �
1
2 ln�x 2 	 9� �

1
3 tan�1�x�3� 	 C

2 ln � x � 	 �1�x� 	 3 ln � x 	 2 � 	 C

1
2 x 2 � 2 ln�x 2 	 4� 	 2 tan�1�x�2� 	 C

�
1

36
 ln � x 	 5 � 	

1

6
 

1

x 	 5
	

1

36
 ln � x � 1 � 	 C

27
5  ln 2 �

9
5 ln 3 (or 95 ln 83)

7
6 	 ln 2

3a ln � x � b � 	 C

1
2 ln 322 ln � x 	 5 � � ln � x � 2 � 	 C

x 	 6 ln � x � 6 � 	 C

At 	 B

t 2 	 1
	

Ct 	 D

t 2 	 4
	

Et 	 F

�t 2 	 4�2

1 	
A

x � 1
	

B

x 	 1
	

Cx 	 D

x 2 	 1

A

x 	 3
	

B

�x 	 3�2 	
C

x � 3
	

D

�x � 3�2

A

x
	

B

x 2 	
C

x 3 	
Dx 	 E

x 2 	 4

A

x
	

B

x 	 1
	

C

�x 	 1�2

A

x 	 3
	

B

3x 	 1

2
 2Rr 2rsR 2 � r 2 	 
r 2�2 � R 2 arcsin�r�R�

1
6 (s48 � sec�1 7)
1
4 sin�1�x 2� 	

1
4 x 2

s1 � x 4 	 C

1
2�x 	 1�sx 2 	 2x �

1
2 ln �x 	 1 	 sx 2 	 2x � 	 C

sx 2 	 x 	 1 �
1
2 ln(sx 2 	 x 	 1 	 x 	

1
2) 	 C

9
2 sin�1��x � 2��3� 	

1
2�x � 2�s5 	 4x � x 2 	 C

9
500
ln � (s1 	 x 2 � 1)�x � 	 s1 	 x 2 	 C

sx 2 � 7 	 C1
16
a4

 16 sec�1�x�3� � sx 2 � 9��2x 2� 	 C

1
4 sin�1�2x� 	

1
2 xs1 � 4x 2 	 Cln(sx 2 	 16 	 x) 	 C

�s25 � x 2��25x� 	 C
�24 	 s3�8 �
1
4

1
3 �x 2 � 18�sx 2 	 9 	 Csx 2 � 9��9x� 	 C

s � �1 � cos3�t���3��

 (2s2 �

5
2)
 2�4

ƒ

1

�1

_2 2

F

π

_π

π_π

F

f

1
6 sin 3x �

1
18 sin 9x 	 C1

4 x 2 �
1
4 sin�x 2� cos�x 2� 	 C

37.

39.

41. 43.

45.

47.

49.

51.

53.

55. 59.

61. 63.

65. , where 

67. (a) 

(b)

The CAS omits the absolute value signs and the constant of 
integration.

EXERCISES 7.5 N PAGE 488

1.
3.
5. 7.
9. 11.

13.

15.

17.

19. 21.

23. 25.

27. 29.
31.

33.

35. 0 37. 39.

41. 43.
45.
47.

49. 51.

53.
1

m
x 2 cosh�mx� �

2

m2 x sinh�mx� 	
2

m3  cosh�mx� 	 C

�ln � s4x 2 	 1 	 1

2x � 	 Cln � s4x 	 1 � 1

s4x 	 1 	 1 � 	 C

ln � x � 1 � � 3�x � 1��1 �
3
2 �x � 1��2 �

1
3 �x � 1��3 	 C

�
1
3 �x 3 	 1�e�x 3

	 C

2
3�1 	 e x�3�2 	 C� tan � �

1
2 � 2 � ln � sec � � 	 C

ln � sec � � 1 � � ln � sec � � 	 C
�8 �
1
4

2 sin�1� x 	 1

2 
 	
x 	 1

2
s3 � 2x � x 2 	 C

sin�1x � s1 � x 2 	 C
15 	 7 ln 27x � ln �1 	 e x� 	 C

3x 	
23
3  ln � x � 4 � �

5
3 ln � x 	 2 � 	 C4097

45

�x 	 1� arctan sx � sx 	 Ce e x

	 C

(or  14 x 2 �
1
4 x sin 2x �

1
8 cos 2x 	 C)

1
4 x 2 �

1
2 x sin x cos x 	

1
4 sin2x 	 C

x�s1 � x 2 	 C

1
8 cos8� �

1
6 cos6� 	 C  (or  14 sin4� �

1
3 sin6� 	

1
8  sin8� 	 C)

1
2 ln�x 2 � 4x 	 5� 	 tan�1�x � 2� 	 C243

5  ln 3 �
242
25

e
�4 � e�
�44 � ln 9
sin x 	 ln � csc x � cot x � 	 C
sin x 	

1
3 sin3x 	 C

75,772

260,015s19
 tan�1 

2x 	 1

s19
	 C

11,049

260,015
 ln�x 2 	 x 	 5� 	

3146

80,155
 ln � 3x � 7 � 	

4822

4879
 ln � 5x 	 2 � �

334

323
 ln � 2x 	 1 � �

1

260,015
 
22,098x 	 48,935

x 2 	 x 	 5

24,110

4879
 

1

5x 	 2
�

668

323
 

1

2x 	 1
�

9438

80,155
 

1

3x � 7
	

C � 10.23t � �ln P �
1
9 ln�0.9P 	 900� 	 C

�1 	
11
3  ln 24 ln 23 	 2

1
5 ln � 2 tan�x�2� � 1

tan�x�2� 	 2 � 	 C1
2 ln � x � 2

x � 	 C

�
1
2 ln 3 � �0.55

(x �
1
2) ln�x 2 � x 	 2� � 2x 	 s7 tan�1�2x � 1

s7 
 	 C

ln � tan t 	 1� � ln � tan t 	 2 � 	 C

ln ��e x 	 2�2

e x 	 1 � 	 C

2sx 	 3s
3 x 	 6s

6 x 	 6 ln � s
6 x � 1 � 	 C

3
10 �x 2 	 1�5�3 �

3
4 �x 2 	 1�2�3 	 C2 	 ln 25

9

ln � sx 	 1 � 1

sx 	 1 	 1 � 	 C

7
8 s2 tan�1� x � 2

s2 
 	
3x � 8

4�x 2 � 4x 	 6�
	 C
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55.

57.

59. 61.

63. 65.

67.

69.

71.

73.

75.

77.

79. 81.

EXERCISES 7.6 N PAGE 493

1.

3.

5. 7.

9. 11.

13.

15.

17.

19.

21.

23.

25.

27.

29. 31.

35.

37.

39.

41.

43. (a) ; 

both have domain 
45. ;

max. at , min. at 1; IP at , 0, and 1.7

4

f

F

�4

�1.1

0.6

�1.7�1

F�x� � 1
2 ln�x 2 � x 	 1� �

1
2 ln�x 2 	 x 	 1�

��1, 0� � �0, 1�

�ln � 1 	 s1 � x 2 

x � 	 C

�ln � cos x � �
1
2 tan2x 	

1
4 tan4x 	 C

1
10 �1 	 2x�5�2 �

1
6 �1 	 2x�3�2 	 C

1
4 x�x 2 	 2�sx 2 	 4 � 2 ln(sx 2 	 4 	 x) 	 C

1
3 tan x sec2x 	

2
3 tan x 	 C

2
 21
5 ln � x 5 	 sx 10 � 2 � 	 C

se 2x � 1 � cos�1�e�x � 	 C

1
2�ln x�s4 	 �ln x�2 	 2 ln[ln x 	 s4 	 �ln x�2] 	 C

1
4 tan x sec3x 	

3
8 tan x sec x 	

3
8 ln � sec x 	 tan x � 	 C

1

2s3
 ln � e x 	 s3

e x � s3 � 	 C

1
9 sin3x 
3 ln�sin x� � 1� 	 C

�
1

12 �6 	 4y � 4y 2�3�2 	 C

2y � 1

8
s6 	 4y � 4y 2 	

7
8 sin�1�2y � 1

s7 

1
2 �e2x 	 1� arctan�e x� �

1
2 e x 	 C

�
1
2 tan2�1�z� � ln �cos�1�z� � 	 C

e � 2�s4x 2 	 9��9x� 	 C

1

2

 tan2�
x� 	

1



 ln � cos�
x� � 	 C
�4

1

2

 sec�
x� tan�
x� 	

1

2

 ln � sec�
x� 	 tan�
x� � 	 C

��1�x�s7 � 2x 2 � s2 sin�1(s2x�s7) 	 C

xe x2
	 C1

3 x sin3x 	
1
3 cos x �

1
9 cos3x 	 C

2
3 tan�1�x 3�2� 	 C

2�x � 2�s1 	 e x 	 2 ln 
s1 	 e x 	 1

s1 	 e x � 1
	 C

1
8 ln � x � 2 � �

1
16 ln�x 2 	 4� �

1
8 tan�1�x�2� 	 C

�s1 � x 2 	
1
2 �arcsin x�2 	 C

e x � ln�1 	 e x � 	 C

s2 � 2�s3 	 ln (2 	 s3) � ln (1 	 s2)
2
3 
�x 	 1�3�2 � x 3�2 � 	 C�tan�1�cos2x� 	 C

2(x � 2sx 	 2)esx 	 Csin�sin x� �
1
3 sin3�sin x� 	 C

3
7 �x 	 c�7�3 �

3
4 c�x 	 c�4�3 	 C

2 ln sx � 2 ln(1 	 sx ) 	 C 47.

;
max. at , min. at 0; IP at , , and 2.5

EXERCISES 7.7 N PAGE 505

1. (a)
(b) is an underestimate, and are overestimates.
(c) (d)

3. (a) (underestimate)
(b) (overestimate)

5. (a)
(b)
7. (a) 2.413790 (b) 2.411453 (c) 2.412232

9. (a) 0.146879 (b) 0.147391 (c) 0.147219

11. (a) 0.451948 (b) 0.451991 (c) 0.451976

13. (a) 4.513618 (b) 4.748256 (c) 4.675111

15. (a) (b) (c)

17. (a) 1.064275 (b) 1.067416 (c) 1.074915

19. (a)
(b) , 
(c) for , for 

21. (a) , ;
, ; 

, 
(b) , 
(c) for , for , for 

23. (a) 2.8 (b) 7.954926518 (c) 0.2894
(d) 7.954926521 (e) The actual error is much smaller.
(f ) 10.9 (g) 7.953789422 (h) 0.0593
(i) The actual error is smaller. ( j)

25.

Observations are the same as after Example 1.

n � 50

Snn � 22Mnn � 360Tnn � 509
� ES � � 0.000170� ET � � 0.025839, � EM � � 0.012919

ES � �0.000110S10 � 2.000110
EM � �0.008248M10 � 2.008248

ET � 0.016476T10 � 1.983524

Mnn � 50Tnn � 71
� EM � � 0.0039� ET � � 0.0078

T8 � 0.902333, M8 � 0.905620

�0.526123�0.543321�0.495333

5.869247,  E S � 0.000357
5.932957,  EM � �0.063353

T4 � I � M4

M4 � 0.908907
T4 � 0.895759

Ln � Tn � I � Mn � RnT2 � 9 � I
M2R2L2

L2 � 6, R2 � 12, M2 � 9.6

0.04

π
0

F

ƒ


�20.7


	
1

128 sin x cos3x 	
3

256 sin x cos x 	
3

256 x
F�x� � �

1
10 sin3x cos7x �

3
80 sin x cos7x 	

1
160 sin x cos5x

n

5 0.742943 1.286599 1.014771 0.992621
10 0.867782 1.139610 1.003696 0.998152
20 0.932967 1.068881 1.000924 0.999538

MnTnRnLn

n

5 0.257057 �0.286599 �0.014771 0.007379
10 0.132218 �0.139610 �0.003696 0.001848
20 0.067033 �0.068881 �0.000924 0.000462

EMETEREL
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27.

Observations are the same as after Example 1.

29. (a) 19.8 (b) 20.6 (c)
31. (a) 23.44 (b) 33.
35. 37. 828 39. 6.0 41. 59.4
43.

EXERCISES 7.8 N PAGE 515

Abbreviations: C, convergent; D, divergent

1. (a) Infinite interval (b) Infinite discontinuity
(c) Infinite discontinuity (d) Infinite interval
3. ; 0.495, 0.49995, 0.4999995; 0.5
5. 7. D 9. 11. D 13. 0 15. D
17. D 19. 21. D 23.
25. 27. D 29. 31. D 33.
35. D 37. 39.
41. e 43.

45. Infinite area

47. (a)

It appears that the integral is convergent.

20

0
π
2

y=sec@ x

0.5

_7 7

2
9 y=

2

≈+9

0x

y

0

x � 1
y � ex

1

2��3

8
3 ln 2 �

8
9�2�e

75
4

32
3

1
2

��91
25

2e�21
12

1
2 � 1��2t 2 �

0 x

y

1

1 20.5 1.5

10,177 megawatt-hours
37.73 ft�s0.3413

20.53

(c)

49. C 51. D 53. D 55. 57.
59. 65.
67. (a)

(b) The rate at which the fraction increases as t increases
(c) 1; all bulbs burn out eventually

69. 1000

71. (a) (b)
(c)

77. 79. No

CHAPTER 7 REVIEW N PAGE 518

True-False Quiz

1. False 3. False 5. False 7. False
9. (a) True (b) False 11. False 13. False

Exercises

1. 3. 5.

7. 9.

11. 13.

15.

17.

19.

21.

23.

25.

27. 29. 0 31.

33.

35. 37.

39. 41. 43. D

45. 47. 49.

51.
53. 0

55.

ln � 2x � 1 � s4x 2 � 4x � 3 � � C

1
4�2x � 1�s4x 2 � 4x � 3 �

�x � 1� ln�x 2 � 2x � 2� � 2 arctan�x � 1� � 2x � C

��4�
4
34 ln 4 � 8

1
36

1
8 e �

1
4

1
2 sin 2x �

1
8 cos 4x � C4s1 � sx � C

x

s4 � x 2 � sin�1� x

2� � C

6 �
3
2�2

5

3
2 ln�x 2 � 1� � 3 tan�1x � s2 tan�1(x�s2) � C

ln � sx 2 � 1 � 1

x � � C

ln � x � 2 � sx 2 � 4x � � C

1
18 ln�9x 2 � 6x � 5� �  19 tan�1[ 1

2 (3x � 1)] � C

x sec x � ln � sec x � tan x � � C

�
1
2 ln � x � �

3
2 ln � x � 2 � � C

3es
3 x (s3 x 2

 

 � 2s
3 x � 2) � Cs3 �

1
3�

64
5  ln 4 �

124
25�cos�ln t� � C

2
15ln 25 � 10 ln 23

C � 1; ln 2

F�s� � 1�s 2, s � 0
F�s� � 1��s � 1�, s � 1F�s� � 1�s, s � 0

F�t�

1

700 t0
(in hours)

y

y=F(t)

s2GM�Rp � �1, �1��p � 1�2
p � 1, 1��1 � p��

1

�0.1

1 10

©=
sin@ x

≈

ƒ=
1
≈

t

2 0.447453
5 0.577101

10 0.621306
100 0.668479

1,000 0.672957
10,000 0.673407

y
t

1
 	�sin2x��x 2 
 dx

n

6 6.695473 6.252572 6.403292
12 6.474023 6.363008 6.400206

SnMnTn

n

6 �0.295473 0.147428 �0.003292
12 �0.074023 0.036992 �0.000206

ESEMET
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57.

61. No
63. (a) 1.925444 (b) 1.920915 (c) 1.922470
65. (a) 0.01348, (b) ,
67. 8.6 mi
69. (a) 3.8 (b) 1.7867, 0.000646 (c)
71. C 73. 2 75.

PROBLEMS PLUS N PAGE 521

1. About 1.85 inches from the center 3. 0
7. 11.
13.

CHAPTER 8

EXERCISES 8.1 N PAGE 530

1. 3. 5.

7. 9. 11.

13. 15.

17.

19. 21. 23. 5.115840
25. 1.569619
27. (a), (b) ,

,

(c) (d) 7.7988

29.
31. 6

33. 35.
37. 209.1 m 39. 29.36 in. 41. 12.4

EXERCISES 8.2 N PAGE 537

1. (a) (b) 

3. (a) 

(b) 

5. 7. 98
3 �1

27� (145s145 � 1)
y

1

0
 2�x�1 �

1

�1 � x 2�2  dx

y
1

0
 2� tan�1x�1 �

1

�1 � x 2�2  dx

x
1
0  2�xs1 � 16x 6 dxx

1
0  2�x 4

s1 � 16x 6 dx

2s2 (s1 � x � 1)s�x� � 2
27 [�1 � 9x�3�2 � 10s10]

s5 � ln(1
2 (1 � s5)) � s2 � ln(1 � s2)

x
4
0  s1 � 	4�3 � x���3�4 � x�2�3 �
2 dx

L4 � 7.50
L2 � 6.43
L1 � 4

46
3s2 � ln(1 � s2)

s1 � e 2 � s2 � ln(s1 � e 2 � 1) � 1 � ln(s2 � 1)
ln 3 �

1
2ln(s2 � 1)

32
3

1261
240

2
243 (82s82 � 1)

y
4

1
 s9y 4 � 6y 2 � 2 dyx

2�

0  s1 � sin2 x dx4s5

2 � sin�1(2�s5)
�b ba�a �1��b�a�e�1f ��� � ���2

3
16� 2

n � 30

n � 2600.00674n � 368

1
2 sin xs4 � sin2x � 2 ln(sin x � s4 � sin2x ) � C 9. 11.

13. 15.
17. 19.

21.

23.

27. (a) (b)

29. (a)

(b)

31. 33.

EXERCISES 8.3 N PAGE 547

1. (a) (b) 1875 lb (c) 562.5 lb
3. 6000 lb 5. 7.
9. 11. 13.
15. (a) 314 N (b) 353 N
17. (a) (b)
(c) (d)
19. 21. 23.

25. 27. 29.

31. 33. (2, 0)

35. 37. 41.
45.

EXERCISES 8.4 N PAGE 553

1. $38,000 3. $43,866,933.33 5. $407.25
7. $12,000 9. 3727; $37,753

11. 13.

15.
17. 19.

EXERCISES 8.5 N PAGE 560

1. (a) The probability that a randomly chosen tire will have a 
lifetime between 30,000 and 40,000 miles
(b) The probability that a randomly chosen tire will have a 
lifetime of at least 25,000 miles
3. (a) for all x and 
(b)
5. (a) (b)
7. (a) for all x and (b) 5
11. (a) (b) (c) If you
aren’t served within 10 minutes, you get a free hamburger.
13.
15. (a) (b)
17. �0.9545

�5.21%0.0668
�44%

1 � e�2�2.5 � 0.55e�4�2.5 � 0.20
x

	

�	
 f �x� dx � 1f �x� � 0

1
21��

1 �
3
8 s3 � 0.35

x
	

�	
 f �x� dx � 1f �x� � 0

5.77 L�min6.60 L�min
1.19 
 10�4 cm3�s

�1 � k��b 2�k � a 2�k�
�2 � k��b1�k � a1�k�

2
3 (16s2 � 8) � $9.75 million

1
3 �r 2h

(0, 1
12 )�0.781, 1.330�60; 160; ( 8

3, 1)
� �s2 � 4

4(s2 � 1) , 
1

4(s2 � 1)�
( 9

20 , 9
20)� 1

e � 1
, 

e � 1

4 ��0, 1.6�

10; 1; ( 1
21 , 10

21)230; 23
72.5 
 10 5 N

3.03 
 105 lb4.88 
 104 lb
5.06 
 104 lb5.63 
 103 lb

5.27 
 105 N2
3�ah1.2 
 10 4 lb

9.8 
 103 N6.7 
 10 4 N
187.5 lb�ft2

4� 2r 2
x

b
a
 2�	c � f �x�
s1 � 	 f ��x�
2 dx

2�
a2 �
ab 2 sin�1(sb 2 � a 2�b)

sb 2 � a 2 �
2�
b 2 �

a 2b sin�1(sa 2 � b 2�a)
sa 2 � b 2 �

56
45�s3a 21

3�a 2

1
6� [ln(s10 � 3) � 3s10]
1
4� [4 ln(s17 � 4) � 4 ln(s2 � 1) � s17 � 4s2]

13.5272969.023754
�a 21

27� (145s145 � 10s10)
21
2 �2s1 � � 2 � �2��� ln(� � s1 � � 2 )
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19. (b) 0; (c)

(d) (e)

CHAPTER 8 REVIEW N PAGE 562

Exercises

1. 3. (a) (b) 5. 7.

9. 11. 13. 15.

17. $7166.67

19. (a) for all x and 
(b) (c) 5, yes

21. (a) (b)
(c)

PROBLEMS PLUS N PAGE 564

1.

3. (a) (b)
(d)

5. (a)

(b)

7. Height , volume 9.

11.

CHAPTER 9

EXERCISES 9.1 N PAGE 571

3. (a) 5. (d)

7. (a) It must be either 0 or decreasing
(c) (d)

9. (a) (b)
(c)

13. (a) At the beginning; stays positive, but decreases
(c)

  0

 M

P(t)

t

P(0)

P � 0, P � 4200
P � 42000 � P � 4200

y � 1��x � 2�y � 0

1
2, �1

2��, 1��

0.14 m( 28
27 s6 � 2)�b 3

s2 b

�P0 � 
0tH���r 2 � � 
0tHe L�H xr
�r e

x�H � 2sr 2 � x 2 dx

P�z� � P0 � t xz
0 
�x� dx

�7.84 
 107 mi2

�3.36 
 106 mi22�r�r � d �

2
3� �

1
2 s3

8 ln 2 � 5.55 min
e�5�4 � 0.291 � e�3�8 � 0.31

� 0.3455
x

	

�	
 f �x� dx � 1f �x� � 0

2� 2(2, 2
3 )( 8

5, 1)� 458 lb

124
53.29228741

10�
21
16

15
2

3
2 a01 � 41e�8 � 0.986

1x1010

0 4x10–10

a0 EXERCISES 9.2 N PAGE 578

1. (a) (b)

3. III 5. IV

7. 9.

11. 13.

15.

