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PREFACE

A great discovery solves a great problem but there is a grain of discovery in the
solution of any problem.Your problem may be modest; but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

GEORGE POLYA

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to
write a book that assists students in discovering calculus—both for its practical power and
its surprising beauty. In this edition, as in the first five editions, I aim to convey to the stu-
dent a sense of the utility of calculus and develop technical competence, but I also strive
to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly
experienced a sense of triumph when he made his great discoveries. I want students to
share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that
this should be the primary goal of calculus instruction. In fact, the impetus for the current
calculus reform movement came from the Tulane Conference in 1986, which formulated
as their first recommendation:

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be pre-
sented geometrically, numerically, and algebraically.” Visualization, numerical and graph-
ical experimentation, and other approaches have changed how we teach conceptual
reasoning in fundamental ways. More recently, the Rule of Three has been expanded to
become the Rule of Four by emphasizing the verbal, or descriptive, point of view as well.

In writing the sixth edition my premise has been that it is possible to achieve concep-
tual understanding and still retain the best traditions of traditional calculus. The book con-
tains elements of reform, but within the context of a traditional curriculum.

ALTERNATIVE VERSIONS

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

Calculus, Sixth Edition, is similar to the present textbook except that the exponential,
logarithmic, and inverse trigonometric functions are covered in the second semester.

Essential Calculus is a much briefer book (800 pages), though it contains almost all of
the topics in Calculus, Sixth Edition. The relative brevity is achieved through briefer
exposition of some topics and putting some features on the website.

Essential Calculus: Early Transcendentals resembles Essential Calculus, but the expo-
nential, logarithmic, and inverse trigonometric functions are covered in Chapter 3.

Xi
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PREFACE

Calculus: Concepts and Contexts, Third Edition, emphasizes conceptual understanding
even more strongly than this book. The coverage of topics is not encyclopedic and the
material on transcendental functions and on parametric equations is woven throughout
the book instead of being treated in separate chapters.

Calculus: Early Vectors introduces vectors and vector functions in the first semester and
integrates them throughout the book. It is suitable for students taking Engineering and
Physics courses concurrently with calculus.

WHAT’S NEW IN THE SIXTH EDITION?

Here are some of the changes for the sixth edition of Calculus: Early Transcendentals.

At the beginning of the book there are four diagnostic tests, in Basic Algebra,
Analytic Geometry, Functions, and Trigonometry. Answers are given and students
who don’t do well are referred to where they should seek help (Appendixes, review
sections of Chapter 1, and the website).

In response to requests of several users, the material motivating the derivative is
briefer: Sections 2.7 and 2.8 are combined into a single section called Derivatives and
Rates of Change.

The section on Higher Derivatives in Chapter 3 has disappeared and that material is
integrated into various sections in Chapters 2 and 3.

Instructors who do not cover the chapter on differential equations have commented
that the section on Exponential Growth and Decay was inconveniently located there.
Accordingly, it is moved earlier in the book, to Chapter 3. This move precipitates a
reorganization of Chapters 3 and 9.

Sections 4.7 and 4.8 are merged into a single section, with a briefer treatment of opti-
mization problems in business and economics.

Sections 11.10 and 11.11 are merged into a single section. I had previously featured
the binomial series in its own section to emphasize its importance. But I learned that
some instructors were omitting that section, so I have decided to incorporate binomial
series into 11.10.

The material on cylindrical and spherical coordinates (formerly Section 12.7) is moved
to Chapter 15, where it is introduced in the context of evaluating triple integrals.

New phrases and margin notes have been added to clarify the exposition.
A number of pieces of art have been redrawn.
The data in examples and exercises have been updated to be more timely.

Many examples have been added or changed. For instance, Example 2 on page 185
was changed because students are often baffled when they see arbitrary constants in a
problem and I wanted to give an example in which they occur.

Extra steps have been provided in some of the existing examples.

More than 25% of the exercises in each chapter are new. Here are a few of my
favorites: 3.1.79, 3.1.80, 4.3.62, 4.3.83, 11.6.38, 11.11.30, 14.5.44, and 14.8.20-21.

There are also some good new problems in the Problems Plus sections. See, for
instance, Problems 2 and 13 on page 413, Problem 13 on page 450, and Problem 24
on page 763.

The new project on page 550, Complementary Coffee Cups, comes from an article by
Thomas Banchoff in which he wondered which of two coffee cups, whose convex and
concave profiles fit together snugly, would hold more coffee.
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Tools for Enriching Calculus (TEC) has been completely redesigned and is accessible
on the Internet at www.stewartcalculus.com. It now includes what we call Visuals, brief
animations of various figures in the text. In addition, there are now Visual, Modules,
and Homework Hints for the multivariable chapters. See the description on page xiv.

The symbol I has been placed beside examples (an average of three per section) for
which there are videos of instructors explaining the example in more detail. This
material is also available on DVD. See the description on page xxi.

FEATURES

CONCEPTUAL EXERCISES

GRADED EXERCISE SETS

REAL-WORLD DATA

PROJECTS

The most important way to foster conceptual understanding is through the problems that
we assign. To that end I have devised various types of problems. Some exercise sets begin
with requests to explain the meanings of the basic concepts of the section. (See, for
instance, the first few exercises in Sections 2.2, 2.5, 11.2, 14.2, and 14.3.) Similarly, all the
review sections begin with a Concept Check and a True-False Quiz. Other exercises test
conceptual understanding through graphs or tables (see Exercises 2.7.17, 2.8.33-38,
2.8.41-44,9.1.11-12, 10.1.24-27, 11.10.2, 13.2.1-2, 13.3.33-37, 14.1.1-2, 14.1.30-38,
14.3.3-10, 14.6.1-2, 14.7.3-4, 15.1.5-10, 16.1.11-18, 16.2.17-18, and 16.3.1-2).

Another type of exercise uses verbal description to test conceptual understanding (see
Exercises 2.5.8, 2.8.56, 4.3.63—64, and 7.8.67). I particularly value problems that combine
and compare graphical, numerical, and algebraic approaches (see Exercises 2.6.37-38,
3.7.25, and 9.4.2).

Each exercise set is carefully graded, progressing from basic conceptual exercises and skill-
development problems to more challenging problems involving applications and proofs.

My assistants and I spent a great deal of time looking in libraries, contacting companies
and government agencies, and searching the Internet for interesting real-world data to intro-
duce, motivate, and illustrate the concepts of calculus. As a result, many of the examples
and exercises deal with functions defined by such numerical data or graphs. See, for
instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), Exercise
2.8.34 (percentage of the population under age 18), Exercise 5.1.14 (velocity of the space
shuttle Endeavour), and Figure 4 in Section 5.4 (San Francisco power consumption).
Functions of two variables are illustrated by a table of values of the wind-chill index as a
function of air temperature and wind speed (Example 2 in Section 14.1). Partial derivatives
are introduced in Section 14.3 by examining a column in a table of values of the heat index
(perceived air temperature) as a function of the actual temperature and the relative humid-
ity. This example is pursued further in connection with linear approximations (Example 3
in Section 14.4). Directional derivatives are introduced in Section 14.6 by using a temper-
ature contour map to estimate the rate of change of temperature at Reno in the direction of
Las Vegas. Double integrals are used to estimate the average snowfall in Colorado on
December 20-21, 2006 (Example 4 in Section 15.1). Vector fields are introduced in Section
16.1 by depictions of actual velocity vector fields showing San Francisco Bay wind patterns.

One way of involving students and making them active learners is to have them work (per-
haps in groups) on extended projects that give a feeling of substantial accomplishment
when completed. I have included four kinds of projects: Applied Projects involve applica-
tions that are designed to appeal to the imagination of students. The project after Section
9.3 asks whether a ball thrown upward takes longer to reach its maximum height or to fall
back to its original height. (The answer might surprise you.) The project after Section 14.8
uses Lagrange multipliers to determine the masses of the three stages of a rocket so as to
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PROBLEM SOLVING

TECHNOLOGY

TOOLS FOR
ENRICHING™ CALCULUS

minimize the total mass while enabling the rocket to reach a desired velocity. Laboratory
Projects involve technology; the one following Section 10.2 shows how to use Bézier
curves to design shapes that represent letters for a laser printer. Writing Projects ask stu-
dents to compare present-day methods with those of the founders of calculus—Fermat’s
method for finding tangents, for instance. Suggested references are supplied. Discovery
Projects anticipate results to be discussed later or encourage discovery through pattern
recognition (see the one following Section 7.6). Others explore aspects of geometry: tetra-
hedra (after Section 12.4), hyperspheres (after Section 15.6), and intersections of three
cylinders (after Section 15.7). Additional projects can be found in the Instructor’s Guide
(see, for instance, Group Exercise 5.1: Position from Samples).

Students usually have difficulties with problems for which there is no single well-defined
procedure for obtaining the answer. I think nobody has improved very much on George
Polya’s four-stage problem-solving strategy and, accordingly, I have included a version of
his problem-solving principles following Chapter 1. They are applied, both explicitly and
implicitly, throughout the book. After the other chapters I have placed sections called
Problems Plus, which feature examples of how to tackle challenging calculus problems. In
selecting the varied problems for these sections I kept in mind the following advice from
David Hilbert: “A mathematical problem should be difficult in order to entice us, yet not
inaccessible lest it mock our efforts.” When I put these challenging problems on assign-
ments and tests I grade them in a different way. Here I reward a student significantly for
ideas toward a solution and for recognizing which problem-solving principles are relevant.

The availability of technology makes it not less important but more important to clearly
understand the concepts that underlie the images on the screen. But, when properly used,
graphing calculators and computers are powerful tools for discovering and understanding
those concepts. This textbook can be used either with or without technology and I use two
special symbols to indicate clearly when a particular type of machine is required. The icon
[ indicates an exercise that definitely requires the use of such technology, but that is not
to say that it can’t be used on the other exercises as well. The symbol is reserved for
problems in which the full resources of a computer algebra system (like Derive, Maple,
Mathematica, or the TI-89/92) are required. But technology doesn’t make pencil and paper
obsolete. Hand calculation and sketches are often preferable to technology for illustrating
and reinforcing some concepts. Both instructors and students need to develop the ability
to decide where the hand or the machine is appropriate.

TEC is a companion to the text and is intended to enrich and complement its contents.
(It is now accessible from the Internet at www.stewartcalculus.com.) Developed by Har-
vey Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory
approach. In sections of the book where technology is particularly appropriate, marginal
icons direct students to TEC modules that provide a laboratory environment in which they
can explore the topic in different ways and at different levels. Visuals are animations of fig-
ures in text; Modules are more elaborate activities and include exercises. Instructors can
choose to become involved at several different levels, ranging from simply encouraging
students to use the Visuals and Modules for independent exploration, to assigning spe-
cific exercises from those included with each Module, or to creating additional exercises,
labs, and projects that make use of the Visuals and Modules.

TEC also includes Homework Hints for representative exercises (usually odd-
numbered) in every section of the text, indicated by printing the exercise number in red.
These hints are usually presented in the form of questions and try to imitate an effective
teaching assistant by functioning as a silent tutor. They are constructed so as not to reveal
any more of the actual solution than is minimally necessary to make further progress.
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Technology is having an impact on the way homework is assigned to students, particu-
larly in large classes. The use of online homework is growing and its appeal depends on
ease of use, grading precision, and reliability. With the sixth edition we have been work-
ing with the calculus community and WebAssign to develop an online homework system.
Up to 70% of the exercises in each section are assignable as online homework, including
free response, multiple choice, and multi-part formats.

The system also includes Active Examples, in which students are guided in step-by-step
tutorials through text examples, with links to the textbook and to video solutions.

This site has been renovated and now includes the following.

Algebra Review
Lies My Calculator and Computer Told Me
History of Mathematics, with links to the better historical websites

Additional Topics (complete with exercise sets): Fourier Series, Formulas for the
Remainder Term in Taylor Series, Rotation of Axes

Archived Problems (Drill exercises that appeared in previous editions, together
with their solutions)

Challenge Problems (some from the Problems Plus sections from prior editions)
Links, for particular topics, to outside web resources

The complete Tools for Enriching Calculus (TEC) Modules, Visuals, and
Homework Hints

CONTENT

Diagnostic Tests

A Preview of Calculus

I = Functions and Models

2 = Limits and Derivatives

3 = Differentiation Rules

The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-
tions, and Trigonometry.

This is an overview of the subject and includes a list of questions to motivate the study of
calculus.

From the beginning, multiple representations of functions are stressed: verbal, numerical,
visual, and algebraic. A discussion of mathematical models leads to a review of the standard
functions, including exponential and logarithmic functions, from these four points of view.

The material on limits is motivated by a prior discussion of the tangent and velocity prob-
lems. Limits are treated from descriptive, graphical, numerical, and algebraic points of
view. Section 2.4, on the precise e-6 definition of a limit, is an optional section. Sec-
tions 2.7 and 2.8 deal with derivatives (especially with functions defined graphically and
numerically) before the differentiation rules are covered in Chapter 3. Here the examples
and exercises explore the meanings of derivatives in various contexts. Higher derivatives
are now introduced in Section 2.8.

All the basic functions, including exponential, logarithmic, and inverse trigonometric func-
tions, are differentiated here. When derivatives are computed in applied situations, students
are asked to explain their meanings. Exponential growth and decay are now covered in this
chapter.
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Applications of Differentiation

5 = Integrals

6 = Applications of Integration

7 = Techniques of Integration

8 = Further Applications

of Integration

9 = Differential Equations

10 = Parametric Equations
and Polar Coordinates

Infinite Sequences and Series

12 =Vectors and

The Geometry of Space

The basic facts concerning extreme values and shapes of curves are deduced from the
Mean Value Theorem. Graphing with technology emphasizes the interaction between cal-
culus and calculators and the analysis of families of curves. Some substantial optimization
problems are provided, including an explanation of why you need to raise your head 42°
to see the top of a rainbow.

The area problem and the distance problem serve to motivate the definite integral, with
sigma notation introduced as needed. (Full coverage of sigma notation is provided in Appen-
dix E.) Emphasis is placed on explaining the meanings of integrals in various contexts and
on estimating their values from graphs and tables.

Here I present the applications of integration—area, volume, work, average value—that
can reasonably be done without specialized techniques of integration. General methods are
emphasized. The goal is for students to be able to divide a quantity into small pieces, esti-
mate with Riemann sums, and recognize the limit as an integral.

All the standard methods are covered but, of course, the real challenge is to be able to recog-
nize which technique is best used in a given situation. Accordingly, in Section 7.5, I
present a strategy for integration. The use of computer algebra systems is discussed in
Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is use-
ful to have available all the techniques of integration, as well as applications to biology,
economics, and physics (hydrostatic force and centers of mass). I have also included a sec-
tion on probability. There are more applications here than can realistically be covered in
a given course. Instructors should select applications suitable for their students and for
which they themselves have enthusiasm.

Modeling is the theme that unifies this introductory treatment of differential equations.
Direction fields and Euler’s method are studied before separable and linear equations are
solved explicitly, so that qualitative, numerical, and analytic approaches are given equal
consideration. These methods are applied to the exponential, logistic, and other models
for population growth. The first four or five sections of this chapter serve as a good intro-
duction to first-order differential equations. An optional final section uses predator-prey
models to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus
to them. Parametric curves are well suited to laboratory projects; the two presented here
involve families of curves and Bézier curves. A brief treatment of conic sections in polar
coordinates prepares the way for Kepler’s Laws in Chapter 13.

The convergence tests have intuitive justifications (see page 697) as well as formal proofs.
Numerical estimates of sums of series are based on which test was used to prove conver-
gence. The emphasis is on Taylor series and polynomials and their applications to physics.
Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two chap-
ters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and surfaces.
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This chapter covers vector-valued functions, their derivatives and integrals, the length and
curvature of space curves, and velocity and acceleration along space curves, culminating
in Kepler’s laws.

Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific
column in a table of values of the heat index (perceived air temperature) as a function of
the actual temperature and the relative humidity. Directional derivatives are estimated from
contour maps of temperature, pressure, and snowfall.

Contour maps and the Midpoint Rule are used to estimate the average snowfall and average
temperature in given regions. Double and triple integrals are used to compute probabilities,
surface areas, and (in projects) volumes of hyperspheres and volumes of intersections of
three cylinders. Cylindrical and spherical coordinates are introduced in the context of eval-
uating triple integrals.

Vector fields are introduced through pictures of velocity fields showing San Francisco Bay
wind patterns. The similarities among the Fundamental Theorem for line integrals, Green’s
Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals
with second-order linear differential equations, their application to vibrating springs and
electric circuits, and series solutions.

ANCILLARIES

Calculus, Early Transcendentals, Sixth Edition, is supported by a complete set of ancil-
laries developed under my direction. Each piece has been designed to enhance student
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each of these ancillaries.
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TO THE STUDENT

Reading a calculus textbook is different from reading a news-
paper or a novel, or even a physics book. Don’t be discouraged
if you have to read a passage more than once in order to under-
stand it. You should have pencil and paper and calculator at
hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems and
read the text only if they get stuck on an exercise. I suggest that
a far better plan is to read and understand a section of the text
before attempting the exercises. In particular, you should look
at the definitions to see the exact meanings of the terms. And
before you read each example, I suggest that you cover up the
solution and try solving the problem yourself. You’ll get a lot
more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically.
Learn to write the solutions of the exercises in a connected,
step-by-step fashion with explanatory sentences—not just a
string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the
back of the book, in Appendix 1. Some exercises ask for a ver-
bal explanation or interpretation or description. In such cases
there is no single correct way of expressing the answer, so don’t
worry that you haven’t found the definitive answer. In addition,
there are often several different forms in which to express a
numerical or algebraic answer, so if your answer differs from
mine, don’t immediately assume you’re wrong. For example,
if the answer given in the back of the book is s2 — 1 and you
obtain 1/(1 + s2), then you’re right and rationalizing the
denominator will show that the answers are equivalent.

The icon [ indicates an exercise that definitely requires
the use of either a graphing calculator or a computer with
graphing software. (Section 1.4 discusses the use of these
graphing devices and some of the pitfalls that you may
encounter.) But that doesn’t mean that graphing devices can’t
be used to check your work on the other exercises as well. The
symbol is reserved for problems in which the full resources

of a computer algebra system (like Derive, Maple, Mathe-
matica, or the TI-89/92) are required.

You will also encounter the symbol [@), which warns you
against committing an error. I have placed this symbol in the
margin in situations where I have observed that a large propor-
tion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this
text, is referred to by means of the symbol fEd and can be
accessed from www.stewartcalculus.com. It directs you to mod-
ules in which you can explore aspects of calculus for which the
computer is particularly useful. TEC also provides Homework
Hints for representative exercises that are indicated by printing
the exercise number in red: [15.] These homework hints ask you
questions that allow you to make progress toward a solution
without actually giving you the answer. You need to pursue
each hint in an active manner with pencil and paper to work
out the details. If a particular hint doesn’t enable you to solve
the problem, you can click to reveal the next hint.

An optional CD-ROM that your instructor may have asked
you to purchase is the Interactive Video Skillbuilder, which con-
tains videos of instructors explaining two or three of the exam-
ples in every section of the text. Also on the CD is a video in
which I offer advice on how to succeed in your calculus course.

I recommend that you keep this book for reference purposes
after you finish the course. Because you will likely forget some
of the specific details of calculus, the book will serve as a
useful reminder when you need to use calculus in subsequent
courses. And, because this book contains more material than
can be covered in any one course, it can also serve as a valuable
resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one
of the greatest achievements of the human intellect. I hope you
will discover that it is not only useful but also intrinsically
beautiful.

JAMES STEWART

xxiii



DIAGNOSTIC TESTS

Success in calculus depends to a large extent on knowledge of the mathematics that
precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol-
lowing tests are intended to diagnose weaknesses that you might have in these areas.
After taking each test you can check your answers against the given answers and, if
necessary, refresh your skills by referring to the review materials that are provided.

DIAGNOSTIC TEST: ALGEBRA

1. Evaluate each expression without using a calculator.

@ (=3)* (b) —3* (© 37
523 2 -2 B
@ S (e) <3) (f) 167
2. Simplify each expression. Write your answer without negative exponents.
(a) /200 — /32

(b) (3a°b®)(4ab*)?

3x3/2y3 -2
o (3

3. Expand and simplfy.

(a) 3(x + 6) +4(2x — 5) (b) (x + 3)(4x —5)
© (Va +Vb)(a —b)  (d x+3)
(e) (x +2)°

4. Factor each expression.
(a) 4x> — 25 (b) 2x* + 5x — 12
() x> —3x—4x+ 12 (d) x*+ 27x
(e) 3x¥* — 9x'> + 6x 12 (f) x’y — 4xy

5. Simplify the rational expression.

()x2+3x+2 ®) 2P —x—1 x+3
Q) —S—————— .
xr—x—-2 x*=9 2x + 1
y_2x
x? x+1 x oy
() - (d)

x2—4 x+2

'\<‘»—A
><\>—‘
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DIAGNOSTIC TESTS

6. Rationalize the expression and simplify.

V10 VA+h -2
(a)ﬁ (b)T

7. Rewrite by completing the square.

(a) x> +x+1

(b) 2x* — 12x + 11

8. Solve the equation. (Find only the real solutions.)

(@) Xx+5=14—3x

@ ¥*—x—12=0
(e x*—=3x*+2=0

) 2x =2x—1
x+ 1 X
@ 2x*+4x+1=0

(f) 3]Jx — 4] =10

(g 2x(4 —x)V? =34 —x =0

9. Solve each inequality. Write your answer using interval notation.

(@ —4<5-3x<17

(b) x?<2x+8

XXV

© x(x—1Dx+2)>0 d |x—4]|<3
2x — 3 <1
© x+1
10. State whether each equation is true or false.
@ @+a=p+4q (b) Jab = JaJb
© V@ TP =a+b @ =T
r l B l 1/x _ 1
(e)x*y_x y (H) a/x —b/x a—»b
ANSWERS TO DIAGNOSTIC TEST A: ALGEBRA
. (a) 81 (b) —81 © & 6. (a) 52 + 2410 (b) —————
(d) 25 OF; (f) + Vad+h+2
2. () 62 (b) 48a°b’ (© — 7 @ (x+3)+3 ®) 2(x — 37 — 7
9y
3. (@ llx — 2 (b) 4x> + 7x — 15 8. (a) 6 ® 1 () —3,4
(c)a—»>b (d) 4x*+ 12x + 9 (d) 7115\/5 () =1, = (f) %,272
(e) x* + 6x*+ 12x + 8 (@) 2
23
4. (a) 2x — 5)(2x + 5) (b) 2x — 3)(x + 4) B B
© @ -3Hx-2)x+2 (@ x(x+3)x2—3x+9) 9. 8 E_;’ (3); U (L% EE; 21 27’)4)
(e 3x x — )(x —2) (f) xy(x —2)(x + 2) ’ ’ ’
(e) (—1,4]
x+ 2 x—1
5. (@) x =2 (b) x—3 10. (a) False (b) True (c) False
1 (d) False (e) False (f) True
© —— @ —(x+y)

If you have had difficulty with these problems, you may wish to consult
the Review of Algebra on the website www.stewartcalculus.com.
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B DIAGNOSTIC TEST: ANALYTIC GEOMETRY

. Find an equation for the line that passes through the point (2, —5) and
(a) has slope —3
(b) is parallel to the x-axis
(c) is parallel to the y-axis
(d) is parallel to the line 2x — 4y = 3

g

Find an equation for the circle that has center (—1, 4) and passes through the point (3, —2).