17. ; �2, 0, 2�2 � c � 2
y

0

_2

_1 t1

2

c=3

c=_3

c=_1

c=1

4

_2

3_3

y

x3_3

3

_3

y

x3_3

3

_3

y

x3_3

3

_3

y

x3_3

_3
(c)

(a)
(b)

y � �2
y � 2,
y � 0,y

x

3

3_3

_3

(i)

(ii)

(iv)

(iii)
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19. (a) (i) 1.4 (ii) 1.44 (iii) 1.4641
(b) Underestimates

(c) (i) 0.0918 (ii) 0.0518 (iii) 0.0277
It appears that the error is also halved (approximately).
21. 23.
25. (a) (i) 3 (ii) 2.3928 (iii) 2.3701 (iv) 2.3681
(c) (i) �0.6321 (ii) �0.0249 (iii) �0.0022 (iv) �0.0002
It appears that the error is also divided by 10 (approximately).
27. (a), (d) (b) 3

(c) Yes; 
(e) 2.77 C

EXERCISES 9.3 N PAGE 586

1. 3.
5.

7. 9.

11. 13.

15. 17.

19. 21.
23. (a)
(b) , (c) No

25. 5

2.5
0

�2.5

cos y � cos x � 1

1

0

y=sin ≈

_œ„„„π/2_œ „„„π/2œ

�s��2 � x � s��2y � sin�x 2�
sin�1y � x 2 � C

y � Ke x � x � 1y � e x2�2

y �
4a

s3
 sin x � au � �st 2 � tan t � 25

cos x � x sin x � y 2 �
1
3 e 3y �

2
3y � �sx 2 � 9

u � Ae 2 t�t 2�2 � 1y � �s	3�te t � e t � C�
2�3 � 1

y � ln � sec y � � 1
3 x 3 � x � C

y � Ksx 2 � 1y � Kx

Q � 3Q

0

2

2 t4

4

6

1.7616�1, �3, �6.5, �12.25

y

0 0.2 x0.40.1 0.3

y=´

h=0.1

h=0.2

h=0.4

1.0

1.1

1.2

1.3

1.4

1.5

27. (a), (c) (b)

29. 31.

33. ; 3 35. ; M

37. (a)

(b)

39. (a)
(b) ; the concentration approaches regardless of the 
value of 

41. (a) (b)

43. About 4.9% 45.

47. (a) (b) ,

where and 

EXERCISES 9.4 N PAGE 598

1. (a) 100; 0.05 (b) Where is close to or ; 
on the line ; ; 
(c)

Solutions approach 100; some increase and some decrease, some
have an inflection point but others don’t; solutions with 
and have inflection points at 
(d) , ; other solutions move away from and
toward 

3. (a) (b) �1.55 years3.23 
 107 kg

P � 100
P � 0P � 100P � 0

P � 50P0 � 40
P0 � 20

P¸=140

P¸=120

P¸=80

P¸=40

P¸=20

P¸=60

0 t

P

604020

150

100

50

P0 � 1000 � P0 � 100P � 50
1000P

A0 � A�0�C �
sM � sA0

sM � sA0

A�t� � M�CesM kt � 1

Ce sM kt � 1�
2

dA�dt � ksA �M � A�

t�k

15e�0.2 � 12.3 kg15e�t�100 kg

C0

r�kr�k
C�t� � �C0 � r�k�e�kt � r�k

t �
2

ksa � b�tan�1� b

a � b
� tan�1� b � x

a � b �
x � a �

4

(kt � 2�sa )2

P�t� � M � Me�ktQ�t� � 3 � 3e�4 t

≈-¥=C

xy=k
4

4

_4

_4

4

4

_4

_4

x 2 � y2 � Cy � Cx 2

y � �s2�x � C�5

5

_5

_5
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5. (a) , in billions
(b) 5.49 billion (c) In billions: 7.81, 27.72
(d) In billions: 5.48, 7.61, 22.41

7. (a) (b)

(c) 3:36 PM

11. ; 

13. (a) (b)

(c) , (d) Declining
15. (a) Fish are caught at a rate of 15 per week.
(b) See part (d) (c)
(d) ;

; 

(e)

where 

17. (b) ;
;

(c)

19. (a) (b) Does not existP�t� � P0e �k�r�	sin�rt � �� � sin �


P�t� �
m�K � P0� � K�P0 � m�e �K�m��k�K �t

K � P0 � �P0 � m�e �K�m��k�K �t

P0 � 200: P l 1000

P0 � 200: P l 200
0 � P0 � 200: P l 0

0 t

P

1008060

1400

800

400

4020

600

200

1200

1000

k � 1
11 , � 1

9

0 120

1200P�t� �
250 � 750ke t�25

1 � ke t�25

P0 � 250: P l 750
P0 � 250: P l 250
0 � P0 � 250: P l 0

0 t

P

1208040

1200

800

400

P � 250, P � 750

m � kP0m � kP0

m � kP0P�t� �
m

k
� �P0 �

m

k �e kt

t (year)
1960 1980 2000

90,000
0 45

P  

(in thousands)

130,000

PL

PE

PL�t� �
32,658.5

1 � 12.75e�0.1706 t � 94,000

PE �t� � 1578.3�1.0933�t � 94,000

y �
y0

y0 � �1 � y0 �e�ktdy�dt � ky�1 � y�

PdP�dt � 1
265 P�1 � P�100� EXERCISES 9.5 N PAGE 606

1. Yes 3. No 5.

7. 9.

11. 13.

15. 17.

19.

21.

25.

27. (a) (b)

29.

31.

33. ; 0.2275 kg�L

35. (b) (c)

EXERCISES 9.6 N PAGE 612

1. (a) , ; growth is restricted only by 
predators, which feed only on prey.
(b) , ; growth is restricted by carrying 
capacity and by predators, which feed only on prey.

3. (a) The rabbit population starts at about 300, increases to 2400,
then decreases back to 300. The fox population starts at 100,
decreases to about 20, increases to about 315, decreases to 100,
and the cycle starts again.

(b)

0 t

R

2000

t¡

1000

F

200

t™ t£

1500

500

2500
300

100

R F

y � predatorsx � prey

y � preyx � predators

�mt�c�	t � �m�c�e�ct�m 
 � m 2
t�c 2mt�c

y � 2
5 �100 � 2t� � 40,000�100 � 2t��3�2

  0

 M

 P(t)

t

 P(0)

P�t� � M � Ce�kt

Q�t� � 3�1 � e�4 t �, I�t� � 12e�4 t

4 � 4e�1�2 � 1.57 AI�t� � 4 � 4e�5t

y � ��Cx 4 �
2

5x�
�1�2

5

_5

3_3

c=_1 c=_1
c=_3 c=_3

c=1

c=3c=3
c=5c=5

c=7c=7

c=_5 c=_5

y �
�x � 1�e x � C

x 2

y � �x cos x � x

v � t 3e t 2
� 5e t 2

y � �x � 1 � 3e x

u �
t 2 � 2t � 2C

2�t � 1�
y �

x sin�x 2� dx � C

sin x

y � 2
3 sx � C�xy � x 2 ln � x � � Cx 2

y � 2
3 e x � Ce�2x



APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES | | | | A101

5.

9. (a) Population stabilizes at 5000.
(b) (i) , : Zero populations
(ii) , : In the absence of wolves, the rabbit 
population is always 5000.
(iii) , : Both populations are stable.
(c) The populations stabilize at 1000 rabbits and 64 wolves.

(d)

CHAPTER 9 REVIEW N PAGE 615

True-False Quiz

1. True 3. False 5. True 7. True

Exercises

1. (a) (b) ; 
, ,

3. (a)

(b) 0.75676
(c) and ; there is a local maximum or minimum

5. 7.

9. 11. 13. x � C �
1
2 y2y � 1

2 x �ln x�2 � 2xr�t� � 5et�t 2

y � �sln�x 2 � 2x 3�2 � C�y � (1
2 x 2 � C)e�sin x

y � �xy � x

y�0.3� � 0.8

0 x

y

1 2_1_2

1

2

3_3

3

y � 4y � 2y � 0
0 � c � 4

6

10 t

y

2

4

(i)

(ii)

(iv)

(iii)

0 t

R

1000

W

40

1500

500

60

20

80
W

R

R � 1000W � 64

R � 5000W � 0
R � 0W � 0

0 Species 1

Species 2

50

200

100

50

100 150 200 250

t=3

t=0, 5

150

t=1

t=2

t=4

15. (a) ; (b)

17. (a) (b)

19. 15 days 21.

23. (a) Stabilizes at 200,000
(b) (i) , : Zero populations
(ii) , : In the absence of birds, the insect 
population is always 200,000.
(iii) , : Both populations are stable.
(c) The populations stabilize at 25,000 insects and 175 birds.
(d)

25. (a) or
(b)

PROBLEMS PLUS N PAGE 618

1. 5. 7.

9. (b) (c) No

11. (a) 9.8 h (b) ; 
(c) 5.1 h
13.

CHAPTER 10

EXERCISES 10.1 N PAGE 626

1. 3.

5. (a) (b) y � 2
3 x �

13
3

(_8, _1)
t=_1

x

y

0

(_5, 1)
t=0

(_2, 3)
t=1

(1, 5)
t=2

x

y

t=0  (0, 0)

t=�π  {0, π@}

5

5

x

y

t=0
(1, 0)

t=5

{1+œ„5, 5}

t=4
(3, 0)

x 2 � �y � 6�2 � 25

6283 ft2�h31,900� � 100,000 ft2

f �x� �
x 2 � L2

4L
�

1
2 L ln� x

L�
20 �Cy � x 1�nf �x� � �10e x

�2�k� sinh kby � �1�k� cosh kx � �1�k� cosh kb � h
y � �1�k� cosh kx � a � 1�k

0 t

x

35,000

15,000

y

15025,000

5,000

45,000

200

100

250

(insects) (birds)

50

birds

insects

y � 175x � 25,000

y � 0x � 200,000
y � 0x � 0

k ln h � h � ��R�V �t � C

L�t� � 53 � 43e�0.2 tL�t� � L	 � 	L	 � L�0�
e�kt

t � �10 ln 2
57 � 33.5�560P�t� �

2000

1 � 19e�0.1t



A102 || | | APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES

7. (a) (b) ,

9. (a) (b)

11. (a) 13. (a) ,
(b) (b)

15. (a) 17. (a)
(b) (b)

19. Moves counterclockwise along the circle 
from to 

21. Moves 3 times clockwise around the ellipse 
, starting and ending at 

23. It is contained in the rectangle described by 
and .
25. 27.

29. 3

�3

�3 3

x

y

t=0

t=
1
2

1

1

y

x

(0, _1)   t=_1

(0, 1)   t=1

(_1, 0)
t=0

2 � y � 3
1 � x � 4

�0, �2��x 2�25� � �y 2�4� � 1

�3, �1��3, 3��x � 3�2 � �y � 1�2 � 4

x0

1

yy

x0 1

1

y 2 � x 2 � 1, y � 1y � 1
2 ln x � 1

y

x0

(1, 1)x

(0, 1)

y

(0, _1)

0

y � 1y � 1�xx 2 � y 2 � 1, x � 0

y � 1 � x 2, x � 0y

0 x

(0, 1)  t=0

(1, 0)  t=1

(2, _3)  t=4

�3 � y � 11
x � 1

4 �y � 5�2 � 2y

x

(7 , 11)
t=_3

(14, _3)
t=4

(_2, 5)
t=0

”4   , 0’   t=
1

4
5
2

31. (b) ,
33. (a)
(b)
(c)
37. The curve is generated in (a). In (b), only the portion
with is generated, and in (c) we get only the portion with

.
41. , ellipse
43.

45. (a) Two points of intersection

(b) One collision point at when 
(c) There are still two intersection points, but no collision point.
47. For , there is a cusp; for , there is a loop whose size
increases as c increases.

49. As n increases, the number of oscillations increases; 
a and b determine the width and height.

EXERCISES 10.2 N PAGE 636

1. 3.

5. 7.
9.

11.
13.
15.

17. Horizontal at , vertical at 

19. Horizontal at (four points), vertical at 

21. ; (5 � 6�6�5, e6�1�5)�0.6, 2�
��2, 0�(�s2, �1)

�10, 0��6, �16�
�

3
2 tan t, �3

4 sec3t, ��2 � t � 3��2
�e�t, e�t��1 � et�, t � 0
1 �

3
2 t, 3��4t�, t � 0

20

_2

10_10

y � 1
6 x

y � 2x � 1y � ��2�e�x � 3

y � �x
2t � 1

t cos t � sin t

3

0 1.5

_3

_1

0
0 1.5

1

_1

1
1
2

c � 0c � 0

t � 3��2��3, 0�

4

�4

�6 6

y

O x

2a

x � a cos �, y � b sin �; �x 2�a 2 � � �y 2�b 2 � � 1
x � 0

x � 0
y � x 2�3

x � 2 cos t, y � 1 � 2 sin t, ��2 � t � 3��2
x � 2 cos t, y � 1 � 2 sin t, 0 � t � 6�

x � 2 cos t, y � 1 � 2 sin t, 0 � t � 2�
0 � t � 1y � 7 � 8tx � �2 � 5t,



APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES | | | | A103

23. 25.

27. (a) 29.
31. 33. 35.

37.

39. 41.

43.

45.

47.

49. 612.3053 51.
55. (a)

(b)

57.

59. 61. 63. 59.101

65. 71.

EXERCISES 10.3 N PAGE 647

1. (a) (b)

�1, 5��4�, ��1, ��4��2, 7��3�, ��2, 4��3�

O

_
3π
4”1, _     ’

3π
4

O

π
3

π
3”2,     ’

1
4

24
5 � (949s26 � 1)

6
5�a 22

1215� (247s13 � 64)
x

1
0  2� �t 2 � 1�e t

se 2 t�t � 1�2�t 2 � 2t � 2� dt � 103.5999

�294

t � 	0, 4�
15

�15

�15 15

6s2, s2

21

�1
�1 21

e 3 � 11 � e�8

8

0
�25 2.5

s2 �e � � 1�
�s10�3 � ln(3 � s10) � s2 � ln(1 � s2)

4s2 � 2x
2�

0  s3 � 2 sin t � 2 cos t  dt � 10.0367

x
2

1  s1 � 4t 2  dt � 3.1678

2�r 2 � �d 23 � e�ab
(16

27, 
29
9 ), ��2, �4�d sin ���r � d cos ��

0

y

x

y � x, y � �x7.5

�1

�8.5 3

(c)

3. (a) (b)

(c)

5. (a) (i) (ii)
(b) (i) (ii)
7. 9.

11.

13. 15. Circle, center , radius 2
17. Circle, center , radius 
19. Horizontal line, 1 unit above the -axis
21. 23. 25.
27. (a) (b)
29. 31.

O

”1,    ’
π
2

O

¨=_
π
6

x � 3� � ��6
r � 2c cos �r � �cot � csc �r � 3 sec �

x

3
2(0, 32)
O2s3

O

r=2

r=3

¨=
7π
3

¨=
5π
3

O

r=4

¨=
π
6

¨=_
π
2

O

r=1

r=2

��2, 5��3��2, 2��3�
(�2s2, 3��4)(2s2, 7��4)

(s2, �s2)

O

3π
4

”_2,      ’
3π
4

(�1, �s3)��1, 0�

O

_
2π
3

”2, _     ’
2π
3

π

O

(1, π)

�1, 3��2�, ��1, 5��2�

O

π
2

”_1,    ’
π
2
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33. 35.

37. 39.

41. 43.

45. 47.

49. 51.

53. 55. (a) For , the inner loop 
begins at and 
ends at ; 
for , it begins at

and 
ends at .

57. 59. 61. 1

63. Horizontal at , ; 
vertical at 
65. Horizontal at , [the pole], and ;

vertical at (2, 0), ,
67. Horizontal at ; vertical at ,

where � � sin�1(�1
2 �

1
2 s3)(3

2 �
1
2 s3, � � �)

(3
2 �

1
2 s3, �)�3, ��2�, �1, 3��2�

( 1
2, 4��3)( 1

2, 2��3)
( 3

2, 5��3)�0, ��( 3
2, ��3)

�3, 0�, �0, ��2�
(�3�s2, 3��4)(3�s2, ��4)

��s3

� � 2� � sin�1 �1�c�
� � � � sin�1 �1�c�

c � 1
� � � � sin�1 ��1/c�

� � sin�1 ��1�c�
c � �1

O

(2, 0) (6, 0)

O 1

1

2

¨=
π
3

¨=
2π
3

(3, 0)(3, π)

O

O

¨=
π
6

¨=
5π
6

¨=
π
8

1

3 4

5

6

2

¨=
π
3

O

O

69. Center , radius 
71. 73.

75.

77. By counterclockwise rotation through angle , ,
or about the origin
79. (a) A rose with n loops if n is odd and 2n loops if n is even
(b) Number of loops is always 2n
81. For , the curve is an oval, which develops a dimple as

. When , the curve splits into two parts, one of which
has a loop.

EXERCISES 10.4 N PAGE 653

1. 3. 5. 7.
9. 11. 4 

13. 15.

17. 19. 21. 23.
25. 27. 29. 31.
33. 35.

37. , and the pole

39. where , , ,
and where , , , 23��1219��1211��12� � 7��12��1, ��

17��1213��125��12� � ��12�1, ��
(3

2, ��6), (3
2, 5��6)

1
4(� � 3s3)1

8� �
1
4

1
2� � 15

24� �
1
4 s3�4s3 �

4
3�

1
3� �

1
2 s3� �

3
2 s39

20�1
8�

3

�3

�3 3

¨=
π
6

3��

O

O

9
4�

41
4 �� 2��12 �

1
8 s3� 5�10,240

a � 1a l1�

0 � a � 1

�
��3��6

7

�7

�7 7

_3 3

_2.5

3.5

_3.4 1.8

_2.6

2.6

sa 2 � b 2�2�b�2, a�2�
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41. , and the pole

43. Intersection at 45.

47. 49. 51.

53. 55. (b)

EXERCISES 10.5 N PAGE 660

1. , , 3. , ,

5. , , 7. , ,

9. , focus , directrix 
11. , 13. ,

15. 17. , foci 

x0

y

�1 3

(1,_3)

(1, 3)

(0, �s5)x 2

4
�

y 2

9
� 1�1, �3�, (1, �s5)

0 x

y

_2 2

4

_4

0 x

y

œ„5

_œ„5

_3 3

(0, �2s3)�0, �4���2, 0���3, 0�
x � 1

4(� 1
4 , 0)x � �y 2

0 x

y

x=1

(_2, _1)

(_5, _1)

y

x

y=1

(_2, 5)

x � 1��5, �1���2, �1�y � 1��2, 5���2, 3�

y

x

y=
1
16

”0, _     ’
1

16

y

x

x=_
1
8

”   , 0’
1
8

y � 1
16(0, � 1

16)�0, 0�x � �
1
8(1

8 , 0)�0, 0�

2� (2 � s2)1

_1

_0.75 1.25

16
3

9.688429.06538
3 	�� 2 � 1�3�2 � 1


�� � 0.89, 2.25; area � 3.46

(1
2 s3, ��3), (1

2 s3, 2��3) 19. , 21. ,

23.

25. Parabola,
27. Ellipse, ,
29. Hyperbola, 31.
33. 35.

37. 39.

41. 43.

45. 47.

49.

51. (a) (b)

55. (a) Ellipse (b) Hyperbola (c) No curve

59. 9.69 61. where 

EXERCISES 10.6 N PAGE 668

1. 3.

5. 7.

9. (a) 1 (b) Parabola (c)
(d)

O

y=1
”   ,    ’
1

2

π

2

y � 1

r �
4

2 � cos �
r �

8

1 � sin �

r �
15

4 � 3 cos �
r �

42

4 � 7 sin �

c 2 � a 2 � b2b2c

a
� ab ln� a

b � c�
�248 mi

121x 2

1,500,625
�

121y 2

3,339,375
� 1

x 2

3,763,600
�

y 2

3,753,196
� 1

x 2

9
�

y 2

36
� 1

�y � 1�2

25
�

�x � 3�2

39
� 1

x 2

9
�

y 2

16
� 1

�x � 1�2

12
�

�y � 4�2

16
� 1

x 2

12
�

�y � 4�2

16
� 1

x 2

25
�

y 2

21
� 1

y � 3 � 2�x � 2�2y 2 � �12�x � 1�
x 2 � �8y�0, 1�, �0, �3�; (0, �1 � s5)

��1, 1�(�s2, 1)
�0, �1�, (0, �3

4)

x0

y

(4, _2)

(3+œ„5, _2)(3-œ„5, _2)

(2, _2)

y � 2 � �2�x � 3�
(3�s5, �2);

�4, �2�, �2, �2�;

0 x

y

2

_2

y=x

x

12

y

0

y=    x
5
12

y � �xy � �
5

12 x
�0, �2�, (0, �2s2)��12, 0�, ��13, 0�
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11. (a) (b) Ellipse (c)
(d)

13. (a) (b) Ellipse (c)
(d)

15. (a) 2 (b) Hyperbola (c)
(d)

17. (a)

(b)

19. The ellipse is nearly circular
when e is close to 0 and becomes 
more elongated as . At 

, the curve becomes a 
parabola.
e � 1

e l 1�

e=0.4 e=1.0

e=0.8
e=0.6

2

_2

_2 2

r �
1

1 � 2 sin�� � 3��4�

1

_3

_2 2

-y=
1

2

2, y � �
1
2

O

x=_
3
8

”-   , 0’
3

4 ”    , π’
1

4

x � �
3
8

O

x=
9
2

”   ,    ’
π

2

3

2

”   , 0’
9

8
”   , π’

9

4

”   ,      ’
3π

2

3

2

x � 9
2

1
3

O (3, 0)(3, π)

”4,    ’
π

2

”    ,      ’
3π

2

12

5

y=_12

y � �121
4 25.

27. 35.64 AU 29. 31.

CHAPTER 10 REVIEW N PAGE 669

True-False Quiz

1. False 3. False 5. True 7. False 9. True

Exercises

1. 3.

5. , ; , ; 
, ,

7. (a) (b) ,

9. 11.

13. 15.

17. 19. 0.75

-0.3 1.2

-0.75

r= 
sin ̈

¨

r �
2

cos � � sin �

”_3,     ’
3π

2

”1,    ’
π

2

3

2
y=

O

O

1

_1

(2, π) (2, 0)

¨=
π
6

(1, 0)

O

(2, π)

”1,    ’
π

2

”1,      ’
3π

2

(�2, 2s3)

(�3s2, 7��4)
(3s2, 3��4)

O

2π
3

”4,      ’
2π
3

0 � t � ��2y � tan tx � tan2 t
y � t 2x � t 4y � stx � t

x

y

(1, 1), ¨=0

y

x

(0, 6), t=_4

(5, 1),
t=1

y � 1�xx � y 2 � 8y � 12

3.6 � 108 km7.0 � 107 km

r �
2.26 � 108

1 � 0.093 cos �



APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES | | | | A107

21. 2 23.

25. 27.

29. Vertical tangent at

;
horizontal tangent at

31. 18 33. 35.

37.

39.

41.

43. All curves have the vertical asymptote . For , the
curve bulges to the right. At , the curve is the line .
For , it bulges to the left. At there is a cusp at
(0, 0). For , there is a loop.

45. 47.

49. 51.

53. 55.

57. ,

PROBLEMS PLUS N PAGE 672

1.

3.

5. (a) At (0, 0) and 
(b) Horizontal tangents at (0, 0) and ;
vertical tangents at (0, 0) and 
(d) (g) 3

2y

x
y 	 �x � 1

(s3 4, s3 2 )
(s3 2, s3 4 )

( 3
2, 32 )

[�3
4 s3, 34 s3] � ��1, 2�

ln���2�

y � a�1 � sin2��x � a�cot � � sin � cos ��

r �
4

3 � cos �

x 2

25
�

�8y � 399�2

160,801
� 1

y 2

72�5
�

x 2

8�5
� 1

x 2

25
�

y 2

9
� 1

x

(_1, 3)

y

0

x

y

0

(1, 0)

2œ„2

�2œ„2

�3 3

(� 25
24 , 3), ��1, 3��
1, 0�, �
3, 0�

c � 0
c � 0�1 � c � 0

x � 1c � �1
c � �1x � 1

471,295��1024

2s� 2 � 1 � s4� 2 � 1

2�
� ln�2� � s4� 2 � 1

� � s� 2 � 1 �
2(5s5 � 1)

1
2�� � 1��2, 
��3�

�a, 0�, (�1
2 a, 
3

2 s3a)

(3
2 a, 
 1

2 s3 a), ��3a, 0�

x

y

0

(�3a, 0) (a, 0)

( 11
8 , 34 )1 � sin t

1 � cos t
, 

1 � cos t � sin t

�1 � cos t�3

�1 CHAPTER 11

EXERCISES 11.1 N PAGE 684

Abbreviations: C, convergent; D, divergent

1. (a) A sequence is an ordered list of numbers. It can also be
defined as a function whose domain is the set of positive integers.
(b) The terms approach 8 as becomes large.
(c) The terms become large as becomes large.

3. 0.8, 0.96, 0.992, 0.9984, 0.99968 5.
7. 3, 5, 9, 17, 33 9. 11.
13. 15. ; yes;
17. 1 19. 5 21. 1 23. 1 25. 0 27. D
29. 0 31. 0 33. 0 35. 0 37. 1 39.
41. 43. D 45. D 47. 1 49.
51. D 53. 0
55. (a) 1060, 1123.60, 1191.02, 1262.48, 1338.23 (b) D
57.
59. Convergent by the Monotonic Sequence Theorem; 
61. Decreasing; yes 63. Not monotonic; no
65. Decreasing; yes 67. 2 69.
71. (b) 73. (a) 0 (b) 9, 11

EXERCISES 11.2 N PAGE 694

1. (a) A sequence is an ordered list of numbers whereas a series is
the sum of a list of numbers.
(b) A series is convergent if the sequence of partial sums is a con-
vergent sequence. A series is divergent if it is not convergent.

3. , ,
, ,
, ,
, ,
, ;

convergent,

5. , ,
, ,
, ,
, ,
, ;

divergent

7. , ,
, ,
, ,
, ,
, ;

convergent, sum � 1
0.698490.68377
0.666670.64645
0.622040.59175
0.552790.50000

0

1

11

{an}

{sn}

0.422650.29289

�9.01610�9.66446
�9.21214�2.41243
�3.28388�2.99287
0.38764�0.77018

2

0 10

_10

ssnd

sand

�0.627631.55741

sum � �2
�2.00000�2.00000
�1.99999�2.00003
�1.99987�2.00064
�1.99680�2.01600

ssnd

1

0 10

_3

sand

�1.92000�2.40000

1
2 (1 � s5)

1
2 (3 � s5)

5 � L � 8
�1 � r � 1

1
2ln 2

e 2

1
2

1
3 , 25 , 37 , 49 , 5

11 , 6
13an � (� 2

3 )n�1
an � 5n � 3an � 1��2n � 1�

�3, 32 , � 1
2 , 18 , � 1

40

nan

nan
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9. (a) C (b) D 11. 9 13. D 15. 60 17.

19. D 21. D 23. D 25. 27. D 29. D

31. D 33. 35. 37. 39.

41. 43. 45.

47. 49.

51. All ; 53. 1

55. for ,

57. (a) (b) 5 59.

63. 65. The series is divergent.

71. is bounded and increasing.

73. (a)

75. (a) (c) 1

EXERCISES 11.3 N PAGE 703

1. C

3. D 5. C 7. C 9. D 11. C 13. D 15. C
17. C 19. C 21. D 23. C 25. C 27.
29. 31.
33. (a) 1.54977, (b) 1.64522,
(c)
35. 0.00145 41.

EXERCISES 11.4 N PAGE 709

1. (a) Nothing (b) C 3. C 5. D 7. C 9. C
11. C 13. C 15. C 17. D 19. D 21. C
23. C 25. D 27. C 29. C 31. D
33. 1.249, error 35. 0.76352,
45. Yes

EXERCISES 11.5 N PAGE 713

1. (a) A series whose terms are alternately positive and 
negative (b) and ,
where (c)

3. C 5. C 7. D 9. C 11. C 13. D 
15. C 17. C 19. D

	 Rn 	 � bn�1bn � 	 an 	
limn l � bn � 00 � bn�1 � bn

error � 0.001� 0.1

b � 1�e
n � 1000

error � 0.005error � 0.1
�1, ��p � �1

p � 1

0 x

y

1

. . .
a™

a£ a¢ a∞

2 3 4

y=
1

x1.3

1
2 , 56 , 23

24 , 119
120; 

�n � 1�! � 1

�n � 1�!

0, 19 , 29 , 13 , 23 , 79 , 89 , 1


sn �

1

n�n � 1�

1
2 (s3 � 1)Sn �

D�1 � c n �
1 � c

sum � 1n � 1a1 � 0, an �
2

n�n � 1�

2

2 � cos x
x

�
1
4 � x �

1
4; 

1

1 � 4x
�3 � x � 3; 

x

3 � x

5063�33001138�3332
9

e � 111
6

3
2e��e � 1�

5
2

1
7

21. 1.0000, 0.6464,
0.8389, 0.7139, 0.8033,
0.7353, 0.7893, 0.7451, 0.7821,
0.7505; 

23. 5 25. 4 27. 29.
31. An underestimate 33. is not a negative integer
35. is not decreasing

EXERCISES 11.6 N PAGE 719

Abbreviations: AC, absolutely convergent;
CC, conditionally convergent

1. (a) D (b) C (c) May converge or diverge
3. AC 5. CC 7. AC 9. D 11. AC 13. AC
15. AC 17. CC 19. AC 21. AC 23. D
25. AC 27. D 29. D 31. (a) and (d)
35. (a) ,
(b) , 0.693109

EXERCISES 11.7 N PAGE 722

1. C 3. D 5. C 7. D 9. C 11. C 13. C
15. C 17. D 19. C 21. C 23. D 25. C
27. C 29. C 31. D 33. C 35. C 37. C

EXERCISES 11.8 N PAGE 727

1. A series of the form , where is a variable 
and and the ’s are constants
3. 1, 5. 1, 7.

9. 11. 13.

15. 17. 19.

21. 23. 0, 25.

27. 29. (a) Yes (b) No 31. 33. No
35. (a)
(b), (c)

37. , 41. 2

EXERCISES 11.9 N PAGE 733

1. 10 3. 5.

7. 9. 1 � 2 �
�

n�1
x n, ��1, 1��

�

n�0
 ��1�n 1

9 n�1 x 2n�1, ��3, 3�

2 �
�

n�0
 

1

3 n�1 x n, ��3, 3��
�

n�0
 ��1�nx n, ��1, 1�

f �x� � �1 � 2x���1 � x 2���1, 1�

2

8

_2

_8

s¸

J¡

s£ s∞s¡

s™ s¢

���, ��
k k�, ���, ��

1
4, [�1

2, 0]{ 1
2 }b, �a � b, a � b�

�, ���, ��1
3 , [�13

3 , �11
3 )1, �1, 3�

4, ��4, 4�1
2 , (� 1

2 , 12]2, ��2, 2�
�, ���, ����1, 1���1, 1�

cna
x
�

n�0 cn�x � a�n

n 
 11
error � 0.00521661

960 � 0.68854


bn �
p

0.06760.9721

error � 0.0275

1

_1

0 10

ssnd

sand
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11.

13. (a)

(b)

(c)

15. 17.

19.

21.

23.

25.

27. 0.199989 29. 0.000983 31. 0.09531
33. (b) 0.920 37.

EXERCISES 11.10 N PAGE 746

1. 3.

5.

7.

9. 11.

13. ,
R � �

�1 � 2�x � 1� � 3�x � 1�2 � 4�x � 1�3 � �x � 1�4

�
�

n�0
 

x 2n�1

�2n � 1�!
, R � ��

�

n�0
 
5 n

n!
x n , R � �

�
�

n�0
 ��1�n 

� 2n�1

�2n � 1�!
 x 2n�1, R � �

�
�

n�0
 �n � 1�x n, R � 1

�
�

n�0
 �n � 1�x n, R � 1b8 � f �8��5��8!

��1, 1�, ��1, 1�, ��1, 1�

C � �
�

n�1
 ��1�n�1 x 2n�1

4n2 � 1
, R � 1

C � �
�

n�0
 

t 8n�2

8n � 2
, R � 1

3

2

�3

�2

s¡

f

s£ s™

�
�

n�0
 

2x 2n�1

2n � 1
, R � 1

0.25

_0.25

4_4

s¡

s¡

s™

s™

s£

s£

s¢

s¢

s∞

s∞

f

f

�
�

n�0
 ��1�n 1

16n�1 x 2n�1, R � 4

�
�

n�3
 
n � 2

2n�1  x n, R � 2ln 5 � �
�

n�1
 

x n

n5n , R � 5

1

2
 �

�

n�2
 ��1�nn�n � 1�x n, R � 1

1

2
 �

�

n�0
 ��1�n�n � 2��n � 1�x n, R � 1

�
�

n�0
 ��1�n�n � 1�x n, R � 1

�
�

n�0
 ���1�n�1 �

1

2n�1�x n, ��1, 1� 15.

17.

19.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43. 0.81873

45. (a)

(b) x � �
�

n�1
 
1 � 3 � 5 � � � � � �2n � 1�

�2n � 1�2nn!
 x 2n�1

1 � �
�

n�1
 
1 � 3 � 5 � � � � � �2n � 1�

2nn!
 x 2n

6

_6

4_3

T¡

T¡

T£

T£

T™

T™

T¢

T¢

Tß

Tß

T∞

T∞

f

f

�
�

n�1
 

��1�n�1

�n � 1�!
 x n, R � �

1.5

1.5

_1.5

_1.5

Tˆ=T˜=T¡¸=T¡¡

T¢=T∞=Tß=T¶

T¸=T¡=T™=T£

f

�
�

n�0
 ��1�n 

1

�2n�!
 x 4n, R � �

�
�

n�1
 ��1�n�1 2

2n�1

�2n�!
 x 2n, R � �

1
2 x � �

�

n�1
 ��1�n 

1 � 3 � 5 � � � � � �2n � 1�
n!23n�1  x 2n�1, R � 2

�
�

n�0
 ��1�n 

1

2 2n�2n�!
 x 4n�1 , R � �

�
�

n�0
 
2n � 1

n!
 x n , R � �

�
�

n�0
 ��1�n 

� 2n�1

�2n � 1�!
 x 2n�1, R � �

�
�

n�0
 ��1�n 

�n � 1��n � 2�
2n�4  x n, R � 2

1 �
x

2
� �

�

n�2
 ��1�n�1 

1 � 3 � 5 � � � � � �2n � 3�
2nn!

 x n, R � 1

�
�

n�0
 ��1�n 

1 � 3 � 5 � � � � � �2n � 1�
2 n � 32n�1 � n!

 �x � 9�n, R � 9

�
�

n�0
 ��1�n�1 

1

�2n�!
 �x � ��2n, R � �

�
�

n�0
 
e 3

n!
 �x � 3�n, R � �
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47.

49. 51. 0.440

53. 0.40102 55. 57. 59.

61. 63.

65. 67.

EXERCISES 11.11 N PAGE 755

1. (a) ,

,

(b)

(c) As increases, is a good approximation to on a 
larger and larger interval.

3.

5.

1.1

_1.1

T£

T£

f

f

π0
π

2

��x �
�

2 � �
1

6 �x �
�

2 �3

2

40

T£

f

1
2 �

1
4 �x � 2� �

1
8 �x � 2�2 �

1
16 �x � 2�3

f �x�Tn�x�n

2

2π

_2

_2π

T¢=T∞

T™=T£

T¸=T¡

Tß

f

T6�x� � 1 �
1
2 x 2 �

1
24 x 4 �

1
720 x 6

T4�x� � 1 �
1
2 x 2 �

1
24 x 4 � T5�x�

T0�x� � 1 � T1�x�, T2�x� � 1 �
1
2 x 2 � T3�x�

e 3 � 11�s2

e�x 4
1 �

1
6 x 2 �

7
360 x 4

1 �
3
2 x 2 �

25
24 x 41

120
1
3

C � �
�

n�1
 ��1�n 1

2n �2n�!
 x 2n, R � �

C � �
�

n�0
 ��1�n x 6n�2

�6n � 2��2n�!
, R � �

7.

9.

11.

13. (a) (b)

15. (a) (b)
17. (a) (b) 19. (a) (b) 0.00006
21. (a) (b) 0.042 23. 25. Four
27. 29.
31. 21 m, no 37. (c) They differ by about 

CHAPTER 11 REVIEW N PAGE 759

True-False Quiz

1. False 3. True 5. False 7. False
9. False 11. True 13. True 15. False
17. True 19. True

Exercises

1. 3. D 5. 0 7. 9. 2 11. C
13. C 15. D 17. C 19. C 21. C 23. CC
25. AC 27. 29. 31. 35. 0.9721e�e��41

11

e 121
2

8 � 10�9 km.
�0.86 � x � 0.86�1.037 � x � 1.037

0.17365x 2 �
1
6 x 4

1 � x 20.00151 �
1
2 x 2

0.0000971 �
2
3�x � 1� �

1
9�x � 1�2 �

4
81�x � 1�3

1.5625 � 10�52 �
1
4 �x � 4� �

1
64 �x � 4�2

5

_2

T™

T¢

T™

T£

T£

T¢ T∞

T∞

f

f
20

π

4

π

2

�
10

3 �x �
�

4 �4

�
64

15�x �
�

4 �5

T5�x� � 1 � 2�x �
�

4 � � 2�x �
�

4 �2

�
8

3�x �
�

4 �3

_4f

3

_1 1.5

T£

x � 2x 2 � 2x 3

_1.6

T£

f

1.6

_1 1

x �
1
6 x 3 

x f

0.7071 1 0.6916 0.7074 0.7071

0 1 �0.2337 0.0200 �0.0009

�1 1 �3.9348 0.1239 �1.2114�

�

2

�

4

T6T4 � T5T2 � T3T0 � T1
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37. , error
41. 43. 0.5, [2.5, 3.5)

45.

47. 49.

51.

53.

55.

57. (a)

(b) (c) 0.000006

59.

PROBLEMS PLUS N PAGE 762

1.
3. (b) 0 if , if , k an integer
5. (a) (c)

9. 11.

13. (a) (b)

CHAPTER 12

EXERCISES 12.1 N PAGE 769

1. 3.

5. A vertical plane that
intersects the xy-plane in
the line ,
(see graph at right)

7. , , ; isosceles triangle
9. (a) No (b) Yes
11.

, (a circle)
13.
15. , 5�3, �2, 1�

�x � 3�2 � �y � 8�2 � �z � 1�2 � 30
y � 0�x � 1�2 � �z � 3�2 � 9

�x � 1�2 � �y � 4�4 � �z � 3�2 � 25;

	 RP 	 � 6	 QR 	 � 2s10	 PQ 	 � 6

z � 0y � 2 � x

z

y
2

x

2

0

y=2-x

y=2-x, z=0

Q; R�4, 0, �3�

250
101�250

101� �e��n�1���5 � e�n��5�

ln 12��1, 1�, 
x 3 � 4x 2 � x

�1 � x�4

2
5 s3sn � 3 � 4n, ln � 1�3n, pn � 4n�3n�1

x � k��1�x� � cot xx � 0
15!�5! � 10,897,286,400

�
1
6

1.5

20

T£

f

1 �
1
2 �x � 1� �

1
8 �x � 1�2 �

1
16 �x � 1�3

C � ln 	 x 	 � �
�

n�1
 

x n

n � n!

1

2
� �

�

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

n!26n�1  x n, R � 16

�
�

n�0
 ��1�n 

x 8n�4

�2n � 1�!
, R � �

� �
�

n�1
 
x n

n
, R � 1�

�

n�0
 ��1�nx n�2, R � 1

1

2
 �

�

n�0
 ��1�n� 1

�2n�!
 �x �

�

6 �
2n

�
s3

�2n � 1�!
 �x �

�

6 �
2n�1�

4, ��6, 2�
� 6.4 � 10�70.18976224 17. 19. (b)

21. (a)
(b)
(c)

23. A plane parallel to the -plane and 4 units to the left of it

25. A half-space consisting of all points in front of the plane 

27. All points on or between the horizontal planes and 

29. All points on or inside a sphere with radius and center O

31. All points on or inside a circular cylinder of radius 3 with axis
the -axis
33. 35.
37. (a) (2, 1, 4) (b)

39. , a plane perpendicular to AB

EXERCISES 12.2 N PAGE 777

1. (a) Scalar (b) Vector (c) Vector (d) Scalar

3. AB
l

� DC
l

, DA
l

� CB
l

, DE
l

� EB
l

, EA
l

� CE
l

5. (a) (b)

(c) (d)

7. 9.

11. 13.

x0

y

k6, _2l

k5, 2l

k_1, 4l

z

y

0

A(0, 3, 1)

a
B(2, 3, _1)x

�5, 2 �a � �2, 0, �2 �

x0

y

A(_1, 3)

B(2, 2)

a

A(2, 3)

B(_2, 1)

a

y

x0

a � �3, �1 �a � ��4, �2 �

u
w+v+u

w
vv+w

w
v

u-v

u_vu+v

u

v

14x � 6y � 10z � 9

P

A

C

B

0

z

y
x

L™

L¡

r 2 � x 2 � y 2 � z2 � R20 � x � 5
y

s3

z � 6z � 0

x � 3

xz

�x � 2�2 � �y � 3�2 � �z � 6�2 � 9
�x � 2�2 � �y � 3�2 � �z � 6�2 � 4

�x � 2�2 � �y � 3�2 � �z � 6�2 � 36

5
2, 12 s94, 12 s85�2, 0, �6�, 9�s2
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15.

17. , , 13, 10
19. , , ,

21. 23.

25. 27. ,
29.

31.

33.
35. 37.
39. (a), (b) (d)

41. A sphere with radius 1, centered at 

EXERCISES 12.3 N PAGE 784

1. (b), (c), (d) are meaningful
3. 5. 7. 32 9.
11.

15. 17.

19. 21.

23. (a) Neither (b) Orthogonal
(c) Orthogonal (d) Parallel
25. Yes 27.

29. , , ;

31.

33. , , ;

35. 37. ,

39. ,

43. or any vector of the form

45. 47. 49.
51.

EXERCISES 12.4 N PAGE 792

1. 3. 5.
7. 9. 11. i � j � k0t 4 i � 2t 3 j � t 2 k

1
2 i � j �

3
2 k15 i � 3 j � 3 k16 i � 48 k

cos�1(1�s3) � 55�

13
52400 cos�40�� � 1839 ft-lb144 J

�s, t, 3s � 2s10 �, s, t � �

�0, 0, �2s10 �
2
21 i �

1
21 j �

4
21 k1�s21

� 27
49 , 54

49 , �18
49 �9

73, � 9
5 , �12

5 �
55�, 55�, 55�1�s31�s31�s3

73�, 65�, 149�
2
7 , 37 ,�6

7;

65�, 56�, 45�
1

s2

4

5s2

3

5s2

�i � j � k��s3  [or ��i � j � k��s3]

45�, 45�, 90�cos�1� �1

2s7� � 101�

cos�1� 5

s1015� � 81�cos�1�9 � 4s7

20 � � 95�

u � v � 1
2 , u � w � �

1
2

�151914

�x0, y0, z0 �

s � 9
7 , t � 11

7
y

x0

a

b

c

sa

tb

0
�i � 4 j��s17
T1 � �196 i � 3.92 j, T2 � 196 i � 3.92 j
s493 � 22.2 mi�h, N8�W

100s7 � 264.6 N, �139.1�
�38.57 ft�s� 45.96 ft�s�2, 2s3 �

8
9 i �

1
9 j �

4
9 k�

3

s58
 i �

7

s58
 j

s82s14�4 i � j � 9 k�i � j � 2 k
�1, �42 ��2, �18 �

z

y

k0, 0, _3l

x

k0, 1, 2l

k0, 1, _1l

�0, 1, �1 � 13. (a) Scalar (b) Meaningless (c) Vector
(d) Meaningless (e) Meaningless (f) Scalar
15. 24; into the page 17.

19.
27. 16 29. (a) (b)
31. (a) (b)

33. 82 35. 3 39.

41. 43. (b)
49. (a) No (b) No (c) Yes

EXERCISES 12.5 N PAGE 802

1. (a) True (b) False (c) True (d) False (e) False
(f) True (g) False (h) True (i) True (j) False
(k) True
3. ;

, ,
5. ; 

, ,

7. , , ; ,

9. , ,
;

11. , , ; 

13. Yes

15. (a)
(b) , ,

17. ,

19. Parallel 21. Skew

23. 25.

27. 29.

31. 33.

35. 37.

39. 41.

43. 45. 47. 1, 0, �1

49. Perpendicular 51. Neither, 53. Parallel

55. (a) , , (b)

57. ,

59. 61. �x�a� � �y�b� � �z�c� � 1x � 2y � z � 5

y � 2 � �zx � 1

cos�1� 5

3s3� � 15.8�z � ty � �tx � 1

�70.5�

�2, 3, 1��2, 3, 5�

0

z

y

x

”0, 0,    ’

(1, 0, 0)

(0, _2, 0)

3

2

0

z

y

x

(0, 0, 10)

(5, 0, 0)

(0, 2, 0)

x � 2y � 4z � �133x � 10y � 4z � 190

�13x � 17y � 7z � �42x � y � z � 2

3x � 7z � �92x � y � 3z � 0

x � y � z � �1�2x � y � 5z � 1

0 � t � 1r�t� � �2 i � j � 4k� � t�2 i � 7 j � 3k�
�0, �3, 3�(�3

2 , 0, �3
2)��1, �1, 0�

�x � 1����1� � � y � 5��2 � �z � 6����3�

x � 1 � �y � 1��2 � z � 1
z � 1 � ty � �1 � 2tx � 1 � t

�x � 2��2 � 2y � 2 � �z � 3����4�
z � �3 � 4t

y � 1 �
1
2 tx � 2 � 2t

y � 3
x � 1

�5
�

z � 2

�2
z � 2 � 2ty � 3x � 1 � 5t

z � 6 � ty � 3tx � 1 � t
r � �i � 6k� � t�i � 3 j � k�

z � 3.5 � ty � 2.4 � 2tx � 2 � 3t
r � �2 i � 2.4 j � 3.5 k� � t�3 i � 2 j � k�

s97�3�417 N

10.8 sin 80� � 10.6 N � m

1
2 s390�13, �14, 5 �

7
2�6, 3, 2 �

��2�s6, �1�s6, 1�s6 �, �2�s6, 1�s6, �1�s6 �
�5, �3, 1 � , ��5, 3, �1 �
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63.