3. Find the center and radius of the circle with equation x? + y* — 6x + 10y + 9 = 0.

>

Let A(—7,4) and B(5, —12) be points in the plane.

(a) Find the slope of the line that contains A and B.

(b) Find an equation of the line that passes through A and B. What are the intercepts?
(c) Find the midpoint of the segment AB.

(d) Find the length of the segment AB.

(e) Find an equation of the perpendicular bisector of AB.

(f) Find an equation of the circle for which AB is a diameter.

5. Sketch the region in the xy-plane defined by the equation or inequalities.

(@ —1<ys<3 (b) |x| <4and|y| <2
© y<1-sx @ y=x>—1
(@) X+ y7 < 4 (1) 9x + 16" = 144

ANSWERS TO DIAGNOSTIC TEST B: ANALYTIC GEOMETRY

l. () y=-3x+1 (b) y= -5 5. (a) y (O (©) y
© x=2 d y=:x—6 3 ) e [rmi-de
o ~
R : s
— * I x N~
3. Center (3, —5), radius 5 ! |
4. (a) =5
(b) 4x + 3y + 16 = 0; x-intercept —4, y-intercept — d © y (f) y
@n s 2
A
(©3x =4y = 13 N U R
(f) (x + 1)> + (y + 4> = 100 -1 y:xz_'l 4 \_/

If you have had difficulty with these problems, you may wish to consult
the Review of Analytic Geometry on the website www.stewartcalculus.com.
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(b) g(x) =

FIGURE FOR PROBLEM | 3. Find the domain of the function.
2x + 1
@ f) =~

2. If f(x) = x°, evaluate the difference quotient

y I. The graph of a function f is given at the left.
(a) State the value of f(—1).
(b) Estimate the value of f(2).
1 (¢) For what values of x is f(x) = 27
\ / (d) Estimate the values of x such that f(x) = 0.
(e) State the domain and range of f.

Jx

xP+1

h

f@+n -2

and simplify your answer.

(€) h(x) =4 —x +x? -1

4. How are graphs of the functions obtained from the graph of f?
(b y=2f(x) — 1
5. Without using a calculator, make a rough sketch of the graph.
(b) y=(x+1)
() y=+x

(h) y=1+x""

(@ y=—f(x
@ y=2x’
@ y=4-x°
@ y=-2
1—x* ifx<0
6 Letf(x)_{zxﬂ if x>0

(a) Evaluate f(—2) and f(1).

(b) Sketch the graph of f.

© y=flx—3)+2

© y=x—-2°+3
(f) y=2Vx

7. If f(x) = x> + 2x — 1 and g(x) = 2x — 3, find each of the following functions.

(@ feog (®) geof (©) gegeyg

ANSWERS TO DIAGNOSTIC TEST C: FUNCTIONS
. (a) =2 (b) 2.8 (d) y (e) y (f) y

(c) —3,1 (d) —2.5,0.3 4

(e) [-3,3],[—2,3] /\ ‘

0] 2 X o 1 X ol 1 X

2. 12+ 6h+ R / \
3. (@) (—»,—2) U (=2, ) U (1,%)

(b) (=0, )
(© (=, 1] U [1,4]

. (a) Reflect about the x-axis

(b) Stretch vertically by a factor of 2, then shift 1 unit downward
(c) Shift 3 units to the right and 2 units upward

(a) ©) y

7. @) (feg)(x) =4x* —8x+2
() (gof)x) =2x>+4x—5
(c) (gegeg(x) =8x—21

If you have had difficulty with these problems, you should look at Sections 1.1-1.3 of this book.
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D | DIAGNOSTIC TEST

: TRIGONOMETRY

24 5.

b 7.

FIGURE FOR PROBLEM 5

ANSWERS TO DIAGNOSTIC TEST

Convert from degrees to radians.
(a) 300° (b) —18°

. Convert from radians to degrees.

(a) 57/6 (b) 2
Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle of 30°.

Find the exact values.
(a) tan(7/3) (b) sin(7/6) (c) sec(57/3)

Express the lengths a and b in the figure in terms of 6.
If sin x = ; and sec y = 3, where x and y lie between 0 and 7/2, evaluate sin(x + y).

Prove the identities.
(a) tan @ sin® + cos O = sec O

) 2 tan x 2
————— =sin
1 + tan’x *

Find all values of x such that sin 2x = sinx and 0 < x < 2.

Sketch the graph of the function y = 1 + sin 2x without using a calculator.

D: TRIGONOMETRY

I. (a) 57/3 (b) —/10 6. (4 +62)

2. (a) 150° (b) 360/7 =~ 114.6° 8. 0, /3, m 5m/3,2m
3. 2mem 9.

4. (@) 3 ®) =3 © 2

5. (a) 24sin 6 (b) 24 cos 6

If you have had

difficulty with these problems, you should look at Appendix D of this book.




CALCULUS

EARLY TRANSCENDENTALS



A PREVIEW
OF CALCULUS

Calculus is fundamentally different from the mathematics that you have studied pre-
viously: calculus is less static and more dynamic. It is concerned with change and
motion; it deals with quantities that approach other quantities. For that reason it may
be useful to have an overview of the subject before beginning its intensive study. Here
we give a glimpse of some of the main ideas of calculus by showing how the concept
of a limit arises when we attempt to solve a variety of problems.




A=A+ A+ A+ A, + A,

FIGURE |

THE AREA PROBLEM

The origins of calculus go back at least 2500 years to the ancient Greeks, who found areas
using the “method of exhaustion.” They knew how to find the area A of any polygon by
dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more difficult problem to find the area of a curved figure. The Greek
method of exhaustion was to inscribe polygons in the figure and circumscribe polygons
about the figure and then let the number of sides of the polygons increase. Figure 2 illus-
trates this process for the special case of a circle with inscribed regular polygons.

NN

FIGURE 2

EIQ In the Preview Visual, you can see
how inscribed and circumscribed polygons
approximate the area of a circle.

AWANY.

Let A, be the area of the inscribed polygon with n sides. As n increases, it appears that
A, becomes closer and closer to the area of the circle. We say that the area of the circle is
the limit of the areas of the inscribed polygons, and we write

A= lirrslo A,
The Greeks themselves did not use limits explicitly. However, by indirect reasoning,
Eudoxus (fifth century BC) used exhaustion to prove the familiar formula for the area of a
circle: A = mr?.

We will use a similar idea in Chapter 5 to find areas of regions of the type shown in Fig-
ure 3. We will approximate the desired area A by areas of rectangles (as in Figure 4), let
the width of the rectangles decrease, and then calculate A as the limit of these sums of
areas of rectangles.

y y y y
(L1 11 (L1
0 1 x 11 3 1 «x 0 1 x 0% 1 x
4 2 4 n
FIGURE 3 FIGURE 4

The area problem is the central problem in the branch of calculus called integral cal-
culus. The techniques that we will develop in Chapter 5 for finding areas will also enable
us to compute the volume of a solid, the length of a curve, the force of water against a dam,
the mass and center of gravity of a rod, and the work done in pumping water out of a tank.
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y=fx)

THE TANGENT PROBLEM

FIGURE 5
The tangent line at P

FIGURE 6
The secant line PQ

y

FIGURE 7
Secant lines approaching the
tangent line

Consider the problem of trying to find an equation of the tangent line ¢ to a curve with
equation y = f(x) at a given point P. (We will give a precise definition of a tangent line in
Chapter 2. For now you can think of it as a line that touches the curve at P as in Figure 5.)
Since we know that the point P lies on the tangent line, we can find the equation of 7 if we
know its slope m. The problem is that we need two points to compute the slope and we
know only one point, P, on ¢. To get around the problem we first find an approximation to
m by taking a nearby point Q on the curve and computing the slope mp, of the secant line
PQ. From Figure 6 we see that

0 I (R ()
X —a
Now imagine that Q moves along the curve toward P as in Figure 7. You can see that
the secant line rotates and approaches the tangent line as its limiting position. This means
that the slope mp¢ of the secant line becomes closer and closer to the slope m of the tan-
gent line. We write

m = lim Mpg
Q—P

and we say that m is the limit of mpg as Q approaches P along the curve. Since x approaches
a as Q approaches P, we could also use Equation 1 to write

T i L0 f(@
xoa X —a
Specific examples of this procedure will be given in Chapter 2.

The tangent problem has given rise to the branch of calculus called differential calcu-
lus, which was not invented until more than 2000 years after integral calculus. The main
ideas behind differential calculus are due to the French mathematician Pierre Fermat
(1601-1665) and were developed by the English mathematicians John Wallis
(1616-1703), Isaac Barrow (1630-1677), and Isaac Newton (1642—1727) and the German
mathematician Gottfried Leibniz (1646-1716).

The two branches of calculus and their chief problems, the area problem and the tan-
gent problem, appear to be very different, but it turns out that there is a very close connec-
tion between them. The tangent problem and the area problem are inverse problems in a
sense that will be described in Chapter 5.

VELOCITY

When we look at the speedometer of a car and read that the car is traveling at 48 mi/h,
what does that information indicate to us? We know that if the velocity remains constant,
then after an hour we will have traveled 48 mi. But if the velocity of the car varies, what
does it mean to say that the velocity at a given instant is 48 mi/h?

In order to analyze this question, let’s examine the motion of a car that travels along a
straight road and assume that we can measure the distance traveled by the car (in feet) at
I-second intervals as in the following chart:

t = Time elapsed (s) 0 1 2 3 4 5

d = Distance (ft) 0 2 9 24 42 71




d
o(t, fi1)
20 1
101 P(2,f(2))
0 1 3 it 5

FIGURE 8
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As a first step toward finding the velocity after 2 seconds have elapsed, we find the aver-
age velocity during the time interval 2 < ¢ < 4:

change in position

average velocity = e " d
ime elapse

42-9
4-2
= 16.5 ft/s

Similarly, the average velocity in the time interval 2 < ¢ < 3 is

-9

2
average velocity = Ery = 15ft/s

We have the feeling that the velocity at the instant # = 2 can’t be much different from the
average velocity during a short time interval starting at # = 2. So let’s imagine that the dis-
tance traveled has been measured at 0.1-second time intervals as in the following chart:

t 2.0 2.1 2.2 23 24 2.5

d 9.00 10.02 | 11.16 | 1245 | 13.96 | 15.80

Then we can compute, for instance, the average velocity over the time interval [2, 2.5]:

15.80 — 9.00

= 13.6 fi
25 — 2 3.6 ft/s

average velocity =

The results of such calculations are shown in the following chart:

Time interval [2,3] | [2,2.5] [2,2.4] [2,23] | [2,2.2] [2,2.1]

Average velocity (ft/s) 15.0 13.6 12.4 11.5 10.8 10.2

The average velocities over successively smaller intervals appear to be getting closer to
a number near 10, and so we expect that the velocity at exactly 1 = 2 is about 10 ft/s. In
Chapter 2 we will define the instantaneous velocity of a moving object as the limiting
value of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the
distance traveled as a function of time. If we write d = f(f), then f() is the number of feet
traveled after ¢ seconds. The average velocity in the time interval [2, 7] is

change in position (1) — f(2)

average velocity = time elapsed T~

which is the same as the slope of the secant line PQ in Figure 8. The velocity » when r = 2
is the limiting value of this average velocity as ¢ approaches 2; that is,
_ SO - fQ)
v=1lim —————
=2 t—2
and we recognize from Equation 2 that this is the same as the slope of the tangent line to
the curve at P.
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FIGURE 9
asas d, a,
Rt ! !
0 1
(a)
14 o
123456738 n
(b)
FIGURE 10

Thus, when we solve the tangent problem in differential calculus, we are also solving
problems concerning velocities. The same techniques also enable us to solve problems
involving rates of change in all of the natural and social sciences.

THE LIMIT OF A SEQUENCE

In the fifth century BC the Greek philosopher Zeno of Elea posed four problems, now
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning
space and time that were held in his day. Zeno’s second paradox concerns a race between
the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol-
lows, that Achilles could never pass the tortoise: Suppose that Achilles starts at position
a; and the tortoise starts at position #;. (See Figure 9.) When Achilles reaches the point
a, = ty, the tortoise is farther ahead at position 7. When Achilles reaches a; = 1,, the tor-
toise is at #3. This process continues indefinitely and so it appears that the tortoise will
always be ahead! But this defies common sense.

) a, a, a, a, as
Achilles

tortoise

One way of explaining this paradox is with the idea of a sequence. The successive posi-
tions of Achilles (a, as, as, ...) or the successive positions of the tortoise (¢, 2, f3, . . .)
form what is known as a sequence.

In general, a sequence {a,} is a set of numbers written in a definite order. For instance,
the sequence

can be described by giving the following formula for the nth term:

ap = —
n

We can visualize this sequence by plotting its terms on a number line as in Fig-
ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the
terms of the sequence a, = 1/n are becoming closer and closer to 0 as n increases. In fact,
we can find terms as small as we please by making n large enough. We say that the limit
of the sequence is 0, and we indicate this by writing

1
lim —=0
n—o n
In general, the notation
lim a, =L

n—o

is used if the terms a, approach the number L as n becomes large. This means that the num-
bers a, can be made as close as we like to the number L by taking n sufficiently large.
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The concept of the limit of a sequence occurs whenever we use the decimal represen-
tation of a real number. For instance, if

a; = 3.1

a, =3.14

as; = 3.141

as, = 3.1415
as = 3.14159
ae = 3.141592

a; = 3.1415926

then Iim a,=

n—o

The terms in this sequence are rational approximations to 7r.

Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise
form sequences {a,} and {z,}, where a, < 1, for all n. It can be shown that both sequences
have the same limit:

lim a,=p = lim ¢,

n—® n—o

It is precisely at this point p that Achilles overtakes the tortoise.

THE SUM OF A SERIES

Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man
standing in a room cannot walk to the wall. In order to do so, he would first have to go half
the distance, then half the remaining distance, and then again half of what still remains.
This process can always be continued and can never be ended.” (See Figure 11.)

-

N | =
IS

FIGURE 11

Of course, we know that the man can actually reach the wall, so this suggests that per-
haps the total distance can be expressed as the sum of infinitely many smaller distances as
follows:

1111 1
3] l=—+—F+—F—+ - +—F -
2 4 8 16 2"
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Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. But
there are other situations in which we implicitly use infinite sums. For instance, in decimal
notation, the symbol 0.3 = 0.3333... means

3 3 3 3

+ - + o
10 100 1000 10,000

and so, in some sense, it must be true that

3 3 3 3 1

+ + + o
10 100 1000 10,000 3

More generally, if d, denotes the nth digit in the decimal representation of a number, then

d d  d d,
a4 oy

0.dvdodsds . .. = = 4+ 5 4
1R 10 10> 10° 10"

+ ...

Therefore some infinite sums, or infinite series as they are called, have a meaning. But we
must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by s, the sum of the first n terms of the
series. Thus

si=3=05

s, =13+ 1=0.75
s3=13+4;+45=0.875
sa=3%+3+35+ 1 =09375

ss=1 4 lh il 4= 096875

+ 15 + 3 + ¢ = 0984375

0| —

ss=3+ 3+

ST=rt ittt et 5+ &+ s = 09921875

Sio =13+ 73+ + ;= 0.99902344

1 1 1
S16=5+Z+---+Wz0.99998474

Observe that as we add more and more terms, the partial sums become closer and closer
to 1. In fact, it can be shown that by taking n large enough (that is, by adding sufficiently
many terms of the series), we can make the partial sum s, as close as we please to the num-
ber 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to
write

1 1 1 1
— e — =
2 4 8 2"
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FIGURE 12
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In other words, the reason the sum of the series is 1 is that

lim s, =1

n—w

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of
combining infinite series with differential and integral calculus.

SUMMARY

~
~
~

We have seen that the concept of a limit arises in trying to find the area of a region, the
slope of a tangent to a curve, the velocity of a car, or the sum of an infinite series. In each
case the common theme is the calculation of a quantity as the limit of other, easily calcu-
lated quantities. It is this basic idea of a limit that sets calculus apart from other areas of
mathematics. In fact, we could define calculus as the part of mathematics that deals with
limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the motion
of the planets around the sun. Today calculus is used in calculating the orbits of satellites
and spacecraft, in predicting population sizes, in estimating how fast coffee prices rise, in
forecasting weather, in measuring the cardiac output of the heart, in calculating life insur-
ance premiums, and in a great variety of other areas. We will explore some of these uses
of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list
of some of the questions that you will be able to answer using calculus:

I. How can we explain the fact, illustrated in Figure 12, that the angle of elevation
from an observer up to the highest point in a rainbow is 42°? (See page 279.)
How can we explain the shapes of cans on supermarket shelves? (See page 333.)
Where is the best place to sit in a movie theater? (See page 446.)

How far away from an airport should a pilot start descent? (See page 206.)

vi b ow N

How can we fit curves together to design shapes to represent letters on a laser
printer? (See page 639.)

6. Where should an infielder position himself to catch a baseball thrown by an out-
fielder and relay it to home plate? (See page 601.)

7. Does a ball thrown upward take longer to reach its maximum height or to fall
back to its original height? (See page 590.)

8. How can we explain the fact that planets and satellites move in elliptical orbits?
(See page 844.)

9. How can we distribute water flow among turbines at a hydroelectric station so as
to maximize the total energy production? (See page 943.)

10. If a marble, a squash ball, a steel bar, and a lead pipe roll down a slope, which of
them reaches the bottom first? (See page 1012.)
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A graphical representation of a 2
function—here the number of 0
hours of daylight as a function Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
of the time of year at various
latitudes—is often the most
natural and convenient way to
represent the function.

The fundamental objects that we deal with in calculus are functions. This chapter
prepares the way for calculus by discussing the basic ideas concerning functions, their
graphs, and ways of transforming and combining them. We stress that a function can be
represented in different ways: by an equation, in a table, by a graph, or in words. We
look at the main types of functions that occur in calculus and describe the process of
using these functions as mathematical models of real-world phenomena. We also discuss
the use of graphing calculators and graphing software for computers.




FOUR WAYS TO REPRESENT A FUNCTION

Population
Year (millions)
1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080

FIGURE |

Vertical ground acceleration during

the Northridge earthquake

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area A of a circle depends on the radius r of the circle. The rule that connects r
and A is given by the equation A = 7rr% With each positive number 7 there is associ-
ated one value of A, and we say that A is a function of r.

B. The human population of the world P depends on the time 7. The table gives estimates
of the world population P(¢) at time ¢, for certain years. For instance,

P(1950) = 2,560,000,000

But for each value of the time 7 there is a corresponding value of P, and we say that P
is a function of 7.

C. The cost C of mailing a first-class letter depends on the weight w of the letter.
Although there is no simple formula that connects w and C, the post office has a rule
for determining C when w is known.

D. The vertical acceleration a of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time . Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of ¢, the graph provides a corresponding value of a.

a
(em/s?)
100 +
50 T+
(" ||' h mu || l ||_‘ Iln LIfLL AR
ﬁ It " l" "‘” | '” ! 30 ! (seconds)
750<>
Calif. Dept. of Mines and Geology

Each of these examples describes a rule whereby, given a number (7, ¢, w, or ), another
number (A, P, C, or a) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function f is a rule that assigns to each element x in a set D exactly one ele-
ment, called f(x), in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. The
set D is called the domain of the function. The number f(x) is the value of f at x and is
read “f of x.” The range of f is the set of all possible values of f(x) as x varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function
f is called an independent variable. A symbol that represents a number in the range of f
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.
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X — i — f(x)
(input) (output)
FIGURE 2

Machine diagram for a function f

X
a
D f 5 E
FIGURE 3
Arrow diagram for f
y
—1
0] 1 X
FIGURE 6

The notation for intervals is given in
Appendix A.

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of
the function f, then when x enters the machine, it’s accepted as an input and the machine
produces an output f(x) according to the rule of the function. Thus we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled Ng (or Vx ) and enter the input x. If x < 0, then x is not in the
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x = 0, then an approximation to \/; will appear in the display. Thus the
Vx key on your calculator is not quite the same as the exact mathematical function f defined
by f(x) = Vx.

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of D to an element of E. The arrow indicates that f(x) is associated
with x, f(a) is associated with a, and so on.

The most common method for visualizing a function is its graph. If f is a function with
domain D, then its graph is the set of ordered pairs

{(x. f(x) |x € D}

(Notice that these are input-output pairs.) In other words, the graph of f consists of all
points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f.

The graph of a function f gives us a useful picture of the behavior or “life history” of
a function. Since the y-coordinate of any point (x, y) on the graph is y = f(x), we can read
the value of f(x) from the graph as being the height of the graph above the point x (see
Figure 4). The graph of f also allows us to picture the domain of f on the x-axis and its
range on the y-axis as in Figure 5.

Y (x, f(x))

range

0 ‘ —_— X
domain

FIGURE 4 FIGURE 5

EXAMPLE | The graph of a function f is shown in Figure 6.
(a) Find the values of f(1) and f(5).
(b) What are the domain and range of f?

SOLUTION
(a) We see from Figure 6 that the point (1, 3) lies on the graph of f, so the value of f
at 1 is f(1) = 3. (In other words, the point on the graph that lies above x = 1 is 3 units
above the x-axis.)

When x = 5, the graph lies about 0.7 unit below the x-axis, so we estimate that
f(5) = —0.7.

(b) We see that f(x) is defined when 0 < x < 7, so the domain of f is the closed inter-
val [0, 7]. Notice that f takes on all values from —2 to 4, so the range of f is

l-—2=<y=4=[-24] u
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The expression

fla+h) — fla)
h

in Example 3 is called a difference quotient
and occurs frequently in calculus. As we will
see in Chapter 2, it represents the average rate
of change of f(x) between x = a and
x=a+h
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EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(a) flx)=2x—1 (b) g(x) = x*

SOLUTION

(a) The equation of the graph is y = 2x — 1, and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept — 1. (Recall the slope-intercept form of the
equation of a line: y = mx + b. See Appendix B.) This enables us to sketch a portion of
the graph of f in Figure 7. The expression 2x — 1 is defined for all real numbers, so the
domain of f is the set of all real numbers, which we denote by R. The graph shows that
the range is also R.

(b) Since g(2) = 2? = 4 and g(—1) = (—1)* = 1, we could plot the points (2, 4) and
(=1, 1), together with a few other points on the graph, and join them to produce the
graph (Figure 8). The equation of the graph is y = x?, which represents a parabola (see
Appendix C). The domain of g is R. The range of g consists of all values of g(x), that is,
all numbers of the form x2. But x* = 0 for all numbers x and any positive number y is a
square. So the range of g is {y |y = 0} = [0, ). This can also be seen from Figure 8. M

EXAMPLE 3 If f(x) = 2x*> — 5x + 1 and h # 0, evaluate .