65. and are parallel, and are identical

67. 69. 71. 75.

EXERCISES 12.6 N PAGE 810

1. (a) Parabola
(b) Parabolic cylinder with rulings parallel to the -axis
(c) Parabolic cylinder with rulings parallel to the x-axis

3. Elliptic cylinder 5. Parabolic cylinder

7. Cylindrical surface

9. (a) , , hyperbola ;
, , hyperbola ;
, , circle

(b) The hyperboloid is rotated so that it has axis the -axis
(c) The hyperboloid is shifted one unit in the negative 
-direction

11. Elliptic paraboloid with axis the -axis

13. Elliptic cone with axis the -axis
z

y

x

x

x

z

y

x

y

y
x 2 � z2 � 1 � k2z � k

�k �
1�x 2 � z2 � 1 � k2y � k
�k �
1�y2 � z2 � 1 � k2x � k

z

yx

z

y
x

z

x y

z

1�s65�(2s14)18
7s61�14

P4P2P3P1

x � 3t, y � 1 � t, z � 2 � 2t 15. Hyperboloid of two sheets

17. Ellipsoid

19. Hyperbolic paraboloid

21. VII 23. II 25. VI 27. VIII

29.

Hyperboloid of two sheets 
with axis the -axis

31.

Elliptic paraboloid with vertex 
and axis the -axis

33.

Ellipsoid with center 

35.
Circular cone with vertex 
and axis parallel to the -axisy

�2, �1, 1�

z

y
x

(2, _1, 1)�y � 1�2 � �x � 2�2 � �z � 1�2

�0, 2, 3�

0

z

yx

(0, 4, 3)

(0, 0, 3)

x 2 �
�y � 2�2

4
� �z � 3�2 � 1

x�0, 0, 0�

z

y
x

x

6
�

y 2

3
�

z 2

2

z

z

yx

(0, 0, 6)

(0, 0, _6)

�
x 2

9
�

y 2

4
�

z 2

36
� 1

z

y

x

x y

z

(0, 0, 1)

(0, 6, 0)

(1, 0, 0)

z

y

x
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37. 39.

41.

43. 45. , paraboloid

47. (a)

(b) Circle (c) Ellipse
51.

CHAPTER 12 REVIEW N PAGE 812

True-False Quiz

1. True 3. True 5. True 7. True 9. True
11. False 13. False 15. False 17. True

Exercises

1. (a)
(b) ,
(c) Center , radius 5
3. ; ; out of the page
5. 7. (a) 2 (b) (c) (d) 0
9. 11. (a) (b)
13. 166 N, 114 N
15. , ,
17. , ,
19. 21. (1, 4, 4)
23. Skew 25.
27.
29. Plane 31. Cone

z

y

x

0

z

y
x

22�s26
x � y � z � 4

�4x � 3y � z � �14
z � 4 � 5ty � 2 � tx � �2 � 2t

z � 2 � 3ty � �1 � 2tx � 4 � 3t

s41�2�4, �3, 4�cos�1( 1
3 ) � 71�

�2�2�2, �4
� u � v � � 3s2u � v � 3s2

�4, �1, �3�
x � 0�y � 2�2 � �z � 1�2 � 68

�x � 1�2 � �y � 2�2 � �z � 1�2 � 69

2
1
0

y
1

0
�1

x
1

0
�1

z

x 2

�6378.137�2 �
y 2

�6378.137�2 �
z2

�6356.523�2 � 1

�4x � y 2 � z2y � x 2 � z2

z

yx

0

z=œ„„„„„≈+¥

z=2

_2
0

2 x_2 0 2y

z

_2

0

2

_4
0

4 x
_4

0
4y

_4

0z

4

33. Hyperboloid of two sheets 35. Ellipsoid

37.

PROBLEMS PLUS N PAGE 815

1.
3. (a)
(b) (c)

CHAPTER 13

EXERCISES 13.1 N PAGE 822

1. 3. 5.

7. 9.

11. 13.

15. , ; 
, , ,

17. , ;
, , ,

19. VI 21. IV 23. V
25. 27. ,z

y

x

0

�1, 0, 1��0, 0, 0�

0 � t � 1z � 5t � 2y � 2t � 1x � 3t � 1
0 � t � 1r�t� � �3t � 1, 2t � 1, 5t � 2 �

0 � t � 1z � 3ty � 2tx � t
0 � t � 1r�t� � � t, 2t, 3t�

x

z

y
y=≈

z

x
1

y

z

y

x

(0, 1, 0)

(π, 1, 0)

y

x1

π

i � j � k�1, 0, 0 ���1, 2	

4��3x 2 � y 2 � t 2 � 1, z � t
�x � 1����2c� � �y � c���c 2 � 1� � �z � c���c 2 � 1�

(s3 � 1.5) m

4x 2 � y 2 � z2 � 16

z

x y

(0, 1, 2)

(0, 1, _2)

(1, 1, 0) (0, 2, 0)

z

y

x
(0, 2, 0)
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29.

31.

33.

37.

39. 41. Yes

EXERCISES 13.2 N PAGE 828

1. (a)

(b), (d)

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)

0.5

r(4.2)-r(4)

0.2

T(4)

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)

r(4.2)-r(4)

x � 2 cos t, y � 2 sin t, z � 4 cos2t

r�t� � t i �
1
2 �t 2 � 1� j �

1
2 �t 2 � 1� k

0
2 2

�2

0

2

�2

0
x

y

z

10

10 10

0

0

0

z

y

x

_10 _10

_10

1

1
1

0 x

_1

0

0

z

y

_1
_1

(c) ; 

3. (a), (c) (b)

5. (a), (c) 7. (a), (c)

(b) (b)
9.
11. 13.
15. 17. 19.

21. , , ,
23. , ,
25. , ,
27. , ,
29. , ,
31. 66° 33. 35.
37.
39.
45.

EXERCISES 13.3 N PAGE 836

1. 3. 5. 7.
9. 11.

13.

15.

17. (a)
(b)

19. (a)

(b)
21. 23. 25.
27. 29.

31. ; approaches 0
33. (a) P (b) 35.

37. is , is y � ��x�by � f �x�a

4

_4 4

_1

y=k(x)

y=x–@

1.3,  0.7
(� 1

2 ln 2, 1�s2)
15sx ��1 � 100x 3�3�22��4x 2 � 8x � 5�3/2

1
7 s

19
14

4
252��4t 2 � 1�3�2

s2e 2 t��e 2 t � 1�2

1

e2 t � 1
�1 � e 2 t, s2e t, s2e t �1

e 2 t � 1
�s2et, e 2 t, �1 � ,

2
29��sin t, 0, �cos t�

�(2�s29) cos t, 5�s29, (�2�s29) sin t�,
�3 sin 1, 4, 3 cos 1�

r�t�s�� �
2

s29
s i � 
1 �

3

s29
s� j � 
5 �

4

s29
s� k

421.2780
15.38411

27�13 3�2 � 8�e � e�120s29

2t cos t � 2 sin t � 2 cos t sin t
t 2 i � t 3 j � ( 2

3t 3�2 �
2
3) k

e t i � t 2 j � �t ln t � t�k � C
i � j � k4 i � 3 j � 5 k

z � �� ty � � � tx � �� � t
z � 2ty � 1 � tx � t
z � 1 � ty � tx � 1 � t
z � 2 � 4ty � 2tx � 3 � t

�6t 2, �6t, 2 ��0, 2, 6t��1�s14, 2�s14, 3�s14 ��1, 2t, 3t 2 �

3
5 j �

4
5 k� 1

3 , 23 , 23 �r	�t� � b � 2tc
r	�t� � 2tet 2

i � [3��1 � 3t�	 kr	�t� � 4e 4 t k
r	�t� � � t cos t � sin t, 2t, cos 2t � 2t sin 2t�

r	�t� � e t i � 3e 3 t jr	�t� � cos t i � 2 sin t j

y

x

r(0)

rª(0)

0 1

1 (1, 1)

y

0 x
r ”   ’

”     , œ„2’œ„2

2

π

4

rª ”   ’
π

4

r	�t� � �1, 2t�y

0 x

r(_1)
rª(_1)

(_3, 2)

T�4� �
r	�4�

� r	�4� �r	�4� � lim 
h l 0

 
r�4 � h� � r�4�

h
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39.

integer multiples of 

41. 43.
45.
47.

49. 57.
59.

EXERCISES 13.4 N PAGE 846

1. (a) , ,
,

(b) , 2.58
3.

5.

7.

9. , , � t �s9t 2 � 8�2, 6t, 2 ��2t, 3t 2, 2t�

� v�t� � � s1 � 4t 2

a�t� � 2 j

(1, 1, 2)

z

y

x

a(1)

v(1)

v�t� � i � 2t j

� v�t� � � s5 sin2 t � 4
a�t� � �3 cos t i � 2 sin t j

0

y

x

v ”   ’
π

3

a ”   ’
π

3

”   , œ„3’
3

2
(0, 2)

(3, 0)

v�t� � �3 sin t i � 2 cos t j

� v�t� � � st 2 � 1
a�t� � ��1, 0 � (_2, 2)

0

y

x

v(2)

a(2)

v�t� � ��t, 1 �
2.4 i � 0.8 j � 0.5k

2.8 i � 0.8 j � 0.4k2.8 i � 1.8 j � 0.3k
2.0 i � 2.4 j � 0.6k1.8 i � 3.8 j � 0.7k

2.07 � 1010 Å � 2 m
2��t 4 � 4t 2 � 1���1, �3, 1�

5

2.5�7.5

�5

(x �
5
2 )2

� y 2 � 81
4 , x 2 � (y �

5
3 )2 � 16

9

y � 6x � �, x � 6y � 6�

� 2
3 , 23 , 13 �, �� 1

3 , 23 , � 2
3 �, �� 2

3 , 13 , 23 �1�(s2et)

2�

k(t)

t0 2π 4π 6π

��t� �
6s4 cos2t � 12 cos t � 13

�17 � 12 cos t�3�2

11.
13. ,

,

15. ,
17. (a)
(b)

19. 21. ,
23. (a) (b) (c)
25. 27. ,
29. ,
31. (a) 16 m (b) upstream

33. 35. 0, 1 37.
39. 41.

CHAPTER 13 REVIEW N PAGE 850

True-False Quiz

1. True 3. False 5. False 7. True
9. False 11. True

Exercises

1. (a)

(b) ,

3. ,
5. 7. 86.631 9.

11. (a)

(b)

(c)
13. 15.
17. ,

, a�t� � �1�t� i � e�t k� v�t� � � s2 � 2 ln t � �ln t�2 � e�2 t

v�t� � �1 � ln t� i � j � e�t k
x � 2y � 2� � 012�173�2

st 8 � 4t 6 � 2t 4 � 5t 2��t 4 � t 2 � 1�2

�2t, 1 � t 4, �2t 3 � t��st 8 � 4t 6 � 2t 4 � 5t 2

� t 2, t, 1 ��st 4 � t 2 � 1

��21
3 i � �2�� 2� j � �2���k

0 � t � 2�r�t� � 4 cos t i � 4 sin t j � �5 � 4 cos t�k
r 
�t� � �� 2 cos �t j � � 2 sin �t k

r	�t� � i � � sin �t j � � cos �t k

z

y

x

(0, 1, 0)

(2, 1, 0)

t � 14.5 cm�s2, 9.0 cm�s2
e t � e�t, s26t, 6

40

_12

0

12

40

_4

0

20

�23.6�
55.4� � � � 85.5�13.0� � � � 36.0�

�79.8��10.2�30 m�s
500 m�s�3.2 km�22 km
� v�t� � � s25t 2 � 2r�t� � t i � t j �

5
2 t 2 kt � 4

_200
0

200

x

_10

0

10
y

z

0

0.2

0.4

0.6

r�t� � ( 1
3t 3 � t) i � �t � sin t � 1� j � ( 1

4 �
1
4 cos 2t) k

r�t� � ( 1
2t 2 � 1� i � t 2 j � t kv�t� � t i � 2t j � k

e t
st 2 � 2t � 3e t ��2 sin t i � 2 cos t j � �t � 2�k	

e t ��cos t � sin t� i � �sin t � cos t� j � �t � 1�k	
s2 i � e t j � e�t k, e t j � e�t k, e t � e�t
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19. (a) About 3.8 ft above the ground, 60.8 ft from the athlete
(b) (c) from the athlete
21. (c)

PROBLEMS PLUS N PAGE 852

1. (a) (c)
3. (a)
5. (a) to the right of the table’s edge,
(b) (c) to the right of the table’s edge
7.

CHAPTER 14

EXERCISES 14.1 N PAGE 865

1. (a) ; a temperature of with wind blowing at
feels equivalent to about without wind.

(b) When the temperature is , what wind speed gives a wind
chill of ?
(c) With a wind speed of , what temperature gives a wind
chill of ?
(d) A function of wind speed that gives wind-chill values when the
temperature is 
(e) A function of temperature that gives wind-chill values when
the wind speed is 
3. Yes
5. (a) 25; a 40-knot wind blowing in the open sea for 15 h will
create waves about 25 ft high.
(b) is a function of t giving the wave heights produced by
30-knot winds blowing for t hours.
(c) is a function of giving the wave heights produced by
winds of speed blowing for 30 hours.
7. (a) 4 (b) (c)
9. (a) (b) (c)
11.

13.

15. y

x_1 10

1

_1


�x, y� ��1 � x � 1, �1 � y � 1�

y

x0

≈+¥=1
1
9


�x, y� � 1
9 x 2 � y 2 � 1�

y

x0

y=_x


�x, y� � y 
 �x�
�1, ��
�x, y, z� � z 
 x 2 � y 2�e

�0, ���2
v

vf �v, 30�

f �30, t�

50 km�h

�5�C

�35�C�49�C
20 km�h

20 km�h�30�C
�20�C

�27�C40 km�h
�15�C�27

56�

�2.13 ft�7.6�
�15 ft�s�0.94 ft

90�, v0
2��2t�

a � ��2rv � �R��sin �t i � cos �t j�

�2e�t vd � e�t R
�64.2 ft�21.4 ft

17.

19.

21. , horizontal plane

23. , plane

25. , parabolic cylinder

27. 29. ,
elliptic paraboloid top half of cone

31. 33. Steep; nearly flat�56, �35

z

yx
0

x
y

0

z

(0, 0, 1)

z � sx 2 � y 2z � 4x 2 � y 2 � 1

z

x y

z � y2 � 1

0

z

y

x

(0, 0, 10)

(2.5, 0, 0)
(0, 2, 0)

4x � 5y � z � 10

z

y

0

x

z � 3

z

y

0

x


�x, y, z� � x 2 � y 2 � z2 � 1�

y

x0 1_1

y=≈


�x, y� � y 
 x 2, x � �1�
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35. 37.

39. 41.

43. 45.

47.

49. y

0 x

y

x

z

z=4

z=3

z=2

z=1

y

0 x

4321

x 2 � 9y 2 � k

y

x

0

0

1

1

2

2

3

3

y

x0
0

1 2 3

_1

_2

_3

y 2 � x 2 � k 2y � ke�x

y

0 x

2

1

0

_1

_2

y

x

0 1 2341234

y � ln x � k�y � 2x�2 � k

5

y

x

zz

14

y
x

51.

53.

55. (a) C (b) II 57. (a) F (b) I
59. (a) B (b) VI
61. Family of parallel planes
63. Family of hyperboloids of one or two sheets with axis 
the y-axis
65. (a) Shift the graph of upward 2 units
(b) Stretch the graph of vertically by a factor of 2
(c) Reflect the graph of about the -plane
(d) Reflect the graph of about the -plane and then shift it
upward 2 units
67.

f appears to have a maximum value of about 15. There are two
local maximum points but no local minimum point.

69.

The function values approach 0 as x, y become large; as 
approaches the origin, f approaches or 0, depending on the
direction of approach.
71. If , the graph is a cylindrical surface. For , the level
curves are ellipses. The graph curves upward as we leave the ori-
gin, and the steepness increases as c increases. For , the level
curves are hyperbolas. The graph curves upward in the y-direction
and downward, approaching the xy-plane, in the x-direction giving
a saddle-shaped appearance near (0, 0, 1).
73. 75. (b) y � 0.75x � 0.01c � �2, 0, 2

c � 0

c � 0c � 0

��
�x, y�

10

5

0

_5

_10

y2
0

_2
x

2

0

_2

z

0

20

0

_20

_40

y 5
0_5 x5

_5

z

xyf
xyf

f
f

0

_2 0 2 2 0 _2
y x

z

_3

0

3

x

_3

0

3

0

2

y

z
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EXERCISES 14.2 N PAGE 877

1. Nothing; if is continuous, 3.

5. 1 7. 9. Does not exist 11. Does not exist

13. 0 15. Does not exist 17. 2 19. 1
21. Does not exist

23. The graph shows that the function approaches different num-
bers along different lines.

25. ;

27. Along the line 29.

31. 33.

35.

37. 39. 0 41.

43.

is continuous on 

EXERCISES 14.3 N PAGE 888

1. (a) The rate of change of temperature as longitude varies, with
latitude and time fixed; the rate of change as only latitude varies;
the rate of change as only time varies.
(b) Positive, negative, positive

3. (a) ; for a temperature of and wind
speed of , the wind-chill index rises by for each
degree the temperature increases. ; for a 
temperature of and wind speed of , the wind-chill
index decreases by for each the wind speed 
increases.
(b) Positive, negative (c) 0

5. (a) Positive (b) Negative

7. (a) Positive (b) Negative

9.

11. ,

z

y

0

x

(1, 2, 8)

C¡

(1, 2)

2

16

4

z

y

0

x

(1, 2, 8)

C™

(1, 2)

2

16

4

fy�1, 2� � �4 � slope of C2fx�1, 2� � �8 � slope of C1

c � f, b � fx, a � fy

km�h0.15�C
30 km�h�15�C

fv��15, 30� � �0.15
1.3�C30 km�h
�15�CfT ��15, 30� � 1.3

� 2f

_2
0

2
x_2

0
2y

z

_1

0

1

2

�1
�x, y� � �x, y� � �0, 0��


�x, y, z� � y 
 0, y � sx 2 � z 2 �

�x, y� � x 2 � y 2 � 4�
�x, y� � y 
 0�


�x, y� � y � �e x�2�y � x


�x, y� � 2x � 3y 
 6�
h�x, y� � �2x � 3y � 6�2 � s2x � 3y � 6

2
7

�
5
2f �3, 1� � 6f

13.

15. ,
17. ,
19. ,
21.
23.

25. ,

27. ,
29. , ,

31. , ,

33. , ,

35. , ,
,

37.

39. 41.

43. ,

45. ,

47. ,

49. (a) (b)
51. , ,
53. , ,

55. , , zyy � �2y��1 � y 2�2zxy � 0 � zyxzxx � �2x��1 � x 2�2
wvv � u2��u2 � v2�3�2

wuv � �uv��u2 � v2�3�2 � wvuwuu � v2��u2 � v2�3�2
fyy � 20x 3y 3fxy � 15x 2y 4 � 8x 3 � fyxfxx � 6xy 5 � 24x 2y

f 	�x � y�, f 	�x � y�f 	�x�, t	�y�

�z

�y
�

�z

1 � y � y 2z 2

�z

�x
�

1 � y 2z 2

1 � y � y 2z 2

�z

�y
�

3xz � 2y

2z � 3xy

�z

�x
�

3yz � 2x

2z � 3xy

fy�x, y� � 2xy � x 3fx�x, y� � y 2 � 3x 2y

1
4

1
5

�u��xi � xi�sx1
2 � x2

2 � � � � � xn
2

ft � xy 2z 2 sec2�yt�fz � 2xyz tan�yt�
fy � xyz 2t sec2�yt� � xz 2 tan�yt�fx � yz 2 tan�yt�

�u��z � xy 2�s1 � y 2z2

�u��y � x sin�1�yz� � xyz�s1 � y 2z2�u��x � y sin�1�yz�
�w��z � 3��x � 2y � 3z�

�w��y � 2��x � 2y � 3z��w��x � 1��x � 2y � 3z�
fz � x � 20x 2y 3z3fy � �15x 2y 2z4fx � z � 10xy 3z4

�u��w � e w�t�u��t � e w�t(1 � w�t)

fs�r, s� �
2rs

r 2 � s 2fr�r, s� �
2r 2

r 2 � s 2 � ln�r 2 � s 2�

�w��� � cos � cos �, �w��� � �sin � sin �
fx�x, y� � 2y��x � y�2, fy�x, y� � �2x��x � y�2

�z��y � 30�2x � 3y�9�z��x � 20�2x � 3y�9
ft �x, t� � �e�t cos �xfx �x, t� � ��e�t sin �x

fy �x, y� � 5y 4 � 3xfx �x, y� � �3y

fy

0

_2
0

2x _2 0 2
y

z

10

0

_2
0

2x _2 0 2
y

_10

z
fx

10

0
_2

0
2x _2 0 2

y

z
f

fx � 2x � 2xy, fy � 2y � x 2
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61.
63.
65. 67.
69. 81.
87. No 89.
93.

95. (a)

(b) ,

(c) 0, 0 (e) No, since and are not continuous.

EXERCISES 14.4 N PAGE 899

1.
3.
5.
7. 9.

11. 13. 15.

19. ; 21.

23.
25.
27.
29.
31. 33. 35.

37. 150 39. 41. 2.3%

43.

EXERCISES 14.5 N PAGE 907

1.
3.
5.
7. ,

9. ,

11. ,

�z

�t
� e r
s cos � �

t

ss 2 � t 2
 sin ��

�z

�s
� e r
t cos � �

s

ss 2 � t 2
 sin ��

�z��t � 2st cos � cos � � s2 sin � sin �
�z��s � t 2 cos � cos � � 2st sin � sin �

�z��t � �2sxy 3 sin t � 3sx 2y 2 cos t
�z��s � 2xy 3 cos t � 3x 2y 2 sin t
e y�z�2t � �x�z� � �2xy�z2 �	
��x�t� � y sin t	�s1 � x 2 � y2

�2x � y� cos t � �2y � x�e t

�1 � �x, �2 � �y

1
17 � 0.059 �

16 cm35.4 cm2�z � 0.9225, dz � 0.9
dR � � 2 cos � d� � 2�� cos � d� � �� 2 sin � d�
dm � 5p4q3 dp � 3p5q2 dq
dz � 3x 2 ln�y 2� dx � �2x 3�y� dy
4T � H � 329; 129�F

3
7 x �

2
7 y �

6
7 z; 6.99142.846�

2
3 x �

7
3 y �

20
3

1 � �y1
9 x �

2
9 y �

2
32x �

1
4 y � 1

0

2 x

0

2y

_1

0z

1
400

200

0

y5 0 _5
x

10
0

_10

z

z � y
x � y � 2z � 0
z � �8x � 2y

fyxfxy

fy�x, y� �
x 5 � 4x 3y 2 � xy 4

�x 2 � y 2 �2fx�x, y� �
x 4y � 4x 2y 3 � y 5

�x 2 � y 2 �2

_0.2

0.2

0

_1

0

1
y

1
0

_1

x

z

�2
x � 1 � t, y � 2, z � 2 � 2t

R 2�R 1
2�12.2, �16.8, �23.25

4��y � 2z�3, 0�e r��2 sin � � � cos � � r� sin ��
24 sin�4x � 3y � 2z�, 12 sin�4x � 3y � 2z�
12xy, 72xy 13. 62 15.

17. , ,

19. ,

21. 23. 25.

27. 29.

31.

33.

35. 37.
39. (a) (b) (c)
41. 43.
45. (a) ,

51.

EXERCISES 14.6 N PAGE 920

1. 3. 5.
7. (a)
(b) (c)

9. (a) (b) (c)
11. 13. 15. 17.
19. 21. , 23.
25. 27. (b)
29. All points on the line 
31. (a)
33. (a) (b) (c) 35.
39. (a) (b)

41. (a) (b)

43. (a) (b)
45. 47. ,

53. No 59.
63. If and , then and are
known, so we solve linear equations for and .fyfx

c fx � dfyafx � bfyv � �c, d �u � �a, b �
x � �1 � 10t, y � 1 � 16t, z � 2 � 12t

y

x0

2x+3y=12

xy=6

(3, 2)

f (3, 2)
Î

1

_1

0

1

2

1 2x
2

z

y

2x � 3y � 12�2, 3�
x � 1 � y � �zx � y � z � 1

x � 2

4
�

y � 1

�5
�

z � 1

�1
4x � 5y � z � 4

x � 3 � y � 3 � z � 5x � y � z � 11

327
132s406�38, 6, 12 �32�s3

�40�(3s3)
y � x � 1

��12, 92�1, �3, 6, �2 �
1, �0, 1 ���1, 1 �4s22�5

9�(2s5)4�s30�8�s1023�10
�

22
3�1, 12, 0 ��e 2yz, 2xze 2yz, 2xye 2yz �

s3 �
3
2�2, 3 �

�f �x, y� � �2 cos�2x � 3y�, 3 cos�2x � 3y��
2 � s3�2� 0.778��0.08 mb�km

4rs �2z��x 2 � �4r 2 � 4s 2 ��2z��x �y � 4rs �2z��y 2 � 2 �z��y
�z��� � ���z��x�r sin � � ��z��y�r cos �

�z��r � ��z��x� cos � � ��z��y� sin �
�1�(12s3) rad�s� �0.27 L�s

0 m�s10 m2�s6 m3�s
� �0.33 m�s per minute2�C�s

1 � y 2z 2

1 � y � y 2z 2 , �
z

1 � y � y 2z 2

3yz � 2x

2z � 3xy
, 

3xz � 2y

2z � 3xy

sin�x � y� � e y

sin�x � y� � xe y

4�xy�3�2 � y

x � 2x 2
sxy

36, 24, 309
7, 9785, 178, 54

�w

�y
�

�w

�r
 
�r

�y
�

�w

�s
 
�s

�y
�

�w

�t
 
�t

�y

�
�w

�t
 
�t

�x

�w

�x
�

�w

�r
 
�r

�x
�

�w

�s
 
�s

�x

�u

�t
�

�u

�x
 
�x

�t
�

�u

�y
 
�y

�t

�u

�s
�

�u

�x
 
�x

�s
�

�u

�y
 
�y

�s

�u

�r
�

�u

�x
 
�x

�r
�

�u

�y
 
�y

�r

7, 2
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EXERCISES 14.7 N PAGE 930

1. (a) f has a local minimum at (1, 1).
(b) f has a saddle point at (1, 1).
3. Local minimum at (1, 1), saddle point at (0, 0)
5. Maximum 
7. Minima , , saddle point at 
9. Saddle points at 
11. Minimum , saddle point  at 
13. None 15. Minimum , saddle points at 
17. Minima ,
saddle points at ,
21. Minima ,
23. Maximum ,
minimum , saddle point at 
25. Minima , ,
saddle point (0.312, 0), lowest point 
27. Maxima , ,
saddle points ,
highest points 
29. Maximum , minimum 
31. Maximum , minimum 
33. Maximum , minimum 
35. Maximum , minimum 

37.

39. 41. , 43.
45.

47. 49. Cube, edge length 
51. Square base of side 40 cm, height 20 cm 53.

EXERCISES 14.8 N PAGE 940

1.
3. No maximum, minima 
5. Maxima , minima 
7. Maximum , minimum 
9. Maximum , minimum 

11. Maximum , minimum 1

13. Maximum ,

minimum 

15. Maximum ,
minimum 
17. Maximum , minimum 

19. Maxima ,

minima 

27–37. See Exercises 39–49 in Section 14.7.
39. L 3�(3s3)

f (�1�s2, �1�(2s2)) � e�1�4

f (�1�s2, �1�(2s2)) � e 1�4

1
2

3
2

f (1, �s2, s2) � 1 � 2s2
f (1, s2, �s2) � 1 � 2s2

f (� 1
2 , � 1

2 , � 1
2 , � 1

2 ) � �2

f ( 1
2, 12 , 12 , 12 ) � 2

s3

�2�s32�s3
f ��1, �3, �5� � �70f �1, 3, 5� � 70

f ��2, �1� � �4f ��2, 1� � 4
f �1, 1� � f ��1, �1� � 2

�59, 30

L 3�(3s3)
c�124

3

8r 3� (3s3)
100
3 , 100

3 , 100
3(2, 1, �s5)(2, 1, s5)s3

_3

_2

_1

0

_1 0 1
_2

2
4

x

y

z

(_1, 0, 0) (1, 2, 0)

f ��1, 0� � �2f �1, 0� � 2
f �1, 1� � 0f �3, 0� � 83
f �0, 0� � 4f ��1, 1� � 7

f �0, 3� � �14f �2, 0� � 9
�1.629, �1.063, 8.105�

��0.259, 0�, �1.526, 0�
f �1.629, �1.063� � 8.105f ��1.267, 0� � 1.310
��1.714, 0, �9.200�

f �1.402, 0� � 0.242f ��1.714, 0� � �9.200
��, ��f �5��3, 5��3� � �3s3�2

f ���3, ��3� � 3s3�2
f ��1, �1� � 3f �1, �1� � 3

�3��2, 0����2, 0�
f �2�, 1� � �1f ��, �1� �f �0, 1� �

��1, 0�f �0, 0� � 0
�0, 0�f �2, 1� � �8

�1, �1�, ��1, 1�
�0, 0�f ��1, �1� � 0f �1, 1� � 0

f (�1, 12 ) � 11

41. Nearest , farthest 
43. Maximum , minimum 
45. (a) (b) When 

CHAPTER 14 REVIEW N PAGE 944

True-False Quiz

1. True 3. False 5. False 7. True 9. False
11. True

Exercises

1. 3.

5. 7.

9.
11. (a) , (b) by
Equation 14.6.9 (Definition 14.6.2 gives .)
(c)
13. ,
15. ,
17. , ,
19. , ,
21. , ,

, ,
,

25. (a) (b)

27. (a) (b)

29. (a)
(b)
31.
33.
35.
37. 43. 45.
47. 49. �5

8 knot�mis145�2, �4, 92 �
43
5ze x sy �zsy, xz�(2sy ), 2��47, 108

2xy 3�1 � 6p� � 3x 2y 2� pe p � e p� � 4z 3� p cos p � sin p�
60x �

24
5 y �

32
5 z � 120; 38.656

(2, 12 , �1), (�2, �1
2 , 1)

x � 3 � 8t, y � 4 � 2t, z � 1 � 4t
4x � y � 2z � 6

x � 2

4
�

y � 1

�4
�

z � 1

�6
2x � 2y � 3z � 3

x � 1

8
�

y � 2

4
� 1 � zz � 8x � 4y � 1

f zz � m�m � 1�x k y lz m�2f yz � lmx k y l�1z m�1 � f zy

f yy � l�l � 1�x k y l�2z mf xz � kmx k�1y lz m�1 � f zx

f xy � klx k�1y l�1z m � f yxf xx � k�k � 1�x k�2 y lz m
f yy � �2xf xy � �2y � f yxf xx � 24x

Tr � per��q � er �Tq � p��q � er �Tp � ln�q � er�
tv � u��1 � v 2�tu � tan�1v

fy � y�s2x � y 2fx � 1�s2x � y 2

�0.25
�1.1�C�m

� 0.35�C�m�3.0�C�m�3.5�C�m

2
3

x210

y

2

1

y

x

1
2

3 4 5

0

y

x_1

_1

y=_x-1

x y

z

1

1


�x, y� � y � �x � 1�

x1 � x2 � � � � � xnc�n
��5.3506�9.7938

��1, �1, 2�( 1
2, 12 , 12 )
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51. Minimum 
53. Maximum ; saddle points (0, 0), (0, 3), (3, 0)
55. Maximum , minimum 
57. Maximum , minima ,
saddle points 
59. Maximum ,
minimum 
61. Maximum 1, minimum 
63.
65.

PROBLEMS PLUS N PAGE 948

1. 3. (a) (b) Yes
7.

CHAPTER 15

EXERCISES 15.1 N PAGE 958

1. (a) 288 (b) 144
3. (a) (b) 0
5. (a) �6 (b) �3.5
7.
9. (a) (b) 15.5
11. 60 13. 3
15. 1.141606, 1.143191, 1.143535, 1.143617, 1.143637, 1.143642

EXERCISES 15.2 N PAGE 964

1. , 3. 10 5. 2 7. 9.
11. 0 13. 15. 17.
19. 21.

23.

25. 27. 29. 2 31.
33.

35.
37. Fubini’s Theorem does not apply. The integrand has an infinite
discontinuity at the origin.

5
6

2

0

y
1

0

x1
0

z

21e � 57

64
3

166
2747.5

z

y
x

0

1

1

4

1
2�e 2 � 3�1

2 (s3 � 1) �
1
12�

9 ln 221
2�

21
2  ln 2261,632�453x 2500y 3

�248
U � V � L

� 2�2 � 4.935

s6�2, 3s2�2
x � w�3, base � w�3L2W 2, 14 L2W 2

P(2 � s3), P(3 � s3)�6, P(2s3 � 3)�3
(�3�1�4, 3�1�4

s2, �31�4 ), (�3�1�4, �3�1�4
s2, �31�4 )

�1
f (�s2�3, �1�s3) � �2�(3s3)

f (�s2�3, 1�s3) � 2�(3s3)
��1, �1�, �1, 0�

f �1, �1� � �3f ��1, 0� � 2
f �2, 4� � �64f �1, 2� � 4

f �1, 1� � 1
f ��4, 1� � �11 EXERCISES 15.3 N PAGE 972

1. 32 3. 5. 7. 9. 11.

13. 15. 17. 0 19. 21.

23. 6 25. 27. 29. 0, 1.213, 0.713 31.

33.

35. 13,984,735,616�14,549,535 37.

39. 41.

43.

45. 47. 49. 51. 1
53. 55.

59. 61.

EXERCISES 15.4 N PAGE 978

1. 3.

5.

7. 0 9. 11. 13.

15. 17. 19. 21.

23. 25.

27.

29. 31.

33. 35. 37. (a) (b) s� �2s� �415
161800� ft3

2s2�31
2��1 � cos 9�
�8��3�(64 � 24s3)

�2��3�[1 � (1�s2)]4
3 �a 3

4
3�16

3 �1
8�� � 2���12

3
64 � 2���2��1 � e�4 �1

2� sin 9

33��2y

0 x

4 7

R

x
1
�1 x

�x�1��2
0  f �x, y� dy dxx

3��2
0  x4

0  f �r cos �, r sin ��r dr d�

2��38�

3
4���16�e�1�16 � xxQ e��x 2�y 2� 2

 dA � ��16

1
3 (2s2 � 1)1

3 ln 91
6 �e 9 � 1�

y

x0

x=2

y=ln x  or  x=e†

ln 2

1 2

y=0

x
ln 2

0  x2
e y f �x, y� dx dy

≈+¥=9

y=0

y

x0

3

3–3

x=4

y=0

y=œ„x

y

x0

2

4

x
3

�3 x
s9�x 2

0
 f �x, y� dy dxx

2
0  x4

y 2 f �x, y� dx dy

��2

0

z

y

x

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

64
3

1
3

128
15

31
8

7
18

147
20

1
2 �1 � cos 1�

1
2e16 �

17
2�4

3e � 13
10
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EXERCISES 15.5 N PAGE 988

1. 3. 5.

7. ,

9. , 11. 13.
15. if vertex is (0, 0) and sides are along positive axes
17.
19. , , if vertex is and sides are
along positive axes

21. , , ,

,
23. , ; ,
25. , ; ,
27. (a) (b) 0.375 (c)
29. (b) (i)
(ii) (c) 2, 5
31. (a) (b)
33. (a) , where D is
the disk with radius 10 mi centered at the center of the city
(b) , on the edge

EXERCISES 15.6 N PAGE 998

1. 3. 1 5. 7. 9. 4 11.

13. 15. 17. 19. 21.

23. (a) (b)

25. 60.533
27.

29.

31.

� x
2
0  xs4�2z

�s4�2z x
4�2z
x 2  f �x, y, z� dy dx dz

� x
2
�2 x

2�x 2�2
0  x4�2z

x 2  f �x, y, z� dy dz dx

� x
4
0  x2�y�2

0  xsy
�sy f �x, y, z� dx dz dy

� x
2
0  x4�2z

0  xsy
�sy f �x, y, z� dx dy dz

� x
4
0  xsy

�sy
 x2�y�2

0  f �x, y, z� dz dx dy

x
2
�2 x

4
x 2 x2�y�2

0  f �x, y, z� dz dy dx

� x
1
�1 x

s4�4z 2

�s4�4z 2 x
4�x 2�4z 2

0  f �x, y, z� dy dx dz

� x
2
�2 x

s4�x 2�2
�s4�x 2�2 x

4�x 2�4z 2

0  f �x, y, z� dy dz dx

� x
4
0  xs4�y�2

�s4�y�2 x
s4�y�4z 2

�s4�y�4z 2 f �x, y, z� dx dz dy

� x
1
�1 x

4�4z 2

0  xs4�y�4z 2

�s4�y�4z 2 f �x, y, z� dx dy dz

� x
4
0  xs4�y

�s4�y x
s4�x 2�y�2
�s4�x 2�y�2 f �x, y, z� dz dx dy

x
2
�2 x

4�x 2

0  xs4�x 2�y�2
�s4�x 2�y�2 f �x, y, z� dz dy dx

z

y

x

0
1

2

1

1
4 � �

1
3x

1
0  xx

0 xs1�y 2

0  dz dy dx

36�16
316��31

608��3e�

65
28�

1
3

1
3 �e 3 � 1�27

4

200�k�3 � 209k, 200(��2 �
8
9 )k � 136k

xxD �k�20�[20 � s�x � x0 �2 � �y � y0 �2 ] dA

�0.632�0.500
1 � e�1.8 � e�0.8 � e�1 � 0.3481

e�0.2 � 0.8187

5
48 � 0.10421

2

a�2a�2�a4��16�a4��16
h�s3b�s3�b3h�3�bh3�3

I0 � � 4�16 � 9� 2�64Iy � 1
16 �� 4 � 3� 2 �

Ix � 3� 2�64�x, y � � 
2�

3
�

1

�
, 

16

9�
�m � � 2�8

�0, 0�7ka6�907ka6�1807ka6�180

1
16�e 4 � 1�, 18�e 2 � 1�, 1

16�e 4 � 2e 2 � 3�
�2a�5, 2a�5�

�0, 45��14���( 3
8, 3��16)�L�2, 16��9���L�4


 e 2 � 1

2�e 2 � 1�
, 

4�e 3 � 1�
9�e 2 � 1��1

4�e 2 � 1�

6, ( 3
4, 32 )4

3 , (4
3 , 0)64

3  C
33.

35.

37. 39.
41. 43.

45. (a)

(b) , where

(c)

47. (a)

(b)

(c)

49. (a) (b) (c)
51.
53. The region bounded by the ellipsoid 

EXERCISES 15.7 N PAGE 1004

1. (a) (b)

3. (a) (b)
5. Vertical half-plane through the -axis 7. Circular paraboloid
9. (a) (b)
11.

x

z

y2

2

z=11

r � 2 sin �z � r 2
z

(2, 4��3, 2)(s2, 7��4, 4)
(2, �2s3, 5)(s2, s2, 1)

0

z

y
x

”4, _   , 5’

5

4

π

3

π
3

_

0

z

y

x

π
4

2 1

” 2,    , 1 ’
π

4

x 2 � 2y 2 � 3z2 � 1
L3�8

1
5760

1
64

1
8

1
240 �68 � 15��

�x, y, z � � 
 28

9� � 44
, 

30� � 128

45� � 220
, 

45� � 208

135� � 660�
3

32 � �
11
24

x
3

�3 x
s9�x 2

�s9�x 2 x5�y
1  �x 2 � y 2�3�2 dz dy dx

x
3

�3 x
s9�x 2

�s9�x 2 x5�y
1  zsx 2 � y 2 dz dy dxz � �1�m�

x
3

�3 x
s9�x 2

�s9�x 2 x5�y
1  ysx 2 � y 2 dz dy dxy � �1�m�

x
3

�3 x
s9�x 2

�s9�x 2 x5�y
1  xsx 2 � y 2 dz dy dxx � �1�m�

�x, y, z �
m � x

3
�3 x

s9�x 2

�s9�x 2 x5�y
1  sx 2 � y 2 dz dy dx

1
2�kha 4Ix � Iy � Iz � 2

3 kL5
a 5, �7a�12, 7a�12, 7a�12�79

30 , ( 358
553 , 33

79 , 571
553 )

x
1
0  x1

z
 xx

z
 f �x, y, z� dy dx dz� x

1
0  xx

0 xx
z
 f �x, y, z� dy dz dx �

x
1
0  xy

0  x1
y
 f �x, y, z� dx dz dy� x

1
0  x1

z
 x1

y
 f �x, y, z� dx dy dz �

x
1
0  xx

0 xy
0  f �x, y, z� dz dy dxx

1
0  x1

y
 xy

0  f �x, y, z� dz dx dy �

� x
1
0  x�1�z�2

0  x1�z
sx

 f �x, y, z� dy dx dz

� x1
0  x1�sx

0  x1�z
sx  f �x, y, z� dy dz dx

� x
1
0  x1�y

0  xy 2

0  f �x, y, z� dx dz dy

� x1
0  x1�z

0  xy 2

0  f �x, y, z� dx dy dz

� x
1
0  xy 2

0  x1�y
0  f �x, y, z� dz dx dy

x
1
0  x1

sx
 x1�y

0  f �x, y, z� dz dy dx
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13. Cylindrical coordinates: , ,

15.

17. 19. 21.
23. (a) (b)
25. 27. 0
29. (a) , where is the cone
(b) ft-lb

EXERCISES 15.8 N PAGE 1010

1. (a)
(0, 0, 1)

(b)

3. (a) (b)
5. Half-cone
7. Sphere, radius , center 
9. (a) (b)

11.

13.

15. 0 � � � ��4, 0 � � � cos �

x

z

y

˙=
3π
4

∏=1

∏=2

z

yx

2
2

2

� 2�sin2� cos2� � cos2�� � 9cos2� � sin2�
(0, 12, 0)1

2

(s2, 3��2, 3��4)�4, ��3, ��6�

( 1
2 s2, 12 s6, s2)

0

z

y
x

”2,    ,    ’

2

π
4

π
3

π

3

π

4

0

z

y
x

(1, 0, 0)

1

�3.1 � 1019
CxxxC h�P�t�P� dV

�Ka 2�8, �0, 0, 2a�3�
�0, 0, 15�162�

2��5��e 6 	 e 	 5�384�

64��3

x 4 y4

z

4

0 � z � 200 � � � 2�6 � r � 7 17.

19.
21. 23. 25.
27. 29. (a) (b) (0, 0, 2.1)
31.
33. (a) (b)

35.
37. 39.
41. 43.

EXERCISES 15.9 N PAGE 1020

1. 16 3. 5. 0
7. The parallelogram with vertices (0, 0), (6, 3), (12, 1), (6, 	2)
9. The region bounded by the line , the y-axis, and 
11. 13. 15. 2 ln 3
17. (a) (b)
19. 21. 23.

CHAPTER 15 REVIEW N PAGE 1021

True-False Quiz

1. True 3. True 5. True 7. False

Exercises

1. 3. 5. 7.
9.
11. The region inside the loop of the four-leaved rose in
the first quadrant
13. 15. 17. 19.

21. 23. 40.5 25. 27. 29. 176
31. 33.
35. (a) (b)
(c)
37.
39. 97.2 41. 0.0512
43. (a) (b) (c)

45. 47. 49. 0

PROBLEMS PLUS N PAGE 1024

1. 30 3. 7. (b) 0.901
2 sin 1

	ln 2x
1
0  x1	z

0  xsy
	sy f �x, y, z� dx dy dz

1
45

1
3

1
15

�0, 0, h�4�
Ix � 1

12 , Iy � 1
24; y � 1�s3, x � 1�s6
( 1

3, 8
15 )1

4

2ma 3�92
3

64
15��9681��5

81
4 ln 21

2 e 6 	
7
2

1
2 sin 1

r � sin 2�
x

�

0  x4
2  f �r cos �, r sin �� r dr d�

2
3

1
2 sin 14e 2 	 4e � 3�64.0

e 	 e	13
2 sin 18

5 ln 8
1.083 � 1012 km34

3 �abc
6�	3

y � sxy � 1

sin2� 	 cos2�

136��99
(4s2 	 5 )�155��6

�2��3�[1 	 (1�s2)], (0, 0, 3�[8(2 	 s2)])
4K�a 5�15(0, 0, 38 a)

(0, 525
296 , 0)

10�(s3 	 1)�a 3�3
1562��1515��16312,500��7

x
��2
0  x3

0  x2
0  f �r cos �, r sin �, z� r dz dr d�

�9��4� (2 	 s3)

x y

z

π

6

3
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CHAPTER 16

EXERCISES 16.1 N PAGE 1032

1.