SOLUTION We first evaluate f(a + h) by replacing x by a + h in the expression for f(x):
fla+h) =2a+h?—5a+h) +1
=2(a*+ 2ah + h*) — 5@+ h) + 1
=2a*+ 4ah + 2h* — 5a — 5h + 1
Then we substitute into the given expression and simplify:

fla+h) —fla  (2a® + 4ah + 2h* — 5a — 5h + 1) — (2a® — 5a + 1)
h h

_2(12+4ah+2h2—50—5h+1—2a2+5a—1
h

dah + 20* —
=aThSh=4a+2h—5 ]

REPRESENTATIONS OF FUNCTIONS

There are four possible ways to represent a function:

verbally (by a description in words)
numerically (by a table of values)
visually (by a graph)

algebraically (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain
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functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.

A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula A(r) = 7r?, though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is {r|r > 0} = (0, %), and the range is also (0, ).

] B. We are given a description of the function in words: P(z) is the human population of
POPUI,"‘“O“ the world at time . The table of values of world population provides a convenient
Year (millions) . . .
representation of this function. If we plot these values, we get the graph (called a
1900 1650 scatter plot) in Figure 9. It too is a useful representation; the graph allows us to
1910 1750 absorb all the data at once. What about a formula? Of course, it’s impossible to devise
1920 1860 an explicit formula that gives the exact human population P(7) at any time 7. But it is
1930 2070 possible to find an expression for a function that approximates P(t). In fact, using
1940 2300 methods explained in Section 1.2, we obtain the approximation
1950 2560
1960 3040 P(t) = f(r) = (0.008079266) - (1.013731)'
1970 3710
1980 4450 and Figure 10 shows that it is a reasonably good “fit.” The function f is called a
1990 5280 mathematical model for population growth. In other words, it is a function with an
2000 6080 explicit formula that approximates the behavior of our given function. We will see,
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.
P P
6x10° T : 6x10°+
1900 1920 1940 1960 1980 2000 ! 1900 1920 1940 1960 1980 2000 !
FIGURE 9 FIGURE 10

A function defined by a table of values is

called a tabular function.

w (ounces) C(w) (dollars)
O<w=1 0.39
I<w=2 0.63
2<w=3 0.87
3<w=4 1.11
d<w=>5 1.35
12 <w=13 3.27

The function P is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
may be able to construct a table of values of the function, perhaps from instrument
readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: C(w) is the cost of mailing a first-class letter
with weight w. The rule that the US Postal Service used as of 2007 is as follows: The
cost is 39 cents for up to one ounce, plus 24 cents for each successive ounce up to 13
ounces. The table of values shown in the margin is the most convenient representation
for this function, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function a(z). It’s true that a table of values could be compiled, and it is even
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In setting up applied functions as in
Example 5, it may be useful to review the
principles of problem solving as discussed
on page 76, particularly Step 1: Understand
the Problem.
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possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

EXAMPLE 4 When you turn on a hot-water faucet, the temperature 7 of the water
depends on how long the water has been running. Draw a rough graph of T as a function
of the time ¢ that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, 7 increases quickly. In the next phase, 7 is constant at the
temperature of the heated water in the tank. When the tank is drained, 7" decreases to

the temperature of the water supply. This enables us to make the rough sketch of T as a
function of 7 in Figure 11. |

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.

I7 EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m>.
The length of its base is twice its width. Material for the base costs $10 per square
meter; material for the sides costs $6 per square meter. Express the cost of materials as a
function of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting w and 2w
be the width and length of the base, respectively, and & be the height.

The area of the base is (2w)w = 2w?, so the cost, in dollars, of the material for the
base is 10(2w?). Two of the sides have area wh and the other two have area 2wh, so the
cost of the material for the sides is 6[2(wh) + 2(2wh)]. The total cost is therefore

C = 10Qw?) + 6[2(wh) + 2Qwh)] = 20w* + 36wh

To express C as a function of w alone, we need to eliminate # and we do so by using the
fact that the volume is 10 m®. Thus

ww)h = 10
10 5
which gives h = - w

Substituting this into the expression for C, we have

_ 5 5 _ ) 180
C = 20w" + 36w| — 20w” + —
w w

Therefore, the equation

180
C(w) = 20w* + — w>0
w

expresses C as a function of w. |
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If a function is given by a formula and the
domain is not stated explicitly, the convention is
that the domain is the set of all numbers for
which the formula makes sense and defines a

real number.

FIGURE 13

EXAMPLE 6 Find the domain of each function.

() f(x) = Vx +2 (b) g(x) =

SOLUTION

(a) Because the square root of a negative number is not defined (as a real number),
the domain of f consists of all values of x such that x + 2 = 0. This is equivalent to
x = —2, so the domain is the interval [ —2, ).

(b) Since

x?—x

1 1

—x:x(x—l)

¢ﬂ=ﬁ

and division by 0 is not allowed, we see that g(x) is not defined when x = 0 or x = 1.
Thus the domain of g is

{x|x#0,x# 1}
which could also be written in interval notation as
(—=,0) U (0,1) U (1, ) u

The graph of a function is a curve in the xy-plane. But the question arises: Which curves
in the xy-plane are graphs of functions? This is answered by the following test.

THE VERTICAL LINE TEST A curve in the xy-plane is the graph of a function of x if
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each ver-
tical line x = a intersects a curve only once, at (a, b), then exactly one functional value
is defined by f(a) = b. But if a line x = a intersects the curve twice, at (a, b) and (a, ¢),
then the curve can’t represent a function because a function can’t assign two different val-
ues to a.

x=a x=a

N e D

For example, the parabola x = y? — 2 shown in Figure 14(a) on the next page is not the
graph of a function of x because, as you can see, there are vertical lines that intersect the
parabola twice. The parabola, however, does contain the graphs of two functions of x.
Notice that the equation x = y*> — 2 implies y> = x + 2, so y = =+/x + 2. Thus the
upper and lower halves of the parabola are the graphs of the functions f(x) = \/x + 2
[from Example 6(a)] and g(x) = —+/x + 2. [See Figures 14(b) and (c).] We observe that
if we reverse the roles of x and y, then the equation x = h(y) = y* — 2 does define x as a
function of y (with y as the independent variable and x as the dependent variable) and the
parabola now appears as the graph of the function 4.
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FIGURE 15

For a more extensive review of absolute
values, see Appendix A.
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(—2,0) X -2 0 X 0 X
\

(@x=y—2 (b)y=yx+2 ©y=—Va+2

PIECEWISE DEFINED FUNCTIONS

The functions in the following four examples are defined by different formulas in differ-
ent parts of their domains.

7 EXAMPLE 7 A function f is defined by

Fl) = {lz—x if x<1
X

if x>1

Evaluate f(0), f(1), and f(2) and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input x. If it happens that x =< 1, then the value
of f(x)is 1 — x. On the other hand, if x > 1, then the value of f(x) is x*.

Since 0 < I, we have f(0) =1 — 0= 1.
Since 1 < 1, wehave f(1)=1—-1=0.
Since 2 > 1, we have f(2) = 2> = 4.

How do we draw the graph of f? We observe that if x < 1, then f(x) = 1 — x, so the
part of the graph of f that lies to the left of the vertical line x = 1 must coincide with
the line y = 1 — x, which has slope —1 and y-intercept 1. If x > 1, then f(x) = x? so
the part of the graph of f that lies to the right of the line x = 1 must coincide with the
graph of y = x?, which is a parabola. This enables us to sketch the graph in Figure 15.
The solid dot indicates that the point (1, 0) is included on the graph; the open dot indi-
cates that the point (1, 1) is excluded from the graph. |

The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number a, denoted by | a |, is the distance from a to O on the
real number line. Distances are always positive or 0, so we have

al = or every number a
la] =0 f b
For example,
13]=3  |-3]=3 |0|]=0 |V2-1|=v2-1 [3-7@|=m—3
In general, we have
la|]=a ifa=0
la|=—a ifa<0

(Remember that if a is negative, then —a is positive.)
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FIGURE 16

FIGURE 17

Point-slope form of the equation of a line:
y =y =mlx = xi)

See Appendix B.
C
1, © o
o 1 2 3 4 5 w

FIGURE 18

EXAMPLE 8 Sketch the graph of the absolute value function f(x) = | x]|.

SOLUTION From the preceding discussion we know that

|’_ X ifx=0
* —x ifx<0

Using the same method as in Example 7, we see that the graph of f coincides with the
line y = x to the right of the y-axis and coincides with the line y = —x to the left of the
y-axis (see Figure 16). |

EXAMPLE 9 Find a formula for the function f graphed in Figure 17.

y

SOLUTION The line through (0, 0) and (1, 1) has slope m = 1 and y-intercept b = 0, so its
equation is y = x. Thus, for the part of the graph of f that joins (0, 0) to (1, 1), we have

fx) =x ifosx=<1
The line through (1, 1) and (2, 0) has slope m = —1, so its point-slope form is
y—0=(—1)x—2) or y=2—x
So we have flx) =2 —x fl<x<2

We also see that the graph of f coincides with the x-axis for x > 2. Putting this informa-
tion together, we have the following three-piece formula for f:

X fosx<1
f)=92—x if 1l<x=<2
0 if x>2 ]

EXAMPLE 10 In Example C at the beginning of this section we considered the cost C(w)
of mailing a first-class letter with weight w. In effect, this is a piecewise defined function
because, from the table of values, we have

039 if0<w=1
063 fl<w=2
w=<4

.11 if 3<

The graph is shown in Figure 18. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2. |
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SYMMETRY

FIGURE 19
An even function

Y

FIGURE 20
An odd function

FIGURE 21

If a function f satisfies f(—x) = f(x) for every number x in its domain, then f is called an
even function. For instance, the function f(x) = x? is even because

f(=x) = (=2 =x* = f(»)

The geometric significance of an even function is that its graph is symmetric with respect
to the y-axis (see Figure 19). This means that if we have plotted the graph of f for x = 0,
we obtain the entire graph simply by reflecting this portion about the y-axis.

If f satisfies f(—x) = —f(x) for every number x in its domain, then f is called an odd
function. For example, the function f(x) = x* is odd because

(=0 = (-0 = —x* = ~f()

The graph of an odd function is symmetric about the origin (see Figure 20). If we already
have the graph of f for x = 0, we can obtain the entire graph by rotating this portion
through 180° about the origin.

7 EXAMPLE 11 Determine whether each of the following functions is even, odd, or
neither even nor odd.

(@) f(x) =x"+x (b) g(x) =1 — x* (©) h(x) = 2x — x*
SOLUTION
(a) f(=x) = (=2 + (=x) = (=1)’x° + (—x)
=-—x —x=-(x"+x
= —f(»)
Therefore f is an odd function.
(b) 9= =1—-(=»'=1-x" =g
So g is even.
(¢) h(=x) = 2(=x) — (=x)* = —2x — x?

Since h(—x) # h(x) and h(—x) # —h(x), we conclude that / is neither even nor odd. M

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the
graph of & is symmetric neither about the y-axis nor about the origin.

y y y
1

1+ f g 1+ h

,'1 1 X X 1 X

(a) (b) ()
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INCREASING AND DECREASING FUNCTIONS

The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C
to D. The function f is said to be increasing on the interval [a, b], decreasing on [b, c], and
increasing again on [c, d]. Notice that if x; and x, are any two numbers between a and b
with x; < x,, then f(x;) < f(x,). We use this as the defining property of an increasing
function.

0 X
FIGURE 22
A function f is called increasing on an interval / if
fx) < f(x2) whenever x; < x,in [
y It is called decreasing on [ if
y=x?
flx1) > f(x2) whenever x; < x,in [
In the definition of an increasing function it is important to realize that the inequality
0 x f(x1) < f(x2) must be satisfied for every pair of numbers x; and x; in I with x; < x,.
You can see from Figure 23 that the function f(x) = x? is decreasing on the interval
FIGURE 23 (=00, 0] and increasing on the interval [0, o).
| I.I'| EXERCISES
I. The graph of a function f is given. y
(a) State the value of f(—1).
(b) Estimate the value of f(2).
(¢) For what values of x is f(x) = 2? \ ! /
(d) Estimate the values of x such that f(x) = 0. \ 0}/ 1 X
(e) State the domain and range of f.

(f) On what interval is f increasing?



The graphs of f and g are given.

(a) State the values of f(—4) and ¢(3).

(b) For what values of x is f(x) = g(x)?

(c) Estimate the solution of the equation f(x) = —1.
(d) On what interval is f decreasing?

(e) State the domain and range of f.

(f) State the domain and range of g.

. Figure 1 was recorded by an instrument operated by the Cali-

fornia Department of Mines and Geology at the University
Hospital of the University of Southern California in Los Ange-
les. Use it to estimate the range of the vertical ground accelera-
tion function at USC during the Northridge earthquake.

. In this section we discussed examples of ordinary, everyday

functions: Population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life that
are described verbally. What can you say about the domain and
range of each of your functions? If possible, sketch a rough
graph of each function.

5-8 Determine whether the curve is the graph of a function of x.
If it is, state the domain and range of the function.

5.

y 6. y
Sy 1
0 1 X 01/ 1 X
|
y Y 8 y
1 1
0 1 X 0f 1 X

The graph shown gives the weight of a certain person as a

function of age. Describe in words how this person’s weight
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10.

varies over time. What do you think happened when this person
was 30 years old?

200 T
Weight 1507
d:
(pounds) 100 4
50T
0 10 20 30 40 50 60 70 Age
(years)

The graph shown gives a salesman’s distance from his home as
a function of time on a certain day. Describe in words what the
graph indicates about his travels on this day.

Distance
from home
(miles)
- — — — — —
8 AM 10 NOON 2 4 6 PM Time
(hours)

[11.] You put some ice cubes in a glass, fill the glass with cold

12.

water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then sketch a
rough graph of the temperature of the water as a function of the
elapsed time.

Sketch a rough graph of the number of hours of daylight as a
function of the time of year.

[13.] Sketch a rough graph of the outdoor temperature as a function

14.

of time during a typical spring day.

Sketch a rough graph of the market value of a new car as a
function of time for a period of 20 years. Assume the car is
well maintained.

. Sketch the graph of the amount of a particular brand of coffee

sold by a store as a function of the price of the coffee.

. You place a frozen pie in an oven and bake it for an hour. Then

you take it out and let it cool before eating it. Describe how the
temperature of the pie changes as time passes. Then sketch a
rough graph of the temperature of the pie as a function of time.

. A homeowner mows the lawn every Wednesday afternoon.

Sketch a rough graph of the height of the grass as a function of
time over the course of a four-week period.

. An airplane takes off from an airport and lands an hour later at

another airport, 400 miles away. If 7 represents the time in min-
utes since the plane has left the terminal building, let x(z) be
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20.

21.

22.
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the horizontal distance traveled and y(7) be the altitude of the
plane.

(a) Sketch a possible graph of x(7).

(b) Sketch a possible graph of y(z).

(c) Sketch a possible graph of the ground speed.

(d) Sketch a possible graph of the vertical velocity.

. The number N (in millions) of cellular phone subscribers

worldwide is shown in the table. (Midyear estimates are given.)

1

B = s

t 1990 1992 1994 1996 1998 2000

N 11 26 60 160 340 650

(a) Use the data to sketch a rough graph of N as a function of 7.
(b) Use your graph to estimate the number of cell-phone sub-
scribers at midyear in 1995 and 1999.

Temperature readings 7" (in °F) were recorded every two hours
from midnight to 2:00 pm in Dallas on June 2, 2001. The time
t was measured in hours from midnight.

t 0 2 4 6 8 10 12 14

T 73 73 70 69 72 81 88 91

(a) Use the readings to sketch a rough graph of 7" as a function
of 1.
(b) Use your graph to estimate the temperature at 11:00 Am.

If f(x) = 3x* = x + 2, find f(2), f(=2), f(a), f(=a),
fla + 1),2f(a), f(2a), f(a®), [f(@)]* and f(a + h).

A spherical balloon with radius r inches has volume

V(r) = %wr3, Find a function that represents the amount of air
required to inflate the balloon from a radius of r inches to a
radius of r + 1 inches.

23-26 Evaluate the difference quotient for the given function.
Simplify your answer.

23] f(x) = 4 + 3x — x2,

f@+hn -0
h

fla+h) — fla)

24. f(x) = x°, P
25. f(x) = % w
g2, L0

32. Find the domain and range and sketch the graph of the function

h(x) = 4 — x2,
33-44 Find the domain and sketch the graph of the function.
33. f(x) =5 34, F(x) =3(x + 3)
5 4 -7
35. f(r) =t* — 61 36. H(t) = =
37. g(x) = /x =5 38. F(x) = |2x + 1|
3x + |x X
G = 2115l a0, g = 21
x+2 ifx<0
41. =
J () {1 —x ifx=0
3—1ix ifx<2
42. =
() {2x—5 if x> 2
x+2 ifx<-—1
f(x)_{x2 if x> —1
x+9 ifx< -3
44. f(x) =4 —2x if |[x| =<3
—6 if x>3

27-31 Find the domain of the function.

27. f(x) =

29. f(1) =/t + 3t

5x + 4
x2+3x+2

30. g(u) = Vu + 4 —u

X
ro— 28. f(x) =

45-50 Find an expression for the function whose graph is the
given curve.

45. The line segment joining the points (1, —3) and (5, 7)
46. The line segment joining the points (—35, 10) and (7, —10)
The bottom half of the parabola x + (y — 1)* =0

48. The top half of the circle x*> + (y — 2)> =4

49. 1y 50. y

51-55 Find a formula for the described function and state its
domain.

51. A rectangle has perimeter 20 m. Express the area of the rect-

angle as a function of the length of one of its sides.



52. A rectangle has area 16 m*. Express the perimeter of the rect-
angle as a function of the length of one of its sides.

53. Express the area of an equilateral triangle as a function of the
length of a side.

54. Express the surface area of a cube as a function of its volume.
[55.] An open rectangular box with volume 2 m*® has a square base.

Express the surface area of the box as a function of the length
of a side of the base.

56. A Norman window has the shape of a rectangle surmounted by
a semicircle. If the perimeter of the window is 30 ft, express
the area A of the window as a function of the width x of the
window.
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57. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 12 in. by 20 in. by cutting
out equal squares of side x at each corner and then folding up
the sides as in the figure. Express the volume V of the box as a
function of x.

1 20 1
’ x x
x X
12
x X
\ x x

58. A taxi company charges two dollars for the first mile (or part
of a mile) and 20 cents for each succeeding tenth of a mile (or
part). Express the cost C (in dollars) of a ride as a function of
the distance x traveled (in miles) for 0 < x < 2, and sketch the
graph of this function.

In a certain country, income tax is assessed as follows. There is
no tax on income up to $10,000. Any income over $10,000 is
taxed at a rate of 10%, up to an income of $20,000. Any income
over $20,000 is taxed at 15%.

(a) Sketch the graph of the tax rate R as a function of the
income 1.
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(b) How much tax is assessed on an income of $14,000?
On $26,000?

(c) Sketch the graph of the total assessed tax 7 as a function of
the income /.

60. The functions in Example 10 and Exercises 58 and 59(a) are
called step functions because their graphs look like stairs. Give
two other examples of step functions that arise in everyday life.

61-62 Graphs of f and g are shown. Decide whether each function
is even, odd, or neither. Explain your reasoning.

N
RN

6l.

f

X

NG

63. (a) If the point (5, 3) is on the graph of an even function, what
other point must also be on the graph?

(b) If the point (5, 3) is on the graph of an odd function, what
other point must also be on the graph?

64. A function f has domain [—35, 5] and a portion of its graph is
shown.
(a) Complete the graph of f if it is known that f is even.
(b) Complete the graph of f if it is known that f is odd.

65-70 Determine whether f is even, odd, or neither. If you have a
graphing calculator, use it to check your answer visually.

2

65. f(x) = xzi ] 66. f(x) = x4x+ 1
67.f(x)=x_)f_1 68. f(x) = x|x|

69. f(x) =1+ 3x*—x* 70. f(x) =1+ 3x*—x°
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MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS

Real-world
problem

f

Formulate

A mathematical model is a mathematical description (often by means of a function or an
equation) of a real-world phenomenon such as the size of a population, the demand for a
product, the speed of a falling object, the concentration of a product in a chemical reac-
tion, the life expectancy of a person at birth, or the cost of emission reductions. The pur-
pose of the model is to understand the phenomenon and perhaps to make predictions about
future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world problem,
our first task is to formulate a mathematical model by identifying and naming the inde-
pendent and dependent variables and making assumptions that simplify the phenomenon
enough to make it mathematically tractable. We use our knowledge of the physical situa-
tion and our mathematical skills to obtain equations that relate the variables. In situations
where there is no physical law to guide us, we may need to collect data (either from a
library or the Internet or by conducting our own experiments) and examine the data in the
form of a table in order to discern patterns. From this numerical representation of a func-
tion we may wish to obtain a graphical representation by plotting the data. The graph
might even suggest a suitable algebraic formula in some cases.

Mathematical Solve Mathematical Interpret Real-world
model conclusions predictions
Test

FIGURE | The modeling process

The coordinate geometry of lines is reviewed

in Appendix B.

The second stage is to apply the mathematics that we know (such as the calculus that
will be developed throughout this book) to the mathematical model that we have formu-
lated in order to derive mathematical conclusions. Then, in the third stage, we take those
mathematical conclusions and interpret them as information about the original real-world
phenomenon by way of offering explanations or making predictions. The final step is to
test our predictions by checking against new real data. If the predictions don’t compare
well with reality, we need to refine our model or to formulate a new model and start the
cycle again.

A mathematical model is never a completely accurate representation of a physical situ-
ation—it is an idealization. A good model simplifies reality enough to permit mathemati-
cal calculations but is accurate enough to provide valuable conclusions. It is important to
realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships
observed in the real world. In what follows, we discuss the behavior and graphs of these
functions and give examples of situations appropriately modeled by such functions.

LINEAR MODELS

When we say that y is a linear function of x, we mean that the graph of the function is a
line, so we can use the slope-intercept form of the equation of a line to write a formula for
the function as

y=f(x)=mx+b

where m is the slope of the line and b is the y-intercept.



FIGURE 2
T
20 1
T\ T=-10n+20
10 +
of 3 h
FIGURE 3
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A characteristic feature of linear functions is that they grow at a constant rate. For
instance, Figure 2 shows a graph of the linear function f(x) = 3x — 2 and a table of sam-
ple values. Notice that whenever x increases by 0.1, the value of f(x) increases by 0.3. So
f(x) increases three times as fast as x. Thus the slope of the graph y = 3x — 2, namely 3, can
be interpreted as the rate of change of y with respect to x.

y
X f(x)=3x—2
=3x-2

yeor 1.0 1.0

1.1 13

12 1.6

0 X 13 1.9

y 1.4 22

15 25

1 EXAMPLE |

(a) As dry air moves upward, it expands and cools. If the ground temperature is 20°C
and the temperature at a height of 1 km is 10°C, express the temperature 7 (in °C) as a
function of the height % (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that 7 is a linear function of /, we can write

T=mh+b>b
We are given that T = 20 when & = 0, so
20=m-0+b=0»b

In other words, the y-intercept is b = 20.
We are also given that 7 = 10 when 7 = 1, so

100=m-1+20
The slope of the line is therefore m = 10 — 20 = —10 and the required linear function is
T=—10h + 20

(b) The graph is sketched in Figure 3. The slope is m = —10°C/km, and this represents
the rate of change of temperature with respect to height.