3. 5.

7. 9.

11. II 13. I 15. IV 17. III
19. The line 

21.

23.

25.

0_2_4_6 4 6 x

y

_2

2


f �x, y� � 2x i 	 j

�
y

sx 2 � y 2 � z2
 j �

z

sx 2 � y 2 � z2
 k


 f �x, y, z� �
x

sx 2 � y 2 � z2
 i


f �x, y� � �xy � 1�e xy i � x 2e xy j

y � 2x4.5

	4.5

	4.5 4.5

z

y

x

z

y
x

y

x0

y

x0

_2

2

2

y

1

0

_1

1 x_1_2

_2

27.

29. III 31. II 33.
35. (a) (b)

EXERCISES 16.2 N PAGE 1043

1. 3. 1638.4 5. 7. 9.

11. 13. 15.

17. (a) Positive (b) Negative
19. 45 21. 23. 1.9633 25. 15.0074

27.

29. (a) (b)

31. 33.

35. (a) ,

,

, where 
(b)
37. ,
39. 41. 26 43. 45. (b) Yes
47. �22 J

1.67 � 104 ft-lb2� 2
Iy � k (1

2� 	
2
3 )Ix � k(1

2� 	
4
3 )

�0, 0, 3��
m � x

C
 ��x, y, z� dsz � �1�m� x

C
 z��x, y, z� ds

y � �1�m� x
C
 y��x, y, z� ds

x � �1�m� x
C
 x��x, y, z� ds

2�k, �4��, 0�172,704
5,632,705 s2 �1 	 e	14� �

1.6

	0.2

0 1

F(r(1))

F(r(0))

F ”r ”        ’’
1

œ„2

1.6

11
8 	 1�e

2.5

	2.5

	2.5 2 .5

3� �
2
3

6
5 	 cos 1 	 sin 1

97
3

1
5

1
12s14 �e 6 	 1�

s5�17
3

243
8

1
54 �1453�2 	 1�

y � C�x

y � 1�x, x � 0y

x0

�2.04, 1.03�

6

6	6

	6
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EXERCISES 16.3 N PAGE 1053

1. 40 3.
5. 7.
9.
11. (b) 16 13. (a) (b) 2
15. (a) (b) 77
17. (a) (b) 0
19. 2 21. 23. No 25. Conservative
29. (a) Yes (b) Yes (c) Yes
31. (a) Yes (b) Yes (c) No

EXERCISES 16.4 N PAGE 1060

1. 3. 5. 12 7. 9. 11.
13. 15. 17. 19. 21. (c)

23. if the region is the portion of the disk
in the first quadrant

EXERCISES 16.5 N PAGE 1068

1. (a) (b)
3. (a) (b)
5. (a) (b)
7. (a) (b)
9. (a) Negative (b)
11. (a) Zero (b) curl F points in the negative -direction
13. 15.
17. Not conservative 19. No 

EXERCISES 16.6 N PAGE 1078
1. : no; : yes
3. Plane through containing vectors ,
5. Hyperbolic paraboloid
7.

9.

_1

0
x

1

_1
0

y

z

u constant

√ constant

_1

0

1

1

2

0

_2

2

1

0

2

1.5

1

x
y

z

√ constant

u constant

�1, 	1, 5 ��1, 0, 4 ��0, 3, 1�
QP

f �x, y, z� � x 2y � y 2z � Kf �x, y, z� � xy 2z3 � K
z

curl F � 0
1�x � 1�y � 1�z�1�y, 	1�x, 1�x�

2�sx 2 � y 2 � z20
z 	 1�(2sz)�x 	 y� i 	 y j � k

yz	x 2 i � 3xy j 	 xz k

x 2 � y 2 � a 2
�4a�3�, 4a�3��

9
23�	

1
12	8e � 48e	1625

2 �

4
3 	 2�	24�1

3
2
38�

30
f �x, y, z� � xy 2 cos z
f �x, y, z� � xyz � z 2

f �x, y� � 1
2 x 2y 2

f �x, y� � x ln y � x 2y 3 � K
f �x, y� � ye x � x sin y � Kf �x, y� � e x  sin y � K

f �x, y� � x 2 	 3xy � 2y 2 	 8y � K

11.

13. IV 15. II 17. III
19.
21.
23. , ,

, ,

25. , , ,

29. ,
, ,

31. (a) Direction reverses (b) Number of coils doubles
33. 35. 37.
39. 41.
43.

45. 47. 4
49.
51. (a) 24.2055 (b) 24.2476

53.

55. (b)

(c) 

57. 59.

EXERCISES 16.7 N PAGE 1091

1. 49.09 3. 5. 7.
9. 11.
13. 15. 17. 1216����60�(391s17 � 1)

364s2��35s5�48 � 1�240
s3�24171s14900�

2a 2�� 	 2�4�

x
2�

0  x�

0  s36 sin4u cos2v � 9 sin4u sin2v � 4 cos2u sin2u du dv

2

0

	2

	2 	10 2 1 0

z

y x

45
8 s14 �

15
16 ln[(11s5 � 3s70)�(3s5 � s70)]

13.9783

1
2 s21 �

17
4 [ln(2 � s21) 	 ln s17]

���6�(17s17 	 5s5)
�2��3�(2s2 	 1)4

15�35�2 	 27�2 � 1�
3s14	x � 2z � 13x 	 y � 3z � 3

0 � � � 2�
0 � x � 3z � e	x sin �

20	101
	1

0

1

y

z

x

x � x, y � e	x cos �

0 � x � 5, 0 � � � 2�z � 4 sin �y � 4 cos �x � x
[or x � x, y � y, z � s4 	 x 2 	 y 2, x 2 � y 2 � 2]

0 � � � 2�0 � � � ��4z � 2 cos �
y � 2 sin � sin �x � 2 sin � cos �

x � x, z � z, y � s1 	 x 2 � z 2

x � 1 � u � v, y � 2 � u 	 v, z � 	3 	 u � v

_1

0
x

1

_1

0
y

1

_1

0z

1

√ constant

u constant
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19. 21. 23. 25. 0 27. 48

29. 31. 33. 3.4895

35. ,
where projection of on -plane

37.

39. (a) (b)

41. 43. 45.

EXERCISES 16.8 N PAGE 1097

3. 0 5. 0 7. 	1 9.
11. (a) (b)

(c) ,
,

17. 3

EXERCISES 16.9 N PAGE 1103

5. 2 7.
9. 0 11. 13.

15. 17.

19. Negative at , positive at 

21. in quadrants I, II; in quadrants III, IV

CHAPTER 16 REVIEW N PAGE 1106

True-False Quiz

1. False 3. True 5. False 7. True

Exercises

1. (a) Negative (b) Positive 3. 5.

7. 9. 11. 13. 0

17. 25.

27. 29.

33. 37. 39. 21	4	
1
2

	64��3���60�(391s17 � 1)

1
6 (27 	 5s5)	8�

f �x, y� � e y � xe xy11
12 	 4�e110

3

4
156s10

div F � 0div F � 0

P2P1

13��20341s2�60 �
81
20 arcsin(s3�3)

032��3
9��2

0 � t � 2�
z � 1 	 3�cos t � sin t�

_2

0

2

4

_2 0 2 2
0

_2

z

y
x

x � 3 cos t, y � 3 sin t

	2

5

0

	5

z

0
y

2
	2 2

0
x

81��2
80�

1248�8
3�a 3
00 kg�s

4329s2��5Iz � xx
S
 �x 2 � y 2 ���x, y, z� dS

�0, 0, a�2�
xzSD �

xx
S
 F � dS � xx

D
 �P��h��x� 	 Q � R��h��z�	 dA

0.16422� �
8
3

	
4
3�	

1
6

713
180

CHAPTER 17

EXERCISES 17.1 N PAGE 1117

1. 3.
5. 7.
9.
11.

13.

15. All solutions approach either 
or as .

17. 19.
21. 23.

25. 27.

29. No solution
31.
33. (b) , n a positive integer; 

EXERCISES 17.2 N PAGE 1124

1.

3.

5.

7.

9.

11. The solutions are all asymptotic
to as

. Except for , all 
solutions approach either 
or as .

13.
15.
17.

19.

21.
23.
25.

27.

EXERCISES 17.3 N PAGE 1132

1. 3. 5. 49
12 kgx � 	

1
5 e	6 t �

6
5 e	tx � 0.35 cos(2s5 t)

y � e x [c1 � c2 x 	
1
2 ln�1 � x 2� � x tan	1x]

y � �c1 � ln�1 � e	x �	e x � �c2 	 e	x � ln�1 � e	x �	e 2x

y � c1 sin x � c2 cos x � sin x ln�sec x � tan x� 	 1
y � c1e x � c2 xe x � e 2x

y � c1 cos(1
2 x) � c2 sin(1

2 x) 	
1
3 cos x

yp � xe	x ��Ax 2 � Bx � C � cos 3x � �Dx 2 � Ex � F� sin 3x	
yp � Ax � �Bx � C �e9x

yp � Ae 2x � �Bx 2 � Cx � D� cos x � �Ex 2 � Fx � G� sin x

x l 	�	�
�

ypx l �
yp � 1

10 cos x �
3

10 sin x
3

_3

_3 8

yp

y � e x(1
2 x 2 	 x � 2)

y � 3
2 cos x �

11
2  sin x �

1
2 e x � x 3 	 6x

y � e 2x�c1 cos x � c2 sin x� �
1

10 e	x

y � c1 � c2e 2x �
1

40 cos 4x 	
1

20 sin 4x

y � c1e	2x � c2e	x �
1
2 x 2 	

3
2 x �

7
4

y � C sin�n�x�L�� � n 2� 2�L2
y � e	2x�2 cos 3x 	 e� sin 3x�

y �
e x�3

e 3 	 1
�

e 2x

1 	 e 3y � 3 cos(1
2 x) 	 4 sin(1

2 x)

y � e	x�2 cos x � 3 sin x� y � 3 cos 4x 	 sin 4x
y � e x /2 	 2xe x�2y � 2e	3x�2 � e	x

x l ����0
10

_10

_3 3

g

f

P � e	t[c1 cos( 1
10 t) � c2 sin( 1

10 t)]
y � c1e (s3	1) t�2 � c2e	(s3�1) t�2

y � e 2x�c1 cos 3x � c2 sin 3x�
y � c1 � c2 e x�2y � c1e 2x�3 � c2 xe 2x�3

y � c1 cos 4x � c2 sin 4xy � c1e3x � c2e	2x
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7.

13. ,

15.

EXERCISES 17.4 N PAGE 1137

1. 3.

5.

7. for 

9.

11.

CHAPTER 17 REVIEW N PAGE 1138

True-False Quiz

1. True 3. True

Exercises

1. 3.
5.

7.

9.

11. 13.

15.

17.
19. (c) (d)

APPENDIXES

EXERCISES A N PAGE A9

1. 18 3. 5. 7.

9. 11.

13. 15.

0_10_2

�	1, ���	2, ��

x 2 � 1
 x � 1 
 � �x � 1

	x 	 1

for x � 	1

for x � 	1

2 	 x5 	 s5�

�17,600 mi�h2��k � 85 min
Q�t� � 	0.02e	10t�cos 10t � sin 10t� � 0.03

�
�

n�0
 

�	2�nn!

�2n � 1�!
 x 2n�1

y � �e 4x 	 e x ��3y � 5 	 2e	6�x	1�

y � c1e 3x � c2e	2x 	
1
6 	

1
5 xe	2x

y � c1e x � c2 xe x 	
1
2 cos x 	

1
2�x � 1� sin x

y � e 2x�c1 cos x � c2 sin x � 1�
y � c1 cos(s3x) � c2 sin(s3x)y � c1e 5x � c2e	3x

x � �
�

n�1
 
�	1�n2252 � � � � � �3n 	 1�2

�3n � 1�!
 x 3n�1

�
�

n�0
 

x 2n

2nn!
� e x 2�2


 x 
 � 1c0 � c1 �
�

n�1
 
x n

n
 � c0 	 c1 ln�1 	 x�

c0 �
�

n�0
 
�	1�n

2n n!
 x 2n � c1 �

�

n�0
 

�	2�n n!

�2n � 1�!
 x 2n�1

c0 �
�

n�0
 

x 3n

3nn!
� c0e x 3�3c0 �

�

n�0
 
x n

n!
� c0e x

	 3
250 cos 10t �

3
125 sin 10t

Q�t� � e	10t[ 3
250 cos 20t 	

3
500 sin 20t]

I�t� � 3
5 e	10t sin 20t

Q�t� � �	e	10t�250��6 cos 20t � 3 sin 20t� �
3

125

c=30

c=25

c=20

c=15
c=10

0.02

_0.11

0 1.4

17. 19.

21. 23.

25. 27.

29. 31.

33. 35.

37.

39. 41. (a)
(b) 43. 45.
47. 49. 51.
53. 55.
57. 59.

EXERCISES B N PAGE A15

1. 5 3. 5. 7. 2 9.

17. 19.

21. 23.
25. 27. 29.
31. 33. 35.

37. , 39. , 41. ,

43. 45.

0

y

x0

y

x

0 x

y

_3

0

_2

x

y

y=_20 x

y

b � 	3b � 	2b � 0
m � 3

4m � 0m � 	
1
3

5x 	 2y � 1 � 0x � 2y � 11 � 0y � 5
y � 3x 	 3y � 3x 	 25x � y � 11

2x 	 3y � 19 � 0y � 6x 	 15

0 x

y

xy=0

0 3 x

y

x=3

	
9
22s37s74

x � �c 	 b��ax � �a � b�c��ab�
�	4, 	1	 � �1, 4	�1.3, 1.7	

�	�, 	7	 � �	3, ���3, 5��	3, 3�
2, 	 4

3�
3
2	30�C � T � 20�C

T � 20 	 10h, 0 � h � 1210 � C � 35

0 1
4

�	�, 0� � ( 1
4, �)

_1 100 1

�	1, 0� � �1, ���	�, 1	

_œ„3 0 œ„3

(	s3, s3)�	�, ��

_1 1
2

1 2

[	1, 12 ]�	�, 1� � �2, ��

_1 1
2

0 1

[	1, 12 )�0, 1	

2 63

�2, 6��3, ��
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47. 49.

51.

53. 55. (a) (b) 57.
59. 61. (b)

EXERCISES C N PAGE A23

1. 3.

5. 7. 9.

11. Parabola 13. Ellipse

15. Hyperbola 17. Ellipse

19. Parabola 21. Hyperbola

23. Hyperbola 25. Ellipse
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0
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y=1-2x

y=1+x

�0, 1�

0

y

x

x � 2

y � 4

0

y

x_2 2

27. Parabola 29. Parabola

31. Ellipse 33.

35.
37. 39.

EXERCISES D N PAGE A32

1. 3. 5. 7. 720° 9. 75°
11. 13. 15.

17. 19.

21.

23. , , ,
, ,

25. , , , ,
and undefined

27.

29. , , , ,

31. , , , ,
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sec�9��2�tan�9��2�
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33. , , ,
,

35. 5.73576 cm 37. 24.62147 cm 59.

61. 63. 65.

67. 69.

71. 73. and 

75.

77.

79.

81.

89.

EXERCISES E N PAGE A38

1. 3.

5. 7.

9. 11.

13. 15. 17. 19. �
n

i�1
 x i�

5

i�0
 2 i�

n

i�1
 2i�

19

i�1
 

i

i � 1

�
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i�1
 i1 	 1 � 1 	 1 � � � � � �	1�n	1

110 � 210 � 310 � � � � � n10	1 �
1
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3
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5
7 �

7
9

34 � 35 � 36
s1 � s2 � s3 � s4 � s5
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y
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1

π 2π_π

y

0 x3π
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2πππ
2

5π
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y

0 x

11
2

π
3

5π
6

0 � x � ��4, 3��4 � x � 5��4, 7��4 � x � 2�

5��6 � x � 2�0 � x � ��60, �, 2�

��6, ��2, 5��6, 3��2��4, 3��4, 5��4, 7��4

��3, 5��324
25

1
15 (3 � 8s2)

1
15 (4 � 6s2)

sec � � 	s10�3csc � � 	s10
tan � � 1

3cos � � 	3�s10sin � � 	1�s10 21. 80 23. 3276 25. 0 27. 61 29.

31. 33.

35.
41. (a) (b) (c) (d)

43. 45. 14 49.

EXERCISES G N PAGE A56

1. (b) 0.405

EXERCISES H N PAGE A64

1. 3. 5. 7.

9. 11. 13. 15.

17. 19. 21.

23. 25.

27.

29. ,

31. ,
,

33. 35.

37. 39.

41. 43. 45.

47. ,
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Abel, Niels, 210
absolute maximum and minimum, 271, 923,

928
absolute maximum and minimum values, 271,

923, 928
absolute value, 17, A6, A58
absolute value function, 17
absolutely convergent series, 714
acceleration as a rate of change, 161, 221
acceleration of a particle, 839

components of, 842
as a vector, 839

Achilles and the tortoise, 6
adaptive numerical integration, 504
addition formulas for sine and cosine, A28,

A29
addition of vectors, 770, 773
Airy, Sir George, 728
Airy function, 728
algebraic function, 31
alternating harmonic series, 711
alternating series, 710
Alternating Series Estimation Theorem, 712
Alternating Series Test, 710
analytic geometry, A10
angle, A24

between curves, 268
of deviation, 279
negative, A25
positive, A25
standard position, A25
between vectors, 779

angular momentum, 848
angular speed, 840
antiderivative, 340
antidifferentiation formulas, 341
aphelion, 667
apolune, 661
approach path of an aircraft, 206
approximate integration, 495
approximating cylinder, 424
approximating surface, 533
approximation

by differentials, 250

to , 179
linear
by the Midpoint Rule, 496
by Newton’s method, 335
by an nth-degree Taylor 

polynomial, 253
quadratic, 253
by Riemann sums, 367
by Simpson’s Rule, 500, 502
tangent line, 247
by Taylor polynomials, 253, 749
by Taylor’s Inequality, 737
by the Trapezoidal Rule, 497

approximation, linear, 247, 894, 898
to a tangent plane, 894

Archimedes’ Principle, 449, 1104
arc length, 525

of a parametric curve, 633
of a polar curve, 652
of a space curve, 830, 831 

arc length contest, 532
arc length formula, 526
arc length function, 528, 831
area, 3, 355

of a circle, 469
under a curve, 355, 360, 366
between curves, 415, 418
of an ellipse, 468
by exhaustion, 3
by Green’s Theorem, 1058
enclosed by a parametric curve, 632
in polar coordinates, 639
of a sector of a circle, 650
surface, 635, 1075, 1077
of a surface of a revolution, 532, 538

area, surface, 635, 1075, 1077
area function, 379
Area Problem, 3, 355
argument of a complex number, A59
arithmetic-geometric mean, 686
arrow diagram, 12
astroid, 213, 629
asymptote(s)

in graphing, 308

horizontal, 132, 308
of a hyperbola, 658, A20
slant, 312
vertical, 95, 308

asymptotic curve, 315
autonomous differential equation, 575
auxiliary equation, 1112

complex roots of, 1114
real roots of, 1113

average cost function, 330
average rate of change, 148, 221
average speed of molecules, 516
average value of a function, 443, 557, 

956, 1000
average velocity, 5, 85, 145, 221, 838
axes, coordinate, 765, A11
axes of ellipse, A19
axis of a parabola, 655

bacterial growth, 591, 596
Barrow, Isaac, 4, 153, 380
baseball and calculus, 601
base of a cylinder, 422
base of a logarithm, 63, A53

change of, 66
basis vectors, 774, 775
Bernoulli, James, 580, 607
Bernoulli, John, 307, 580, 625, 736
Bernoulli differential equation, 607
Bessel, Friedrich, 724
Bessel function, 724, 728
Bézier, Pierre, 639
Bézier curves, 624, 639
binomial coefficients, 742
binomial series, 742, 748

discovery by Newton, 748
Binomial Theorem, RP1
binormal vector, 834
blackbody radiation, 757
blood flow, 227, 332, 551
boundary curve, 1093
boundary-value problem, 1116
bounded sequence, 682
bounded set, 928

e
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Boyle’s Law, 231, 246
Brache, Tycho, 844
brachistochrone problem, 625
branches of hyperbola, 658, A20
Buffon’s needle problem, 565
bullet-nose curve, 51, 204

transformation, 1013
cable (hanging), 255
calculator, graphing, 46, 315. See also 

computer algegra system
calculus, 9

invention of, 399
cancellation equations

for inverse functions, 62
for inverse trigonometric functions, 68
for logarithms, 64

cans, minimizing manufacturing cost of, 333
Cantor, Georg, 696
Cantor set, 696
capital formation, 554
cardiac output, 552
cardioid, 213, 643
carrying capacity, 233, 568
Cartesian coordinate system, A11
Cartesian plane, A11
Cassini, Giovanni, 649
catenary, 255
CAS. See computer algebra system
Cauchy, Augustin-Louis, 113, 961, A45
Cauchy’s Mean Value Theorem, A45
Cauchy-Schwarz Inequality, 786
Cavalieri’s Principle, 432
center of gravity. See center of mass
center of mass, 542

of a lamina, 981
of a plate, 545
of a solid, 996
of a surface, 1083
of a wire, 1036

centripetal force, 852
centroid 

of a plane region, 543
of a solid, 996

Chain Rule, 197, 200
for several variables, 901, 903, 904

change of base, formula for, 66
change of variables 

in a double integral, 975, 1013, 1016
in integration, 401
in a triple integral, 1002, 1007, 1019

characteristic equation, 1112
charge, electric, 224, 980, 996

in a circuit, 1129
charge density, 980, 996
chemical reaction, 224
circle, area of, 469
circle, equation of, A16

circle of curvature, 835
circular cylinder, 422
circular paraboloid, 810
circulation of a vector field, 1096
cissoid of Diocles, 628, 648
Clairaut, Alexis, 885
Clairaut’s Theorem, 885, A3
clipping planes, 804
closed curve, 1048
closed interval, A3
Closed Interval Method, 275

for a function of two variables, 929
closed set, 928
closed surface, 1086
Cobb, Charles, 856
Cobb-Douglas production function, 857, 