(c) At aheight of & = 2.5 km, the temperature is
T=-102.5) + 20 = —=5°C ]
If there is no physical law or principle to help us formulate a model, we construct an

empirical model, which is based entirely on collected data. We seek a curve that “fits” the
data in the sense that it captures the basic trend of the data points.
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I EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, measured
in parts per million at Mauna Loa Observatory from 1980 to 2002. Use the data in
Table 1 to find a model for the carbon dioxide level.
SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where ¢ repre-
sents time (in years) and C represents the CO, level (in parts per million, ppm).
C
370
TABLE 1
CO, level CO, level 360 +
Year (in ppm) Year (in ppm)
1980 338.7 1992 356.4
1982 341.1 1994 358.9 35071
1984 344.4 1996 362.6
1986 347.2 1998 366.6 340 1
1988 351.5 2000 369.4
90 54. 372. : : : . .
1990 942 2002 3729 1980 1985 1990 1995 2000 4
FIGURE 4 Scatter plot for the average CO, level
Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approximate
these data points, so which one should we use? From the graph, it appears that one possi-
bility is the line that passes through the first and last data points. The slope of this line is
3729 — 33877 342
= ~ 1.5545
2002 — 1980 22
and its equation is
C — 338.7 = 1.5545(t — 1980)
or
[1] C = 1.5545¢ — 2739.21
Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed
in Figure 5.
C
370 +
360 T
350 +
340 t
FIGURE 5 ‘ ‘ ‘ ‘ ‘
Linear model through 1980 1985 1990 1995 2000 !
first and last data points

Although our model fits the data reasonably well, it gives values higher than most of
the actual CO; levels. A better linear model is obtained by a procedure from statistics



A computer or graphing calculator finds the
regression line by the method of least squares,
which is to minimize the sum of the squares of the
vertical distances between the data points and the
line. The details are explained in Section 14.7.

FIGURE 6
The regression line
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called linear regression. If we use a graphing calculator, we enter the data from Table 1
into the data editor and choose the linear regression command. (With Maple we use the
fit[leastsquare] command in the stats package; with Mathematica we use the Fit com-
mand.) The machine gives the slope and y-intercept of the regression line as

m = 1.55192 b = —2734.55

So our least squares model for the CO; level is
(2] C = 1.55192r — 2734.55

In Figure 6 we graph the regression line as well as the data points. Comparing with
Figure 5, we see that it gives a better fit than our previous linear model.

C
370 +

360 T

350 +

3401

1980 1985 1990 1995 2000 4

i1 EXAMPLE 3 Use the linear model given by Equation 2 to estimate the average CO,
level for 1987 and to predict the level for the year 2010. According to this model, when
will the CO; level exceed 400 parts per million?

SOLUTION Using Equation 2 with ¢ = 1987, we estimate that the average CO, level in 1987
was
C(1987) = (1.55192)(1987) — 2734.55 =~ 349.12

This is an example of interpolation because we have estimated a value between observed
values. (In fact, the Mauna Loa Observatory reported that the average CO, level in 1987
was 348.93 ppm, so our estimate is quite accurate.)

With r = 2010, we get

C(2010) = (1.55192)(2010) — 2734.55 =~ 384.81

So we predict that the average CO, level in the year 2010 will be 384.8 ppm. This is

an example of extrapolation because we have predicted a value outside the region of

observations. Consequently, we are far less certain about the accuracy of our prediction.
Using Equation 2, we see that the CO, level exceeds 400 ppm when

1.55192t — 2734.55 > 400

Solving this inequality, we get

3134.55

155192 ~ 2019.79
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We therefore predict that the CO, level will exceed 400 ppm by the year 2019. This
prediction is somewhat risky because it involves a time quite remote from our
observations. |

POLYNOMIALS

A function P is called a polynomial if
P(x) = ayx" + ap x" '+ -+ axx? + ax + ao

where n is a nonnegative integer and the numbers ao, ai, a», . . ., a, are constants called the
coefficients of the polynomial. The domain of any polynomial is R = (—oo, «). If the
leading coefficient a, # 0, then the degree of the polynomial is n. For example, the
function

P(x) =2x° —x*+ Ix* + 2

is a polynomial of degree 6.

A polynomial of degree 1 is of the form P(x) = mx + b and so it is a linear function.
A polynomial of degree 2 is of the form P(x) = ax* + bx + ¢ and is called a quadratic
function. Its graph is always a parabola obtained by shifting the parabola y = ax?, as we
will see in the next section. The parabola opens upward if @ > 0 and downward if a < 0.
(See Figure 7.)

y y
2t
2t
‘ A
FIGURE 7 0 1
The graphs of quadratic
functions are parabolas. @y=x*+x+1 (b)y=—-2x+3x+1

A polynomial of degree 3 is of the form
P(x) =ax®*+ bx*+ cx +d (a # 0)

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) and
graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the
graphs have these shapes.

y y y
Y \/ 2y 0

/ 0 i X U x i X

FIGURE 8 @y=x’—x+1 b)yy=x*—3x*+x (c) y=23x"—25x*+ 60x



TABLE 2

Time
(seconds)

Height
(meters)

00 NN N kW= O

O

450
445
431
408
375
332
279
216
143

61
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Polynomials are commonly used to model various quantities that occur in the natural
and social sciences. For instance, in Section 3.7 we will explain why economists often use
a polynomial P(x) to represent the cost of producing x units of a commodity. In the follow-
ing example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower, 450 m
above the ground, and its height /# above the ground is recorded at 1-second intervals in
Table 2. Find a model to fit the data and use the model to predict the time at which the
ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model is
inappropriate. But it looks as if the data points might lie on a parabola, so we try a quad-
ratic model instead. Using a graphing calculator or computer algebra system (which uses
the least squares method), we obtain the following quadratic model:

(3] h = 449.36 + 0.96¢ — 4.90¢*
h h
(meters)
a0t 400 4
200 + : 200 +
S T B N T
(seconds)
FIGURE 9 FIGURE 10
Scatter plot for a falling ball Quadratic model for a falling ball

In Figure 10 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.
The ball hits the ground when 72 = 0, so we solve the quadratic equation

—4.901* + 0.967 + 449.36 = 0

The quadratic formula gives

_—0.96 = /(0.96)* — 4(—4.90) (449.36)
= 2(—4.90)

The positive root is ¢ = 9.67, so we predict that the ball will hit the ground after about
9.7 seconds. |

POWER FUNCTIONS

A function of the form f(x) = x“, where a is a constant, is called a power function. We
consider several cases.
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(i) @ = n, where n is a positive integer

The graphs of f(x) = x" forn = 1, 2, 3, 4, and 5 are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of y = x (a line
through the origin with slope 1) and y = x? [a parabola, see Example 2(b) in Section 1.1].

y=x’ y=x’ y=x* y=x’

FIGURE 11 Graphsof f(x)=x"forn=1,2,3,4,5

The general shape of the graph of f(x) = x”" depends on whether n is even or odd. If n
is even, then f(x) = x" is an even function and its graph is similar to the parabola y = x>
If n is odd, then f(x) = x" is an odd function and its graph is similar to that of y = x°.
Notice from Figure 12, however, that as n increases, the graph of y = x" becomes flatter
near 0 and steeper when | x| = 1. (If x is small, then x” is smaller, x’ is even smaller, x*
is smaller still, and so on.)

FIGURE 12
Families of power functions

(ii) @ = 1/n, where n is a positive integer

The function f(x) = x"/" = {/x is a root function. For n = 2 it is the square root func-
tion f(x) = +/x, whose domain is [0, %) and whose graph is the upper half of the
parabola x = y?. [See Figure 13(a).] For other even values of n, the graph of y = \”/; is
similar to that of y = \/; . For n = 3 we have the cube root function f(x) = Q/; whose
domain is R (recall that every real number has a cube root) and whose graph is shown in
Figure 13(b). The graph of y = \”/; for n odd (n > 3) is similar to that of y = {/; .

y y

FIGURE 13
Graphs of root functions (a) f(x)=+/x (b) flx)=3/x



FIGURE 14
The reciprocal function

FIGURE 15
Volume as a function of pressure
at constant temperature
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(i) a = —1

The graph of the reciprocal function f(x) = x~' = 1/x is shown in Figure 14. Its graph
has the equation y = 1/x, or xy = 1, and is a hyperbola with the coordinate axes as its
asymptotes. This function arises in physics and chemistry in connection with Boyle’s
Law, which says that, when the temperature is constant, the volume V of a gas is
inversely proportional to the pressure P:

1

C
V=—
P

where C is a constant. Thus the graph of V as a function of P (see Figure 15) has the
same general shape as the right half of Figure 14.

Vv

Another instance in which a power function is used to model a physical phenomenon
is discussed in Exercise 26.

RATIONAL FUNCTIONS

A rational function f is a ratio of two polynomials:

where P and Q are polynomials. The domain consists of all values of x such that Q(x) # 0.
A simple example of a rational function is the function f(x) = 1/x, whose domain is
{x|x # 0}; this is the reciprocal function graphed in Figure 14. The function

f()_2x4—x2+1
* x?—4

is a rational function with domain {x|x # =2}. Its graph is shown in Figure 16.

ALGEBRAIC FUNCTIONS

A function f is called an algebraic function if it can be constructed using algebraic oper-
ations (such as addition, subtraction, multiplication, division, and taking roots) starting
with polynomials. Any rational function is automatically an algebraic function. Here are
two more examples:

SO =VEET g = o
x+\/;
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When we sketch algebraic functions in Chapter 4, we will see that their graphs can assume
a variety of shapes. Figure 17 illustrates some of the possibilities.

y y
f .
X
-3 1 N .
0 3 X 0 ; X
FIGURE 17 (@) fx)=x/x+3 (b)gx)=4x*—25

(c) h(x) = x*3x—2)?

An example of an algebraic function occurs in the theory of relativity. The mass of a
particle with velocity v is

=) =
m=f 1 —v%c?
where m, is the rest mass of the particle and ¢ = 3.0 X 10° km/s is the speed of light in

a vacuum.

TRIGONOMETRIC FUNCTIONS

The Reference Pages are located at the front  Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also
and back of the book.

in Appendix D. In calculus the convention is that radian measure is always used (except
when otherwise indicated). For example, when we use the function f(x) = sin x, it is under-

stood that sin x means the sine of the angle whose radian measure is x. Thus the graphs of
the sine and cosine functions are as shown in Figure 18.

[
3
|
SIEIES
3
<
3
21§
(98]
7
[
L
‘O
q<
N
NA
3
W
{
=

(@) f(x)=sinx (b) g(x)=cos x
FIGURE 18

Notice that for both the sine and cosine functions the domain is (—oe, ©) and the range
is the closed interval [—1, 1]. Thus, for all values of x, we have

or, in terms of absolute values,
|sinx| <1 [cosx| =<1
Also, the zeros of the sine function occur at the integer multiples of 7r; that is,

sinx =0 when X = nir nan integer
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y=tanx
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An important property of the sine and cosine functions is that they are periodic func-
tions and have period 27r. This means that, for all values of x,

sin(x + 27) = sin x cos(x + 2m) = cos x

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 4 in
Section 1.3 we will see that a reasonable model for the number of hours of daylight in
Philadelphia ¢ days after January 1 is given by the function

2
L(t) =12 + 2.8sin| ——(t — 80
0 sm[ s >]
The tangent function is related to the sine and cosine functions by the equation

sin x

tan x =
COS X

and its graph is shown in Figure 19. It is undefined whenever cos x = 0, that is, when
x = *q/2,+37/2,.... Itsrange is (—o°, ). Notice that the tangent function has period 7:

tan(x + 77) = tan x for all x
The remaining three trigonometric functions (cosecant, secant, and cotangent) are

the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in
Appendix D.

EXPONENTIAL FUNCTIONS

The exponential functions are the functions of the form f(x) = a*, where the base a is a
positive constant. The graphs of y = 2* and y = (0.5)* are shown in Figure 20. In both
cases the domain is (—o°, ©) and the range is (0, ).

—/l 1

0 1 X 0 1 X

(@y=2" (b)y=(0.5"

Exponential functions will be studied in detail in Section 1.5, and we will see that they
are useful for modeling many natural phenomena, such as population growth (if a > 1)
and radioactive decay (if a < 1).
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LOGARITHMIC FUNCTIONS

y=log, x
y=1log, x The logarithmic functions f(x) = log,x, where the base a is a positive constant, are the
11 " inverse functions of the exponential functions. They will be studied in Section 1.6. Fig-
ure 21 shows the graphs of four logarithmic functions with various bases. In each case the
\ domain is (0, ), the range is (—o, ), and the function increases slowly when x > 1.
0 1 \ X
y=logsx
y=lognX TR ANSCENDENTAL FUNCTIONS
These are functions that are not algebraic. The set of transcendental functions includes the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, but it also
FIGURE 21 includes a vast number of other functions that have never been named. In Chapter 11 we
will study transcendental functions that are defined as sums of infinite series.
EXAMPLE 5 Classify the following functions as one of the types of functions that we
have discussed.
(a) f(x) = 5" (b) g(x) = x°
1 +x
c) hix) =—"F+ d) ult)=1—1+5¢*
SOLUTION
(a) f(x) = 5" is an exponential function. (The x is the exponent.)
(b) g(x) = x° is a power function. (The x is the base.) We could also consider it to be a
polynomial of degree 5.
(©) h(x) = =" is an algebraic functi
¢) h(x) = —— is an algebraic function.
11— Jx g
(d) u(t) =1 — t + 5t*is a polynomial of degree 4. [ |
| 1.2 | EXERCISES
I-2 Classify each function as a power function, root function, 3-4 Match each equation with its graph. Explain your choices.
polynomial (state its degree), rational function, algebraic function, (Don’t use a computer or graphing calculator.)
tri tric function, tial function, or logarithmi
fll‘if((:)tlll(())rrlne ric runction, exponential runction, or logarithmic El (a) y = x2 (b) y= xs (C) y= xS
I (@) f(x) = ®) glx) =1 -2 y 9 )
241
(c) h(x) = x° + x* @) r(x) = x3
X +x
(e) s(x) = tan 2x (f) #(x) = logiox
x—6 x? 0 X
2. = b)) y=x+
(@)y T+ 6 (b) y=x \/ﬁ
() y=10" d y=x" f
ey=2t"+t"—x (f) y=cos 6§ + sin 6
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4. (a) y = 3x (b) y=3"
©y=x° @ y=x
y
F
g

e

[5.] (a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.
(b) Find an equation for the family of linear functions such
that f(2) = 1 and sketch several members of the family.
(c) Which function belongs to both families?

6. What do all members of the family of linear functions
f(x) =1 + m(x + 3) have in common? Sketch several mem-
bers of the family.

7. What do all members of the family of linear functions
f(x) = ¢ — x have in common? Sketch several members of
the family.

8. Find expressions for the quadratic functions whose graphs are

shown.
y y
(_Za 2)
! 0,1)
(4.2) 0 X
g
o‘ 3 x (1,-2.5)

9. Find an expression for a cubic function f if f(1) = 6 and
F(=1)=£0)=£2) = 0.

10. Recent studies indicate that the average surface tempera-
ture of the earth has been rising steadily. Some scientists
have modeled the temperature by the linear function
T = 0.02¢ + 8.50, where T is temperature in °C and  repre-
sents years since 1900.

(a) What do the slope and T-intercept represent?
(b) Use the equation to predict the average global surface
temperature in 2100.

I1. If the recommended adult dosage for a drug is D (in mg),
then to determine the appropriate dosage ¢ for a child of
age a, pharmacists use the equation ¢ = 0.0417D(a + 1).
Suppose the dosage for an adult is 200 mg.

(a) Find the slope of the graph of c. What does it represent?
(b) What is the dosage for a newborn?

12.

The manager of a weekend flea market knows from past
experience that if he charges x dollars for a rental space at the
market, then the number y of spaces he can rent is given by
the equation y = 200 — 4x.

(a) Sketch a graph of this linear function. (Remember that the
rental charge per space and the number of spaces rented
can’t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

. The relationship between the Fahrenheit (F) and Celsius (C)

temperature scales is given by the linear function

F=1C+ 32

(a) Sketch a graph of this function.

(b) What is the slope of the graph and what does it represent?
What is the F-intercept and what does it represent?

. Jason leaves Detroit at 2:00 pM and drives at a constant speed

west along 1-96. He passes Ann Arbor, 40 mi from Detroit, at
2:50 pm.

(a) Express the distance traveled in terms of the time elapsed.
(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?

[15.] Biologists have noticed that the chirping rate of crickets of a

certain species is related to temperature, and the relationship

appears to be very nearly linear. A cricket produces 113 chirps

per minute at 70°F and 173 chirps per minute at 80°F.

(a) Find a linear equation that models the temperature T as a
function of the number of chirps per minute N.

(b) What is the slope of the graph? What does it represent?

(c) If the crickets are chirping at 150 chirps per minute, esti-
mate the temperature.

. The manager of a furniture factory finds that it costs $2200

to manufacture 100 chairs in one day and $4800 to produce

300 chairs in one day.

(a) Express the cost as a function of the number of chairs
produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?

(c) What is the y-intercept of the graph and what does it
represent?

At the surface of the ocean, the water pressure is the same as

the air pressure above the water, 15 1b/in. Below the surface,

the water pressure increases by 4.34 1b/in* for every 10 ft of

descent.

(a) Express the water pressure as a function of the depth
below the ocean surface.

(b) At what depth is the pressure 100 Ib/in??
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18. The monthly cost of driving a car depends on the number of
miles driven. Lynn found that in May it cost her $380 to drive
480 mi and in June it cost her $460 to drive 800 mi.

(a) Express the monthly cost C as a function of the distance
driven d, assuming that a linear relationship gives a suit-
able model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the
slope represent?

(d) What does the y-intercept represent?

(e) Why does a linear function give a suitable model in this
situation?

19-20 For each scatter plot, decide what type of function you
might choose as a model for the data. Explain your choices.

19. (a) (b)
y y
..' .,'1.-' o, ”--.
0 X 0 X
20. (a) (b)
Y 2 I
0 X 0 X

{4 21. The table shows (lifetime) peptic ulcer rates (per 100 popula-
tion) for various family incomes as reported by the National
Health Interview Survey.

Ulcer rate

Income (per 100 population)

$4,000 14.1

$6,000 13.0

$8,000 13.4
$12,000 12.5
$16,000 12.0
$20,000 12.4
$30,000 10.5
$45,000 9.4
$60,000 8.2

(a) Make a scatter plot of these data and decide whether a
linear model is appropriate.

22.

2.

(b) Find and graph a linear model using the first and last data

points.

(c) Find and graph the least squares regression line.
(d) Use the linear model in part (c) to estimate the ulcer rate

for an income of $25,000.

(e) According to the model, how likely is someone with an
income of $80,000 to suffer from peptic ulcers?

(f) Do you think it would be reasonable to apply the model
to someone with an income of $200,000?

Biologists have observed that the chirping rate of crickets of
a certain species appears to be related to temperature. The
table shows the chirping rates for various temperatures.

Temperature | Chirping rate || Temperature | Chirping rate
(°F) (chirps/min) (°F) (chirps/min)
50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the chirping
rate at 100°F.

The table gives the winning heights for the Olympic pole
vault competitions in the 20th century.

Year Height (ft) Year Height (ft)
1900 10.83 1956 14.96
1904 11.48 1960 15.42
1908 12.17 1964 16.73
1912 12.96 1968 17.71
1920 13.42 1972 18.04
1924 12.96 1976 18.04
1928 13.77 1980 18.96
1932 14.15 1984 18.85
1936 14.27 1988 19.77
1948 14.10 1992 19.02
1952 14.92 1996 19.42

(a) Make a scatter plot and decide whether a linear model is

appropriate.

(b) Find and graph the regression line.
(c) Use the linear model to predict the height of the winning
pole vault at the 2000 Olympics and compare with the

actual winning height of 19.36 feet.
(d) Is it reasonable to use the model to predict the winning
height at the 2100 Olympics?



Ad24. A study by the US Office of Science and Technology in
1972 estimated the cost (in 1972 dollars) to reduce auto-
mobile emissions by certain percentages:
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26. The table shows the mean (average) distances d of the planets
from the sun (taking the unit of measurement to be the
distance from the earth to the sun) and their periods 7 (time

Reduction in
emissions (%)

Cost per
car (in §)

of revolution in years).

50
55
60
65
70

45
55
62
70
80

A 25.

Find a model that captures the “diminishing returns” trend of

these data.

Use the data in the table to model the population of the world
in the 20th century by a cubic function. Then use your model

Reduction in Cost per
emissions (%) car (in $)
Planet d T
75 90
30 100 Mercury 0.387 0.241
85 200 Venus 0.723 0.615
90 375 Earth 1.000 1.000
95 600 Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784

to estimate the population in the year 1925.

Population Population (a) Fit a power model to the data.
Year (millions) Year (millions) (b) Kepler’s Third Law of Planetary Motion states that
1900 1650 1960 3040
1910 1750 1970 3710 “The square of the period of revolution of a planet is
1920 1860 1980 4450 proportional to the cube of its mean distance from the
1930 2070 1990 5280 sun.”
1940 2300 2000 6080
1950 2560 Does your model corroborate Kepler’s Third Law?

NEW FUNCTIONS FROM OLD FUNCTIONS

In this section we start with the basic functions we discussed in Section 1.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine
pairs of functions by the standard arithmetic operations and by composition.

TRANSFORMATIONS OF FUNCTIONS

By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of
many functions quickly by hand. It will also enable us to write equations for given graphs.
Let’s first consider translations. If ¢ is a positive number, then the graph of y = f(x) + c s
just the graph of y = f(x) shifted upward a distance of ¢ units (because each y-coordinate
is increased by the same number c). Likewise, if g(x) = f(x — ¢), where ¢ > 0, then the
value of g at x is the same as the value of f at x — ¢ (c units to the left of x). Therefore,
the graph of y = f(x — ¢) is just the graph of y = f(x) shifted ¢ units to the right (see
Figure 1).

VERTICAL AND HORIZONTAL SHIFTS Suppose ¢ > 0. To obtain the graph of
y = f(x) + ¢, shift the graph of y = f(x) a distance ¢ units upward
y = f(x) — c, shift the graph of y = f(x) a distance ¢ units downward
y = f(x — ¢), shift the graph of y = f(x) a distance c units to the right
y = f(x + ¢), shift the graph of y = f(x) a distance c units to the left
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J y
y=fx)+ec ¥ = cf(x)
(c>1)
|
| fi=x)
: =f(—x
y=fata  Cly=fm  y=fr-o Y
I y= "0
0 c: X 0 X
|
| y=fx)—c
I y==fx
FIGURE | FIGURE 2
Translating the graph of f Stretching and reflecting the graph of f

Now let’s consider the stretching and reflecting transformations. If ¢ > 1, then the
graph of y = ¢f(x) is the graph of y = f(x) stretched by a factor of ¢ in the vertical
direction (because each y-coordinate is multiplied by the same number c). The graph of
y = —f(x) is the graph of y = f(x) reflected about the x-axis because the point (x, y) is
replaced by the point (x, —y). (See Figure 2 and the following chart, where the results of
other stretching, compressing, and reflecting transformations are also given.)

VERTICAL AND HORIZONTAL STRETCHING AND REFLECTING Suppose ¢ > 1. To
obtain the graph of

y = ¢f(x), stretch the graph of y = f(x) vertically by a factor of ¢

y = (1/¢)f(x), compress the graph of y = f(x) vertically by a factor of ¢
y = f(cx), compress the graph of y = f(x) horizontally by a factor of ¢
y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of ¢

y = —f(x), reflect the graph of y = f(x) about the x-axis

y = f(—x), reflect the graph of y = f(x) about the y-axis

Figure 3 illustrates these stretching transformations when applied to the cosine function
with ¢ = 2. For instance, in order to get the graph of y = 2 cos x we multiply the y-coor-
dinate of each point on the graph of y = cos x by 2. This means that the graph of y = cos x
gets stretched vertically by a factor of 2.

y y=2cosx y

2 / - 2l y=costx
/ y=cosx y 5
/l— y:%cosx 1 l /\ /\

FIGURE 3 y=cos2x
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i1 EXAMPLE | Given the graph of y = \/; , use transformations to graph y = \/; -2,
y=4Jx—2,y= —\/;,y=2\/;,andy=\/—x.

SOLUTION The graph of the square root function y = V/x, obtained from Figure 13(a)

in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch

y = \/; — 2 by shifting 2 units downward, y = y/x — 2 by shifting 2 units to the right,
y = —\/; by reflecting about the x-axis, y = 2\/; by stretching vertically by a factor
of 2,and y = \/—_x by reflecting about the y-axis.

y y y y y y
1t /
_2 4
@ y=1/x (b)y=1/x—2 ©y=vx-2 (@ y=—\x (@ y=2Vx (B y=v-x ]
FIGURE 4
EXAMPLE 2 Sketch the graph of the function f(x) = x* + 6x + 10.
SOLUTION Completing the square, we write the equation of the graph as
y=x*+6x+10=(x +3)*+ 1
This means we obtain the desired graph by starting with the parabola y = x? and shifting
3 units to the left and then 1 unit upward (see Figure 5).
Y y
(-3.1) T
0 g R (R
FIGURE 5 () y = x> (b)y=(x+3P>+1 -
EXAMPLE 3 Sketch the graphs of the following functions.
(a) y = sin2x (b) y=1—sinx
SOLUTION
(a) We obtain the graph of y = sin 2x from that of y = sin x by compressing horizon-
tally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of y = sinx is 2,
the period of y = sin 2x is 27/2 = .
y y
1 y=sinx

FIGURE 6

(=)
SRS
(

=

()
INFRL

| / /\ glw | y=sin2x/.\ /
VAR

FIGURE 7
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FIGURE 8

FIGURE 9

Graph of the length of daylight

from March 21 through December 21
at various latitudes

Lucia C. Harrison, Daylight, Twilight, Darkness and Time
(New York: Silver, Burdett, 1935) page 40.

(b) To obtain the graph of y = 1 — sin x, we again start with y = sin x. We reflect
about the x-axis to get the graph of y = —sin x and then we shift 1 unit upward to get
y = 1 — sin x. (See Figure 8.)

0 i P 37 2m ' X
: m
EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of the

time of the year at several latitudes. Given that Philadelphia is located at approximately
40°N latitude, find a function that models the length of daylight at Philadelphia.

20
18
AN
16
14 — \0\\_\\
b :/é‘é/o——*‘\o-Q§
“%who 20°N
Hours 10 2?:\‘* 30°N
7| 40°N
8 =1 50°N
6 60°N
4
2

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By look-
ing at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is %(14.8 —92)=28.

By what factor do we need to stretch the sine curve horizontally if we measure the
time ¢ in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of y = sint is 2, so the horizontal stretching factor is
c = 27/365.

We also notice that the curve begins its cycle on March 21, the 80th day of the year,
so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore we model the length of daylight in Philadelphia on the ¢th day of the
year by the function

2ar
L(t) = 12 + 2.8sin| — (¢t — |
(¥) 851n[365( 80)]

Another transformation of some interest is taking the absolute value of a function. If
y = | f(x)], then according to the definition of absolute value, y = f(x) when f(x) = 0 and
y = —f(x) when f(x) < 0. This tells us how to get the graph of y = | f(x)| from the graph
of y = f(x): The part of the graph that lies above the x-axis remains the same; the part that
lies below the x-axis is reflected about the x-axis.




(b)y=|x*—1]

FIGURE 10

(input)

X
!
) feg

flg(x)) (output)

FIGURE 11

The f°g machine is composed of
the g machine (first) and then

the f machine.
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7 EXAMPLE 5 Sketch the graph of the function y = |x* — 1|.

SOLUTION We first graph the parabola y = x? — 1 in Figure 10(a) by shifting the parabola
y = x* downward 1 unit. We see that the graph lies below the x-axis when —1 < x < 1,
so we reflect that part of the graph about the x-axis to obtain the graph of y = |x* — 1|
in Figure 10(b). [ |

COMBINATIONS OF FUNCTIONS

Two functions f and g can be combined to form new functions f + g, f — g, fg, and f/g in
a manner similar to the way we add, subtract, multiply, and divide real numbers. The sum
and difference functions are defined by

(f+9x) =fx) + g(x) (f = 9x) = f(x) — g(x)

If the domain of f is A and the domain of g is B, then the domain of f + g is the intersec-
tion A N B because both f(x) and g(x) have to be defined. For example, the domain of
f(x) = V/x isA = [0, ») and the domain of g(x) = /2 — x is B = (—, 2], so the domain
of (f+ ¢)(x) =+x + 2 —xisANB=]0,2].

Similarly, the product and quotient functions are defined by

(o)) = F(0)g(x) <1>(x) W)
g g(x)

The domain of fg is A N B, but we can’t divide by 0 and so the domain of f/g is
{x € A N B| g(x) # 0}. For instance, if f(x) = x*and g(x) = x — 1, then the domain of
the rational function (f/g)(x) = x*/(x — 1) is {x|x # 1}, or (=, 1) U (1, ).

There is another way of combining two functions to obtain a new function. For
example, suppose that y = f(u) = v/u and u = g(x) = x> + 1. Since y is a function of u
and u is, in turn, a function of x, it follows that y is ultimately a function of x. We compute
this by substitution:

y=f) =flg) =f(x* + 1) = a2 + 1

The procedure is called composition because the new function is composed of the two
given functions f and g.

In general, given any two functions f and g, we start with a number x in the domain of
g and find its image g(x). If this number g(x) is in the domain of f, then we can calculate
the value of f(g(x)). The result is a new function 4(x) = f(g(x)) obtained by substituting
g into f. It is called the composition (or composite) of f and g and is denoted by feog
(“fcircle g”).

DEFINITION Given two functions f and g, the composite function f° g (also called
the composition of f and g) is defined by

(feg9)(x) = f(g(x)

The domain of fo g is the set of all x in the domain of g such that g(x) is in the domain
of f.In other words, (f° g)(x) is defined whenever both g(x) and f(g(x)) are defined. Fig-
ure 11 shows how to picture f° g in terms of machines.
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If0<a<b,thena’ < b

EXAMPLE 6 If f(x) = x* and g(x) = x — 3, find the composite functions f° g
andgof.

SOLUTION We have
(fog)x) = f(g(x)) = flx — 3) = (x — 3)?
(gof)x) =g(f(x) = g(x*) =x> -3 u

You can see from Example 6 that, in general, fo g 7 g ° f. Remember, the
notation f° g means that the function g is applied first and then f is applied second. In
Example 6, f° g is the function that first subtracts 3 and then squares; g © f is the function
that first squares and then subtracts 3.

1 EXAMPLE 7 If f(x) = Vx and g(x) = /2 — x, find each function and its domain.
(@) foyg (b) gof () fof (d) geyg
SOLUTION

(a) (feg)) =flg) =f(V2—x)=Vy2—x =32 —x

The domain of fogis{x|2 —x = 0} = {x|x < 2} = (-, 2].

(b) (9o = g(f(0) = g(vx) =v2 — Vx

For /x to be defined we must have x = 0. For /2 — J/x to be defined we must have
2 — \/; = 0, that is, \/; < 2, or x =< 4. Thus we have 0 < x < 4, so the domain of
g o f is the closed interval [0, 4].

© (Fo ) =F(F) = f(Vx) = VW =
The domain of fo f is [0, ).
@ (g°9)x) =g(gx) =g(V2 —x) =2 - 2 —x

This expression is defined when both2 — x = 0 and 2 — /2 — x = 0. The first
inequality means x < 2, and the second is equivalent to /2 — x < 2,0r2 — x < 4, or
x = —2.Thus —2 < x < 2, so the domain of g ° g is the closed interval [—2, 2]. [ |

It is possible to take the composition of three or more functions. For instance, the com-
posite function fo g © h is found by first applying &, then g, and then f as follows:

(fegom(x) = f(g(h(x)))

EXAMPLE 8 Find fogo hif f(x) = x/(x + 1), g(x) = x'°, and h(x) = x + 3.

SOLUTION (feogeh)(x) = f(g(h(x))) = f(g(x + 3))
_ oy + 3T
_f((x+3) )_(x+3)10+1 u

So far we have used composition to build complicated functions from simpler ones. But
in calculus it is often useful to be able to decompose a complicated function into simpler
ones, as in the following example.
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EXAMPLE 9 Given F(x) = cos*(x + 9), find functions f, g, and 4 such that F = fo g ° h.

SOLUTION Since F(x) = [cos(x + 9)]% the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

h(x) =x+9 g(x) = cos x flx) =x*
Then
(fogeoh(x) = f(gh(x) = f(g(x + 9)) = f(cos(x + 9))
= [cos(x + 9)]* = F(x) [ ]

| 1.3 | EXERCISES
[1.] Suppose the graph of f is given. Write equations for the graphs (c) y =2f(x) d) y=—3fx +3

that are obtained from the graph of f as follows.

(a) Shift 3 units upward. J

(b) Shift 3 units downward.

(c) Shift 3 units to the right.

(d) Shift 3 units to the left.

(e) Reflect about the x-axis. 1

(f) Reflect about the y-axis. ol 1 i

(g) Stretch vertically by a factor of 3. ‘

(h) Shrink vertically by a factor of 3. [5.] The graph of £ is given. Use it to graph the following
2. Explain how each graph is obtained from the graph of y = £(x) functions.

. Exp ail ow each graph is obtaine iom e graph of y = f(x). @) y = f(2%) ®) y=f(x)

@y =570 Oy =ft ) © v =1(=x @ y=~f(~)

©y=-f(x @) y=-5f(x) ‘ '

(e) y =f(5x) () y=5f(x) =3 Y
3. The graph of y = f(x) is given. Match each equation with its 1

graph and give reasons for your choices. 5

@y=flx—4 (®) y=fx)+3 ;

©y=3fx d) y=—fx+4) |

() y=2f(x +6) o .
6-7 The graph of y = /3x — x? is given. Use transformations to

create a function whose graph is as shown.

@
y
y=1/3x—x?
® 1.5
0 3 X
i :6 i t 6 ——
6y y
3 :
—4 -1 0 X
/[
4. The graph of f is given. Draw the graphs of the following 0 > 5% 25

functions.
(@y=rfx+4) (b) y=rf(x) +4




44 |||/ CHAPTER | FUNCTIONS AND MODELS

8. (a) How is the graph of y = 2 sin x related to the graph of 29-30 Find f+ g, f — ¢, f9, and f/g and state their domains.
= sin x? i
y = sinx? Use your answer and Figure 6 to sketch the FE) =x +2x% g =322 — 1
graph of y = 2 sin x.
(b) How is the graph of y = 1 + \/;related to the graph of 30. f(x) =3 —x, glx)=x*—1

y = \/; ? Use your answer and Figure 4(a) to sketch the

graphofy =1 + V.
31-36 Find the functions (a) fo g, (b)geof,(c) fof,and(d)geog
9-24 Graph the function by hand, not by plotting points, but by and their domains.
starting with the graph of one of the standard functions given in Sec- )
tion 1.2, and then applying the appropriate transformations. 3 fl) =x = 1 gla) =20+ 1

9. y=—x° 10. y=1 — x2 3. f(x) =x—2, glx) =x*+3x+4
I y=(x+ 1) 12. y=x>—4x + 3 33. f(x) =1 = 3x, g(x) =cosx
13. y=1+ 2cos x 14. y = 45sin3x 34. f(x) = x, g =Y1—x

. 1 _ 1 _xt1
[15] y = sin(x/2) I6.y=x_4 @f(x)*x"‘x, g(x) P
17. y = Vx + 3 18. y=(x+2*"+3 36.f(x)=1j_ . g(x) = sin2x

x

19. y =1(x* + 8x) 20. y=1+Jx—1

2 ! u 37-40 Find fog°h
2y = —— 2. y = ptan|x - ind fogeh.

x

37. f(x) =x+ 1, glx)=2x, h(x)=x—1

23. y = [sin x| 24. y = |x* — 2x]|

38 f(x) =2x— 1, gx)=x> hx)=1-x

- [y — _ 2 _ .3
25. The city of New Orleans is located at latitude 30°N. Use Fig- 39 f() ¥ =3, gl) =2 bl ="+ 2
ure 9 to find a function that modelg the numbf.:r of hours of 40. f(x) = tanx, g(x) = X C h() =x
daylight at New Orleans as a function of the time of year. To x—1
check the accuracy of your model, use the fact that on March 31

the sun rises at 5:51 AM and sets at 6:18 pMm in New Orleans.
41-46 Express the function in the form fo g.
26. A variable star is one whose brightness alternately increases

— 2 10 I
and decreases. For the most visible variable star, Delta Cephei, 4l. Fl) = (x> + 1) 42. F(x) = sm(\/; )
the time between periods of maximum brightness is 5.4 days, Ix X
. . . . = - 3
the average brightness (or magnitude) of the star is 4.0, and its 8. Flx) = 3 44. G(x) =
, : , . . 1+ Jx 1+x
brightness varies by *£0.35 magnitude. Find a function that
models the brightness of Delta Cephei as a function of time. 45. u(t) = Jcost u(e) = 1 -t:lrl t t
an

(a) How is the graph of y = f(| x|) related to the graph of f?
(b) Sketch the graph of y = sin | x]|.

47-49 Express the function in the form fo g ° h.
(c) Sketch the graph of y = /| x]|. P foy

47. H(x) =1 — 3% 48. H(x) = 32 + |x|

28. Use the given graph of f to sketch the graph of y = 1/f(x).
given graph of f graph of y = 1/f(x) 49, HG) — sec*(y7)

Which features of f are the most important in sketching

y = 1/f(x)? Explain how they are used.

50. Use the table to evaluate each expression.

y (@ f(g(1) ®) g(f(1) © f(f(1)
(d) g(g(1)) (e) (gof)3) (f) (fe9)(©6)

1
/ x L2134 |56

0 1 X
o | 31| 4] 2

g(x) 6 3

[\
W

[\
[\S)
(98]




51.

52.

Use the given graphs of f and g to evaluate each expression,
or explain why it is undefined.

(@) f(g(2)) (b) g(f(0))
(d) (g°/)6) (&) (g°9)(—2)

y

(©) (f°9)(0)
() (fef)4)

Use the given graphs of f and g to estimate the value of
f(g(x)) for x = =5, —4, =3, ..., 5. Use these estimates to
sketch a rough graph of feo g.

¥y

[53.] A stone is dropped into a lake, creating a circular ripple that

54.

55.

56.

travels outward at a speed of 60 cm/s.

(a) Express the radius r of this circle as a function of the
time ¢ (in seconds).

(b) If A is the area of this circle as a function of the radius, find
A ° r and interpret it.

A spherical balloon is being inflated and the radius of the bal-

loon is increasing at a rate of 2 cm/s.

(a) Express the radius r of the balloon as a function of the time
t (in seconds).

(b) If V is the volume of the balloon as a function of the radius,
find V o r and interpret it.

A ship is moving at a speed of 30 km/h parallel to a straight
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.

(a) Express the distance s between the lighthouse and the ship
as a function of d, the distance the ship has traveled since
noon; that is, find f so that s = f(d).

(b) Express d as a function of 7, the time elapsed since noon;
that is, find g so that d = ¢(z).

(c) Find fo g. What does this function represent?

An airplane is flying at a speed of 350 mi/h at an altitude of

one mile and passes directly over a radar station at time ¢ = 0.

(a) Express the horizontal distance d (in miles) that the plane
has flown as a function of z.

(b) Express the distance s between the plane and the radar
station as a function of d.

(c) Use composition to express s as a function of 7.
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57.

58.

59.

60.

61.

62.

63.

64.

The Heaviside function H is defined by

py = |0 i <0
1 ifr=0

It is used in the study of electric circuits to represent the sudden
surge of electric current, or voltage, when a switch is instantane-
ously turned on.

(a) Sketch the graph of the Heaviside function.

(b) Sketch the graph of the voltage V(z) in a circuit if the
switch is turned on at time # = 0 and 120 volts are applied
instantaneously to the circuit. Write a formula for V(z) in
terms of H(z).

(c) Sketch the graph of the voltage V(¢) in a circuit if the switch
is turned on at time ¢ = 5 seconds and 240 volts are applied
instantaneously to the circuit. Write a formula for V(z) in
terms of H(r). (Note that starting at = 5 corresponds to a
translation.)

The Heaviside function defined in Exercise 57 can also be used
to define the ramp function y = crH(r), which represents a
gradual increase in voltage or current in a circuit.

(a) Sketch the graph of the ramp function y = rH(z).

(b) Sketch the graph of the voltage V(¢) in a circuit if the switch
is turned on at time ¢ = 0 and the voltage is gradually
increased to 120 volts over a 60-second time interval. Write
a formula for V(z) in terms of H(z) for t < 60.

(c) Sketch the graph of the voltage V(¢) in a circuit if the switch
is turned on at time ¢ = 7 seconds and the voltage is gradu-
ally increased to 100 volts over a period of 25 seconds.
Write a formula for V(¢) in terms of H(z) for t < 32.

Let f and g be linear functions with equations f(x) = mx + b,
and g(x) = myx + by Is fo g also a linear function? If so, what
is the slope of its graph?

If you invest x dollars at 4% interest compounded annually, then
the amount A(x) of the investment after one year is A(x) = 1.04x.
FindA°cA,A°cA°A,and A°A > A°A. What do these compo-
sitions represent? Find a formula for the composition of n
copies of A.

(a) If g(x) = 2x + 1 and h(x) = 4x* + 4x + 7, find a function
f such that fo g = h. (Think about what operations you
would have to perform on the formula for g to end up with
the formula for 4.)

(b) If f(x) = 3x + 5 and h(x) = 3x* + 3x + 2, find a function
g such that fo g = h.

If f(x) = x + 4 and h(x) = 4x — 1, find a function g such that

gef=h

(a) Suppose f and g are even functions. What can you say about

f+ gand fg?
(b) What if f and g are both odd?

Suppose f is even and g is odd. What can you say about fg?

Suppose g is an even function and let & = fo g. Is h always an

66.

even function?

Suppose g is an odd function and let 7 = fo g. Is h always an
odd function? What if f is odd? What if f is even?
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GRAPHING CALCULATORS AND COMPUTERS

y=d

(b, d)

AN

(a,c)

FIGURE

(b, c)

The viewing rectangle [a, b] by [c,d]

2
e R
-2 2
AN J
-2
() [-2,2] by [-2, 2]
4
e R
—4 4
AN J
-4

(b) [745 4] by [745 4]

FIGURE 2 Graphs of f(x)=x%+3

In this section we assume that you have access to a graphing calculator or a computer with
graphing software. We will see that the use of such a device enables us to graph more com-
plicated functions and to solve more complex problems than would otherwise be possible.
We also point out some of the pitfalls that can occur with these machines.

Graphing calculators and computers can give very accurate graphs of functions. But we
will see in Chapter 4 that only through the use of calculus can we be sure that we have
uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a func-
tion in a display window or viewing screen, which we refer to as a viewing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important to
choose the viewing rectangle with care. If we choose the x-values to range from a mini-
mum value of Xmin = a to a maximum value of Xmax = b and the y-values to range from
a minimum of Ymin = ¢ to a maximum of Ymax = d, then the visible portion of the graph
lies in the rectangle

[a,b] X [c,d]={(x,y) |a<x<b,c<y=<d}

shown in Figure 1. We refer to this rectangle as the [a, b] by [c, d] viewing rectangle.

The machine draws the graph of a function f much as you would. It plots points of the
form (x, f(x)) for a certain number of equally spaced values of x between a and b. If an
x-value is not in the domain of f, or if f(x) lies outside the viewing rectangle, it moves on
to the next x-value. The machine connects each point to the preceding plotted point to form
a representation of the graph of f.

EXAMPLE | Draw the graph of the function f(x) = x*> + 3 in each of the following
viewing rectangles.

(a) [-2,2] by [~2,2]

(¢) [~10, 10] by [5, 30]

(b) [—4,4] by [—4,4]
(d) [~50, 50] by [—100, 1000]

SOLUTION For part (a) we select the range by setting Xmin = —2, Xmax = 2, Ymin = =2,

and Ymax = 2. The resulting graph is shown in Figure 2(a). The display window is

blank! A moment’s thought provides the explanation: Notice that x> = 0 for all x, so

x? 4+ 3 = 3 for all x. Thus the range of the function f(x) = x* + 3 is [3, «). This

means that the graph of f lies entirely outside the viewing rectangle [—2, 2] by [—2, 2].
The graphs for the viewing rectangles in parts (b), (c), and (d) are also shown in

Figure 2. Observe that we get a more complete picture in parts (c) and (d), but in part (d)

it is not clear that the y-intercept is 3.

30 1000
' R ' R

-10 10

—50 C } 50
—100

=5

(¢) [-10,10] by [-5, 30] (d) [~50, 50] by [~100, 1000]
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We see from Example 1 that the choice of a viewing rectangle can make a big differ-
ence in the appearance of a graph. Often it’s necessary to change to a larger viewing
rectangle to obtain a more complete picture, a more global view, of the graph. In the next
example we see that knowledge of the domain and range of a function sometimes provides
us with enough information to select a good viewing rectangle.

EXAMPLE 2 Determine an appropriate viewing rectangle for the function
f(x) = +/8 — 2x? and use it to graph f.

SOLUTION The expression for f(x) is defined when
8—2x'=0 <& 2x’<s8 < x*s4
& |x]|<2 & -2=sx=2

Therefore the domain of f is the interval [ -2, 2]. Also,

0<.8—2x2<.8=2,2~283

so the range of f is the interval [O, 22 ]

We choose the viewing rectangle so that the x-interval is somewhat larger than the
domain and the y-interval is larger than the range. Taking the viewing rectangle to be
[—3,3] by [—1, 4], we get the graph shown in Figure 3. [ |

EXAMPLE 3 Graph the function y = x* — 150x.

SOLUTION Here the domain is R, the set of all real numbers. That doesn’t help us choose a
viewing rectangle. Let’s experiment. If we start with the viewing rectangle [—5, 5] by
[—5, 5], we get the graph in Figure 4. It appears blank, but actually the graph is so
nearly vertical that it blends in with the y-axis.