887, 940
cochleoid, 670
coefficient(s)

binomial, 742
of friction, 196, 278
of inequality, 399
of a polynomial, 28
of a power series, 723
of static friction, 815

combinations of functions, 41
comets, orbits of, 668
common ratio, 689
comparison properties of the integral, 375
comparison test for improper integrals, 514
Comparison Test for series, 705
Comparison Theorem for integrals, 514
complementary equation, 1117
Completeness Axiom, 682
complex conjugate, A57
complex exponentials, A63
complex number(s), A57

addition and subtraction of, A57
argument of, A59
equality of, A57
imaginary part of, A57
modulus of, A58
multiplication and division of, A57, A60
polar form, A59
powers of, A61
principal square root of, A58
real part of, A57
roots of, A62

component function, 817, 1028
components of acceleration, 842
components of a vector, 772, 782
composition of functions, 41, 197

continuity of, 125, 875
derivative of, 199

compound interest, 238, 306
compressibility, 225
computer algebra system

integration with, 491, 732

pitfalls of using, 91
computer algebra system, graphing with, 46

for creating a three-dimensional scene, 804
a curve, 315
function of two variables, 859
level curves, 864
parametric equations, 624
parametric surface, 1072
partial derivatives, 885
polar curve, 646
sequence, 680
space curve, 820
vector field, 1029

concavity, 290
Concavity Test, 291, A44
concentration, 224
conchoid, 626, 648
conditionally convergent series, 715
conductivity (of a substance), 1090
cone, 808

parametrization of, 1073
conic section, 654, 662

directrix, 662
eccentricity, 662
focus, 662
polar equation, 664
shifted, 659, A21
vertex (vertices), 655

conjugates, properties of, A58
connected region, 1048
conservation of energy, 1052
conservative vector field, 1032, 1053
constant function, 173
Constant Multiple Law of limits, 100
Constant Multiple Rule, 176
constraint, 934, 938
consumer surplus, 550
continued fraction expansion, 686
continuity

of a function, 119
of a function of three variables, 876
of a function of two variables, 874
on an interval, 121
from the left, 121
from the right, 121
of a vector function, 818

continuous compounding of interest, 238, 306
continuous random variable, 555
contour curves, 860
contour map, 860
convergence

absolute, 714
conditional, 715
of an improper integral, 509, 512
interval of, 725
radius of, 725
of a sequence, 677
of a series, 688

C 1
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convergent improper integral, 509, 512
convergent sequence, 677
convergent series, 688

properties of, 693
cooling tower, hyperbolic, 810
coordinate system, A2

cylindrical, 1001
Cartesian, A11
polar, 639
rectangular, A11
spherical, 1005
three-dimensional rectangular, 766

coordinate axes, 765, A11
coordinate planes, 765
coplanar vectors, 791
Coriolis acceleration, 851
Cornu’s spiral, 637
cosine function, A26

derivative of, 192
graph of, 32, A31
power series for, 740

cost function, 228, 327
critically damped vibration, 1127
critical number, 274
critical point(s), 923, 933
cross product, 786

direction of, 788
geometric characterization of, 789
magnitude of, 789
properties of, 790

cross-section, 422
of a surface, 804

cubic function, 28
current, 224
curl of a vector field, 1062
curvature, 638, 832
curve(s)

asymptotic, 315
Bézier, 624, 639
boundary, 1093
bullet-nose, 51, 204
cissoid of Diocles, 628, 648
closed, 1048
devil’s, 213
dog saddle, 868
epicycloid, 630
equipotential, 868
grid, 1071
helix, 818
length of, 525, 830
level, 854, 860
monkey saddle, 868
orientation of, 1039, 1055
orthogonal, 214
ovals of Cassini, 649
parametric, 621, 818
piecewise-smooth, 1035
polar, 641

serpentine, 188
simple, 1049
smooth, 831
space, 818
strophoid, 653, 671
swallowtail catastrophe, 629
toroidal spiral, 820
trefoil knot, 820
trochoid, 628
twisted cubic, 820
witch of Maria Agnesi, 628

curve fitting, 25
curve-sketching procedure, 308
cusp, 626
cycloid, 624
cylinder, 422

parabolic, 805
parametrization of, 1073

cylindrical coordinate system, 1001
conversion equations for, 1001
triple integrals in, 1002

cylindrical shell, 433

damped vibration, 1126
damping constant, 1126
decay, law of natural, 236
decay, radioactive, 236
decreasing function, 20
decreasing sequence, 681
definite integral, 366, 951

properties of, 373
Substitution Rule for, 404
of a vector function, 827

definite integration
by parts, 453, 456
by substitution, 404

degree of a polynomial, 28
del (�), 913
delta (�) notation, 147, 148
demand curve, 327, 550
demand function, 327, 550
De Moivre, Abraham, A61
De Moivre’s Theorem, A61
density

of a lamina, 980
linear, 223
liquid, 540
mass vs. weight, 540
of a solid, 996

dependent variable, 11, 855, 903
derivative(s), 143,154

of a composite function, 199
of a constant function, 173
directional, 910, 911, 914
domain of, 154
of exponential functions, 180, 201, 

A54, A55
as a function, 154

higher, 160
higher partial, 884
of hyperbolic functions, 256
of an integral, 381
of an inverse function, 215
of inverse trigonometric functions, 211, 213
left-hand, 165
of logarithmic functions, 215, A49, A54
notation, 157
notation for partial, 880
normal, 1069
partial, 879, 880
of a power function, 174
of a power series, 729
of a product, 183, 184
of a quotient, 185, 186
as a rate of change, 148
right-hand, 165
second, 160
second partial, 826
as the slope of a tangent, 147
third, 161
of trigonometric functions, 189, 193
of a vector function, 824

Descartes, René, A11
descent of aircraft, determining 

start of, 206
determinant, 786
devil’s curve, 213
Difference Law of limits, 100
Difference Rule, 177
differentiable function, 157, 895
differential, 250, 896, 898
differential equation, 234, 342, 566, 569

autonomous, 575
Bernoulli, 607
first-order, 569
general solution of, 570
homogeneous, 1111
linear, 602
linearly independent solutions, 1112
logistic, 592, 687
nonhomogeneous, 1111, 1117
order of, 569
partial, 886
second-order, 569, 1111
separable, 580
solution of, 569

differentiation, 157
formulas for, 187, RP5
formulas for vector functions, 826
implicit, 207, 208, 883, 905
logarithmic, 217
partial, 878, 883, 884
of a power series, 729
term by term, 729
of a vector function, 824

differentiation operator, 157
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Direct Substitution Property, 102
direction angles, 781
direction cosines, 781
direction field, 572, 573
direction numbers, 795
directional derivative, 910, 911, 914

maximum value of, 915
of a temperature function, 910, 911

directrix, 655, 662
discontinuity, 119, 120
discontinuous function, 119
discontinuous integrand, 511
disk method for approximting 

volume, 424
dispersion, 280
displacement, 145, 395
displacement vector, 770, 783
distance

between point and line in space, 793
between point and plane, 793, 800
between planes, 801
between points in a plane, A11
between points in space, 767
between real numbers, A7

distance formula, A12
in three dimensions, 767

distance problem, 362
divergence

of an improper integral, 509, 512
of an infinite series, 688
of a sequence, 677
of a vector field, 1065

Divergence, Test for, 692
Divergence Theorem, 1099
divergent improper integral, 509, 512
divergent sequence, 677
divergent series, 688
division of power series, 745
DNA, helical shape of, 819
dog saddle, 868
domain of a function, 11, 855
Doppler effect, 909
dot product, 779

in component form, 779
properties of, 779

double integral, 951, 953
change of variable in, 1013, 1016
over general regions, 965, 966
Midpoint Rule for, 955
in polar coordinates, 974, 975
properties of, 958, 970
over rectangles, 951

double Riemann sum, 954
double-angle formulas, A29
Douglas, Paul, 856
dumpster design, minimizing 

construction cost, 933
dye dilution method, 552

(the number), 56, 179, A50
as a limit, 219
as a sum of an infinite series, 739

eccentricity, 662
electric charge, 980, 996
electric circuit, 605

analysis of, 1129
electric field (force per unit charge), 1031
electric force, 1031
electric flux, 1089
elementary function, integrability of, 487
element of a set, A3
ellipse, 213, 656, 662, A19

area, 491
directrix, 662
eccentricity, 662
foci, 656, 662
major axis, 657, 667
polar equation, 664, 667
reflection property, 658
rotated, 214
vertices, 657

ellipsoid, 806, 808
elliptic paraboloid, 806, 808
empirical model, 25
end behavior of a function, 142
endpoint extreme values, 272
energy

conservation of, 1052
kinetic, 1052
potential, 1053

epicycloid, 630
equation(s)

of a circle, A17
differential. See differential equation
of an ellipse, 657, 664, A19
of a graph, A16
heat conduction, 890
of a hyperbola, 658, 659, 664, A20
Laplace’s, 886, 1066
of a line, A12, A13, A14, A16
of a line in space, 794, 795, 796
linear, 798, A14
logistic difference, 687
logistic differential, 568, 600
Lotka-Volterra, 609
nth-degree, 210
of a parabola, 655, 664, A18
parametric, 621, 795, 818, 1070
of a plane, 798
point-slope, 19, A12
polar, 641, 664
predator-prey, 609
second-degree, A16
slope-intercept, A13
of a space curve, 818
of a sphere, 768
symmetric, 795

two-intercept form, A16
vector, 794
wave, 886

equilateral hyperbola, A21
equilibrium point, 610
equilibrium solution, 568, 609
equipotential curves, 868
equivalent vectors, 770
error

in approximate integration, 497, 498
percentage, 251
relative, 251
in Taylor approximation, 750

error bounds, 499, 503
error estimate

for alternating series, 712
for the Midpoint Rule, 497, 498
for Simpson’s Rule, 503
for the Trapezoidal Rule, 497, 498

escape velocity, 517
estimate of the sum of a series, 700, 708, 

712, 717
Eudoxus, 3
Euler, Leonard, 56, 698, 739
Euler’s formula, A63
Euler’s Method, 575
even function, 19, 308
expected values, 987
exponential decay, 233
exponential function(s), 33, 52, 180

with base , A54, A55
derivative of, 180, 201, A54, A55
graphs of, 53, 179
integration of, 371, 385, 402, 743, 744
limits of, 136, A53
power series for, 736
properties of, A53

exponential graph, 53
exponential growth, 233
exponents, laws of, 54, A53, A55
extrapolation, 27
extreme value, 271
Extreme Value Theorem, 272, 928

family 
of functions, 50, 318, 320
of hypocycloids, 629
of parametric curves, 625
of solutions, 568

fat circles, 211, 531
Fermat, Pierre, 4, 153, 273
Fermat’s Principle, 331
Fermat’s Theorem, 273
Fibonacci, 686
Fibonacci sequence, 676
field

conservative, 1032
electric, 1031

a

e
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force, 1031
gradient, 919, 1031
gravitational, 1031
incompressible, 1066
irrotational, 1064
scalar, 1029
vector, 1027, 1028
velocity, 1027, 1030

First Derivative Test, 288
for Absolute Extreme Values, 324

first octant, 765
first-order linear differential equation, 602
first-order optics, 754
fixed point of a function, 171, 286
flash bulb, current to, 84
flow lines, 1033
fluid flow, 1030, 1066, 1088
flux, 551, 552, 1087, 1089
flux integral, 1087
FM synthesis, 318
focus 

of a conic section, 662
of an ellipse, 656, 662
of a hyperbola, 658
of a parabola, 655

folium of Descartes, 208, 672
force, 438

centripetal, 852
constant, 783
exerted by fluid, 539
resultant, 776
torque, 791

force field, 1027, 1031
forced vibrations, 1128
Fourier, Joseph, 230
Fourier series, finite, 467
four-leaved rose, 643
fractions (partial), 473
Frenet-Serret formulas, 838
Fresnel, Augustin, 383
Fresnel function, 383
frustum, 431, 432
Fubini, Guido, 961
Fubini’s Theorem, 961, 991
function(s), 11

absolute value, 17
Airy function, 728
algebraic, 31
arc length, 528, 830, 831
area, 379
arrow diagram of, 12
average cost, 330
average value of, 433, 557, 956, 1000
Bessel, 724, 728
Cobb-Douglas production, 857, 887, 940
combinations of, 41
component, 817, 1028
composite, 41, 197, 875

constant, 173
continuity of, 119, 818, 874, 876
cost, 228, 327
cubic, 28
decreasing, 20
demand, 327, 550
derivative of, 146
differentiability of, 157, 895
discontinuous, 119
domain of, 11, 855
elementary, 487
even, 19, 308
exponential, 33, 52
extreme values of, 271
family of, 50, 318, 320
fixed point of, 171, 286
Fresnel, 383
Gompertz, 600
gradient of, 913, 915
graph of, 12, 858
greatest integer, 105
harmonic, 886
Heaviside, 45, 92
homogeneous, 909
hyperbolic, 254
implicit, 207
increasing, 20
integrable, 953
inverse, 59, 61
inverse hyperbolic, 257
inverse trigonometric, 67, 68
joint density, 985, 996
limit of, 88, 109, 871, 876
linear, 24, 858
logarithmic, 34, 63, A50, A53
machine diagram of, 12
marginal cost, 229, 327
marginal profit, 327
marginal revenue, 327
maximum and minimum values of, 271,

922, 923
natural logarithmic, 64
nondifferentiable, 159
of n variables, 865
odd, 19, 308
one-to-one, 60
periodic, 308
piecewise defined, 17
polynomial, 28, 874
position, 145
potential, 1032
power, 29
probability density, 555, 985
profit, 327
quadratic, 28
ramp, 45
range of, 11, 855
rational, 31, 874

reciprocal, 31
reflected, 38
representation as a power series, 728
representations of, 12
revenue, 327
root, 30
of several variables, 855, 864
shifted, 37
sine integral, 389
smooth, 525
step, 18
stretched, 38
of three variables, 864
transcendental, 34
transformation of, 37, 38
translation of, 38
trigonometric, 32, A26
of two variables, 855
value of, 11
vector-valued, 817

Fundamental Theorem of Calculus, 381, 
|384, 387

higher-dimensional versions, 1105
for line integrals, 1046
for vector functions, 828 

G (gravitational constant), 231, 442
Gabriel’s horn, 537
Galileo, 625, 633
Galois, Evariste, 210
Gause, G. F., 596
Gauss, Karl Friedrich, 1099, A35
Gaussian optics, 754
Gauss’s Law, 1090
Gauss’s Theorem, 1099
geometric series, 688
geometry of a tetrahedron, 794
Gompertz function, 600
gradient, 913, 915
gradient vector, 913, 915

interpretations of, 919, 920
gradient vector field, 919, 1031
graph(s)

of an equation, A16
of exponential functions, 53, 179
of a function, 12
of a function of two variables, 858
of logarithmic functions, 66
of a parametric curve, 622
of a parametric surface, 1083
polar, 641
of power functions, 30, RP3
of a sequence, 680
of trignometric functions, A30, RP2

graphing calculator, 46, 315, 624, 646
graphing device. See computer algebra system
gravitation law, 231, 442
gravitational acceleration, 438
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gravitational field, 1031
great circle, 1011
Green, George, 1056, 1098
Green’s identities, 1069
Green’s Theorem, 1055, 1098

vector forms, 1066, 1067
greatest integer function, 105
Gregory, James, 732, 736
Gregory’s series, 732
grid curve, 1071
ground speed, 778
growth, law of natural, 234, 591
growth rate, 226

relative, 234, 592

half-angle formulas, A29
half-life, 236
half-space, 864
hare-lynx system, 612
harmonic function, 886
harmonic series, 691
harmonic series, alternating , 711
heat conductivity, 1090
heat conduction equation, 890
heat flow, 1090
heat index, 878
Heaviside, Oliver, 92
Heaviside function, 45, 92
Hecht, Eugene, 250, 253, 754
helix, 818
higher derivatives, 160
higher partial derivatives, 884
homogeneous differential equation, 1111
homogeneous function, 909
Hooke’s Law, 439, 1125
horizontal asymptote, 132. 308
horizontal line, equation of, A13
horizontal plane, equation of, 766
Horizontal Line Test, 60
Hubble Space Telescope, 276
Huygens, Christiaan, 625
hydrostatic pressure and force, 539
hydro-turbine optimization, 943
hyperbola, 658, 662, A20

asymptotes, 658, A20
branches, 658, A20
directrix, 662
eccentricity, 662
equation, 658, 659, 664, A20
equilateral, A21
foci, 658, 662
polar equation, 664
reflection property, 662
vertices, 658

hyperbolic function(s), 254
derivatives, 256
inverse, 257

hyperbolic identities, 255

hyperbolic paraboloid, 807, 808
hyperbolic substitution, 470, 471
hyperboloid, 808, 810
hypersphere, 1000
hypocycloid, 629

(imaginary number), A55
i (standard basis vector), 774
I/D Test, 287
ideal gas law, 233, 891
image of a point, 1013
image of a region, 1013
implicit differentiation, 207, 208, 883, 905
implicit function, 207
Implicit Function Theorem, 906
improper integral, 508
impulse of a force, 601
incompressible velocity field, 1066
increasing function, 20
increasing sequence, 681
Increasing/Decreasing Test, 287
increment, 147, 898
indefinite integrals, 391

table of, 392
independence of path, 1047
independent random variable, 986
independent variable, 11, 855, 903
indeterminate difference, 302
indeterminate forms of limits, 298
indeterminate power, 303
indeterminate product, 302
index of summation, A34
inequalities, rules for, A4
inertia (moment of ), 983, 996, 1045
infinite discontinuity, 120
infinite interval, 508, 509
infinite limit, 94, 116, 136
infinite sequence. See sequence
infinite series, See Series
inflection point, 291
initial condition, 570
initial point 

of a parametric curve, 622
of a vector, 770, 1115

initial-value problem, 570
inner product, 779
instantaneous rate of change, 85, 148, 221
instantaneous rate of growth, 226
instantaneous rate of reaction, 225
instantaneous velocity, 86, 145, 221
integer, A2
integrable function, 953
integral(s)

approximations to, 372
change of variables in, 400, 1011, 1016, 1019
comparison properties of, 375
conversion to cylindrical coordinates, 1002
conversion to polar coordinates, 975

conversion to spherical coordinates, 1007
definite, 366, 827, 951
derivative of, 381
double, 951, 953. See also double integral
evaluating, 369
improper, 508
indefinite, 391
iterated, 959, 960
line, 1034. See also line integral
patterns in, 494
properties of, 373
surface, 1081, 1087
of symmetric functions, 405
table of, 452, 484, RP6–10
triple, 990. See also triple integral
units for, 396

Integral Test, 697, 699
integrand, 366

discontinuous, 511
integration, 366

approximate, 495
by computer algebra system, 491
of exponential functions, 371, 385, 402
formulas, 452, 484, RP6–10
indefinite, 391
limits of, 366
numerical, 495
partial, 960
by partial fractions, 473
by parts, 45
of a power series, 729
by a rationalizing substitution, 481
reversing order of, 962, 970
substitution in, 401
term by term, 729
of a vector function, 827

intercepts, 308, A19
Intermediate Value Theorem, 126
intermediate variable, 903
interpolation, 27
intersection of planes, 799
intersection of polar graphs, area of, 651
intersection of sets, A3
intersection of three cylinders, 1005
interval, A3
interval of convergence, 725
inverse function(s), 59, 61
inverse transformation, 1013
inverse trigonometric functions, 67, 68
irrational number, A2
irrotational vector field, 1064
isobars, 854, 861
isothermal compressibility, 225
isothermals, 861, 868
iterated integral, 959, 960

j (standard basis vector), 774
Jacobi, Carl, 1015

i
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Jacobian of a transformation, 1015, 1019
jerk, 161
joint density function, 985, 996
joule, 438
jump discontinuity, 120

k (standard basis vector), 774
Kampyle of Eudoxus, 213
Kepler, Johannes, 844, 848
Kepler’s Laws, 844, 848
kinetic energy, 1052
Kirchhoff’s Laws, 1129
Kondo, Shigeru, 739

Lagrange, Joseph, 282, 283, 935
Lagrange multiplier, 934, 935
lamina, 543, 980
Laplace, Pierre, 886, 1066
Laplace operator, 1066
Laplace’s equation, 886, 1066
lattice point, 269
Law of Conservation of Angular 

Momentum, 848
Law of Conservation of Energy, 1053
law of cosines, A33
law of gravitation, 231, 442
law of laminar flow, 227
learning curve, 571
least squares method, 27, 932
least upper bound, 682
left-hand derivative, 165
left-hand limit, 93, 113
Leibniz, Gottfried Wilhelm, 4, 157, 399, 

580, 748
Leibniz notation, 157
lemniscate, 213
length

of a curve, 525
of a line segment, A7, A12
of a parametric curve, 633
of a polar curve, 652
of a space curve, 830
of a vector, 773

level curve(s), 854, 860
of barometric pressure, 854
of temperatures, 861

level surface, 865
tangent plane to, 917

l’Hospital, Marquis de, 299, 307
l’Hospital’s Rule, 299, 307

origins of, 307
libration point, 340
limaçon, 647
Limit Comparison Test, 707
Limit Laws, 99, A39

for functions of two variables, 873
for sequences, 678

limit(s), 3, 88
calculating, 99
of exponential functions, 136, 137
of a function, 88, 110
of a function of three variables, 876
of a function of two variables, 871
infinite, 94, 116, 136
at infinity, 130, 131, 136
of integration, 366
left-hand, 93, 113
of logarithmic functions, 96, A50
one-sided, 93, 113
precise definitions, 109, 113, 116, 

138, 140
properties of, 99
right-hand, 93, 113
of a sequence, 6, 357, 677
involving sine and cosine functions, 