If we change the viewing rectangle to [—20, 20] by [—20, 20], we get the picture
shown in Figure 5(a). The graph appears to consist of vertical lines, but we know that
can’t be correct. If we look carefully while the graph is being drawn, we see that the
graph leaves the screen and reappears during the graphing process. This indicates that
we need to see more in the vertical direction, so we change the viewing rectangle to
[—20, 20] by [—500, 500]. The resulting graph is shown in Figure 5(b). It still doesn’t
quite reveal all the main features of the function, so we try [ =20, 20] by [—1000, 1000]
in Figure 5(c). Now we are more confident that we have arrived at an appropriate view-
ing rectangle. In Chapter 4 we will be able to see that the graph shown in Figure 5(c)
does indeed reveal all the main features of the function.

500 1000

—20 20 —20 20

—500 —1000

(b) (©)
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The appearance of the graphs in Figure 6
depends on the machine used. The graphs you
get with your own graphing device might not
look like these figures, but they will also be quite
inaccurate.

FIGURE 6
Graphs of f(x) = sin 50x
in four viewing rectangles

1.5

AANNAL
YRYRVAY

-1.5

FIGURE 7
f(x)=sin 50x

I EXAMPLE 4 Graph the function f(x) = sin 50x in an appropriate viewing rectangle.

SOLUTION Figure 6(a) shows the graph of f produced by a graphing calculator using the
viewing rectangle [—12, 12] by [—1.5, 1.5]. At first glance the graph appears to be rea-
sonable. But if we change the viewing rectangle to the ones shown in the following parts
of Figure 6, the graphs look very different. Something strange is happening.

1.5 1.5

-12 12 —10 10

-1.5 -1.5
© (d)

In order to explain the big differences in appearance of these graphs and to find an
appropriate viewing rectangle, we need to find the period of the function y = sin 50x.
We know that the function y = sin x has period 27 and the graph of y = sin 50x is
compressed horizontally by a factor of 50, so the period of y = sin 50x is

2T _ T 0126

50 25
This suggests that we should deal only with small values of x in order to show just a few
oscillations of the graph. If we choose the viewing rectangle [ —0.25, 0.25] by [—1.5, 1.5],
we get the graph shown in Figure 7.

Now we see what went wrong in Figure 6. The oscillations of y = sin 50x are so rapid

that when the calculator plots points and joins them, it misses most of the maximum and
minimum points and therefore gives a very misleading impression of the graph. |

We have seen that the use of an inappropriate viewing rectangle can give a misleading
impression of the graph of a function. In Examples 1 and 3 we solved the problem by
changing to a larger viewing rectangle. In Example 4 we had to make the viewing rect-
angle smaller. In the next example we look at a function for which there is no single view-
ing rectangle that reveals the true shape of the graph.

7 EXAMPLE 5 Graph the function f(x) = sinx + 755 cos 100x.

SOLUTION Figure 8 shows the graph of f produced by a graphing calculator with viewing
rectangle [ —6.5, 6.5] by [—1.5, 1.5]. It looks much like the graph of y = sin x, but per-
haps with some bumps attached. If we zoom in to the viewing rectangle [—0.1, 0.1] by
[-0.1, 0.1], we can see much more clearly the shape of these bumps in Figure 9. The



Another way to avoid the extraneous line is to
change the graphing mode on the calculator so

that the dots are not connected.

FIGURE 10
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reason for this behavior is that the second term, 155 cos 100x, is very small in comparison
with the first term, sin x. Thus we really need two graphs to see the true nature of this
function.

1.5 0.1

) -
| v

FIGURE 8 FIGURE 9 [ |

0.1

1
1 —x°

EXAMPLE 6 Draw the graph of the function y =

SOLUTION Figure 10(a) shows the graph produced by a graphing calculator with view-

ing rectangle [—9, 9] by [ =9, 9]. In connecting successive points on the graph, the
calculator produced a steep line segment from the top to the bottom of the screen. That
line segment is not truly part of the graph. Notice that the domain of the function

y = 1/(1 — x)is {x| x # 1}. We can eliminate the extraneous near-vertical line by exper-
imenting with a change of scale. When we change to the smaller viewing rectangle
[—4.7,4.7] by [—4.7, 4.7] on this particular calculator, we obtain the much better graph
in Figure 10(b).

9 4.7
-9 F 9 4 ——] 4.7

-9 —4.7

(a) (b) [ ]

EXAMPLE 7 Graph the function y = /x.

SOLUTION Some graphing devices display the graph shown in Figure 11, whereas others
produce a graph like that in Figure 12. We know from Section 1.2 (Figure 13) that the
graph in Figure 12 is correct, so what happened in Figure 11? The explanation is that
some machines compute the cube root of x using a logarithm, which is not defined if x
is negative, so only the right half of the graph is produced.

2 2

FIGURE 11 FIGURE 12
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Eza InVisual 1.4 you can see an
animation of Figure 3.

You should experiment with your own machine to see which of these two graphs is
produced. If you get the graph in Figure 11, you can obtain the correct picture by graph-
ing the function

Fa) = —— - [x]"?
x|
Notice that this function is equal to {/; (except when x = 0). |

To understand how the expression for a function relates to its graph, it’s helpful to graph
a family of functions, that is, a collection of functions whose equations are related. In the
next example we graph members of a family of cubic polynomials.

i7 EXAMPLE 8 Graph the function y = x* + cx for various values of the number ¢. How
does the graph change when c is changed?

SOLUTION Figure 13 shows the graphs of y = x* 4+ cx forc = 2, 1,0, —1, and —2. We see
that, for positive values of c, the graph increases from left to right with no maximum or
minimum points (peaks or valleys). When ¢ = 0, the curve is flat at the origin. When ¢
is negative, the curve has a maximum point and a minimum point. As ¢ decreases, the
maximum point becomes higher and the minimum point lower.

(@) y=x’+2x b)yy=x*+x ) y=x* dy=x’—x (e)y=x*—2x

FIGURE 13

Several members of the family of
functions y = x* + cx, all graphed
in the viewing rectangle [—2, 2]
by [-2.5,2.5]

EXAMPLE 9 Find the solution of the equation cos x = x correct to two decimal places.

SOLUTION The solutions of the equation cos x = x are the x-coordinates of the points of
intersection of the curves y = cos x and y = x. From Figure 14(a) we see that there is
only one solution and it lies between 0 and 1. Zooming in to the viewing rectangle [0, 1]
by [0, 1], we see from Figure 14(b) that the root lies between 0.7 and 0.8. So we zoom in
further to the viewing rectangle [0.7, 0.8] by [0.7, 0.8] in Figure 14(c). By moving the
cursor to the intersection point of the two curves, or by inspection and the fact that the
x-scale is 0.01, we see that the solution of the equation is about 0.74. (Many calculators
have a built-in intersection feature.)

/

y=x

y=cosx

\V

-1.5
FIGURE 14
Locating the roots (a) [-5,5] by [-1.5,1.5] (b) [0,1] by [0, 1] (c) [0.7,0.8] by [0.7,0.8]
of cosx = x x-scale =1 x-scale = 0.1 x-scale = 0.01 |
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I. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function f(x) = /x* — 5x2.

(a) [=5,5]by [-5, 5] (b) [0, 10] by [0, 2]
(¢) [0, 10] by [0, 10]

2. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function f(x) = x* — 16x* + 20.

(a) [—3,3] by [—3, 3] (b) [—10, 10] by [—10, 10]
(c) [—50, 50] by [—50, 50] (d) [—5,5] by [—50, 50]

3-14 Determine an appropriate viewing rectangle for the given
function and use it to draw the graph.

3. f(x) =5+ 20x — x? 4. f(x) = x> + 30x* + 200x
5. f(x) = /81 — x* 6. f(x) = 0.1x + 20
7. f(x) = x° — 225x fl) = ——

x2 + 100
F£(x) = sin?(1000x) 10. 7(x) = cos(0.001x)
1. f(x) = sin Vx

12. f(x) = sec(20mx)
13. y = 10 sin x + sin 100x 14. y = x> + 0.02 sin 50x

I5. Graph the ellipse 4x* + 2y = 1 by graphing the functions
whose graphs are the upper and lower halves of the ellipse.

16. Graph the hyperbola y> — 9x> = 1 by graphing the functions
whose graphs are the upper and lower branches of the hyperbola.

17-18 Do the graphs intersect in the given viewing rectangle?

If they do, how many points of intersection are there?

17. y =3x> — 6x + 1, y=0.23x —2.25; [-1,3]by[-2.5,1.5]

18. y=6 —4x —x* y=3x+ 18; [—6,2]by[—5,20]

19-21 Find all solutions of the equation correct to two decimal

places.
19. x> —9%x>—4=0 20. x*=4x—1

21. x?> =sinx

22. We saw in Example 9 that the equation cos x = x has exactly
one solution.
(a) Use a graph to show that the equation cos x = 0.3x has three
solutions and find their values correct to two decimal places.
(b) Find an approximate value of m such that the equation
cos x = mx has exactly two solutions.

[23.] Use graphs to determine which of the functions f(x) = 10x>
and g(x) = x*/10 is eventually larger (that is, larger when x is
very large).

24. Use graphs to determine which of the functions
f(x) = x* — 100x? and g(x) = x° is eventually larger.

25. For what values of x is it true that | sinx — x| < 0.1?

26. Graph the polynomials P(x) = 3x° — 5x° + 2x and Q(x) = 3x°
on the same screen, first using the viewing rectangle [—2, 2] by
[—2, 2] and then changing to [—10, 10] by [—10,000, 10,000].
What do you observe from these graphs?

In this exercise we consider the family of root functions

f(x) = ¥/x, where n is a positive integer.

(a) Graph the functions y = \/; ,y= Q/; ,andy = 2/; on the
same screen using the viewing rectangle [—1, 4] by [—1, 3].

(b) Graph the functions y = x, y = Jx, and y = \5/; on
the same screen using the viewing rectangle [ —3, 3]
by [—2, 2]. (See Example 7.)

(¢) Graph the functions y = /x,y = ¥/x,y = ¥/x, and
y = /x on the same screen using the viewing rectangle
[-1,3]by[—1,2]

(d) What conclusions can you make from these graphs?

28. In this exercise we consider the family of functions

f(x) = 1/x", where n is a positive integer.

(a) Graph the functions y = 1/x and y = 1/x* on the same
screen using the viewing rectangle [—3, 3] by [—3, 3].

(b) Graph the functions y = 1/x* and y = 1/x* on the same
screen using the same viewing rectangle as in part (a).

(c) Graph all of the functions in parts (a) and (b) on the same
screen using the viewing rectangle [—1, 3] by [—1, 3].

(d) What conclusions can you make from these graphs?

Graph the function f(x) = x* + cx* + x for several values
of ¢. How does the graph change when ¢ changes?

30. Graph the function f(x) = +/1 + c¢x? for various values
of ¢. Describe how changing the value of c¢ affects the graph.

31. Graph the function y = x"2", x = 0,forn = 1,2,3,4,5,
and 6. How does the graph change as n increases?

32. The curves with equations
| x|

Ve — x?

are called bullet-nose curves. Graph some of these curves to
see why. What happens as ¢ increases?

[33.] What happens to the graph of the equation y* = cx® + x? as
c varies?

34. This exercise explores the effect of the inner function g on a
composite function y = f(g(x)).
(a) Graph the function y = sin(\/; ) using the viewing rect-
angle [0, 400] by [—1.5, 1.5]. How does this graph differ
from the graph of the sine function?
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(b) Graph the function y = sin(x?) using the viewing rectangle
[=5,5] by [—1.5, 1.5]. How does this graph differ from the
graph of the sine function?

35. The figure shows the graphs of y = sin 96x and y = sin 2x as
displayed by a TI-83 graphing calculator.

NANWANEN
VY

y=sin2x

A
VY

y=sin 96x

The first graph is inaccurate. Explain why the two graphs
appear identical. [Hint: The TI-83’s graphing window is 95
pixels wide. What specific points does the calculator plot?]

36. The first graph in the figure is that of y = sin 45x as displayed
by a TI-83 graphing calculator. It is inaccurate and so, to help
explain its appearance, we replot the curve in dot mode in the
second graph.

by

What two sine curves does the calculator appear to be plotting?
Show that each point on the graph of y = sin 45x that the TI-
83 chooses to plot is in fact on one of these two curves. (The
TI-83’s graphing window is 95 pixels wide.)

I.5| EXPONENTIAL FUNCTIONS

The function f(x) = 2" is called an exponential function because the variable, x, is the
exponent. It should not be confused with the power function g(x) = x?, in which the vari-

able is the base.
In Appendix G we present an alternative
approach to the exponential and logarithmic
functions using integral calculus.

In general, an exponential function is a function of the form

flx) =a"

where a is a positive constant. Let’s recall what this means.
If x = n, a positive integer, then

n factors

If x = 0, then a® = 1, and if x = —n, where n is a positive integer, then

If x is a rational number, x = p/q, where p and ¢ are integers and ¢ > 0, then

T 23 or 579

@ = = Y = (fa)

But what is the meaning of a” if x is an irrational number? For instance, what is meant by

To help us answer this question we first look at the graph of the function y = 27, where
. x is rational. A representation of this graph is shown in Figure 1. We want to enlarge the
1 domain of y = 2* to include both rational and irrational numbers.
‘ There are holes in the graph in Figure 1 corresponding to irrational values of x. We want
to fill in the holes by defining f(x) = 27 where x € R, so that f is an increasing function.

In particular, since the irrational number \/§ satisfies

FIGURE |
Representation of y = 2%, x rational

17</3 <138



A proof of this fact is given in J. Marsden
and A. Weinstein, Calculus Unlimited (Menlo
Park, CA: Benjamin/Cummings, 1981). For an
online version, see

www.cds.caltech.edu/~marsden/
volume/cu/CU.pdf

FIGURE 2
y=2% xreal

If 0 < a < 1, then a* approaches 0 as x
becomes large. If a > 1, then a* approaches 0
as x decreases through negative values. In both
cases the x-axis is a horizontal asymptote. These
matters are discussed in Section 2.6.

FIGURE 3
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we must have
7 2‘5 < )l8

and we know what 2'7 and 2'® mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for /3, we obtain better approximations for 23

173 < /3 < 1.74 > 2B
1.732 < /3 < 1.733
1.7320 < /3 < 1.7321
1.73205 < /3 < 1.73206

21.732 < 2‘/§ < 21.733

=
= 21.7320 < 2‘/§ < 21.7321
= 21.73205 < 2‘/§ < 2].73206

It can be shown that there is exactly one number that is greater than all of the numbers

1.7 1.73 1.732 1.7320 1.73205
2 b 2 b 2 b 2 b 2 b
and less than all of the numbers
1.8 1.74 1.733 1.7321 1.73206
208 28 2V ) , 2 ,

We define 2V* to be this number. Using the preceding approximation process we can com-
pute it correct to six decimal places:

2V3 = 3321997

Similarly, we can define 2°* (or a*, if @ > 0) where x is any irrational number. Figure 2
shows how all the holes in Figure 1 have been filled to complete the graph of the function
fx)=2x€ER.

The graphs of members of the family of functions y = a* are shown in Figure 3 for var-
ious values of the base a. Notice that all of these graphs pass through the same point (0, 1)
because a” = 1 for a # 0. Notice also that as the base a gets larger, the exponential func-
tion grows more rapidly (for x > 0).

10* 4* X
2 1.5

1*

You can see from Figure 3 that there are basically three kinds of exponential functions
y=a". If 0 < a < 1, the exponential function decreases; if @ = 1, it is a constant; and if
a > 1, it increases. These three cases are illustrated in Figure 4. Observe that if a # 1,
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For review and practice using the Laws of
Exponents, click on Review of Algebra.

For a review of reflecting and shifting graphs,

see Section 1.3.

FIGURE 5
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then the exponential function y = a* has domain R and range (0, ). Notice also that,
since (1/a)* = 1/a* = a™*, the graph of y = (1/a)" is just the reflection of the graph of
y = a* about the y-axis.

y y

/ o

0 X 0 X

b)y=1" (©y=a',a>1

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary
algebra. It can be proved that they remain true for arbitrary real numbers x and y. (See
Appendix G.)

LAWS OF EXPONENTS If a and b are positive numbers and x and y are any real
numbers, then

3. (@) =a” 4 (ab)" = a'b*

l. a*™ = a*a’ 2.0 =

EXAMPLE | Sketch the graph of the function y = 3 — 2" and determine its domain and
range.

SOLUTION First we reflect the graph of y = 2* [shown in Figures 2 and 5(a)] about the
x-axis to get the graph of y = —2" in Figure 5(b). Then we shift the graph of y = —2°
upward 3 units to obtain the graph of y = 3 — 2" in Figure 5(c). The domain is R and
the range is (—o°, 3).

y y y

1

/

\0 X 0 X

-1

(a)y=2" (b)y=-2" ()y=3-2" ]
I EXAMPLE 2 Use a graphing device to compare the exponential function f(x) = 2*
and the power function g(x) = x*. Which function grows more quickly when x is large?

SOLUTION  Figure 6 shows both functions graphed in the viewing rectangle [—2, 6]
by [0, 40]. We see that the graphs intersect three times, but for x > 4 the graph of



Example 2 shows that y = 2* increases more
quickly than y = x? To demonstrate just how
quickly f(x) = 2" increases, let's perform the
following thought experiment. Suppose we start
with a piece of paper a thousandth of an inch
thick and we fold it in half 50 times. Each time
we fold the paper in half, the thickness of the
paper doubles, so the thickness of the resulting
paper would be 2°°/1000 inches. How thick do
you think that is? It works out to be more than

17 million miles!

SECTION 1.5 EXPONENTIAL FUNCTIONS [||| 55

f(x) = 2" stays above the graph of g(x) = x*. Figure 7 gives a more global view and
shows that for large values of x, the exponential function y = 2" grows far more rapidly
than the power function y = x?.

250

-2

0

FIGURE 6 FIGURE 7 |

APPLICATIONS OF EXPONENTIAL FUNCTIONS

TABLE 1

Population
Year (millions)
1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth.
In Chapter 3 we will pursue these and other applications in greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose
that by sampling the population at certain intervals it is determined that the population
doubles every hour. If the number of bacteria at time ¢ is p(f), where ¢ is measured in hours,
and the initial population is p(0) = 1000, then we have

p(1) = 2p(0) = 2 X 1000

p(2) = 2p(1) = 2% X 1000

p(3) = 2p(2) = 2° X 1000
It seems from this pattern that, in general,

p(t) = 2' X 1000 = (1000)2

This population function is a constant multiple of the exponential function y = 2, so it
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions
(unlimited space and nutrition and freedom from disease) this exponential growth is typi-
cal of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world
in the 20th century and Figure 8 shows the corresponding scatter plot.

P

t

6% 10° 1

1900 1920 1940 1960 1980 2000 !

FIGURE 8 Scatter plot for world population growth
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FIGURE 9
Exponential model for
population growth

FIGURE 12
The natural exponential function
crosses the y-axis with a slope of 1.

The pattern of the data points in Figure 8 suggests exponential growth, so we use a
graphing calculator with exponential regression capability to apply the method of least
squares and obtain the exponential model

P = (0.008079266) - (1.013731)"

Figure 9 shows the graph of this exponential function together with the original data
points. We see that the exponential curve fits the data reasonably well. The period of rela-
tively slow population growth is explained by the two world wars and the Great Depres-

sion of the 1930s.
P

6x10° +

1900 1920 1940 1960 1980 2000 !

THE NUMBER e

Of all possible bases for an exponential function, there is one that is most convenient for
the purposes of calculus. The choice of a base a is influenced by the way the graph of
y = a* crosses the y-axis. Figures 10 and 11 show the tangent lines to the graphs of y = 2*
and y = 3" at the point (0, 1). (Tangent lines will be defined precisely in Section 2.7. For
present purposes, you can think of the tangent line to an exponential graph at a point as the
line that touches the graph only at that point.) If we measure the slopes of these tangent
lines at (0, 1), we find that m = 0.7 for y = 2* and m = 1.1 for y = 3*.

Y y:2x y y:3x

m=1.1

FIGURE 10 FIGURE 11

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be
greatly simplified if we choose the base a so that the slope of the tangent line to y = a* at
(0, 1) is exactly 1. (See Figure 12.) In fact, there is such a number and it is denoted by the
letter e. (This notation was chosen by the Swiss mathematician Leonhard Euler in 1727,
probably because it is the first letter of the word exponential.) In view of Figures 10 and
11, it comes as no surprise that the number e lies between 2 and 3 and the graph of y = ¢*
lies between the graphs of y = 2 and y = 3*. (See Figure 13.) In Chapter 3 we will see
that the value of e, correct to five decimal places, is

e =~ 271828



Eza Module 1.5 enables you to graph

exponential functions with various bases and

their tangent lines in order to estimate
more closely the value of a for which the
tangent has slope 1.
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7 EXAMPLE 3 Graph the function y = je™* — 1 and state the domain and range.

SOLUTION We start with the graph of y = e” from Figures 12 and 14(a) and reflect about
the y-axis to get the graph of y = e~ in Figure 14(b). (Notice that the graph crosses the
y-axis with a slope of —1). Then we compress the graph vertically by a factor of 2 to
obtain the graph of y = 3¢ ™* in Figure 14(c). Finally, we shift the graph downward one
unit to get the desired graph in Figure 14(d). The domain is R and the range is (—1, ).

1\ 1t 14

FIGURE 13
y
/l
0 X
(@) y=e"
FIGURE 14
FIGURE 15

0 X 0 X 0 X

b)y=e* ©)y= %e’*

How far to the right do you think we would have to go for the height of the graph of
y = e" to exceed a million? The next example demonstrates the rapid growth of this func-
tion by providing an answer that might surprise you.

EXAMPLE 4 Use a graphing device to find the values of x for which e* > 1,000,000.

SOLUTION In Figure 15 we graph both the function y = e* and the horizontal line

y = 1,000,000. We see that these curves intersect when x = 13.8. Thus e¢* > 10° when
x > 13.8. It is perhaps surprising that the values of the exponential function have already
surpassed a million when x is only 14.

1.5 10°

y=10°
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1.5 | EXERCISES

I. (a) Write an equation that defines the exponential function
with base a > 0.
(b) What is the domain of this function?
(c) If a # 1, what is the range of this function?
(d) Sketch the general shape of the graph of the exponential
function for each of the following cases.
i) a>1 (i) a=1 (i) 0<a <1

2. (a) How is the number e defined?
(b) What is an approximate value for e?
(c) What is the natural exponential function?

4 3-6 Graph the given functions on a common screen. How are
these graphs related?

3Ly=2, y=e, y=5, y=20"

5ly=3, y=10% y=(), y=(3)

6. y=109% y=06, y=03, y=01I

7-12 Make a rough sketch of the graph of the function. Do not
use a calculator. Just use the graphs given in Figures 3 and 12 and,
if necessary, the transformations of Section 1.3.

7. y=4"-3 8. y=4"3
[9]y=—27* 10. y=1+ 2¢"
] y=1-1¢> 12. y=2(1 —¢%)

[13.] Starting with the graph of y = e*, write the equation of the
graph that results from
(a) shifting 2 units downward
(b) shifting 2 units to the right
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the x-axis and then about the y-axis

14. Starting with the graph of y = ¢*, find the equation of the
graph that results from
(a) reflecting about the line y = 4
(b) reflecting about the line x = 2

15-=16 Find the domain of each function.

15, @ f() = T ®) £() = T
16. (a) g(r) = sin(e™) (b) g(r) = /1 =2

17-18 Find the exponential function f(x) = Ca* whose graph is

given.
y
(3,24)
(1,6)
/
0 X
18.

20.

21.

22,

A 23]

A 24.

. If f(x) = 5%, show that

f(x+h)—f(x)75x 5h—1
h B h

Suppose you are offered a job that lasts one month. Which of

the following methods of payment do you prefer?

1. One million dollars at the end of the month.

II. One cent on the first day of the month, two cents on the
second day, four cents on the third day, and, in general,
2"~ ! cents on the nth day.

Suppose the graphs of f(x) = x? and g(x) = 2* are drawn on
a coordinate grid where the unit of measurement is 1 inch.
Show that, at a distance 2 ft to the right of the origin, the
height of the graph of f is 48 ft but the height of the graph
of g is about 265 mi.

Compare the functions f(x) = x> and g(x) = 5* by graphing
both functions in several viewing rectangles. Find all points
of intersection of the graphs correct to one decimal place.
Which function grows more rapidly when x is large?

Compare the functions f(x) = x'° and g(x) = e* by graphing
both f and g in several viewing rectangles. When does the
graph of ¢ finally surpass the graph of f?

Use a graph to estimate the values of x such that
e’ > 1,000,000,000.



25.

26.

A 27.

[ 28.

Under ideal conditions a certain bacteria population is known
to double every three hours. Suppose that there are initially
100 bacteria.

(a) What is the size of the population after 15 hours?
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population since 1900. Use the model to estimate the popula-
tion in 1925 and to predict the population in the years 2010
and 2020.

(b) What is the size of the population after ¢ hours? Year Population Year | Population
(c) Estimate the size of the population after 20 hours. 1900 76 1960 179
(d) Graph the population function and estimate the time for 1910 9 1970 203
the population to reach 50,000. 1920 106 1980 227
A bacterial culture starts with 500 bacteria and doubles in 1930 123 1990 250
size every half hour. 1940 1 2000 281
(a) How many bacteria are there after 3 hours? 1930 150
(b) How many bacteria are there after ¢ hours?
(c) How many bacteria are there after 40 minutes? 29. If you graph the function
(d) Graph the population function and estimate the time for 1 — el
the population to reach 100,000. flx) = T+ o7

Use a graphing calculator with exponential regression capa-
bility to model the population of the world with the data from

you’ll see that f appears to be an odd function. Prove it.

1950 to 2000 in Table 1 on page 55. Use the model to esti- 30. Graph several members of the family of functions

mate the population in 1993 and to predict the population in
the year 2010.

The table gives the population of the United States, in mil-
lions, for the years 1900—-2000. Use a graphing calculator
with exponential regression capability to model the US

_
1 + ae™

flx) =

where a > 0. How does the graph change when b changes?
How does it change when a changes?

.6 | INVERSE FUNCTIONS AND LOGARITHMS

Table 1 gives data from an experiment in which a bacteria culture started with 100 bacte-
ria in a limited nutrient medium; the size of the bacteria population was recorded at hourly
intervals. The number of bacteria N is a function of the time 7: N = f(¢).

Suppose, however, that the biologist changes her point of view and becomes interested
in the time required for the population to reach various levels. In other words, she is think-
ing of ¢ as a function of N. This function is called the inverse function of f, denoted by f ',
and read “finverse.” Thus t = f ~!(N) is the time required for the population level to reach
N. The values of f~! can be found by reading Table 1 from right to left or by consulting
Table 2. For instance, f~'(550) = 6 because f(6) = 550.

TABLE | N as a function of ¢

TABLE 2 tas a function of N

t N =) t=f"'(N)
(hours) = population at time ¢ N = time to reach N bacteria

0 100 100 0
1 168 168 1
2 259 259 2
3 358 358 3
4 445 445 4
5 509 509 5
6 550 550 6
7 573 573 7
8 586 586 8
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FIGURE 1
f is one-to-one; g is not

In the language of inputs and outputs, this
definition says that f is one-to-one if each out-
put corresponds to only one input.

FIGURE 2
This function is not one-to-one
because f(x;) = f(xy).

i

A

/

FIGURE 3
f(x)= x> is one-to-one.

Not all functions possess inverses. Let’s compare the functions f and g whose arrow
diagrams are shown in Figure 1. Note that f never takes on the same value twice (any two
inputs in A have different outputs), whereas g does take on the same value twice (both 2
and 3 have the same output, 4). In symbols,

9(2) = ¢(3)
but f(xr) # f(x2) whenever x; # x,

Functions that share this property with f are called one-fo-one functions.

N W A

[1] DEFINITION A function f is called a one-to-one function if it never takes on
the same value twice; that is,

f(x1) # f(x2) whenever x; # x,

If a horizontal line intersects the graph of f in more than one point, then we see from
Figure 2 that there are numbers x; and x, such that f(x;) = f(x,). This means that f is not
one-to-one. Therefore we have the following geometric method for determining whether a
function is one-to-one.

I
|
|
@) fo)
|
1

HORIZONTAL LINE TEST A function is one-to-one if and only if no horizontal line
intersects its graph more than once.

i EXAMPLE | Is the function f(x) = x* one-to-one?

SOLUTION | If x; # x,, then x{ # x3 (two different numbers can’t have the same cube).
Therefore, by Definition 1, f(x) = x* is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of f(x) = x*
more than once. Therefore, by the Horizontal Line Test, f is one-to-one. |



e

\ ]/

FIGURE 4
g(x) = x? is not one-to-one.

B -

FIGURE 5
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i1 EXAMPLE 2 Is the function g(x) = x? one-to-one?

SOLUTION | This function is not one-to-one because, for instance,

g(1) =1 =g(—1)
and so 1 and —1 have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the graph of
g more than once. Therefore, by the Horizontal Line Test, g is not one-to-one. |

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

[2] DEFINITION Let f be a one-to-one function with domain A and range B. Then
its inverse function f ' has domain B and range A and is defined by

[f=x & fly=y

for any y in B.

This definition says that if f maps x into y, then £~ ' maps y back into x. (If f were not
one-to-one, then ! would not be uniquely defined.) The arrow diagram in Figure 5 indi-
cates that f ! reverses the effect of f. Note that

domain of f~' = range of f

range of ' = domain of f

For example, the inverse function of f(x) = x*is f~'(x) = x'/3 because if y = x, then
S =) = () =

CAUTION Do not mistake the —1 in f~' for an exponent. Thus

B 1
f '(x) doesnotmean ——

f(x)
The reciprocal 1/f(x) could, however, be written as [ f(x)] .

7 EXAMPLE 3 If f(1) = 5, f(3) = 7, and f(8) = —10, find £~ (7), £ '(5),
and f~'(—10).

SOLUTION From the definition of f~! we have
f Y (7)=3  because  f(3) =7

715 =1 because f()

I
W

fi(—10) =8  because  f(8) = —10
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The diagram in Figure 6 makes it clear how f ! reverses the effect of f in this case.

A B A B
1 1
3 3
FIGURE 6 8 8
The inverse function reverses ¥ I
inputs and outputs. _ — |
The letter x is traditionally used as the independent variable, so when we concentrate
on f ! rather than on f, we usually reverse the roles of x and y in Definition 2 and write
3] =y < fO)=x
By substituting for y in Definition 2 and substituting for x in (3), we get the following
cancellation equations:
[4] f'(f(x)) = x forevery xin A
f(f'(x)) = x forevery xin B
The first cancellation equation says that if we start with x, apply £, and then apply ', we
arrive back at x, where we started (see the machine diagram in Figure 7). Thus f~' undoes
what f does. The second equation says that f undoes what f~' does.
X —> 7 — flx) —> i -1 —
FIGURE 7

For example, if £(x) = x>, then f~'(x) = x'/3 and so the cancellation equations become

£ = ) = x
FUT@) = () = x

These equations simply say that the cube function and the cube root function cancel each
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y = f(x) and are
able to solve this equation for x in terms of y, then according to Definition 2 we must have
x = f~'(y). If we want to call the independent variable x, we then interchange x and y and
arrive at the equation y = f~'(x).

[5] HOW TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f
STEP | Write y = f(x).
STEP 2 Solve this equation for x in terms of y (if possible).

STEP 3 To express f ' as a function of x, interchange x and y.
The resulting equation is y = f~!(x).




In Example 4, notice how f ! reverses the
effect of f. The function f is the rule “Cube,
then add 2"; £ ! is the rule “Subtract 2, then
take the cube root.”

y
y=flx)
y=x
0
=10 o x
y=7"x)
FIGURE 10
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I7 EXAMPLE 4 Find the inverse function of f(x) = x> + 2.

SOLUTION According to (5) we first write

y=x+2
Then we solve this equation for x:
xX*=y—-2
x=3y—2

Finally, we interchange x and y:
y=+x—2
Therefore the inverse function is f~'(x) = +/x — 2. [ ]

The principle of interchanging x and y to find the inverse function also gives us the
method for obtaining the graph of f~! from the graph of f. Since f(a) = b if and only if
f~'(b) = a, the point (a, b) is on the graph of f if and only if the point (b, a) is on the
graph of f~'. But we get the point (b, a) from (a, b) by reflecting about the line y = x. (See

Figure 8.)
" ba g /
=y /r\g\
/N £
/ (a, D)

—
-
_

0f-" 4 0 /
X
14

FIGURE 8 FIGURE 9

Therefore, as illustrated by Figure 9:

The graph of f~'is obtained by reflecting the graph of f about the line y = x.

EXAMPLE 5 Sketch the graphs of f(x) = +/—1 — x and its inverse function using the
same coordinate axes.

SOLUTION First we sketch the curve y = «/—1 — x (the top half of the parabola

y?= —1 — x, or x = —y? — 1) and then we reflect about the line y = x to get the
graph of f~'. (See Figure 10.) As a check on our graph, notice that the expression for
flis f7(x) = —x? — 1,x = 0. So the graph of f ! is the right half of the parabola

y = —x* — 1 and this seems reasonable from Figure 10. |

LOGARITHMIC FUNCTIONS

If a > 0 and a # 1, the exponential function f(x) = a* is either increasing or decreasing
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function f ',
which is called the logarithmic function with base a and is denoted by log,. If we use
the formulation of an inverse function given by (3),

W=y < fO)=x
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y y=x
0 X
y=log,x, a>1

FIGURE 11
y _
y=log, x
y=log;x
1<>
0 1 \ X
y=logsx
y =logyx
FIGURE 12

NOTATION FOR LOGARITHMS
Most textbooks in calculus and the sciences, as
well as calculators, use the notation In x for the
natural logarithm and log x for the “common

logarithm,” log o x. In the more advanced mathe-

matical and scientific literature and in computer
languages, however, the notation log x usually
denotes the natural logarithm.

then we have

[6] log,x=y < a’'=x

Thus, if x > 0, then log , x is the exponent to which the base a must be raised to give x. For
example, log,,0.001 = —3 because 107 = 0.001.

The cancellation equations (4), when applied to the functions f(x) = a* and
f~(x) = log,x, become

log,(a*) = x foreveryx € R

a“* = x foreveryx >0

The logarithmic function log, has domain (0, ®©) and range R. Its graph is the reflection
of the graph of y = a”* about the line y = x.

Figure 11 shows the case where @ > 1. (The most important logarithmic functions have
base a > 1.) The fact that y = a* is a very rapidly increasing function for x > 0 is
reflected in the fact that y = log,x is a very slowly increasing function for x > 1.

Figure 12 shows the graphs of y = log,x with various values of the base a > 1. Since
log, 1 = 0, the graphs of all logarithmic functions pass through the point (1, 0).

The following properties of logarithmic functions follow from the corresponding prop-
erties of exponential functions given in Section 1.5.

LAWS OF LOGARITHMS If x and y are positive numbers, then
1. log,(xy) = log,x + log,y

2. loga<£> = log,x — log,y
y

3. log,(x") = rlog,x (where r is any real number)

EXAMPLE 6 Use the laws of logarithms to evaluate log, 80 — log, 5.
SOLUTION Using Law 2, we have

80
log, 80 — log,5 = 10g2<?> = log, 16 =4
because 2* = 16. [ ]

NATURAL LOGARITHMS

Of all possible bases a for logarithms, we will see in Chapter 3 that the most convenient
choice of a base is the number e, which was defined in Section 1.5. The logarithm with
base e is called the natural logarithm and has a special notation:

log,x =Inx
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If we put a = e and replace log, with “In” in (6) and (7), then the defining properties
of the natural logarithm function become

Inx=y <& e =x
[9] In(e*) = x xER
e = x x>0

In particular, if we set x = 1, we get

Ine =1
EXAMPLE 7 Find x if Inx = 5.
SOLUTION | From (8) we see that
Inx=25 means e =x

Therefore x = e°.

(If you have trouble working with the “In” notation, just replace it by log,. Then the
equation becomes log, x = 5; so, by the definition of logarithm, e’ = x.)

SOLUTION 2 Start with the equation

Inx=25
and apply the exponential function to both sides of the equation:
Inx — 5

e

Inx

But the second cancellation equation in (9) says that e = x. Therefore, x = ¢°. |

EXAMPLE 8 Solve the equation e 3* = 10.

SOLUTION We take natural logarithms of both sides of the equation and use (9):

In(e’> *) =1n 10

5—3x=1In10
3x=5—-1In10
x=13(5—1n10)

Since the natural logarithm is found on scientific calculators, we can approximate the
solution: to four decimal places, x = 0.8991. |
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FIGURE 13

—

7 EXAMPLE 9 Express Ina + 5 Inb as a single logarithm.

SOLUTION Using Laws 3 and 1 of logarithms, we have
Ina + ;lnb=1Ina + Inbh"?
=Ina + ln\/g

= In(av/b) |

The following formula shows that logarithms with any base can be expressed in terms
of the natural logarithm.

CHANGE OF BASE FORMULA For any positive number a (a # 1), we have

In x
log,x = —
Ina

PROOF Lety = log,x. Then, from (6), we have a” = x. Taking natural logarithms of both
sides of this equation, we get y In a = In x. Therefore

In x
y=— |
Ina

Scientific calculators have a key for natural logarithms, so Formula 10 enables us to use
a calculator to compute a logarithm with any base (as shown in the following example).
Similarly, Formula 10 allows us to graph any logarithmic function on a graphing calcula-
tor or computer (see Exercises 41 and 42).

EXAMPLE 10 Evaluate logg5 correct to six decimal places.

SOLUTION Formula 10 gives
In5
logs5 = —— = 0.773976 |
In8

The graphs of the exponential function y = ¢* and its inverse function, the natural log-
arithm function, are shown in Figure 13. Because the curve y = e” crosses the y-axis with
a slope of 1, it follows that the reflected curve y = In x crosses the x-axis with a slope of 1.

In common with all other logarithmic functions with base greater than 1, the natural
logarithm is an increasing function defined on (0, ©) and the y-axis is a vertical asymptote.
(This means that the values of In x become very large negative as x approaches 0.)

EXAMPLE 11 Sketch the graph of the function y = In(x — 2) — L.

SOLUTION We start with the graph of y = In x as given in Figure 13. Using the transforma-
tions of Section 1.3, we shift it 2 units to the right to get the graph of y = In(x — 2) and
then we shift it 1 unit downward to get the graph of y = In(x — 2) — 1. (See Figure 14.)
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y Y lx=2 Y | x=2

| |
= Inx | | =In(x—2)—1

| y=In(x—2) : y=lIn(x—=2)
| ]

0 (1,0) X 0 2| (3,0) X 0 2 X
| |
| | _
| | 3.-1)
| |
| |
I I

FIGURE 14 |
y

Although In x is an increasing function, it grows very slowly when x > 1. In fact, In x

grows more slowly than any positive power of x. To illustrate this fact, we compare

y=x approximate values of the functions y = Inx and y = x'/* = Vx in the following table
and we graph them in Figures 15 and 16. You can see that initially the graphs of y = \/;
and y = Inx grow at comparable rates, but eventually the root function far surpasses the

y=Inx g

logarithm.

0 1 X
X 1 2 5 10 50 100 500 1000 10,000 100,000

FIGURE 15 Inx | 0 | 069 | 1.61 | 230 | 391 | 46 | 62 | 69 9.2 11.5
Vx 1 1.41 224 | 3.16 7.07 10.0 22.4 31.6 100 316
l{ﬁ
¥ 0 0.49 | 0.72 0.73 0.55 | 0.46 0.28 0.22 0.09 0.04
VX

INVERSE TRIGONOMETRIC FUNCTIONS

FIGURE 16

101)0 x  When we try to find the inverse trigonometric functions, we have a slight difficulty:
Because the trigonometric functions are not one-to-one, they don’t have inverse functions.
The difficulty is overcome by restricting the domains of these functions so that they
become one-to-one.
You can see from Figure 17 that the sine function y = sin x is not one-to-one (use the
Horizontal Line Test). But the function f(x) = sin x, —7/2 < x < 7/2, is one-to-one
(see Figure 18). The inverse function of this restricted sine function f exists and is denot-
ed by sin ! or arcsin. It is called the inverse sine function or the arcsine function.

y y
y=sinx

AN AN _

7\/ X 0

FIGURE 17 FIGURE 18 y=sinx,—g£x$

T =l

(=)
[SIERS
SRS
s~

—TT

oIy

Since the definition of an inverse function says that

W=y & fO)=x
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B sin 'x = —
sin x
3
6
242
FIGURE 19

we have

sin"'x=y < siny=x and -—

Y

= <£

Thus, if —1 < x < 1, sin"'x is the number between — /2 and /2 whose sine is x.

EXAMPLE 12 Evaluate (a) sin”'(3) and (b) tan(arcsin }).

SOLUTION

(a) We have
. (1 T
sin (5) = —

6

because sin(7/6) = 3 and /6 lies between — /2 and /2.

(b) Let @ = arcsin 3, so sin § = . Then we can draw a right triangle with angle 6 as in
Figure 19 and deduce from the Pythagorean Theorem that the third side has length
V9 — 1 = 2./2. This enables us to read from the triangle that

) 1
tan(arcsm %) =tan 0 = ﬁ |

The cancellation equations for inverse functions become, in this case,

i T T
sin”'(sin x) = x for—?$x$?

sin(sin"x) =x for—-1<sx=<1

The inverse sine function, sin~', has domain [—1, 1] and range [— /2, 7/2], and its
graph, shown in Figure 20, is obtained from that of the restricted sine function (Figure 18)
by reflection about the line y = x.

1"\
] 0 x 0 g\f X

FIGURE 20 FIGURE 21
y=sin"'x = arcsin x y=cosx,0sx=mw

‘

}
|

w3

The inverse cosine function is handled similarly. The restricted cosine function
f(x) = cos x, 0 < x < 77, is one-to-one (see Figure 21) and so it has an inverse function
denoted by cos ! or arccos.

cos'x=y <> cosy=x and O0sys<m




T+

0y

1 *

—1 0 1 X

FIGURE 22
y =cos ' x = arccos x

(SIE]
[SIE
=

FIGURE 23
T

— _m ku
y=tanx, —5; <x <3

\/l-i-x2
X

FIGURE 24

FIGURE 25
y =tan 'x = arctan x
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The cancellation equations are

cosHcosx) =x forO0sx<nm

cos(cos™'x) =x for—1<x<1

The inverse cosine function, cos™', has domain [—1, 1] and range [0, 7]. Its graph is
shown in Figure 22.

The tangent function can be made one-to-one by restricting it to the interval
(—=/2, 7/2). Thus the inverse tangent function is defined as the inverse of the function
f(x) = tan x, —7/2 < x < /2. (See Figure 23.) It is denoted by tan' or arctan.

- T T
tan- x =y <= tany=x and —?<y<?

EXAMPLE 13 Simplify the expression cos(tan 'x).

SOLUTION | Lety = tan 'x. Then tany = x and —7/2 < y < /2. We want to find cos y
but, since tan y is known, it is easier to find sec y first:

sec’y = 1 + tan’y = 1 + x?
secy =+/1 + x2 (since secy > 0 for —7/2 <y < 7/2)

| 1
secy 41+ x?

Thus cos(tan”'x) = cos y =

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to
use a diagram. If y = tan™'x, then tan y = x, and we can read from Figure 24 (which
illustrates the case y > 0) that

1

tan 'x) = =
cos(tan™'x) = cos y NS

1

The inverse tangent function, tan~' = arctan, has domain R and range (— /2, 7/2).

Its graph is shown in Figure 25.

We know that the lines x = #7/2 are vertical asymptotes of the graph of tan. Since the
graph of tan~' is obtained by reflecting the graph of the restricted tangent function about
the line y = x, it follows that the lines y = 77/2 and y = — /2 are horizontal asymptotes
1

of the graph of tan™".
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FIGURE 26
y=secx

1.6 | EXERCISES

The remaining inverse trigonometric functions are not used as frequently and are sum-
marized here.

(1] y=csc™x (x| =1) < cscy=x and y € (0, 7/2] U (m, 37/2]
y=sec 'x (x| =1) & secy=x and y€ [0, 7/2) U[m 37/2)

y=cot'x xER) <= coty=x and y€E (0, m

1 1

The choice of intervals for y in the definitions of csc™" and sec™ is not universally
agreed upon. For instance, some authors use y € [0, 7/2) U (7/2, 7] in the definition of
sec”'. [You can see from the graph of the secant function in Figure 26 that both this choice
and the one in (11) will work.]

I. (a) What is a one-to-one function?
(b) How can you tell from the graph of a function whether it is

[13] £(2) is the height of a football ¢ seconds after kickoff.

14. f(2) is your height at age t.

one-to-one?

2. (a) Suppose f is a one-to-one function with domain A and ) )
range B. How is the inverse function f ! defined? What is I5. If f ea one-to-one function such that f(2) = 9, what
the domain of f~'? What is the range of f~'? is f719)?

(b) If you are given a formula for f, how do you find a

formula for f~'?
(c) If you are given the graph of f, how do you find the graph (b) Find f(f'(5)).

of f71?

3-14 A function is given by a table of values, a graph, a formula,

16. Let f(x) = 3 + x? + tan(wx/2), where —1 < x < 1.
(a) Find f'(3).

If g(x) =3 + x + e, find g~'(4).

or a verbal description. Determine whether it is one-to-one. 18. The graph of f is given.
3] (a) Why is f one-to-one?
x I 2 3 4 5 6 (b) What are the domain and range of f~'?
}4(\) 1.5 2.0 3.6 53 28 2.0 (C) What is the value of f71(2)‘7
(d) Estimate the value of £'(0).
40 & I 2 3 4 5 6 y
fe |1 2 4 8 6 | 32 ol
1
5 6.
y y
\ EuE
X X
The formula C = 3(F — 32), where F = —459.67, expresses
the Celsius temperature C as a function of the Fahrenheit tem-
7 perature F. Find a formula for the inverse function and interpret
) Y Y it. What is the domain of the inverse function?
20. In the theory of relativity, the mass of a particle with speed v is
X X
mo
—— m=f) = V1 —0%c?