190, 192
of a vector function, 817

linear approximation, 247, 894, 898
linear combination, 1111
linear density, 223
linear differential equation, 602, 1111
linear equation, A14

of a plane, 798
linear function, 24 858
linearity of an integral, 958
linearization, 48, 894
linearly independent solutions, 1112
linear model, 24
linear regression, 27
line(s) in the plane, A12

equations of, A12, A13, A14
horizontal, A13
normal, 175
parallel, A14
perpendicular, A14
secant, 4, 83, 84
slope of, A12
tangent, 4, 83, 84, 144

line (in space)
normal, 918
parametric equations of, 795
skew, 797
symmetric equations of, 795
tangent, 824
vector equation of, 794, 795

line integral, 1034
Fundamental Theorem for, 1046
for a plane curve, 1034
with respect to arc length, 1037
for a space curve, 1039
of vector fields, 1041, 1042
work defined as, 1041

liquid force, 539, 540
Lissajous figure, 629
lithotripsy, 658

local maximum and minimum 
values, 271, 923

logarithm(s), 34, 63
laws of, 64, A49
natural, 64, A48
notation for, 64

logarithmic differentiation, 217
logarithmic function(s), 34, 63

with base , A53
derivatives of, 213, A51, A53
graphs of, 64, 66
limits of, 96, A50
properties of, 64, A49

logistic difference equation, 687
logistic differential equation, 568, 592
logistic model, 568
logistic sequence, 687
LORAN system, 661
Lotka-Volterra equations, 609

machine diagram of a function, 12
Maclaurin, Colin, 736
Maclaurin series, 734, 736

table of, 743
magnitude of a vector, 773
major axis of ellipse, 657
marginal cost function, 229, 327
marginal profit function, 327
marginal productivity, 887
marginal propensity to consume or 

save, 695
marginal revenue function, 327
mass

of a lamina, 980
of a solid, 996 
of a surface, 1083
of a wire, 1036 

mass, center of. See center of mass
mathematical induction, principle of, 77, 

80, A36
mathematical model, 14, 24

Cobb-Douglas, for production 
costs, 857, 887, 940

for vibration of membrane, 724
maximum and minimum values, 271, 922, 923
mean life of an atom, 517
mean of a probability density function, 557
Mean Value Theorem, 282

for double integrals, 1023
for integrals, 443

mean waiting time, 557
median of a probability density 

function, 559
method of cylindrical shells, 433
method of exhaustion, 3, 102
method of Lagrange multipliers, 934, 

935, 938
method of least squares, 27, 932

a
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method of undetermined 
coefficients, 1118, 1122

midpoint formula, A16
Midpoint Rule, 372, 496

for double integrals, 955
error in using, 497
for triple integrals, 998

mixing problems, 584
Möbius, August, 1085
Möbius strip, 1079, 1085
modeling

with differential equations, 567
motion of a spring, 568
population growth, 55, 567, 591, 597, 

600, 616
vibration of membrane, 724

model(s), mathematical, 24
comparison of natural growth vs. 

logistic, 596
empirical, 25
exponential, 33
Gompertz function, 600
linear, 24
logarithmic, 34
polynomial, 28
power function, 29
predator-prey, 233, 609
rational function, 31
seasonal-growth, 600
trigonometric, 32, 33
von Bertalanffy, 616

modulus, A58
moment

about an axis, 543, 981
of inertia, 983, 996, 1045
of a lamina, 543, 981
of a mass, 542
about a plane, 996
polar, 983
second, 983
of a solid, 995
of a system of particles, 543

momentum of an object, 601
monkey saddle, 868
monotonic sequence, 681
Monotonic Sequence Theorem, 683
motion in space, 838
motion of a spring, force affecting

restoring, 1125
damping, 1126
resonance, 1129

movie theater seating, 446
multiple integrals. See double integral; 

triple integral
multiplication, scalar, of vectors, 771, 773 
multiplication of power series, 745
multiplier (Lagrange), 934, 935, 938
multiplier effect, 695

natural exponential function, 56, A50
derivative of, 180, A52
graph of, 179
power series for, 736
properties of, A51

natural growth law, 234, 591
natural logarithm function, 64, A50

derivative of, 215, A51
limits of, A50
properties of, A51

-dimensional vector, 774
negative angle, A25
net area, 367
Net Change Theorem, 394
net investment flow, 554
newton (unit of force), 438
Newton, Sir Isaac, 4, 9, 102, 153, 157,

380, 399, 748, 844, 848
Newton’s Law of Cooling, 237
Newton’s Law of Gravitation, 231, 442, 

844, 1030
Newton’s method, 334, 335
Newton’s Second Law of Motion, 438, 840, 

844, 1125
Nicomedes, 626
nondifferentiable function, 159
nonhomogeneous differential 

equation, 1111, 1117
nonparallel planes, 799
normal component of acceleration, 842
normal derivative, 1069
normal distribution, 559
normal line, 175, 918
normal plane, 835
normal vector, 797, 834
th-degree equation, roots of, 210
th-degree Taylor polynomial, 254, 737

number
complex, A55
integer, A2
irrational, A2
rational, A2
real, A2

numerical integration, 495

octant, 765
odd function, 19, 308
one-sided limits, 93, 113
one-to-one function, 60
one-to-one transformation, 1013
open interval, A3
open region, 1048
optics

first-order, 754
Gaussian, 754
third-order, 755

optimization problems, 271, 322
orbits of planets, 844, 848

order of a differential equation, 569
ordered pair, A10
ordered triple, 765
order of integration, reversed, 962, 970
Oresme, Nicole, 692
orientation of a curve, 1039, 1055
orientation of a surface, 1086
oriented surface, 1085, 1086
origin, A2, A10
orthogonal curves, 214
orthogonal projection, 785
orthogonal surfaces, 922
orthogonal trajectory, 214, 583
orthogonal vectors, 781
osculating circle, 835
osculating plane, 835
Ostrogradsky, Mikhail, 1099
ovals of Cassini, 649
overdamped vibration, 1127

Pappus, Theorem of, 546
Pappus of Alexandria, 546
parabola, 655, 662, A18

axis, 655
directrix, 655, 662
equation, 655, 656
focus, 655, 662
polar equation, 664
reflection property, 268, 269
vertex, 655

parabolic cylinder, 805
paraboloid, 806, 810
paradoxes of Zeno, 6
parallel lines, A14
parallel planes, 799
parallel vectors, 771
parallelepiped, 422

volume of, 791
Parallelogram Law, 771, 786
parameter, 621, 795, 818
parametric curve, 621, 818

arc length of, 633
area under, 632
slope of tangent line to, 630

parametric equations, 621
of a line, 795
of a space curve, 818
of a surface, 1070
of a trajectory, 841

parametric surface, 1070
graph of, 1083
surface area of, 1075, 1076
surface integral over, 1081
tangent plane to, 1974

parametrization of a space curve, 820
smooth, 831
with respect to arc length, 831

paraxial rays, 249

n
n

n
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partial derivative(s), 879, 880
of a function of more than three 

variables, 883
interpretations of, 881
notations for, 880
as rates of change, 880
rules for finding, 880
second, 884
as slopes of tangent lines, 881

partial differential equation, 886
partial fractions, 473
partial integration, 960
partial sum of a series, 688
particle, motion of, 838
parts, integration by, 453
path, 1047
patterns in integrals, 494
pendulum, approximating the period of, 249, 253
percentage error, 251
perihelion, 667
perilune, 661
period, 308
periodic function, 308
perpendicular lines, A14
perpendicular vectors, 781
phase plane, 610
phase portrait, 610
phase trajectory, 610
piecewise defined function, 17
piecewise-smooth curve, 1035
Planck’s Law, 757
plane(s), 797

coordinate, 765
equation(s) of, 797, 798
horizontal, 766
normal, 835
osculating, 835
parallel, 799
tangent to a surface, 892, 917, 1074
vertical, 766

plane region of type I, 966
plane region of type II, 967
planetary motion, 844
point of inflection, 291
point(s) in space

coordinates of, 765
distance between, 767
projection of, 766

point-slope equation of a line, 18, A12
Poiseuille, Jean-Louis-Marie, 227
Poiseuille’s Laws, 253, 332, 552
polar axis, 639
polar coordinate system, 639

area in, 650
conic sections in, 662
conversion equations for Cartesian 

coordinates, 640,641
conversion of double integral to, 974, 975

polar curve, 641
arc length of, 652
graph of, 641
symmetry in, 644
tangent line to, 644

polar equation, graph of, 641
polar equation of a conic, 664
polar form of a complex number, A59
polar graph, 641
polar moment of inertia, 983
polar rectangle, 974
polar region, area of, 650
pole, 639
polynomial, 28
polynomial function of two variables, 874
population growth, 591

of bacteria, 226, 591, 596
of insects, 483
models, 567
world, 55, 235

position function, 145
position vector, 773
positive angle, A25
positive orientation 

of a boundary curve, 1093 
of a closed curve, 1055
of a surface, 1086

potential, 520
potential energy, 1053
potential function, 1032
pound (unit of force), 438
power consumption, approximation 

of, 396
power function, 29
Power Law of limits, 101
Power Rule, 174, 218
power series, 723

coefficients of, 723
for cosine and sine, 740
differentiation of, 729
division of, 745
for exponenial function, 740
integration of, 729
interval of convergence, 725
multiplication of, 745
radius of convergence, 725
representations of functions as, 728

predator, 608
predator-prey model, 233, 609
pressure exerted by a fluid, 539
prey, 609
prime notation, 146, 177
principal square root of a complex

number, A58
principal unit normal vector, 834
principle of mathematical induction, 77, 

80, A36
principle of superposition, 1120

probability, 985
probability density function, 555, 985
problem-solving principles, 76
producer surplus, 553
product formulas, A29
Product Law of limits, 100
Product Rule, 183, 184
product

cross, 786. See also cross product
dot, 779. See also dot product
scalar, 779
scalar triple, 790
triple, 790

profit function, 327
projectile, path of, 629, 841
projection, 766, 782, 783, 785
-series, 699

quadrant, A11
quadratic approximation, 253, 933
quadratic function, 28
quadric surface(s), 805

cone, 808
cylinder, 805
ellipsoid, 806, 808
hyperboloid, 808, 810
paraboloid, 806, 810
table of graphs, 808

Quotient Law of limits, 100
Quotient Rule, 185, 186

radian measure, 189, A24
radiation from stars, 757
radioactive decay, 235
radiocarbon dating, 240
radius of convergence, 725
radius of gyration, 984
rainbow, formation and location of, 279
rainbow angle, 279
ramp function, 45
range of a function, 11, 855
rate of change

average, 148, 221
derivative as, 148
instantaneous, 86, 148, 221

rate of growth, 226
rate of reaction, 225
rational function, 31, 874

integration of, 473
rational number, A2
rationalizing substitution for integration, 481
Ratio Test, 716
Rayleigh-Jeans Law, 757
real line, A3
real number, A2
rearrangement of a series, 719
reciprocal function, 31
Reciprocal Rule, 189

p
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rectangular coordinate system, A11
conversion to cylindrical 

coordinates, 1001
conversion to spherical coordinates, 1006
three-dimensional, 766

rectilinear motion, 343
recursion relation, 1134
reduction formula, 457
reflecting a function, 38
reflection property

of an ellipse, 658
of a hyperbola, 662
of a parabola, 268, 269

region
connected, 1048
open, 1048
under a graph, 355, 360
plane, of type I or II, 966, 967
simple plane, 1056
simple solid, 1099
simply-connected, 1049
solid (of type 1, 2, or 3), 991, 993
between two graphs, 415

related rates, 241
relative error, 251
relative growth rate, 234, 592
relative maximum and minimum, 271
remainder estimates

for the Alternating Series, 712
for the Integral Test, 701

remainder of the Taylor series, 737
removable discontinuity, 120
representation(s) of a function, 12

as a power series, 728
resonance, 1129
restoring force, 1125
resultant force, 776
revenue function, 327
reversing order of integration, 962, 970
revolution, solid of, 427
revolution, surface of, 532
Riemann, Georg Bernhard, 367
Riemann sum(s), 367

for multiple integrals, 954, 990
right circular cylinder, 422
right-hand derivative, 165
right-hand limit, 92, 113
right-hand rule, 765, 788
Roberval, Gilles de, 386, 633
rocket science, 941
Rolle, Michel, 280
roller coaster, design of, 182
roller derby, 1012
Rolle’s Theorem, 280
root function, 30
Root Test, 718
roots of a complex number, A62
roots of an nth-degree equation, 210

ruled surface, 812
ruling of a surface, 804

saddle point, 924
sample point, 360, 952
satellite dish, parabolic, 810
scalar, 771
scalar equation of a plane, 798
scalar field, 1028
scalar multiple of a vector, 771
scalar product, 779
scalar projection, 782, 783
scalar triple product, 790

geometric characterization of, 791
scatter plot, 14
seasonal-growth model, 600
secant function, A26

derivative of, 193
graph of, A31

secant line, 4, 83, 86
secant vector, 824
second derivative, 160
Second Derivative Test, 292
second derivative of a vector function, 826
Second Derivatives Test, 924
second moment of inertia, 983
second partial derivative, 884
second-order differential equation, 569

solutions of, 1111, 1116
sector of a circle, area of, 650
separable differential equation, 580
sequence, 6, 675

bounded, 682
convergent, 677
decreasing, 681
divergent, 677
Fibonacci, 676
graph of, 680
increasing, 681
limit of, 6, 357, 677
monotonic, 681
of partial sums, 688
term of, 675

series, 7, 687
absolutely convergent, 714
alternating, 710
alternating harmonic, 711, 715
binomial, 742, 748
coefficients of, 723
conditionally convergent, 715
convergent, 688
divergent, 688
geometric, 688
Gregory’s, 732
harmonic, 691
infinite, 687
Maclaurin, 734, 736
p-, 699

partial sum of, 688
power, 723
rearrangement of, 719
strategy for testing, 721
sum of, 7, 688
Taylor, 734, 736
term of, 687
trigonometric, 723

series solution of a differential 
equation, 1133

set, bounded or closed, 928
set notation, A3
serpentine, 188
shell method for approximating volume, 433
shift of a function, 37
shifted conics, 659, A21
shock absorber, 1126
Sierpinski carpet, 696
sigma notation, 360, A34
simple curve, 1049
simple harmonic motion, 205
simple plane region, 1056
simple solid region, 1099
simply-connected region, 1049
Simpson, Thomas, 501, 502, 949
Simpson’s Rule, 500, 502

error bounds for, 503
sine function, A26

derivative of, 193
graph of, 32, A31
power series for, 740

sine integral function, 389
sink, 1103
skew lines, 797
slant asymptote, 312
slope, A12
slope field, 573
slope-intercept equation of a line, A13
smooth curve, 831
smooth function, 525
smooth parametrization, 831
smooth surface, 1075
Snell’s Law, 331
snowflake curve, 761
solid, 422

volume of, 423, 991, 992
solid angle, 1109
solid region, 1099
solid of revolution, 427

rotated on a slant, 538
volume of, 430, 434, 538

solution curve, 572
solution of predator-prey equations, 609
source, 1103
space, three-dimensional, 765
space curve, 818

arc length of, 830, 831 
speed of a particle, 148, 839
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sphere
equation of, 768
flux across, 1088
parametrization of, 1072
surface area of, 1076

spherical coordinate system, 1005
conversion equations for, 1006
triple integrals in, 1006

spherical wedge, 1007
spherical zones, 564
spring constant, 439, 568, 1125
Squeeze Theorem, 105, A42

for sequences, 679
standard position of an angle, A25
standard basis vectors, 774, 775
standard deviation, 559
static friction, coefficient of, 815
stationary points, 923
steady state solution, 1131
step function, 18
Stokes, Sir George, 1093, 1098
Stokes’ Theorem, 1092, 1093
strategy

for integration, 483, 484
for optimization problems, 322
for problem solving, 76
for related rates, 243
for testing series, 721
for trigonometric integrals, 462, 463

streamlines, 1033
stretching a function, 38
strophoid, 653, 671
Substitution Rule, 400, 401, 404
subtraction formulas for sine and cosine, A29
sum

of a geometric series, 689
of an infinite series, 688
of partial fractions, 474
Riemann, 367
telescoping, 691
of vectors, 770, 773

Sum Law of limits, 100
Sum Rule, 177
summation notation, A34
supply function, 553
surface(s), 766

closed, 1086
graph of, 1083
level, 865
oriented, 1086
parametric, 1070
positive orientation of, 1086
quadric, 805. See also quadric 

surface
smooth, 1075

surface area, 534
of a parametric surface, 635, 1075
of a sphere, 1076

of a surface , 1077
surface integral, 1081

over a parametric surface, 1081
of a vector field, 1087

surface of revolution, 532
surface area of, 534
parametric representation of, 1073

swallowtail catastrophe curve, 629
symmetric equations of a line, 795
symmetric functions, integrals of, 405
symmetry, 19, 308, 405

in polar graphs, 644
symmetry principle, 543

and transformations, 1013
table of differentiation formulas, 187, RP5
tables of integrals, 484, RP6–10

use of, 489
tangent function, A26

derivative, 193
graph, 33, A31

tangent line(s), 143
to a curve, 4, 83, 144
early methods of finding, 153
to a parametric curve, 630
to a polar curve, 644
to a space curve, 824

tangent line approximation, 247
tangent plane

to a level surface, 917
to a parametric surface, 1074
to a surface , 917
to a surface , 892

tangent plane approximation, 894
tangent problem, 4, 83, 144
tangent vector, 824
tangential component of acceleration, 842
tautochrone problem, 625
Taylor, Brook, 736
Taylor polynomial, 254, 737, 933

applications of, 749
Taylor series, 734, 736
Taylor’s Inequality, 737
techniques of integration, summary, 484
telescoping sum, 691
temperature-humidity index, 866, 878
term of a sequence, 675
term of a series, 687
term-by-term differentiation and 

integration, 729
terminal point of a parametric curve, 622
terminal point of a vector, 770
terminal velocity, 587
Test for Divergence, 692
tests for convergence and divergence of series

Alternating Series Test, 710
Comparison Test, 705
Integral Test, 697, 699

Limit Comparison Test, 707
Ratio Test, 716
Root Test, 718
summary of tests, 721

tetrahedron, 794
third derivative, 161
Thomson, Sir William (Lord Kelvin), 1056,

1093, 1098
three-dimensional coordinate system, 766
TNB frame, 835
toroidal spiral, 820
torque, 791, 848
Torricelli, Evangelista, 633
Torricelli’s Law, 231
torsion of a space curve, 838
torus, 432, 1081
total differential, 896
total electric charge, 980, 996
total fertility rate, 169
trace of a surface, 804
trajectory, parametric equations for, 841
transcendental function, 34
transfer curve, 851
transformation, 1013

of a function, 37
inverse, 1013
Jacobian of, 1015, 1019
one-to-one, 1013

translation of a function, 38
Trapezoidal Rule, 497

error in, 497
tree diagram, 903
trefoil knot, 820
Triangle Inequality, A8

for vectors, 786
Triangle Law, 771
trigonometric functions, 32, A26

derivatives of, 189, 193
graphs of, A30, A31
integrals of, 460
inverse, 67, 68
limits involving, 190, 192

trigonometric identities, A28
trigonometric integrals, 460

strategy for evaluating, 462, 463
trigonometric series, 723
trigonometric substitutions, 467

table of, 467
triple integral(s), 990

applications of, 995
in cylindrical coordinates, 1002
over a general bounded region, 991
Midpoint Rule for, 998
in spherical coordinates, 1007, 1008

triple product, 790
triple Riemann sum, 990
trochoid, 628
Tschirnhausen cubic, 214, 421

z � f �x, y�
F�x, y, z� � k

T �1T

z � f �x, y�
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twisted cubic, 820
type I or type II plane region, 966, 967
type 1, 2, or 3 solid region, 991, 993

ultraviolet catastrophe, 757
underdamped vibration, 1127
undetermined coefficients, method of, 1118, 1122
union of sets, A3
unit normal vector, 834
unit tangent vector, 824
unit vector, 775

value of a function, 11
variable

continuous random, 555
dependent, 11, 855, 903
independent, 11, 855, 903
independent random, 986
intermediate, 903

variables, change of. See change of variables
variation of parameters, method of, 1122, 1123
vascular branching, 332
vector(s), 770

acceleration as, 839
addition of, 770, 773
algebraic, 772
angle between, 779
basis, 774, 775
binormal, 834
components of, 772
coplanar, 791
cross product of, 786
difference of, 771
displacement, 770, 783
dot product, 779, 780
equivalent, 770
force, 1030
geometric representations of, 772
gradient, 913, 915
i, j, and k, 775
initial point of, 770
length of, 773
magnitude of, 773
multiplication of, 771, 773

-dimensional, 774
negative, 771
normal, 797, 834
orthogonal, 781
parallel, 771
perpendicular, 781
position, 773
principal unit normal, 834
projection of, 782, 783
properties of, 774
scalar multiple of, 771
standard basis, 775
subtraction of, 773

sum of, 770, 773
tangent, 824
terminal point of, 770
three-dimensional, 772
triple product, 790, 791
two-dimensional, 772
unit, 772
unit normal, 834
unit tangent, 824
velocity, 831
wind velocity, 764
zero, 770

vector equation 
of a line, 794, 795
of a line segment, 797
of a plane, 798
of a plane curve, 818

vector field, 1027, 1028
conservative, 1032
curl of, 1062
divergence of, 1065
electric flux of, 1089
force, 1027, 1031
flux of, 1087
gradient, 1031
gravitational, 1031
incompressible, 1066
irrotational, 1064
line integral of, 1041, 1042
surface integral of, 1087
velocity, 1027

vector function, 817
continuity of, 818
derivative of, 824
differentiation formulas for, 826
integration of, 827
limit of, 817
parametric equations of, 818

vector product, 786
properties of, 790

vector projection, 782, 783
vector triple product, 791
vector-valued function. See vector function
velocity, 4, 85, 145, 221

average, 5, 86, 145, 221
instantaneous, 86, 145, 221

velocity field, 1030
air flow, 1027
ocean currents, 1027
wind patterns, 1027

velocity gradient, 228
velocity problem, 85, 145
velocity vector, 831
velocity vector field, 1027
Verhulst, Pierre-François, 568
vertex of a parabola, 655
vertical asymptote, 95, 308

vertical line, A13
Vertical Line Test, 16
vertical plane, equation of, 766
vertical tangent line, 159
vertical translation of a graph, 37
vertices

of an ellipse, 657
of a hyperbola, 658

vibration of a rubber membrane, 724
vibration of a spring, 1125
vibrations, 1125, 1126, 1128
viewing rectangle, 46
volume, 423

by double integrals, 951
by cross-sections, 422
by cylindrical shells, 433
by disks, 424, 427
of a hypersphere, 1000
of a solid, 422, 953
of a solid of revolution, 427, 538
of a solid on a slant, 538
by triple integrals, 995
by washers, 426, 427

Volterra, Vito, 609
Von Bertalanffy model, 616

Wallis, John, 4
Wallis product, 459
washer method, 426
wave equation, 886
Weierstrass, Karl, 482
weight (force), 438
wind-chill index, 856
wind patterns in San Francisco Bay area, 1027
witch of Maria Agnesi, 188, 628
work (force), 438, 783

defined as a line integral, 1041
Wren, Sir Christopher, 635

-axis, 765, A10
-coordinate, 765, A10
-intercept, A19
-mean, 987
-plane, 766
-plane, 766

-axis, 765, A10
-coordinate, 765, A10
-intercept, A19
-mean, 987
-plane, 766

-axis, 765
-coordinate, 765

Zeno, 6
Zeno’s paradoxes, 6
zero vector, 770

z
z

yz
Y
y
y
y

xz
xy
X
x
x
x

n
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