9. f(x) =x>—2x
1. g(x) = 1/x

10. f(x) =10 — 3x

where m is the rest mass of the particle and c is the speed of
light in a vacuum. Find the inverse function of f and explain

12. g(x) = cosx its meaning.
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21-26 Find a formula for the inverse of the function. 41-42 Use Formula 10 to graph the given functions on a
4y — 1 common screen. How are these graphs related?
21 f(x) = V10 — 3x 22 f(x) = 2x+ 3 41. y =1logisx, y=Inx, y=logix, y=logsox
23] f(x) = e* 24. y=2x>+3 42. y=1Inx, y=Ilogox, y=e" y=10"
eX
25y = In(x + 3) 26. y = 1+ 20" Suppose that the graph of y = log, x is drawn on a coordinate

grid where the unit of measurement is an inch. How many
miles to the right of the origin do we have to move before the
] 27-28 Find an explicit formula for £ ' and use it to graph f ', height of the curve reaches 3 ft?
f, and the line y = x on the same screen. To check your work, see
whether the graphs of f and f ! are reflections about the line.

44, Compare the functions f(x) = x*' and g(x) = In x by graph-
ing both f and g in several viewing rectangles. When does the

27. f(x) =x*+1, x=0 28. f(x) =2 —e* graph of f finally surpass the graph of g?

45-46 Make a rough sketch of the graph of each function. Do
29-30 Use the given graph of f to sketch the graph of f . not use a calculator. Just use the graphs given in Figures 12 and
13 and, if necessary, the transformations of Section 1.3.
29. ¥y 30.

1 (a) y = logio(x + 5) (b) y=—Inx
46. (a) y = In(—x) (b) y=1In|x|

0

1y /
0 1/ X
-1

47-50 Solve each equation for x.

47. (a) 2Inx =1 (b) e*=5
) o . 48. (a) ¥ —7=0 ) In(5 —2x) = -3
31. (a) How is the logarithmic function y = log,x defined? s
(b) What is the domain of this function? ()27 =3 (b) Inx + In(x — 1) =1
(c) What is the range of this function? 50. (a) In(ln x) = 1 (b) e™ = Ce, where a # b
(d) Sketch the general shape of the graph of the function
y =log.x ifa > 1.
32. (a) What is the natural logarithm? 51-52 Solve each inequality for x.
(b) What is the common logarithm? 51. (a) ¢* < 10 (b) Inx > —1
(c) Sketch the graphs of the natural logarithm function and s
the natural exponential function with a common set of 5. ()2 <Inx<9 (b) e >4
axes.
33-36 Find the exact value of each expression. 53-54 Find (a) the domain of f and (b) f ' and its domain.
33. (a) logs 125 (b) logs » 53. f(x) = /3 — e 54. f(x) =In(2 + Inx)
34. (a) In(1/e) (b) logio~/10
35. (a) log, 6 — log, 15 + 1log,20 (AS] 55. Graph the function f(x) = +/x> + x> + x + 1 and explain
(b) logs 100 — logs 18 — logs 50 why it is one-to-one. Then use a computer algebra system
oms oo to find an explicit expression for £ ~'(x). (Your CAS will
36. (@) e ®) ln(ln ¢ ) produce three possible expressions. Explain why two of them
are irrelevant in this context.)
37-39 Express the given quantity as a single logarithm. (A5]56. (a) If g(x) = x° + x* x = 0, use a computer algebra system
37. In5 +51In3 to find an expression for g ~!(x).

(b) Use the expression in part (a) to graph y = g(x),y = x,
38. In(a + b) + In(a — b) = 2Inc and y = g~ '(x) on the same screen.
39. In(1 + x?) + 5Inx — Insi . _ : .
n( *) +zlnx = Insin x 57. If a bacteria population starts with 100 bacteria and doubles
every three hours, then the number of bacteria after ¢ hours
40. Use Formula 10 to evaluate each logarithm correct to six dec- isn = f(1) = 100 - 23, (See Exercise 25 in Section 1.5.)
imal places. (a) Find the inverse of this function and explain its meaning.

(a) logi» 10 (b) log,8.4 (b) When will the population reach 50,0007
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58. When a camera flash goes off, the batteries immediately
begin to recharge the flash’s capacitor, which stores electric
charge given by

0(1) = Qy(1 — e
(The maximum charge capacity is Qy and ¢ is measured in
seconds.)
(a) Find the inverse of this function and explain its meaning.
(b) How long does it take to recharge the capacitor to 90%
of capacity if a = 2?

59-64 Find the exact value of each expression.

59. (a) sin"'(/3/2) (b) cos™'(—1)

60. (a) tan'(1/y/3) (b) sec™'2

61. (a) arctan 1 (b) sin"!(1//2)

62. (a) cot”'(—/3) (b) arccos(—3)

63. (a) tan(arctan 10) (b) sin~'(sin(77/3))

64. (a) tan(sec™'4)

(b) sin(2 sin"'(2))

65

. Prove that cos(sin”' x) = /1 — x2.

66-68 Simplify the expression.

66.
68.

tan(sin~'x) sin(tan'x)

cos(2 tan"'x)

69-70 Graph the given functions on the same screen. How are
these graphs related?

69.
70.

w/2;

y=tanx, —m/2<x<m/2;

y=sinx, —7w/2<x< y=sin"x; y=x

y=tan'x; y=x

71.

72.

73.

Find the domain and range of the function
g(x) =sin”'Gx + 1)

(a) Graph the function f(x) = sin(sin”'x) and explain the
appearance of the graph.

(b) Graph the function g(x) = sin™'(sin x). How do you
explain the appearance of this graph?

(a) If we shift a curve to the left, what happens to its reflec-
tion about the line y = x? In view of this geometric
principle, find an expression for the inverse of
g(x) = f(x + ¢), where f is a one-to-one function.

(b) Find an expression for the inverse of i(x) = f(cx), where
c# 0.



| REVIEW

CHAPTER | REVIEW ||| 73

CONCEPT CHECK

(a) What is a function? What are its domain and range?

(b) What is the graph of a function?

(c) How can you tell whether a given curve is the graph of
a function?

. Discuss four ways of representing a function. Illustrate your

discussion with examples.

. (a) What is an even function? How can you tell if a function is

even by looking at its graph?
(b) What is an odd function? How can you tell if a function is
odd by looking at its graph?

. What is an increasing function?
. What is a mathematical model?

. Give an example of each type of function.

(b) Power function
(d) Quadratic function
(f) Rational function

(a) Linear function
(c) Exponential function
(e) Polynomial of degree 5

. Sketch by hand, on the same axes, the graphs of the following

functions.
@ flx) =x (b) g(x) = x*
(©) h(x) = x° @ j(x) = x*
. Draw, by hand, a rough sketch of the graph of each function.
(a) y = sinx (b) y =tanx
©y=e" (d) y=Inx
(e) y = 1/x (f) y=|x]|
®y=x (h) y = tan"'x

. Suppose that f has domain A and g has domain B.

(a) What is the domain of f+ g?

(b) What is the domain of fg?
(c) What is the domain of f/g?

. How is the composite function f© g defined? What is its

domain?

. Suppose the graph of f is given. Write an equation for each of

the graphs that are obtained from the graph of f as follows.
(a) Shift 2 units upward.

(b) Shift 2 units downward.

(c) Shift 2 units to the right.

(d) Shift 2 units to the left.

(e) Reflect about the x-axis.

(f) Reflect about the y-axis.

(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.

(i) Stretch horizontally by a factor of 2.
(j) Shrink horizontally by a factor of 2.

. (a) What is a one-to-one function? How can you tell if a func-

tion is one-to-one by looking at its graph?

(b) If £ is a one-to-one function, how is its inverse function
f ! defined? How do you obtain the graph of f ' from the
graph of f?

. (a) How is the inverse sine function f(x) = sin"'x defined?

What are its domain and range?

(b) How is the inverse cosine function f(x) = cos™'x defined?
What are its domain and range?

(c) How is the inverse tangent function f(x) = tan™'x defined?
What are its domain and range?

TRUE-FALSE QUII

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

If £ is a function, then f(s + 1) = f(s) + f(2).

2. If f(s) = f(¢), then s = 1.

3. If f is a function, then f(3x) = 3f(x).
4.
5
6

If x; < x, and f is a decreasing function, then f(x;) > f(x,).

. A vertical line intersects the graph of a function at most once.

. If f and g are functions, then fog =gof.

1

. If f is one-to-one, then f '(x) = ——.

f(x)

Inx
.Ifx>0anda > l,thenl—:lnf.

. tan 'x =

. You can always divide by e*.
. If0 <a <b,thenlna < Inb.

. If x > 0, then (Inx)® = 6 1In x.

X
na a

. tan '(—1) = 37/4

sin”'x

cos”lx
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EXERCISES

I. Let f be the function whose graph is given.
(a) Estimate the value of f(2).
(b) Estimate the values of x such that f(x) = 3.
(c) State the domain of f.
(d) State the range of f.
(e) On what interval is f increasing?
(f) Is f one-to-one? Explain.
(g) Is f even, odd, or neither even nor odd? Explain.

2. The graph of g is given.
(a) State the value of g(2).
(b) Why is g one-to-one?
(c) Estimate the value of g '(2).
(d) Estimate the domain of g .
(e) Sketch the graph of g .

3. If f(x) = x> — 2x + 3, evaluate the difference quotient

fla+h) — fla)
h

4. Sketch a rough graph of the yield of a crop as a function of the
amount of fertilizer used.

5-8 Find the domain and range of the function.

5 f(x) =2/Bx— 1) 6. g(x) = /16 — x*
7. h(x) = In(x + 6) 8. F(t) =3 + cos 2t

9. Suppose that the graph of f is given. Describe how the graphs
of the following functions can be obtained from the graph of f.

(@ y=f(x) +38 b)) y=f(x+38)

©y=1+2f(x) dy=fx-2 -2

() y=—-f(») ) y=r"
10. The graph of f is given. Draw the graphs of the following
functions.
@ y=flx—28) (b y=—fk)
©y=2-f( @ y=3/(—1
©y=/f" () y=r"(x+3)
y
L
1
L1
0 1 By
|

I1-16 Use transformations to sketch the graph of the function.

Il. y = —sin2x 12. y=3In(x — 2)
13. y =5(1 +¢") 14. y=2— Jx
1 —Xx if x<O0
I5. = 16. =
/0= 6. /) {e"—l if x=0

17. Determine whether f is even, odd, or neither even nor odd.
(@ f(x) =2x>—3x*+2
(b) f(x) = x* = x7
© flx)=e™
d) f(x) =1+ sinx

18. Find an expression for the function whose graph consists of
the line segment from the point (—2, 2) to the point (—1, 0)
together with the top half of the circle with center the origin
and radius 1.

19. If f(x) = Inx and g(x) = x> — 9, find the functions (a) fe° g,
(b)geof, () fof,(d)geg,and their domains.

20. Express the function F(x) = 1/y/x +,/x as a composition of
three functions.

21. Life expectancy improved dramatically in the 20th century. The
table gives the life expectancy at birth (in years) of males born
in the United States.

Birth year | Life expectancy Birth year Life expectancy
1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 73.0
1950 65.6




22.

23.

24.

25.

Use a scatter plot to choose an appropriate type of model. Use
your model to predict the life span of a male born in the year
2010.

A small-appliance manufacturer finds that it costs $9000 to
produce 1000 toaster ovens a week and $12,000 to produce
1500 toaster ovens a week.

(a) Express the cost as a function of the number of toaster
ovens produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?

(c) What is the y-intercept of the graph and what does it
represent?

If £(x) = 2x + Inx, find £'(2).

x + 1
2x +1°

Find the inverse function of f(x) =
Find the exact value of each expression.

(a) 621"3 (b) 10g10 25 + 10g104
(d) sin(cos™'(%))

(c) tan(arcsin %)

26.

27.

] 28.

CHAPTER | REVIEW |||

Solve each equation for x.
(a) e* =5 (b) Inx =2
(© e =2 (d) tan"'x =1

The population of a certain species in a limited environment
with initial population 100 and carrying capacity 1000 is

100,000

PH)= ————
® 100 + 900e™"

where ¢ is measured in years.

(a) Graph this function and estimate how long it takes for the
population to reach 900.

(b) Find the inverse of this function and explain its meaning.

(c) Use the inverse function to find the time required for the
population to reach 900. Compare with the result of
part (a).

Graph the three functions y = x, y = a*, and y = log,x on
the same screen for two or three values of a > 1. For large
values of x, which of these functions has the largest values
and which has the smallest values?
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PRINCIPL
PROBLEM SOLVING

There are no hard and fast rules that will ensure success in solving problems. However, it is
possible to outline some general steps in the problem-solving process and to give some prin-
ciples that may be useful in the solution of certain problems. These steps and principles are
just common sense made explicit. They have been adapted from George Polya’s book How
To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask your-
self the following questions:

What is the unknown?
What are the given quantities?

What are the given conditions?

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, ¢, m, n, x,
and y, but in some cases it helps to use initials as suggestive symbols; for instance, V for
volume or ¢ for time.

Find a connection between the given information and the unknown that will enable you to
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the given
to the unknown?” If you don’t see a connection immediately, the following ideas may be
helpful in devising a plan.

Try to Recognize Something Familiar Relate the given situation to previous knowledge. Look
at the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns Some problems are solved by recognizing that some kind of pat-
tern is occurring. The pattern could be geometric, or numerical, or algebraic. If you can see
regularity or repetition in a problem, you might be able to guess what the continuing pattern
is and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a related
problem, but one that is easier than the original problem. If you can solve the similar, sim-
pler problem, then it might give you the clues you need to solve the original, more difficult
problem. For instance, if a problem involves very large numbers, you could first try a simi-
lar problem with smaller numbers. Or if the problem involves three-dimensional geometry,
you could look for a similar problem in two-dimensional geometry. Or if the problem you
start with is a general one, you could first try a special case.

Introduce Something Extra It may sometimes be necessary to introduce something new, an
auxiliary aid, to help make the connection between the given and the unknown. For instance,
in a problem where a diagram is useful the auxiliary aid could be a new line drawn in a dia-
gram. In a more algebraic problem it could be a new unknown that is related to the original
unknown.
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PROBLEM SOL

VING

Take Cases We may sometimes have to split a problem into several cases and give a dif-
ferent argument for each of the cases. For instance, we often have to use this strategy in deal-
ing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is solved and work
backward, step by step, until you arrive at the given data. Then you may be able to reverse
your steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation 3x — 5 = 7, we sup-
pose that x is a number that satisfies 3x — 5 = 7 and work backward. We add 5 to each side
of the equation and then divide each side by 3 to get x = 4. Since each of these steps can
be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals (in which the
desired situation is only partially fulfilled). If we can first reach these subgoals, then we may
be able to build on them to reach our final goal.

Indirect Reasoning Sometimes it is appropriate to attack a problem indirectly. In using
proof by contradiction to prove that P implies O, we assume that P is true and Q is false and
try to see why this can’t happen. Somehow we have to use this information and arrive at a
contradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer n, it is fre-
quently helpful to use the following principle.

PRINCIPLE OF MATHEMATICAL INDUCTION Let S, be a statement about the positive
integer n. Suppose that

I. S, is true.

2. S;+1 1s true whenever Sy is true.

Then S, is true for all positive integers 7.

This is reasonable because, since S; is true, it follows from condition 2 (with
k = 1) that S; is true. Then, using condition 2 with k = 2, we see that S; is true. Again using
condition 2, this time with k = 3, we have that S, is true. This procedure can be followed
indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the
plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have made
errors in the solution and partly to see if we can think of an easier way to solve the problem.
Another reason for looking back is that it will familiarize us with the method of solution and
this may be useful for solving a future problem. Descartes said, “Every problem that I solved
became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before you
look at the solutions, try to solve these problems yourself, referring to these Principles of
Problem Solving if you get stuck. You may find it useful to refer to this section from time
to time as you solve the exercises in the remaining chapters of this book.
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Understand the problem

Draw a diagram

FIGURE |

Connect the given with the unknown
Introduce something extra

Relate to the familiar

78

EXAMPLE | Express the hypotenuse / of a right triangle with area 25 m” as a function of
its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and the data:
Unknown: hypotenuse h

Given quantities: perimeter P, area 25 m?>

It helps to draw a diagram and we do so in Figure 1.

h

a

In order to connect the given quantities to the unknown, we introduce two extra vari-
ables a and b, which are the lengths of the other two sides of the triangle. This enables us
to express the given condition, which is that the triangle is right-angled, by the Pythago-
rean Theorem:

ht=a’+ b?

The other connections among the variables come by writing expressions for the area and
perimeter:
25 = jab P=a+b+h

Since P is given, notice that we now have three equations in the three unknowns a, b,
and h:

[1] ht=a’+ b?
[2] 25 = Jab
(3] P=a+Db+h

Although we have the correct number of equations, they are not easy to solve in a straight-
forward fashion. But if we use the problem-solving strategy of trying to recognize some-
thing familiar, then we can solve these equations by an easier method. Look at the right
sides of Equations 1, 2, and 3. Do these expressions remind you of anything familiar?
Notice that they contain the ingredients of a familiar formula:

(@ + b)*>=a® + 2ab + b?
Using this idea, we express (a + b)* in two ways. From Equations 1 and 2 we have
(@ + b)*> = (a® + b?) + 2ab = h*> + 4(25)
From Equation 3 we have

(a+ b= (P~ h?=P —2Ph+h*

Thus h* + 100 = P> — 2Ph + h?
2Ph = P* — 100
P> — 100
h=——""7"
2P
This is the required expression for /4 as a function of P. |
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m Take cases

As the next example illustrates, it is often necessary to use the problem-solving prin-

ciple of taking cases when dealing with absolute values.

EXAMPLE 2 Solve the inequality |x — 3| + |x + 2| < 11.

SOLUTION Recall the definition of absolute value:

| | X if x=0
x| =
—x if x<O

-3 ifx—3=0
It follows that |x—3|={x( 3) ;fx 1 <0
—(x — Y-
_Jx-=3 if x=3
—-x+3 if x<3
e x+2 ifx+2=0
Similarly |x+2|={—(x+2) ifx+2<0

Cfx+2 itx=—2
—x—2 ifx<-2

These expressions show that we must consider three cases:
x < =2 —2=x<3 x=3

CASE | If x < —2, we have
|x = 3]+ |x+2| <11
—x+3-—x—-2<I11
—2x <10
x> =5
CASE Il If —2 < x < 3, the given inequality becomes
—x+3+x+2<I1l1
5<11 (always true)
CASE IIl If x = 3, the inequality becomes
x—3+x+2<I11

2x < 12

x<6

Combining cases I, II, and III, we see that the inequality is satisfied when —5 < x < 6.

So the solution is the interval (=3, 6).
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m Analogy: Try a similar, simpler problem

m Look for a pattern

In the following example we first guess the answer by looking at special cases and rec-
ognizing a pattern. Then we prove it by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

STEP | Prove that S, is true when n = 1.
STEP 2 Assume that S, is true when n = k and deduce that S, is true whenn = k + 1.

STEP 3 Conclude that S, is true for all n by the Principle of Mathematical Induction.

EXAMPLE 3 If fy(x) = x/(x + 1) and f,.1 = foo f, forn =0, 1,2, . . ., find a formula
for f,(x).

SOLUTION We start by finding formulas for f,(x) for the special cases n = 1, 2, and 3.

A = (frofo) @) = filfi(x) =fo< = )
x+1
X X
_ x+1 _ x+1 _ X
x Co2x 41 2x+1
+1
x+1 x+1
A = (oo i) () = Al i) =fo(2xi 1)
X X
_ 2x + 1 _2x+1 _ X
 x C3x 41 3x+1
2x + 1 2x + 1

A = (oo £)) = fi o) =fo( . )

3x + 1
X X
- 3x + 1 _ 3x+ 1 X
T x C4x+ 1 4x+ 1
3x + 1 3x + 1

We notice a pattern: The coefficient of x in the denominator of f,(x) is n + 1 in the
three cases we have computed. So we make the guess that, in general,

X
4] S PR s

To prove this, we use the Principle of Mathematical Induction. We have already verified
that (4) is true for n = 1. Assume that it is true for n = k, that is,

X

M= e 1
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Then

PRINCIPLES OF
PROBLEM SOLYING
fin(9) = (fo 2 ) = filAilx) =ﬁ)<m)
X - x
_ k+Dx+1  (k+Dx+1 X
B x o k+)x+1 (k+2x+1
(k+Dx+1 k+1Dx+1

This expression shows that (4) is true for n = k + 1. Therefore, by mathematical induc-
tion, it is true for all positive integers n. |

~—— | PROBLEMS |

- (@) If folx) =

. One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpendi-

cular to the hypotenuse as a function of the length of the hypotenuse.

. The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length of

the hypotenuse as a function of the perimeter.

. Solve the equation |2x — 1| — |x + 5| = 3.

. Solve the inequality |x — 1| — |x — 3| = 5.

. Sketch the graph of the function f(x) = |x* — 4| x| + 3|.

. Sketch the graph of the function g(x) = | x> — 1| — |x? — 4].

. Draw the graph of the equation x + |x| =y + |y|.

. Draw the graph of the equation x* — 4x? — x?y? + 4y? = 0.

. Sketch the region in the plane consisting of all points (x, y) such that | x| + |y| < 1.

. Sketch the region in the plane consisting of all points (x, y) such that

|x =yl +[x] - [y[=2

. Evaluate (log, 3)(logs4)(log45) - - - (logs1 32).

. (a) Show that the function f(x) = ln(x + x4+ 1) is an odd function.

(b) Find the inverse function of f.

. Solve the inequality In(x? — 2x — 2) < 0.
. Use indirect reasoning to prove that log, 5 is an irrational number.

. A driver sets out on a journey. For the first half of the distance she drives at the leisurely pace

of 30 mi/h; she drives the second half at 60 mi/h. What is her average speed on this trip?

. Isit true that fo (g + h) =fog + fo h?

. Prove that if n is a positive integer, then 7" — 1 is divisible by 6.

. Provethatl + 3+ 5+ -+ 2n — 1) = n’.

. If fy(x) = x? and for0(x) = fo( fu(x)) forn = 0, 1, 2, .. ., find a formula for f,(x).

1

5 and f,o1 = foofuforn=0,1,2, ..., find an expression for f,(x) and use
—x

mathematical induction to prove it.

(b) Graph fp, fi, f>, f> on the same screen and describe the effects of repeated composition.
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2

LIMITS AND
DERIVATIVES

The idea of a limit is

DRAR!

illustrated by secant lines
approaching a tangent line.

In A Preview of Calculus (page 2) we saw how the idea of a limit underlies the various
branches of calculus. It is therefore appropriate to begin our study of calculus by
investigating limits and their properties. The special type of limit that is used to find
tangents and velocities gives rise to the central idea in differential calculus, the
derivative.
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2.1

THE TANGENT AND VELOCITY PROBLEMS

FIGURE 1

(b)

Q(x.x?) J /1

P(1,1)

FIGURE 2
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1.1
1.01
1.001

3

2.5
2.1
2.01
2.001

Mmpg

0

0.5
0.9
0.99
0.999

1

1.5
1.9
1.99
1.999

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

THE TANGENT PROBLEM

The word tangent is derived from the Latin word fangens, which means “touching.” T